ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
220 324
221/* 325/*
222 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
230 334
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 338
235#if __GNUC__ >= 3 339#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
238#else 342#else
239# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
240# define noinline 344# define noinline
241# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 346# define inline
243# endif 347# endif
244#endif 348#endif
245 349
246#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
261 365
262typedef ev_watcher *W; 366typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
265 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
267 378
268#ifdef _WIN32 379#ifdef _WIN32
269# include "ev_win32.c" 380# include "ev_win32.c"
270#endif 381#endif
271 382
278{ 389{
279 syserr_cb = cb; 390 syserr_cb = cb;
280} 391}
281 392
282static void noinline 393static void noinline
283syserr (const char *msg) 394ev_syserr (const char *msg)
284{ 395{
285 if (!msg) 396 if (!msg)
286 msg = "(libev) system error"; 397 msg = "(libev) system error";
287 398
288 if (syserr_cb) 399 if (syserr_cb)
292 perror (msg); 403 perror (msg);
293 abort (); 404 abort ();
294 } 405 }
295} 406}
296 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
297static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 424
299void 425void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 427{
302 alloc = cb; 428 alloc = cb;
303} 429}
304 430
305inline_speed void * 431inline_speed void *
306ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
307{ 433{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
309 435
310 if (!ptr && size) 436 if (!ptr && size)
311 { 437 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 439 abort ();
324typedef struct 450typedef struct
325{ 451{
326 WL head; 452 WL head;
327 unsigned char events; 453 unsigned char events;
328 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
329#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 461 SOCKET handle;
331#endif 462#endif
332} ANFD; 463} ANFD;
333 464
336 W w; 467 W w;
337 int events; 468 int events;
338} ANPENDING; 469} ANPENDING;
339 470
340#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
341typedef struct 473typedef struct
342{ 474{
343 WL head; 475 WL head;
344} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
345#endif 495#endif
346 496
347#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
348 498
349 struct ev_loop 499 struct ev_loop
407{ 557{
408 return ev_rt_now; 558 return ev_rt_now;
409} 559}
410#endif 560#endif
411 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
412int inline_size 594int inline_size
413array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
414{ 596{
415 int ncur = cur + 1; 597 int ncur = cur + 1;
416 598
417 do 599 do
418 ncur <<= 1; 600 ncur <<= 1;
419 while (cnt > ncur); 601 while (cnt > ncur);
420 602
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 605 {
424 ncur *= elem; 606 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 609 ncur /= elem;
428 } 610 }
429 611
430 return ncur; 612 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
435{ 617{
436 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
438} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 624
440#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
442 { \ 627 { \
443 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
487 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
488} 673}
489 674
490/*****************************************************************************/ 675/*****************************************************************************/
491 676
492void inline_size
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed 677void inline_speed
506fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
507{ 679{
508 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
509 ev_io *w; 681 ev_io *w;
541 events |= (unsigned char)w->events; 713 events |= (unsigned char)w->events;
542 714
543#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
544 if (events) 716 if (events)
545 { 717 {
546 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
547 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 725 }
550#endif 726#endif
551 727
552 { 728 {
553 unsigned char o_events = anfd->events; 729 unsigned char o_events = anfd->events;
606{ 782{
607 int fd; 783 int fd;
608 784
609 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
610 if (anfds [fd].events) 786 if (anfds [fd].events)
611 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
612 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
613} 789}
614 790
615/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
616static void noinline 792static void noinline
634 810
635 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
636 if (anfds [fd].events) 812 if (anfds [fd].events)
637 { 813 {
638 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
639 fd_change (EV_A_ fd, EV_IOFDSET | 1); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
640 } 817 }
641} 818}
642 819
643/*****************************************************************************/ 820/*****************************************************************************/
644 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
645void inline_speed 842void inline_speed
646upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
647{ 844{
648 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
649 847
650 while (k) 848 for (;;)
651 { 849 {
652 int p = (k - 1) >> 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 853
654 if (heap [p]->at <= w->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
655 break; 870 break;
656 871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
657 heap [k] = heap [p]; 934 heap [k] = heap [p];
658 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (heap [k])) = k;
659 k = p; 936 k = p;
660 } 937 }
661 938
662 heap [k] = w; 939 heap [k] = he;
663 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (he)) = k;
664}
665
666void inline_speed
667downheap (WT *heap, int N, int k)
668{
669 WT w = heap [k];
670
671 for (;;)
672 {
673 int c = (k << 1) + 1;
674
675 if (c >= N)
676 break;
677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
684 heap [k] = heap [c];
685 ((W)heap [k])->active = k + 1;
686
687 k = c;
688 }
689
690 heap [k] = w;
691 ((W)heap [k])->active = k + 1;
692} 941}
693 942
694void inline_size 943void inline_size
695adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
696{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
697 upheap (heap, k); 947 upheap (heap, k);
948 else
698 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
699} 962}
700 963
701/*****************************************************************************/ 964/*****************************************************************************/
702 965
703typedef struct 966typedef struct
704{ 967{
705 WL head; 968 WL head;
706 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
707} ANSIG; 970} ANSIG;
708 971
709static ANSIG *signals; 972static ANSIG *signals;
710static int signalmax; 973static int signalmax;
711 974
712static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
713static sig_atomic_t volatile gotsig;
714static ev_io sigev;
715 976
716void inline_size 977/*****************************************************************************/
717signals_init (ANSIG *base, int count)
718{
719 while (count--)
720 {
721 base->head = 0;
722 base->gotsig = 0;
723
724 ++base;
725 }
726}
727
728static void
729sighandler (int signum)
730{
731#if _WIN32
732 signal (signum, sighandler);
733#endif
734
735 signals [signum - 1].gotsig = 1;
736
737 if (!gotsig)
738 {
739 int old_errno = errno;
740 gotsig = 1;
741 write (sigpipe [1], &signum, 1);
742 errno = old_errno;
743 }
744}
745
746void noinline
747ev_feed_signal_event (EV_P_ int signum)
748{
749 WL w;
750
751#if EV_MULTIPLICITY
752 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
753#endif
754
755 --signum;
756
757 if (signum < 0 || signum >= signalmax)
758 return;
759
760 signals [signum].gotsig = 0;
761
762 for (w = signals [signum].head; w; w = w->next)
763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
764}
765
766static void
767sigcb (EV_P_ ev_io *iow, int revents)
768{
769 int signum;
770
771 read (sigpipe [0], &revents, 1);
772 gotsig = 0;
773
774 for (signum = signalmax; signum--; )
775 if (signals [signum].gotsig)
776 ev_feed_signal_event (EV_A_ signum + 1);
777}
778 978
779void inline_speed 979void inline_speed
780fd_intern (int fd) 980fd_intern (int fd)
781{ 981{
782#ifdef _WIN32 982#ifdef _WIN32
783 int arg = 1; 983 unsigned long arg = 1;
784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
785#else 985#else
786 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
787 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
788#endif 988#endif
789} 989}
790 990
791static void noinline 991static void noinline
792siginit (EV_P) 992evpipe_init (EV_P)
793{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
794 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
795 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
796 1013
797 ev_io_set (&sigev, sigpipe [0], EV_READ);
798 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
799 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
800} 1082}
801 1083
802/*****************************************************************************/ 1084/*****************************************************************************/
803 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
804static WL childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
805 1124
806#ifndef _WIN32 1125#ifndef _WIN32
807 1126
808static ev_signal childev; 1127static ev_signal childev;
809 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
810void inline_speed 1133void inline_speed
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
812{ 1135{
813 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
814 1138
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
816 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
817 { 1143 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
819 w->rpid = pid; 1145 w->rpid = pid;
820 w->rstatus = status; 1146 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 } 1148 }
1149 }
823} 1150}
824 1151
825#ifndef WCONTINUED 1152#ifndef WCONTINUED
826# define WCONTINUED 0 1153# define WCONTINUED 0
827#endif 1154#endif
836 if (!WCONTINUED 1163 if (!WCONTINUED
837 || errno != EINVAL 1164 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return; 1166 return;
840 1167
841 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
844 1171
845 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
846 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
848} 1175}
849 1176
850#endif 1177#endif
851 1178
852/*****************************************************************************/ 1179/*****************************************************************************/
924} 1251}
925 1252
926unsigned int 1253unsigned int
927ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
928{ 1255{
929 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
930 | EVBACKEND_KQUEUE 1257
931 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
932} 1263}
933 1264
934unsigned int 1265unsigned int
935ev_backend (EV_P) 1266ev_backend (EV_P)
936{ 1267{
939 1270
940unsigned int 1271unsigned int
941ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
942{ 1273{
943 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
944} 1287}
945 1288
946static void noinline 1289static void noinline
947loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
948{ 1291{
954 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
955 have_monotonic = 1; 1298 have_monotonic = 1;
956 } 1299 }
957#endif 1300#endif
958 1301
959 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
960 mn_now = get_clock (); 1303 mn_now = get_clock ();
961 now_floor = mn_now; 1304 now_floor = mn_now;
962 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
963 1315
964 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
965#ifndef _WIN32 1317#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid (); 1319 curpid = getpid ();
970 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
971 && !enable_secure () 1323 && !enable_secure ()
972 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
973 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
974 1326
975 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
976 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
977
978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983 1329
984#if EV_USE_PORT 1330#if EV_USE_PORT
985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
986#endif 1332#endif
987#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
995#endif 1341#endif
996#if EV_USE_SELECT 1342#if EV_USE_SELECT
997 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
998#endif 1344#endif
999 1345
1000 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
1001 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
1002 } 1348 }
1003} 1349}
1004 1350
1005static void noinline 1351static void noinline
1006loop_destroy (EV_P) 1352loop_destroy (EV_P)
1007{ 1353{
1008 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1009 1372
1010#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
1011 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
1012 close (fs_fd); 1375 close (fs_fd);
1013#endif 1376#endif
1036 array_free (pending, [i]); 1399 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE 1400#if EV_IDLE_ENABLE
1038 array_free (idle, [i]); 1401 array_free (idle, [i]);
1039#endif 1402#endif
1040 } 1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1041 1406
1042 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1043 array_free (fdchange, EMPTY); 1408 array_free (fdchange, EMPTY);
1044 array_free (timer, EMPTY); 1409 array_free (timer, EMPTY);
1045#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1046 array_free (periodic, EMPTY); 1411 array_free (periodic, EMPTY);
1047#endif 1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1048 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1049 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1050 1421
1051 backend = 0; 1422 backend = 0;
1052} 1423}
1053 1424
1425#if EV_USE_INOTIFY
1054void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1055 1428
1056void inline_size 1429void inline_size
1057loop_fork (EV_P) 1430loop_fork (EV_P)
1058{ 1431{
1059#if EV_USE_PORT 1432#if EV_USE_PORT
1067#endif 1440#endif
1068#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1069 infy_fork (EV_A); 1442 infy_fork (EV_A);
1070#endif 1443#endif
1071 1444
1072 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1073 { 1446 {
1074 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1075 1453
1076 ev_ref (EV_A); 1454 ev_ref (EV_A);
1077 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1078 close (sigpipe [0]); 1464 close (evpipe [0]);
1079 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1080 1467
1081 while (pipe (sigpipe))
1082 syserr ("(libev) error creating pipe");
1083
1084 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1085 } 1471 }
1086 1472
1087 postfork = 0; 1473 postfork = 0;
1088} 1474}
1089 1475
1090#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1091struct ev_loop * 1478struct ev_loop *
1092ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1093{ 1480{
1094 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1095 1482
1111} 1498}
1112 1499
1113void 1500void
1114ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1115{ 1502{
1116 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1117} 1504}
1118 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1119#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1120 1606
1121#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1122struct ev_loop * 1608struct ev_loop *
1123ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1124#else 1610#else
1125int 1611int
1126ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1127#endif 1613#endif
1128{ 1614{
1129 if (sigpipe [0] == sigpipe [1])
1130 if (pipe (sigpipe))
1131 return 0;
1132
1133 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1134 { 1616 {
1135#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1136 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1137#else 1619#else
1140 1622
1141 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1142 1624
1143 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1144 { 1626 {
1145 siginit (EV_A);
1146
1147#ifndef _WIN32 1627#ifndef _WIN32
1148 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1149 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1150 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1151 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1163{ 1643{
1164#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1165 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1166#endif 1646#endif
1167 1647
1648 ev_default_loop_ptr = 0;
1649
1168#ifndef _WIN32 1650#ifndef _WIN32
1169 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1170 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1171#endif 1653#endif
1172 1654
1173 ev_ref (EV_A); /* signal watcher */
1174 ev_io_stop (EV_A_ &sigev);
1175
1176 close (sigpipe [0]); sigpipe [0] = 0;
1177 close (sigpipe [1]); sigpipe [1] = 0;
1178
1179 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1180} 1656}
1181 1657
1182void 1658void
1183ev_default_fork (void) 1659ev_default_fork (void)
1184{ 1660{
1185#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1186 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1187#endif 1663#endif
1188 1664
1189 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1190 postfork = 1;
1191} 1666}
1192 1667
1193/*****************************************************************************/ 1668/*****************************************************************************/
1194 1669
1195void 1670void
1212 { 1687 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1214 1689
1215 p->w->pending = 0; 1690 p->w->pending = 0;
1216 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1217 } 1693 }
1218 } 1694 }
1219} 1695}
1220
1221void inline_size
1222timers_reify (EV_P)
1223{
1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1225 {
1226 ev_timer *w = (ev_timer *)timers [0];
1227
1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1229
1230 /* first reschedule or stop timer */
1231 if (w->repeat)
1232 {
1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1234
1235 ((WT)w)->at += w->repeat;
1236 if (((WT)w)->at < mn_now)
1237 ((WT)w)->at = mn_now;
1238
1239 downheap (timers, timercnt, 0);
1240 }
1241 else
1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1243
1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1245 }
1246}
1247
1248#if EV_PERIODIC_ENABLE
1249void inline_size
1250periodics_reify (EV_P)
1251{
1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1253 {
1254 ev_periodic *w = (ev_periodic *)periodics [0];
1255
1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1257
1258 /* first reschedule or stop timer */
1259 if (w->reschedule_cb)
1260 {
1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else if (w->interval)
1266 {
1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1270 downheap (periodics, periodiccnt, 0);
1271 }
1272 else
1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1274
1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1276 }
1277}
1278
1279static void noinline
1280periodics_reschedule (EV_P)
1281{
1282 int i;
1283
1284 /* adjust periodics after time jump */
1285 for (i = 0; i < periodiccnt; ++i)
1286 {
1287 ev_periodic *w = (ev_periodic *)periodics [i];
1288
1289 if (w->reschedule_cb)
1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1291 else if (w->interval)
1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1293 }
1294
1295 /* now rebuild the heap */
1296 for (i = periodiccnt >> 1; i--; )
1297 downheap (periodics, periodiccnt, i);
1298}
1299#endif
1300 1696
1301#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1302void inline_size 1698void inline_size
1303idle_reify (EV_P) 1699idle_reify (EV_P)
1304{ 1700{
1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1317 break; 1713 break;
1318 } 1714 }
1319 } 1715 }
1320 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1321} 1819}
1322#endif 1820#endif
1323 1821
1324void inline_speed 1822void inline_speed
1325time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1354 */ 1852 */
1355 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1356 { 1854 {
1357 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1358 1856
1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1360 return; /* all is well */ 1858 return; /* all is well */
1361 1859
1362 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1363 mn_now = get_clock (); 1861 mn_now = get_clock ();
1364 now_floor = mn_now; 1862 now_floor = mn_now;
1380#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1381 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1382#endif 1880#endif
1383 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1384 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1385 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1386 } 1888 }
1387 1889
1388 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1389 } 1891 }
1390} 1892}
1399ev_unref (EV_P) 1901ev_unref (EV_P)
1400{ 1902{
1401 --activecnt; 1903 --activecnt;
1402} 1904}
1403 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1404static int loop_done; 1912static int loop_done;
1405 1913
1406void 1914void
1407ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1408{ 1916{
1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1412 1918
1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414 1920
1415 do 1921 do
1416 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1417#ifndef _WIN32 1927#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1420 { 1930 {
1421 curpid = getpid (); 1931 curpid = getpid ();
1450 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1451 fd_reify (EV_A); 1961 fd_reify (EV_A);
1452 1962
1453 /* calculate blocking time */ 1963 /* calculate blocking time */
1454 { 1964 {
1455 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1456 1967
1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1458 block = 0.; /* do not block at all */
1459 else
1460 { 1969 {
1461 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1462 time_update (EV_A_ 1e100); 1971 time_update (EV_A_ 1e100);
1463 1972
1464 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1465 1974
1466 if (timercnt) 1975 if (timercnt)
1467 { 1976 {
1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1469 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1470 } 1979 }
1471 1980
1472#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1473 if (periodiccnt) 1982 if (periodiccnt)
1474 { 1983 {
1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1476 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1477 } 1986 }
1478#endif 1987#endif
1479 1988
1480 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1481 } 2002 }
1482 2003
1483 ++loop_count; 2004 ++loop_count;
1484 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
1485 2006
1486 /* update ev_rt_now, do magic */ 2007 /* update ev_rt_now, do magic */
1487 time_update (EV_A_ block); 2008 time_update (EV_A_ waittime + sleeptime);
1488 } 2009 }
1489 2010
1490 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1491 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1492#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1501 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1502 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1504 2025
1505 call_pending (EV_A); 2026 call_pending (EV_A);
1506
1507 } 2027 }
1508 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1509 2033
1510 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1511 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1512} 2036}
1513 2037
1601 2125
1602 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1603 return; 2127 return;
1604 2128
1605 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1606 2133
1607 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1609 wlist_add (&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1610 2137
1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET; 2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1613} 2142}
1614 2143
1615void noinline 2144void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1617{ 2146{
1618 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1620 return; 2149 return;
1621 2150
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152
2153 EV_FREQUENT_CHECK;
1623 2154
1624 wlist_del (&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1626 2157
1627 fd_change (EV_A_ w->fd, 1); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1628} 2161}
1629 2162
1630void noinline 2163void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1632{ 2165{
1633 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1634 return; 2167 return;
1635 2168
1636 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1637 2170
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = (WT)w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap (timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1644 2181
2182 EV_FREQUENT_CHECK;
2183
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2185}
1647 2186
1648void noinline 2187void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2189{
1651 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1653 return; 2192 return;
1654 2193
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2194 EV_FREQUENT_CHECK;
1656 2195
1657 { 2196 {
1658 int active = ((W)w)->active; 2197 int active = ev_active (w);
1659 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1660 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1661 { 2204 {
1662 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap (timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1664 } 2207 }
1665 } 2208 }
1666 2209
1667 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1668 2213
1669 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1670} 2215}
1671 2216
1672void noinline 2217void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1674{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1675 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1676 { 2223 {
1677 if (w->repeat) 2224 if (w->repeat)
1678 { 2225 {
1679 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap (timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1681 } 2229 }
1682 else 2230 else
1683 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1684 } 2232 }
1685 else if (w->repeat) 2233 else if (w->repeat)
1686 { 2234 {
1687 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1689 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1690} 2240}
1691 2241
1692#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1693void noinline 2243void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2245{
1696 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1697 return; 2247 return;
1698 2248
1699 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2251 else if (w->interval)
1702 { 2252 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2256 }
1707 else 2257 else
1708 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1709 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = (WT)w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap (periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1714 2268
2269 EV_FREQUENT_CHECK;
2270
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2272}
1717 2273
1718void noinline 2274void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2276{
1721 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1723 return; 2279 return;
1724 2280
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2281 EV_FREQUENT_CHECK;
1726 2282
1727 { 2283 {
1728 int active = ((W)w)->active; 2284 int active = ev_active (w);
1729 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1730 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2291 {
1732 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap (periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1734 } 2294 }
1735 } 2295 }
1736 2296
2297 EV_FREQUENT_CHECK;
2298
1737 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1738} 2300}
1739 2301
1740void noinline 2302void noinline
1741ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1758#endif 2320#endif
1759 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1760 return; 2322 return;
1761 2323
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
1763 2329
1764 { 2330 {
1765#ifndef _WIN32 2331#ifndef _WIN32
1766 sigset_t full, prev; 2332 sigset_t full, prev;
1767 sigfillset (&full); 2333 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev); 2334 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif 2335#endif
1770 2336
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1772 2338
1773#ifndef _WIN32 2339#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0); 2340 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif 2341#endif
1776 } 2342 }
1779 wlist_add (&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1780 2346
1781 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1782 { 2348 {
1783#if _WIN32 2349#if _WIN32
1784 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1785#else 2351#else
1786 struct sigaction sa; 2352 struct sigaction sa;
1787 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1788 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1789 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1790 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1791#endif 2357#endif
1792 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1793} 2361}
1794 2362
1795void noinline 2363void noinline
1796ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1797{ 2365{
1798 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1800 return; 2368 return;
1801 2369
2370 EV_FREQUENT_CHECK;
2371
1802 wlist_del (&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1803 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1804 2374
1805 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1806 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1807} 2379}
1808 2380
1809void 2381void
1810ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1811{ 2383{
1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1814#endif 2386#endif
1815 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1816 return; 2388 return;
1817 2389
2390 EV_FREQUENT_CHECK;
2391
1818 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1820} 2396}
1821 2397
1822void 2398void
1823ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1824{ 2400{
1825 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1826 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1827 return; 2403 return;
1828 2404
2405 EV_FREQUENT_CHECK;
2406
1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1830 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1831} 2411}
1832 2412
1833#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1834 2414
1835# ifdef _WIN32 2415# ifdef _WIN32
1836# undef lstat 2416# undef lstat
1837# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1838# endif 2418# endif
1839 2419
1840#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1841#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1842 2423
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844 2425
1845#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1850{ 2431{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852 2433
1853 if (w->wd < 0) 2434 if (w->wd < 0)
1854 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856 2438
1857 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 { 2443 {
1860 char path [4096]; 2444 char path [4096];
1861 strcpy (path, w->path); 2445 strcpy (path, w->path);
1862 2446
1875 } 2459 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 } 2461 }
1878 } 2462 }
1879 else 2463 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1881
1882 if (w->wd >= 0)
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1884} 2484}
1885 2485
1886static void noinline 2486static void noinline
1887infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1888{ 2488{
1902 2502
1903static void noinline 2503static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{ 2505{
1906 if (slot < 0) 2506 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1910 else 2510 else
1911 { 2511 {
1912 WL w_; 2512 WL w_;
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943} 2543}
1944 2544
1945void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1946infy_init (EV_P) 2569infy_init (EV_P)
1947{ 2570{
1948 if (fs_fd != -2) 2571 if (fs_fd != -2)
1949 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1950 2577
1951 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1952 2579
1953 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1954 { 2581 {
1982 w->wd = -1; 2609 w->wd = -1;
1983 2610
1984 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else 2613 else
1987 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1988 } 2615 }
1989
1990 } 2616 }
1991} 2617}
1992 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1993#endif 2625#endif
1994 2626
1995void 2627void
1996ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1997{ 2629{
2024 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
2027 ) { 2659 ) {
2028 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2029 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2032 #endif 2667 #endif
2033 2668
2034 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2035 } 2670 }
2036} 2671}
2039ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2040{ 2675{
2041 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2042 return; 2677 return;
2043 2678
2044 /* since we use memcmp, we need to clear any padding data etc. */
2045 memset (&w->prev, 0, sizeof (ev_statdata));
2046 memset (&w->attr, 0, sizeof (ev_statdata));
2047
2048 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2049 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2050 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2052 2683
2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2054 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2055 2686
2056#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2057 infy_init (EV_A); 2688 infy_init (EV_A);
2058 2689
2059 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2060 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2061 else 2692 else
2062#endif 2693#endif
2063 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2064 2695
2065 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2066} 2699}
2067 2700
2068void 2701void
2069ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2070{ 2703{
2071 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2073 return; 2706 return;
2074 2707
2708 EV_FREQUENT_CHECK;
2709
2075#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2077#endif 2712#endif
2078 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2079 2714
2080 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2081} 2718}
2082#endif 2719#endif
2083 2720
2084#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2085void 2722void
2087{ 2724{
2088 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2089 return; 2726 return;
2090 2727
2091 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2092 2731
2093 { 2732 {
2094 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2095 2734
2096 ++idleall; 2735 ++idleall;
2097 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2098 2737
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2101 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2102} 2743}
2103 2744
2104void 2745void
2105ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2106{ 2747{
2107 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2109 return; 2750 return;
2110 2751
2752 EV_FREQUENT_CHECK;
2753
2111 { 2754 {
2112 int active = ((W)w)->active; 2755 int active = ev_active (w);
2113 2756
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2116 2759
2117 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2118 --idleall; 2761 --idleall;
2119 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2120} 2765}
2121#endif 2766#endif
2122 2767
2123void 2768void
2124ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2125{ 2770{
2126 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2127 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2128 2775
2129 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2132} 2781}
2133 2782
2134void 2783void
2135ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2136{ 2785{
2137 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2139 return; 2788 return;
2140 2789
2790 EV_FREQUENT_CHECK;
2791
2141 { 2792 {
2142 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2143 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2145 } 2797 }
2146 2798
2147 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2148} 2802}
2149 2803
2150void 2804void
2151ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2152{ 2806{
2153 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2154 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2155 2811
2156 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2159} 2817}
2160 2818
2161void 2819void
2162ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2163{ 2821{
2164 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2166 return; 2824 return;
2167 2825
2826 EV_FREQUENT_CHECK;
2827
2168 { 2828 {
2169 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2170 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2172 } 2833 }
2173 2834
2174 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2175} 2838}
2176 2839
2177#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2178void noinline 2841void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2180{ 2843{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2182} 2845}
2183 2846
2184static void 2847static void
2185embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2186{ 2849{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188 2851
2189 if (ev_cb (w)) 2852 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else 2854 else
2192 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2193} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2194 2893
2195void 2894void
2196ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2197{ 2896{
2198 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2199 return; 2898 return;
2200 2899
2201 { 2900 {
2202 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2205 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2206 2907
2207 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2209 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2210 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2211} 2923}
2212 2924
2213void 2925void
2214ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2215{ 2927{
2216 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2218 return; 2930 return;
2219 2931
2932 EV_FREQUENT_CHECK;
2933
2220 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2221 2937
2222 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2223} 2939}
2224#endif 2940#endif
2225 2941
2226#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2227void 2943void
2228ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2229{ 2945{
2230 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2231 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2232 2950
2233 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2236} 2956}
2237 2957
2238void 2958void
2239ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2240{ 2960{
2241 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2243 return; 2963 return;
2244 2964
2965 EV_FREQUENT_CHECK;
2966
2245 { 2967 {
2246 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2247 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2249 } 2972 }
2250 2973
2251 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2252} 3024}
2253#endif 3025#endif
2254 3026
2255/*****************************************************************************/ 3027/*****************************************************************************/
2256 3028
2266once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2267{ 3039{
2268 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2269 void *arg = once->arg; 3041 void *arg = once->arg;
2270 3042
2271 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2272 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2273 ev_free (once); 3045 ev_free (once);
2274 3046
2275 cb (revents, arg); 3047 cb (revents, arg);
2276} 3048}
2277 3049
2278static void 3050static void
2279once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2280{ 3052{
2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2282} 3056}
2283 3057
2284static void 3058static void
2285once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2286{ 3060{
2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2288} 3064}
2289 3065
2290void 3066void
2291ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2292{ 3068{
2314 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2315 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2316 } 3092 }
2317} 3093}
2318 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2319#ifdef __cplusplus 3099#ifdef __cplusplus
2320} 3100}
2321#endif 3101#endif
2322 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines