ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
220 324
221/* 325/*
222 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
230 334
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 338
235#if __GNUC__ >= 3 339#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
238#else 342#else
239# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
240# define noinline 344# define noinline
241# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 346# define inline
243# endif 347# endif
244#endif 348#endif
245 349
246#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
261 365
262typedef ev_watcher *W; 366typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
265 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
267 378
268#ifdef _WIN32 379#ifdef _WIN32
269# include "ev_win32.c" 380# include "ev_win32.c"
270#endif 381#endif
271 382
278{ 389{
279 syserr_cb = cb; 390 syserr_cb = cb;
280} 391}
281 392
282static void noinline 393static void noinline
283syserr (const char *msg) 394ev_syserr (const char *msg)
284{ 395{
285 if (!msg) 396 if (!msg)
286 msg = "(libev) system error"; 397 msg = "(libev) system error";
287 398
288 if (syserr_cb) 399 if (syserr_cb)
292 perror (msg); 403 perror (msg);
293 abort (); 404 abort ();
294 } 405 }
295} 406}
296 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
297static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 424
299void 425void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 427{
302 alloc = cb; 428 alloc = cb;
303} 429}
304 430
305inline_speed void * 431inline_speed void *
306ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
307{ 433{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
309 435
310 if (!ptr && size) 436 if (!ptr && size)
311 { 437 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 439 abort ();
324typedef struct 450typedef struct
325{ 451{
326 WL head; 452 WL head;
327 unsigned char events; 453 unsigned char events;
328 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
329#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 461 SOCKET handle;
331#endif 462#endif
332} ANFD; 463} ANFD;
333 464
336 W w; 467 W w;
337 int events; 468 int events;
338} ANPENDING; 469} ANPENDING;
339 470
340#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
341typedef struct 473typedef struct
342{ 474{
343 WL head; 475 WL head;
344} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
345#endif 495#endif
346 496
347#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
348 498
349 struct ev_loop 499 struct ev_loop
407{ 557{
408 return ev_rt_now; 558 return ev_rt_now;
409} 559}
410#endif 560#endif
411 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
412int inline_size 594int inline_size
413array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
414{ 596{
415 int ncur = cur + 1; 597 int ncur = cur + 1;
416 598
417 do 599 do
418 ncur <<= 1; 600 ncur <<= 1;
419 while (cnt > ncur); 601 while (cnt > ncur);
420 602
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 605 {
424 ncur *= elem; 606 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 609 ncur /= elem;
428 } 610 }
429 611
430 return ncur; 612 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
435{ 617{
436 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
438} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 624
440#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
442 { \ 627 { \
443 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
487 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
488} 673}
489 674
490/*****************************************************************************/ 675/*****************************************************************************/
491 676
492void inline_size
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed 677void inline_speed
506fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
507{ 679{
508 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
509 ev_io *w; 681 ev_io *w;
533 { 705 {
534 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
536 ev_io *w; 708 ev_io *w;
537 709
538 int events = 0; 710 unsigned char events = 0;
539 711
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 713 events |= (unsigned char)w->events;
542 714
543#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
544 if (events) 716 if (events)
545 { 717 {
546 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
547 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 725 }
550#endif 726#endif
551 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
552 anfd->reify = 0; 732 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
556 } 738 }
557 739
558 fdchangecnt = 0; 740 fdchangecnt = 0;
559} 741}
560 742
561void inline_size 743void inline_size
562fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
563{ 745{
564 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
568 748
749 if (expect_true (!reify))
750 {
569 ++fdchangecnt; 751 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
572} 755}
573 756
574void inline_speed 757void inline_speed
575fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
576{ 759{
599{ 782{
600 int fd; 783 int fd;
601 784
602 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 786 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
606} 789}
607 790
608/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 792static void noinline
627 810
628 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 812 if (anfds [fd].events)
630 { 813 {
631 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
632 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 817 }
634} 818}
635 819
636/*****************************************************************************/ 820/*****************************************************************************/
637 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
638void inline_speed 842void inline_speed
639upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
640{ 844{
641 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
642 847
643 while (k) 848 for (;;)
644 { 849 {
645 int p = (k - 1) >> 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
646 853
647 if (heap [p]->at <= w->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
648 break; 870 break;
649 871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
650 heap [k] = heap [p]; 934 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 936 k = p;
653 } 937 }
654 938
655 heap [k] = w; 939 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (he)) = k;
657
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686} 941}
687 942
688void inline_size 943void inline_size
689adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
690{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 947 upheap (heap, k);
948 else
692 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
693} 962}
694 963
695/*****************************************************************************/ 964/*****************************************************************************/
696 965
697typedef struct 966typedef struct
698{ 967{
699 WL head; 968 WL head;
700 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
701} ANSIG; 970} ANSIG;
702 971
703static ANSIG *signals; 972static ANSIG *signals;
704static int signalmax; 973static int signalmax;
705 974
706static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 976
710void inline_size 977/*****************************************************************************/
711signals_init (ANSIG *base, int count)
712{
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 978
773void inline_speed 979void inline_speed
774fd_intern (int fd) 980fd_intern (int fd)
775{ 981{
776#ifdef _WIN32 982#ifdef _WIN32
777 int arg = 1; 983 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 985#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 988#endif
783} 989}
784 990
785static void noinline 991static void noinline
786siginit (EV_P) 992evpipe_init (EV_P)
787{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
788 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
790 1013
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
794} 1082}
795 1083
796/*****************************************************************************/ 1084/*****************************************************************************/
797 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
798static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
799 1124
800#ifndef _WIN32 1125#ifndef _WIN32
801 1126
802static ev_signal childev; 1127static ev_signal childev;
803 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
804void inline_speed 1133void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
806{ 1135{
807 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1138
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
810 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
811 { 1143 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1145 w->rpid = pid;
814 w->rstatus = status; 1146 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1148 }
1149 }
817} 1150}
818 1151
819#ifndef WCONTINUED 1152#ifndef WCONTINUED
820# define WCONTINUED 0 1153# define WCONTINUED 0
821#endif 1154#endif
830 if (!WCONTINUED 1163 if (!WCONTINUED
831 || errno != EINVAL 1164 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1166 return;
834 1167
835 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1171
839 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1175}
843 1176
844#endif 1177#endif
845 1178
846/*****************************************************************************/ 1179/*****************************************************************************/
918} 1251}
919 1252
920unsigned int 1253unsigned int
921ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
922{ 1255{
923 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1257
925 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
926} 1263}
927 1264
928unsigned int 1265unsigned int
929ev_backend (EV_P) 1266ev_backend (EV_P)
930{ 1267{
933 1270
934unsigned int 1271unsigned int
935ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
936{ 1273{
937 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
938} 1287}
939 1288
940static void noinline 1289static void noinline
941loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
942{ 1291{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1298 have_monotonic = 1;
950 } 1299 }
951#endif 1300#endif
952 1301
953 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1303 mn_now = get_clock ();
955 now_floor = mn_now; 1304 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
957 1315
958 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
959#ifndef _WIN32 1317#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1319 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1323 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1326
969 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1329
978#if EV_USE_PORT 1330#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1332#endif
981#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
989#endif 1341#endif
990#if EV_USE_SELECT 1342#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1344#endif
993 1345
994 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1348 }
997} 1349}
998 1350
999static void noinline 1351static void noinline
1000loop_destroy (EV_P) 1352loop_destroy (EV_P)
1001{ 1353{
1002 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1003 1372
1004#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
1006 close (fs_fd); 1375 close (fs_fd);
1007#endif 1376#endif
1030 array_free (pending, [i]); 1399 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1400#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1401 array_free (idle, [i]);
1033#endif 1402#endif
1034 } 1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1035 1406
1036 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1408 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1409 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1411 array_free (periodic, EMPTY);
1041#endif 1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1042 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1044 1421
1045 backend = 0; 1422 backend = 0;
1046} 1423}
1047 1424
1425#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1049 1428
1050void inline_size 1429void inline_size
1051loop_fork (EV_P) 1430loop_fork (EV_P)
1052{ 1431{
1053#if EV_USE_PORT 1432#if EV_USE_PORT
1061#endif 1440#endif
1062#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1442 infy_fork (EV_A);
1064#endif 1443#endif
1065 1444
1066 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1067 { 1446 {
1068 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1069 1453
1070 ev_ref (EV_A); 1454 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1072 close (sigpipe [0]); 1464 close (evpipe [0]);
1073 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1074 1467
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1471 }
1080 1472
1081 postfork = 0; 1473 postfork = 0;
1082} 1474}
1083 1475
1084#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1085struct ev_loop * 1478struct ev_loop *
1086ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1087{ 1480{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1482
1105} 1498}
1106 1499
1107void 1500void
1108ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1109{ 1502{
1110 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1111} 1504}
1112 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1113#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1114 1606
1115#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1116struct ev_loop * 1608struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1118#else 1610#else
1119int 1611int
1120ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1121#endif 1613#endif
1122{ 1614{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1128 { 1616 {
1129#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1619#else
1134 1622
1135 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1136 1624
1137 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1138 { 1626 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1627#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1157{ 1643{
1158#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1646#endif
1161 1647
1648 ev_default_loop_ptr = 0;
1649
1162#ifndef _WIN32 1650#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1165#endif 1653#endif
1166 1654
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1174} 1656}
1175 1657
1176void 1658void
1177ev_default_fork (void) 1659ev_default_fork (void)
1178{ 1660{
1179#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1663#endif
1182 1664
1183 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1666}
1186 1667
1187/*****************************************************************************/ 1668/*****************************************************************************/
1188 1669
1189void 1670void
1206 { 1687 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208 1689
1209 p->w->pending = 0; 1690 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1211 } 1693 }
1212 } 1694 }
1213} 1695}
1214
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294 1696
1295#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1296void inline_size 1698void inline_size
1297idle_reify (EV_P) 1699idle_reify (EV_P)
1298{ 1700{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1713 break;
1312 } 1714 }
1313 } 1715 }
1314 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1315} 1819}
1316#endif 1820#endif
1317 1821
1318void inline_speed 1822void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1348 */ 1852 */
1349 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1350 { 1854 {
1351 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1352 1856
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1858 return; /* all is well */
1355 1859
1356 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1861 mn_now = get_clock ();
1358 now_floor = mn_now; 1862 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1376#endif 1880#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1380 } 1888 }
1381 1889
1382 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1383 } 1891 }
1384} 1892}
1393ev_unref (EV_P) 1901ev_unref (EV_P)
1394{ 1902{
1395 --activecnt; 1903 --activecnt;
1396} 1904}
1397 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1398static int loop_done; 1912static int loop_done;
1399 1913
1400void 1914void
1401ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1402{ 1916{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1918
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1920
1409 do 1921 do
1410 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1411#ifndef _WIN32 1927#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1414 { 1930 {
1415 curpid = getpid (); 1931 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1961 fd_reify (EV_A);
1446 1962
1447 /* calculate blocking time */ 1963 /* calculate blocking time */
1448 { 1964 {
1449 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1450 1967
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1969 {
1455 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 1971 time_update (EV_A_ 1e100);
1457 1972
1458 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1459 1974
1460 if (timercnt) 1975 if (timercnt)
1461 { 1976 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1464 } 1979 }
1465 1980
1466#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 1982 if (periodiccnt)
1468 { 1983 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1471 } 1986 }
1472#endif 1987#endif
1473 1988
1474 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1475 } 2002 }
1476 2003
1477 ++loop_count; 2004 ++loop_count;
1478 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
1479 2006
1480 /* update ev_rt_now, do magic */ 2007 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2008 time_update (EV_A_ waittime + sleeptime);
1482 } 2009 }
1483 2010
1484 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2025
1499 call_pending (EV_A); 2026 call_pending (EV_A);
1500
1501 } 2027 }
1502 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1503 2033
1504 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1506} 2036}
1507 2037
1595 2125
1596 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1597 return; 2127 return;
1598 2128
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1600 2133
1601 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1604 2137
1605 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1606} 2142}
1607 2143
1608void noinline 2144void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1610{ 2146{
1611 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1613 return; 2149 return;
1614 2150
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2152
2153 EV_FREQUENT_CHECK;
2154
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1619 2157
1620 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1621} 2161}
1622 2162
1623void noinline 2163void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1625{ 2165{
1626 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1627 return; 2167 return;
1628 2168
1629 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1630 2170
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1637 2181
2182 EV_FREQUENT_CHECK;
2183
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2185}
1640 2186
1641void noinline 2187void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2189{
1644 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1646 return; 2192 return;
1647 2193
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1649 2195
1650 { 2196 {
1651 int active = ((W)w)->active; 2197 int active = ev_active (w);
1652 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1653 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1654 { 2204 {
1655 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1657 } 2207 }
1658 } 2208 }
1659 2209
1660 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1661 2213
1662 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1663} 2215}
1664 2216
1665void noinline 2217void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1667{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1668 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1669 { 2223 {
1670 if (w->repeat) 2224 if (w->repeat)
1671 { 2225 {
1672 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1674 } 2229 }
1675 else 2230 else
1676 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1677 } 2232 }
1678 else if (w->repeat) 2233 else if (w->repeat)
1679 { 2234 {
1680 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1682 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1683} 2240}
1684 2241
1685#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1686void noinline 2243void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2245{
1689 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1690 return; 2247 return;
1691 2248
1692 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2251 else if (w->interval)
1695 { 2252 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2256 }
1700 else 2257 else
1701 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1702 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1707 2268
2269 EV_FREQUENT_CHECK;
2270
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2272}
1710 2273
1711void noinline 2274void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2276{
1714 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1716 return; 2279 return;
1717 2280
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1719 2282
1720 { 2283 {
1721 int active = ((W)w)->active; 2284 int active = ev_active (w);
1722 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1723 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2291 {
1725 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1727 } 2294 }
1728 } 2295 }
2296
2297 EV_FREQUENT_CHECK;
1729 2298
1730 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1731} 2300}
1732 2301
1733void noinline 2302void noinline
1752 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1753 return; 2322 return;
1754 2323
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1756 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1757 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2346
1761 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1762 { 2348 {
1763#if _WIN32 2349#if _WIN32
1764 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1765#else 2351#else
1766 struct sigaction sa; 2352 struct sigaction sa;
1767 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1771#endif 2357#endif
1772 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1773} 2361}
1774 2362
1775void noinline 2363void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1777{ 2365{
1778 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1780 return; 2368 return;
1781 2369
2370 EV_FREQUENT_CHECK;
2371
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1784 2374
1785 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1786 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1787} 2379}
1788 2380
1789void 2381void
1790ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1791{ 2383{
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 2386#endif
1795 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1796 return; 2388 return;
1797 2389
2390 EV_FREQUENT_CHECK;
2391
1798 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1800} 2396}
1801 2397
1802void 2398void
1803ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1804{ 2400{
1805 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1807 return; 2403 return;
1808 2404
2405 EV_FREQUENT_CHECK;
2406
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1811} 2411}
1812 2412
1813#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1814 2414
1815# ifdef _WIN32 2415# ifdef _WIN32
1816# undef lstat 2416# undef lstat
1817# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1818# endif 2418# endif
1819 2419
1820#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1821#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1822 2423
1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1824 2425
1825#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1826# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1830{ 2431{
1831 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1832 2433
1833 if (w->wd < 0) 2434 if (w->wd < 0)
1834 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2438
1837 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2443 {
1840 char path [4096]; 2444 char path [4096];
1841 strcpy (path, w->path); 2445 strcpy (path, w->path);
1842 2446
1855 } 2459 }
1856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1857 } 2461 }
1858 } 2462 }
1859 else 2463 else
1860 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1861
1862 if (w->wd >= 0)
1863 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1864} 2484}
1865 2485
1866static void noinline 2486static void noinline
1867infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1868{ 2488{
1882 2502
1883static void noinline 2503static void noinline
1884infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1885{ 2505{
1886 if (slot < 0) 2506 if (slot < 0)
1887 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1888 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1889 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1890 else 2510 else
1891 { 2511 {
1892 WL w_; 2512 WL w_;
1921 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1922 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1923} 2543}
1924 2544
1925void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1926infy_init (EV_P) 2569infy_init (EV_P)
1927{ 2570{
1928 if (fs_fd != -2) 2571 if (fs_fd != -2)
1929 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1930 2577
1931 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1932 2579
1933 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1934 { 2581 {
1962 w->wd = -1; 2609 w->wd = -1;
1963 2610
1964 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1966 else 2613 else
1967 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1968 } 2615 }
1969
1970 } 2616 }
1971} 2617}
1972 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1973#endif 2625#endif
1974 2626
1975void 2627void
1976ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1977{ 2629{
2004 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
2005 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
2006 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
2007 ) { 2659 ) {
2008 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2009 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2010 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2011 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2012 #endif 2667 #endif
2013 2668
2014 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2015 } 2670 }
2016} 2671}
2019ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2020{ 2675{
2021 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2022 return; 2677 return;
2023 2678
2024 /* since we use memcmp, we need to clear any padding data etc. */
2025 memset (&w->prev, 0, sizeof (ev_statdata));
2026 memset (&w->attr, 0, sizeof (ev_statdata));
2027
2028 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2029 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2030 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2031 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2032 2683
2033 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2034 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2035 2686
2036#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2037 infy_init (EV_A); 2688 infy_init (EV_A);
2038 2689
2039 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2040 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2041 else 2692 else
2042#endif 2693#endif
2043 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2044 2695
2045 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2046} 2699}
2047 2700
2048void 2701void
2049ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2050{ 2703{
2051 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2053 return; 2706 return;
2054 2707
2708 EV_FREQUENT_CHECK;
2709
2055#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2057#endif 2712#endif
2058 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2059 2714
2060 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2061} 2718}
2062#endif 2719#endif
2063 2720
2064#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2065void 2722void
2067{ 2724{
2068 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2069 return; 2726 return;
2070 2727
2071 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2072 2731
2073 { 2732 {
2074 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2075 2734
2076 ++idleall; 2735 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2078 2737
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2081 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2082} 2743}
2083 2744
2084void 2745void
2085ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2086{ 2747{
2087 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2089 return; 2750 return;
2090 2751
2752 EV_FREQUENT_CHECK;
2753
2091 { 2754 {
2092 int active = ((W)w)->active; 2755 int active = ev_active (w);
2093 2756
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 2759
2097 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2098 --idleall; 2761 --idleall;
2099 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2100} 2765}
2101#endif 2766#endif
2102 2767
2103void 2768void
2104ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 2770{
2106 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2107 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2108 2775
2109 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2112} 2781}
2113 2782
2114void 2783void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 2785{
2117 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2119 return; 2788 return;
2120 2789
2790 EV_FREQUENT_CHECK;
2791
2121 { 2792 {
2122 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2123 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2125 } 2797 }
2126 2798
2127 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2128} 2802}
2129 2803
2130void 2804void
2131ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2132{ 2806{
2133 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2134 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2135 2811
2136 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2139} 2817}
2140 2818
2141void 2819void
2142ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2143{ 2821{
2144 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2146 return; 2824 return;
2147 2825
2826 EV_FREQUENT_CHECK;
2827
2148 { 2828 {
2149 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2150 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2152 } 2833 }
2153 2834
2154 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2155} 2838}
2156 2839
2157#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2158void noinline 2841void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 2843{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 2845}
2163 2846
2164static void 2847static void
2165embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 2849{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 2851
2169 if (ev_cb (w)) 2852 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 2854 else
2172 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2174 2893
2175void 2894void
2176ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2177{ 2896{
2178 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2179 return; 2898 return;
2180 2899
2181 { 2900 {
2182 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2186 2907
2187 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2189 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2190 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2191} 2923}
2192 2924
2193void 2925void
2194ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2195{ 2927{
2196 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2198 return; 2930 return;
2199 2931
2932 EV_FREQUENT_CHECK;
2933
2200 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2201 2937
2202 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2203} 2939}
2204#endif 2940#endif
2205 2941
2206#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2207void 2943void
2208ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2209{ 2945{
2210 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2211 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2212 2950
2213 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2216} 2956}
2217 2957
2218void 2958void
2219ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2220{ 2960{
2221 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2223 return; 2963 return;
2224 2964
2965 EV_FREQUENT_CHECK;
2966
2225 { 2967 {
2226 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2227 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2229 } 2972 }
2230 2973
2231 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2232} 3024}
2233#endif 3025#endif
2234 3026
2235/*****************************************************************************/ 3027/*****************************************************************************/
2236 3028
2246once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2247{ 3039{
2248 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2249 void *arg = once->arg; 3041 void *arg = once->arg;
2250 3042
2251 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2252 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2253 ev_free (once); 3045 ev_free (once);
2254 3046
2255 cb (revents, arg); 3047 cb (revents, arg);
2256} 3048}
2257 3049
2258static void 3050static void
2259once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2260{ 3052{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2262} 3056}
2263 3057
2264static void 3058static void
2265once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2266{ 3060{
2267 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2268} 3064}
2269 3065
2270void 3066void
2271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2272{ 3068{
2294 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2296 } 3092 }
2297} 3093}
2298 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2299#ifdef __cplusplus 3099#ifdef __cplusplus
2300} 3100}
2301#endif 3101#endif
2302 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines