ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.173 by root, Sun Dec 9 19:42:57 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
324
325/*
326 * This is used to avoid floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 334
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 338
225#if __GNUC__ >= 3 339#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
228#else 342#else
229# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
230# define noinline 344# define noinline
231# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 346# define inline
233# endif 347# endif
234#endif 348#endif
235 349
236#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
251 365
252typedef ev_watcher *W; 366typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
255 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
257 378
258#ifdef _WIN32 379#ifdef _WIN32
259# include "ev_win32.c" 380# include "ev_win32.c"
260#endif 381#endif
261 382
268{ 389{
269 syserr_cb = cb; 390 syserr_cb = cb;
270} 391}
271 392
272static void noinline 393static void noinline
273syserr (const char *msg) 394ev_syserr (const char *msg)
274{ 395{
275 if (!msg) 396 if (!msg)
276 msg = "(libev) system error"; 397 msg = "(libev) system error";
277 398
278 if (syserr_cb) 399 if (syserr_cb)
282 perror (msg); 403 perror (msg);
283 abort (); 404 abort ();
284 } 405 }
285} 406}
286 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
287static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 424
289void 425void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 427{
292 alloc = cb; 428 alloc = cb;
293} 429}
294 430
295inline_speed void * 431inline_speed void *
296ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
297{ 433{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
299 435
300 if (!ptr && size) 436 if (!ptr && size)
301 { 437 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 439 abort ();
314typedef struct 450typedef struct
315{ 451{
316 WL head; 452 WL head;
317 unsigned char events; 453 unsigned char events;
318 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
319#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 461 SOCKET handle;
321#endif 462#endif
322} ANFD; 463} ANFD;
323 464
326 W w; 467 W w;
327 int events; 468 int events;
328} ANPENDING; 469} ANPENDING;
329 470
330#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
331typedef struct 473typedef struct
332{ 474{
333 WL head; 475 WL head;
334} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
335#endif 495#endif
336 496
337#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
338 498
339 struct ev_loop 499 struct ev_loop
397{ 557{
398 return ev_rt_now; 558 return ev_rt_now;
399} 559}
400#endif 560#endif
401 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
402int inline_size 594int inline_size
403array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
404{ 596{
405 int ncur = cur + 1; 597 int ncur = cur + 1;
406 598
407 do 599 do
408 ncur <<= 1; 600 ncur <<= 1;
409 while (cnt > ncur); 601 while (cnt > ncur);
410 602
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 605 {
414 ncur *= elem; 606 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 609 ncur /= elem;
418 } 610 }
419 611
420 return ncur; 612 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
425{ 617{
426 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
428} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 624
430#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
432 { \ 627 { \
433 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
466 pendings [pri][w_->pending - 1].w = w_; 661 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 662 pendings [pri][w_->pending - 1].events = revents;
468 } 663 }
469} 664}
470 665
471void inline_size 666void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 668{
474 int i; 669 int i;
475 670
476 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
478} 673}
479 674
480/*****************************************************************************/ 675/*****************************************************************************/
481
482void inline_size
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494 676
495void inline_speed 677void inline_speed
496fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
497{ 679{
498 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
523 { 705 {
524 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
526 ev_io *w; 708 ev_io *w;
527 709
528 int events = 0; 710 unsigned char events = 0;
529 711
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 713 events |= (unsigned char)w->events;
532 714
533#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
534 if (events) 716 if (events)
535 { 717 {
536 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
537 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 725 }
540#endif 726#endif
541 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
542 anfd->reify = 0; 732 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
546 } 738 }
547 739
548 fdchangecnt = 0; 740 fdchangecnt = 0;
549} 741}
550 742
551void inline_size 743void inline_size
552fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
553{ 745{
554 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
558 748
749 if (expect_true (!reify))
750 {
559 ++fdchangecnt; 751 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
562} 755}
563 756
564void inline_speed 757void inline_speed
565fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
566{ 759{
589{ 782{
590 int fd; 783 int fd;
591 784
592 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 786 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
596} 789}
597 790
598/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 792static void noinline
617 810
618 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 812 if (anfds [fd].events)
620 { 813 {
621 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
622 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 817 }
624} 818}
625 819
626/*****************************************************************************/ 820/*****************************************************************************/
627 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
628void inline_speed 842void inline_speed
629upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
630{ 844{
631 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
632 847
633 while (k && heap [k >> 1]->at > w->at) 848 for (;;)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 } 849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
639 853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
640 heap [k] = w; 881 heap [k] = he;
641 ((W)heap [k])->active = k + 1; 882 ev_active (ANHE_w (he)) = k;
642
643} 883}
644 884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
645void inline_speed 892void inline_speed
646downheap (WT *heap, int N, int k) 893downheap (ANHE *heap, int N, int k)
647{ 894{
648 WT w = heap [k]; 895 ANHE he = heap [k];
649 896
650 while (k < (N >> 1)) 897 for (;;)
651 { 898 {
652 int j = k << 1; 899 int c = k << 1;
653 900
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 901 if (c > N + HEAP0 - 1)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 902 break;
659 903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
660 heap [k] = heap [j]; 910 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
662 k = j; 913 k = c;
663 } 914 }
664 915
665 heap [k] = w; 916 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
667} 941}
668 942
669void inline_size 943void inline_size
670adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
671{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 947 upheap (heap, k);
948 else
673 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
674} 962}
675 963
676/*****************************************************************************/ 964/*****************************************************************************/
677 965
678typedef struct 966typedef struct
679{ 967{
680 WL head; 968 WL head;
681 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
682} ANSIG; 970} ANSIG;
683 971
684static ANSIG *signals; 972static ANSIG *signals;
685static int signalmax; 973static int signalmax;
686 974
687static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 976
691void inline_size 977/*****************************************************************************/
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 978
754void inline_speed 979void inline_speed
755fd_intern (int fd) 980fd_intern (int fd)
756{ 981{
757#ifdef _WIN32 982#ifdef _WIN32
758 int arg = 1; 983 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else 985#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 988#endif
764} 989}
765 990
766static void noinline 991static void noinline
767siginit (EV_P) 992evpipe_init (EV_P)
768{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
769 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
771 1013
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
775} 1082}
776 1083
777/*****************************************************************************/ 1084/*****************************************************************************/
778 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
779static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
780 1124
781#ifndef _WIN32 1125#ifndef _WIN32
782 1126
783static ev_signal childev; 1127static ev_signal childev;
784 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
785void inline_speed 1133void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
787{ 1135{
788 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1138
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
791 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
792 { 1143 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1145 w->rpid = pid;
795 w->rstatus = status; 1146 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1148 }
1149 }
798} 1150}
799 1151
800#ifndef WCONTINUED 1152#ifndef WCONTINUED
801# define WCONTINUED 0 1153# define WCONTINUED 0
802#endif 1154#endif
811 if (!WCONTINUED 1163 if (!WCONTINUED
812 || errno != EINVAL 1164 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1166 return;
815 1167
816 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1171
820 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1175}
824 1176
825#endif 1177#endif
826 1178
827/*****************************************************************************/ 1179/*****************************************************************************/
899} 1251}
900 1252
901unsigned int 1253unsigned int
902ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
903{ 1255{
904 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1257
906 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
907} 1263}
908 1264
909unsigned int 1265unsigned int
910ev_backend (EV_P) 1266ev_backend (EV_P)
911{ 1267{
914 1270
915unsigned int 1271unsigned int
916ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
917{ 1273{
918 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
919} 1287}
920 1288
921static void noinline 1289static void noinline
922loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
923{ 1291{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1298 have_monotonic = 1;
931 } 1299 }
932#endif 1300#endif
933 1301
934 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1303 mn_now = get_clock ();
936 now_floor = mn_now; 1304 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
938 1315
939 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
940#ifndef _WIN32 1317#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1319 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1323 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1326
950 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1329
959#if EV_USE_PORT 1330#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1332#endif
962#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
970#endif 1341#endif
971#if EV_USE_SELECT 1342#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1344#endif
974 1345
975 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1348 }
978} 1349}
979 1350
980static void noinline 1351static void noinline
981loop_destroy (EV_P) 1352loop_destroy (EV_P)
982{ 1353{
983 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
984 1372
985#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
987 close (fs_fd); 1375 close (fs_fd);
988#endif 1376#endif
1011 array_free (pending, [i]); 1399 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1400#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1401 array_free (idle, [i]);
1014#endif 1402#endif
1015 } 1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1016 1406
1017 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1408 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1409 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1411 array_free (periodic, EMPTY);
1022#endif 1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1023 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1025 1421
1026 backend = 0; 1422 backend = 0;
1027} 1423}
1028 1424
1425#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1030 1428
1031void inline_size 1429void inline_size
1032loop_fork (EV_P) 1430loop_fork (EV_P)
1033{ 1431{
1034#if EV_USE_PORT 1432#if EV_USE_PORT
1042#endif 1440#endif
1043#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1442 infy_fork (EV_A);
1045#endif 1443#endif
1046 1444
1047 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1048 { 1446 {
1049 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1050 1453
1051 ev_ref (EV_A); 1454 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1053 close (sigpipe [0]); 1464 close (evpipe [0]);
1054 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1055 1467
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1471 }
1061 1472
1062 postfork = 0; 1473 postfork = 0;
1063} 1474}
1064 1475
1065#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1066struct ev_loop * 1478struct ev_loop *
1067ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1068{ 1480{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1482
1086} 1498}
1087 1499
1088void 1500void
1089ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1090{ 1502{
1091 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1092} 1504}
1093 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1094#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1095 1606
1096#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1097struct ev_loop * 1608struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1099#else 1610#else
1100int 1611int
1101ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1102#endif 1613#endif
1103{ 1614{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1109 { 1616 {
1110#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1619#else
1115 1622
1116 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1117 1624
1118 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1119 { 1626 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1627#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138{ 1643{
1139#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif 1646#endif
1142 1647
1648 ev_default_loop_ptr = 0;
1649
1143#ifndef _WIN32 1650#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1146#endif 1653#endif
1147 1654
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1155} 1656}
1156 1657
1157void 1658void
1158ev_default_fork (void) 1659ev_default_fork (void)
1159{ 1660{
1160#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1663#endif
1163 1664
1164 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 1666}
1167 1667
1168/*****************************************************************************/ 1668/*****************************************************************************/
1169 1669
1170void 1670void
1187 { 1687 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1689
1190 p->w->pending = 0; 1690 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1192 } 1693 }
1193 } 1694 }
1194} 1695}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 1696
1275#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1276void inline_size 1698void inline_size
1277idle_reify (EV_P) 1699idle_reify (EV_P)
1278{ 1700{
1293 } 1715 }
1294 } 1716 }
1295} 1717}
1296#endif 1718#endif
1297 1719
1298int inline_size 1720void inline_size
1299time_update_monotonic (EV_P) 1721timers_reify (EV_P)
1300{ 1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1829 {
1830 ev_tstamp odiff = rtmn_diff;
1831
1301 mn_now = get_clock (); 1832 mn_now = get_clock ();
1302 1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1837 {
1305 ev_rt_now = rtmn_diff + mn_now; 1838 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1839 return;
1307 } 1840 }
1308 else 1841
1309 {
1310 now_floor = mn_now; 1842 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1843 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1844
1316void inline_size 1845 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1846 * on the choice of "4": one iteration isn't enough,
1318{ 1847 * in case we get preempted during the calls to
1319 int i; 1848 * ev_time and get_clock. a second call is almost guaranteed
1320 1849 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1850 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1851 * in the unlikely event of having been preempted here.
1323 { 1852 */
1324 if (time_update_monotonic (EV_A)) 1853 for (i = 4; --i; )
1325 { 1854 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1339 1856
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1858 return; /* all is well */
1342 1859
1343 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1861 mn_now = get_clock ();
1345 now_floor = mn_now; 1862 now_floor = mn_now;
1346 } 1863 }
1347 1864
1348# if EV_PERIODIC_ENABLE 1865# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1866 periodics_reschedule (EV_A);
1350# endif 1867# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1870 }
1355 else 1871 else
1356#endif 1872#endif
1357 { 1873 {
1358 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1359 1875
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1877 {
1362#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1364#endif 1880#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1369 } 1888 }
1370 1889
1371 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1372 } 1891 }
1373} 1892}
1382ev_unref (EV_P) 1901ev_unref (EV_P)
1383{ 1902{
1384 --activecnt; 1903 --activecnt;
1385} 1904}
1386 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1387static int loop_done; 1912static int loop_done;
1388 1913
1389void 1914void
1390ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1391{ 1916{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1918
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1920
1398 do 1921 do
1399 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1400#ifndef _WIN32 1927#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1403 { 1930 {
1404 curpid = getpid (); 1931 curpid = getpid ();
1433 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1961 fd_reify (EV_A);
1435 1962
1436 /* calculate blocking time */ 1963 /* calculate blocking time */
1437 { 1964 {
1438 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1439 1967
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1969 {
1444 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1971 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1972
1455 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1456 1974
1457 if (timercnt) 1975 if (timercnt)
1458 { 1976 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1461 } 1979 }
1462 1980
1463#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1982 if (periodiccnt)
1465 { 1983 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1468 } 1986 }
1469#endif 1987#endif
1470 1988
1471 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1472 } 2002 }
1473 2003
1474 ++loop_count; 2004 ++loop_count;
1475 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
2006
2007 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime);
1476 } 2009 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2010
1481 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2025
1496 call_pending (EV_A); 2026 call_pending (EV_A);
1497
1498 } 2027 }
1499 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1500 2033
1501 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1503} 2036}
1504 2037
1592 2125
1593 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1594 return; 2127 return;
1595 2128
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1597 2133
1598 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1601 2137
1602 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1603} 2142}
1604 2143
1605void noinline 2144void noinline
1606ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1607{ 2146{
1608 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1610 return; 2149 return;
1611 2150
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 2152
2153 EV_FREQUENT_CHECK;
2154
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1616 2157
1617 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1618} 2161}
1619 2162
1620void noinline 2163void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1622{ 2165{
1623 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1624 return; 2167 return;
1625 2168
1626 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1627 2170
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1634 2181
2182 EV_FREQUENT_CHECK;
2183
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 2185}
1637 2186
1638void noinline 2187void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1640{ 2189{
1641 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1643 return; 2192 return;
1644 2193
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1646 2195
1647 { 2196 {
1648 int active = ((W)w)->active; 2197 int active = ev_active (w);
1649 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1650 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1651 { 2204 {
1652 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1654 } 2207 }
1655 } 2208 }
1656 2209
1657 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1658 2213
1659 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1660} 2215}
1661 2216
1662void noinline 2217void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1664{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1665 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1666 { 2223 {
1667 if (w->repeat) 2224 if (w->repeat)
1668 { 2225 {
1669 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1671 } 2229 }
1672 else 2230 else
1673 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1674 } 2232 }
1675 else if (w->repeat) 2233 else if (w->repeat)
1676 { 2234 {
1677 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1679 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1680} 2240}
1681 2241
1682#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1683void noinline 2243void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1685{ 2245{
1686 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1687 return; 2247 return;
1688 2248
1689 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 2251 else if (w->interval)
1692 { 2252 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 2256 }
1697 else 2257 else
1698 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1699 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1704 2268
2269 EV_FREQUENT_CHECK;
2270
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 2272}
1707 2273
1708void noinline 2274void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1710{ 2276{
1711 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1713 return; 2279 return;
1714 2280
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1716 2282
1717 { 2283 {
1718 int active = ((W)w)->active; 2284 int active = ev_active (w);
1719 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1720 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1721 { 2291 {
1722 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1724 } 2294 }
1725 } 2295 }
2296
2297 EV_FREQUENT_CHECK;
1726 2298
1727 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1728} 2300}
1729 2301
1730void noinline 2302void noinline
1749 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1750 return; 2322 return;
1751 2323
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1753 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1754 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 2346
1758 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1759 { 2348 {
1760#if _WIN32 2349#if _WIN32
1761 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1762#else 2351#else
1763 struct sigaction sa; 2352 struct sigaction sa;
1764 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1768#endif 2357#endif
1769 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1770} 2361}
1771 2362
1772void noinline 2363void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1774{ 2365{
1775 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1777 return; 2368 return;
1778 2369
2370 EV_FREQUENT_CHECK;
2371
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1781 2374
1782 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1783 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1784} 2379}
1785 2380
1786void 2381void
1787ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1788{ 2383{
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 2386#endif
1792 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1793 return; 2388 return;
1794 2389
2390 EV_FREQUENT_CHECK;
2391
1795 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1797} 2396}
1798 2397
1799void 2398void
1800ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1801{ 2400{
1802 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1804 return; 2403 return;
1805 2404
2405 EV_FREQUENT_CHECK;
2406
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1808} 2411}
1809 2412
1810#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1811 2414
1812# ifdef _WIN32 2415# ifdef _WIN32
1813# undef lstat 2416# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1815# endif 2418# endif
1816 2419
1817#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1819 2423
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 2425
1822#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1827{ 2431{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 2433
1830 if (w->wd < 0) 2434 if (w->wd < 0)
1831 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1833 2438
1834 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 2443 {
1837 char path [4096]; 2444 char path [4096];
1838 strcpy (path, w->path); 2445 strcpy (path, w->path);
1839 2446
1852 } 2459 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 2461 }
1855 } 2462 }
1856 else 2463 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1858
1859 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1861} 2484}
1862 2485
1863static void noinline 2486static void noinline
1864infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1865{ 2488{
1879 2502
1880static void noinline 2503static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 2505{
1883 if (slot < 0) 2506 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1887 else 2510 else
1888 { 2511 {
1889 WL w_; 2512 WL w_;
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1920} 2543}
1921 2544
1922void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1923infy_init (EV_P) 2569infy_init (EV_P)
1924{ 2570{
1925 if (fs_fd != -2) 2571 if (fs_fd != -2)
1926 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1927 2577
1928 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1929 2579
1930 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1931 { 2581 {
1959 w->wd = -1; 2609 w->wd = -1;
1960 2610
1961 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 2613 else
1964 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1965 } 2615 }
1966
1967 } 2616 }
1968} 2617}
1969 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 2625#endif
1971 2626
1972void 2627void
1973ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1974{ 2629{
2001 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
2004 ) { 2659 ) {
2005 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2006 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2009 #endif 2667 #endif
2010 2668
2011 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 2670 }
2013} 2671}
2016ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2017{ 2675{
2018 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2019 return; 2677 return;
2020 2678
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2026 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 2683
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2032 2686
2033#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2034 infy_init (EV_A); 2688 infy_init (EV_A);
2035 2689
2036 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2038 else 2692 else
2039#endif 2693#endif
2040 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2041 2695
2042 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2043} 2699}
2044 2700
2045void 2701void
2046ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2047{ 2703{
2048 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2050 return; 2706 return;
2051 2707
2708 EV_FREQUENT_CHECK;
2709
2052#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2054#endif 2712#endif
2055 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2056 2714
2057 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2058} 2718}
2059#endif 2719#endif
2060 2720
2061#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2062void 2722void
2064{ 2724{
2065 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2066 return; 2726 return;
2067 2727
2068 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2069 2731
2070 { 2732 {
2071 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2072 2734
2073 ++idleall; 2735 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2075 2737
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2078 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2079} 2743}
2080 2744
2081void 2745void
2082ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2083{ 2747{
2084 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2086 return; 2750 return;
2087 2751
2752 EV_FREQUENT_CHECK;
2753
2088 { 2754 {
2089 int active = ((W)w)->active; 2755 int active = ev_active (w);
2090 2756
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 2759
2094 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2095 --idleall; 2761 --idleall;
2096 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2097} 2765}
2098#endif 2766#endif
2099 2767
2100void 2768void
2101ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2102{ 2770{
2103 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2104 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2105 2775
2106 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2109} 2781}
2110 2782
2111void 2783void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2113{ 2785{
2114 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2116 return; 2788 return;
2117 2789
2790 EV_FREQUENT_CHECK;
2791
2118 { 2792 {
2119 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2120 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2122 } 2797 }
2123 2798
2124 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2125} 2802}
2126 2803
2127void 2804void
2128ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2129{ 2806{
2130 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2131 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2132 2811
2133 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2136} 2817}
2137 2818
2138void 2819void
2139ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2140{ 2821{
2141 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2143 return; 2824 return;
2144 2825
2826 EV_FREQUENT_CHECK;
2827
2145 { 2828 {
2146 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2147 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2149 } 2833 }
2150 2834
2151 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2152} 2838}
2153 2839
2154#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2155void noinline 2841void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 2843{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2845}
2160 2846
2161static void 2847static void
2162embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 2849{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 2851
2166 if (ev_cb (w)) 2852 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 2854 else
2169 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2171 2893
2172void 2894void
2173ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2174{ 2896{
2175 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2176 return; 2898 return;
2177 2899
2178 { 2900 {
2179 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2183 2907
2184 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2186 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2187 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2188} 2923}
2189 2924
2190void 2925void
2191ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2192{ 2927{
2193 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2195 return; 2930 return;
2196 2931
2932 EV_FREQUENT_CHECK;
2933
2197 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2198 2937
2199 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2200} 2939}
2201#endif 2940#endif
2202 2941
2203#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2204void 2943void
2205ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2206{ 2945{
2207 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2208 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2209 2950
2210 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2213} 2956}
2214 2957
2215void 2958void
2216ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2217{ 2960{
2218 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2220 return; 2963 return;
2221 2964
2965 EV_FREQUENT_CHECK;
2966
2222 { 2967 {
2223 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2224 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2226 } 2972 }
2227 2973
2228 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2229} 3024}
2230#endif 3025#endif
2231 3026
2232/*****************************************************************************/ 3027/*****************************************************************************/
2233 3028
2243once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 3039{
2245 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 3041 void *arg = once->arg;
2247 3042
2248 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 3045 ev_free (once);
2251 3046
2252 cb (revents, arg); 3047 cb (revents, arg);
2253} 3048}
2254 3049
2255static void 3050static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 3052{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 3056}
2260 3057
2261static void 3058static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 3060{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 3064}
2266 3065
2267void 3066void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2269{ 3068{
2291 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2293 } 3092 }
2294} 3093}
2295 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2296#ifdef __cplusplus 3099#ifdef __cplusplus
2297} 3100}
2298#endif 3101#endif
2299 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines