ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
226# include <sys/select.h> 286# include <sys/select.h>
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
231# include <sys/inotify.h> 293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
232#endif 299#endif
233 300
234#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 302# include <winsock.h>
236#endif 303#endif
237 304
305#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
310# endif
311int eventfd (unsigned int initval, int flags);
312# ifdef __cplusplus
313}
314# endif
315#endif
316
238/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
239 324
240/* 325/*
241 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
257#else 342#else
258# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
259# define noinline 344# define noinline
260# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 346# define inline
262# endif 347# endif
263#endif 348#endif
264 349
265#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
280 365
281typedef ev_watcher *W; 366typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
284 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
285#if EV_USE_MONOTONIC 373#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 375/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 377#endif
290 378
291#ifdef _WIN32 379#ifdef _WIN32
292# include "ev_win32.c" 380# include "ev_win32.c"
293#endif 381#endif
301{ 389{
302 syserr_cb = cb; 390 syserr_cb = cb;
303} 391}
304 392
305static void noinline 393static void noinline
306syserr (const char *msg) 394ev_syserr (const char *msg)
307{ 395{
308 if (!msg) 396 if (!msg)
309 msg = "(libev) system error"; 397 msg = "(libev) system error";
310 398
311 if (syserr_cb) 399 if (syserr_cb)
315 perror (msg); 403 perror (msg);
316 abort (); 404 abort ();
317 } 405 }
318} 406}
319 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
320static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 424
322void 425void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 427{
325 alloc = cb; 428 alloc = cb;
326} 429}
327 430
328inline_speed void * 431inline_speed void *
329ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
330{ 433{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
332 435
333 if (!ptr && size) 436 if (!ptr && size)
334 { 437 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 439 abort ();
347typedef struct 450typedef struct
348{ 451{
349 WL head; 452 WL head;
350 unsigned char events; 453 unsigned char events;
351 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
352#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 461 SOCKET handle;
354#endif 462#endif
355} ANFD; 463} ANFD;
356 464
359 W w; 467 W w;
360 int events; 468 int events;
361} ANPENDING; 469} ANPENDING;
362 470
363#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
364typedef struct 473typedef struct
365{ 474{
366 WL head; 475 WL head;
367} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
368#endif 495#endif
369 496
370#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
371 498
372 struct ev_loop 499 struct ev_loop
443 ts.tv_sec = (time_t)delay; 570 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 572
446 nanosleep (&ts, 0); 573 nanosleep (&ts, 0);
447#elif defined(_WIN32) 574#elif defined(_WIN32)
448 Sleep (delay * 1e3); 575 Sleep ((unsigned long)(delay * 1e3));
449#else 576#else
450 struct timeval tv; 577 struct timeval tv;
451 578
452 tv.tv_sec = (time_t)delay; 579 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
455 select (0, 0, 0, 0, &tv); 585 select (0, 0, 0, 0, &tv);
456#endif 586#endif
457 } 587 }
458} 588}
459 589
460/*****************************************************************************/ 590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
461 593
462int inline_size 594int inline_size
463array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
464{ 596{
465 int ncur = cur + 1; 597 int ncur = cur + 1;
466 598
467 do 599 do
468 ncur <<= 1; 600 ncur <<= 1;
469 while (cnt > ncur); 601 while (cnt > ncur);
470 602
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 605 {
474 ncur *= elem; 606 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 609 ncur /= elem;
478 } 610 }
479 611
480 return ncur; 612 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
485{ 617{
486 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
488} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 624
490#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
492 { \ 627 { \
493 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
537 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
538} 673}
539 674
540/*****************************************************************************/ 675/*****************************************************************************/
541 676
542void inline_size
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed 677void inline_speed
556fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
557{ 679{
558 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
559 ev_io *w; 681 ev_io *w;
591 events |= (unsigned char)w->events; 713 events |= (unsigned char)w->events;
592 714
593#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
594 if (events) 716 if (events)
595 { 717 {
596 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
597 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 725 }
600#endif 726#endif
601 727
602 { 728 {
603 unsigned char o_events = anfd->events; 729 unsigned char o_events = anfd->events;
656{ 782{
657 int fd; 783 int fd;
658 784
659 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 786 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
663} 789}
664 790
665/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 792static void noinline
684 810
685 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 812 if (anfds [fd].events)
687 { 813 {
688 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
690 } 817 }
691} 818}
692 819
693/*****************************************************************************/ 820/*****************************************************************************/
694 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
695void inline_speed 842void inline_speed
696upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
697{ 844{
698 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
699 847
700 while (k) 848 for (;;)
701 { 849 {
702 int p = (k - 1) >> 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
703 853
704 if (heap [p]->at <= w->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
705 break; 870 break;
706 871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
707 heap [k] = heap [p]; 934 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 936 k = p;
710 } 937 }
711 938
712 heap [k] = w; 939 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (he)) = k;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742} 941}
743 942
744void inline_size 943void inline_size
745adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
746{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 947 upheap (heap, k);
948 else
748 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
749} 962}
750 963
751/*****************************************************************************/ 964/*****************************************************************************/
752 965
753typedef struct 966typedef struct
754{ 967{
755 WL head; 968 WL head;
756 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
757} ANSIG; 970} ANSIG;
758 971
759static ANSIG *signals; 972static ANSIG *signals;
760static int signalmax; 973static int signalmax;
761 974
762static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 976
766void inline_size 977/*****************************************************************************/
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828 978
829void inline_speed 979void inline_speed
830fd_intern (int fd) 980fd_intern (int fd)
831{ 981{
832#ifdef _WIN32 982#ifdef _WIN32
833 int arg = 1; 983 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 985#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 988#endif
839} 989}
840 990
841static void noinline 991static void noinline
842siginit (EV_P) 992evpipe_init (EV_P)
843{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
844 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
846 1013
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
850} 1082}
851 1083
852/*****************************************************************************/ 1084/*****************************************************************************/
853 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
854static WL childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
855 1124
856#ifndef _WIN32 1125#ifndef _WIN32
857 1126
858static ev_signal childev; 1127static ev_signal childev;
859 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
860void inline_speed 1133void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
862{ 1135{
863 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1138
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
866 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
867 { 1143 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1145 w->rpid = pid;
870 w->rstatus = status; 1146 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1148 }
1149 }
873} 1150}
874 1151
875#ifndef WCONTINUED 1152#ifndef WCONTINUED
876# define WCONTINUED 0 1153# define WCONTINUED 0
877#endif 1154#endif
886 if (!WCONTINUED 1163 if (!WCONTINUED
887 || errno != EINVAL 1164 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1166 return;
890 1167
891 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1171
895 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1175}
899 1176
900#endif 1177#endif
901 1178
902/*****************************************************************************/ 1179/*****************************************************************************/
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1298 have_monotonic = 1;
1022 } 1299 }
1023#endif 1300#endif
1024 1301
1025 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1303 mn_now = get_clock ();
1027 now_floor = mn_now; 1304 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1029 1306
1030 io_blocktime = 0.; 1307 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
1032 1315
1033 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
1034#ifndef _WIN32 1317#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1319 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1323 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1326
1044 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1329
1053#if EV_USE_PORT 1330#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1332#endif
1056#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
1064#endif 1341#endif
1065#if EV_USE_SELECT 1342#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1344#endif
1068 1345
1069 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
1071 } 1348 }
1072} 1349}
1073 1350
1074static void noinline 1351static void noinline
1075loop_destroy (EV_P) 1352loop_destroy (EV_P)
1076{ 1353{
1077 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1078 1372
1079#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
1081 close (fs_fd); 1375 close (fs_fd);
1082#endif 1376#endif
1119#if EV_FORK_ENABLE 1413#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1414 array_free (fork, EMPTY);
1121#endif 1415#endif
1122 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1124 1421
1125 backend = 0; 1422 backend = 0;
1126} 1423}
1127 1424
1425#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1129 1428
1130void inline_size 1429void inline_size
1131loop_fork (EV_P) 1430loop_fork (EV_P)
1132{ 1431{
1133#if EV_USE_PORT 1432#if EV_USE_PORT
1141#endif 1440#endif
1142#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1442 infy_fork (EV_A);
1144#endif 1443#endif
1145 1444
1146 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1147 { 1446 {
1148 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1149 1453
1150 ev_ref (EV_A); 1454 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1152 close (sigpipe [0]); 1464 close (evpipe [0]);
1153 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1154 1467
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1159 } 1471 }
1160 1472
1161 postfork = 0; 1473 postfork = 0;
1162} 1474}
1163 1475
1164#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1165struct ev_loop * 1478struct ev_loop *
1166ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1167{ 1480{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1482
1185} 1498}
1186 1499
1187void 1500void
1188ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1189{ 1502{
1190 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1191} 1504}
1192 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1193#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1194 1606
1195#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1196struct ev_loop * 1608struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1198#else 1610#else
1199int 1611int
1200ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1201#endif 1613#endif
1202{ 1614{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1208 { 1616 {
1209#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1619#else
1214 1622
1215 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1216 1624
1217 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1218 { 1626 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1627#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1237{ 1643{
1238#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1240#endif 1646#endif
1241 1647
1648 ev_default_loop_ptr = 0;
1649
1242#ifndef _WIN32 1650#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1245#endif 1653#endif
1246 1654
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1254} 1656}
1255 1657
1256void 1658void
1257ev_default_fork (void) 1659ev_default_fork (void)
1258{ 1660{
1259#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1663#endif
1262 1664
1263 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 1666}
1266 1667
1267/*****************************************************************************/ 1668/*****************************************************************************/
1268 1669
1269void 1670void
1286 { 1687 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288 1689
1289 p->w->pending = 0; 1690 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1291 } 1693 }
1292 } 1694 }
1293} 1695}
1294
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374 1696
1375#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1376void inline_size 1698void inline_size
1377idle_reify (EV_P) 1699idle_reify (EV_P)
1378{ 1700{
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break; 1713 break;
1392 } 1714 }
1393 } 1715 }
1394 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1395} 1819}
1396#endif 1820#endif
1397 1821
1398void inline_speed 1822void inline_speed
1399time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1428 */ 1852 */
1429 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1430 { 1854 {
1431 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1432 1856
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 1858 return; /* all is well */
1435 1859
1436 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 1861 mn_now = get_clock ();
1438 now_floor = mn_now; 1862 now_floor = mn_now;
1454#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1456#endif 1880#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1459 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1460 } 1888 }
1461 1889
1462 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1463 } 1891 }
1464} 1892}
1473ev_unref (EV_P) 1901ev_unref (EV_P)
1474{ 1902{
1475 --activecnt; 1903 --activecnt;
1476} 1904}
1477 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1478static int loop_done; 1912static int loop_done;
1479 1913
1480void 1914void
1481ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1482{ 1916{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486 1918
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488 1920
1489 do 1921 do
1490 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1491#ifndef _WIN32 1927#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1494 { 1930 {
1495 curpid = getpid (); 1931 curpid = getpid ();
1536 1972
1537 waittime = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1538 1974
1539 if (timercnt) 1975 if (timercnt)
1540 { 1976 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 1978 if (waittime > to) waittime = to;
1543 } 1979 }
1544 1980
1545#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 1982 if (periodiccnt)
1547 { 1983 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 1985 if (waittime > to) waittime = to;
1550 } 1986 }
1551#endif 1987#endif
1552 1988
1553 if (expect_false (waittime < timeout_blocktime)) 1989 if (expect_false (waittime < timeout_blocktime))
1586 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2025
1590 call_pending (EV_A); 2026 call_pending (EV_A);
1591
1592 } 2027 }
1593 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1594 2033
1595 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1597} 2036}
1598 2037
1686 2125
1687 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1688 return; 2127 return;
1689 2128
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1691 2133
1692 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1695 2137
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1698} 2142}
1699 2143
1700void noinline 2144void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1702{ 2146{
1703 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1705 return; 2149 return;
1706 2150
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152
2153 EV_FREQUENT_CHECK;
1708 2154
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1711 2157
1712 fd_change (EV_A_ w->fd, 1); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1713} 2161}
1714 2162
1715void noinline 2163void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1717{ 2165{
1718 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1719 return; 2167 return;
1720 2168
1721 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1722 2170
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1729 2181
2182 EV_FREQUENT_CHECK;
2183
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2185}
1732 2186
1733void noinline 2187void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2189{
1736 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1738 return; 2192 return;
1739 2193
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2194 EV_FREQUENT_CHECK;
1741 2195
1742 { 2196 {
1743 int active = ((W)w)->active; 2197 int active = ev_active (w);
1744 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1745 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1746 { 2204 {
1747 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1749 } 2207 }
1750 } 2208 }
1751 2209
1752 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1753 2213
1754 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1755} 2215}
1756 2216
1757void noinline 2217void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1759{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1760 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1761 { 2223 {
1762 if (w->repeat) 2224 if (w->repeat)
1763 { 2225 {
1764 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1766 } 2229 }
1767 else 2230 else
1768 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1769 } 2232 }
1770 else if (w->repeat) 2233 else if (w->repeat)
1771 { 2234 {
1772 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1774 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1775} 2240}
1776 2241
1777#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1778void noinline 2243void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2245{
1781 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1782 return; 2247 return;
1783 2248
1784 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2251 else if (w->interval)
1787 { 2252 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2256 }
1792 else 2257 else
1793 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1794 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1799 2268
2269 EV_FREQUENT_CHECK;
2270
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2272}
1802 2273
1803void noinline 2274void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2276{
1806 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1808 return; 2279 return;
1809 2280
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2281 EV_FREQUENT_CHECK;
1811 2282
1812 { 2283 {
1813 int active = ((W)w)->active; 2284 int active = ev_active (w);
1814 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1815 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2291 {
1817 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1819 } 2294 }
1820 } 2295 }
1821 2296
2297 EV_FREQUENT_CHECK;
2298
1822 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1823} 2300}
1824 2301
1825void noinline 2302void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1843#endif 2320#endif
1844 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1845 return; 2322 return;
1846 2323
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
1848 2329
1849 { 2330 {
1850#ifndef _WIN32 2331#ifndef _WIN32
1851 sigset_t full, prev; 2332 sigset_t full, prev;
1852 sigfillset (&full); 2333 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev); 2334 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif 2335#endif
1855 2336
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1857 2338
1858#ifndef _WIN32 2339#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2340 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif 2341#endif
1861 } 2342 }
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2346
1866 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1867 { 2348 {
1868#if _WIN32 2349#if _WIN32
1869 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1870#else 2351#else
1871 struct sigaction sa; 2352 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1876#endif 2357#endif
1877 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1878} 2361}
1879 2362
1880void noinline 2363void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2365{
1883 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1885 return; 2368 return;
1886 2369
2370 EV_FREQUENT_CHECK;
2371
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1889 2374
1890 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1892} 2379}
1893 2380
1894void 2381void
1895ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1896{ 2383{
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2386#endif
1900 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1901 return; 2388 return;
1902 2389
2390 EV_FREQUENT_CHECK;
2391
1903 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1905} 2396}
1906 2397
1907void 2398void
1908ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1909{ 2400{
1910 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1912 return; 2403 return;
1913 2404
2405 EV_FREQUENT_CHECK;
2406
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1916} 2411}
1917 2412
1918#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1919 2414
1920# ifdef _WIN32 2415# ifdef _WIN32
1921# undef lstat 2416# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1923# endif 2418# endif
1924 2419
1925#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1927 2423
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2425
1930#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1935{ 2431{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2433
1938 if (w->wd < 0) 2434 if (w->wd < 0)
1939 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2438
1942 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2443 {
1945 char path [4096]; 2444 char path [4096];
1946 strcpy (path, w->path); 2445 strcpy (path, w->path);
1947 2446
1960 } 2459 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2461 }
1963 } 2462 }
1964 else 2463 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1966
1967 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1969} 2484}
1970 2485
1971static void noinline 2486static void noinline
1972infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1973{ 2488{
1987 2502
1988static void noinline 2503static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2505{
1991 if (slot < 0) 2506 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1995 else 2510 else
1996 { 2511 {
1997 WL w_; 2512 WL w_;
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028} 2543}
2029 2544
2030void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
2031infy_init (EV_P) 2569infy_init (EV_P)
2032{ 2570{
2033 if (fs_fd != -2) 2571 if (fs_fd != -2)
2034 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
2035 2577
2036 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
2037 2579
2038 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
2039 { 2581 {
2067 w->wd = -1; 2609 w->wd = -1;
2068 2610
2069 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 2613 else
2072 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
2073 } 2615 }
2074
2075 } 2616 }
2076} 2617}
2077 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 2625#endif
2079 2626
2080void 2627void
2081ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
2082{ 2629{
2109 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
2112 ) { 2659 ) {
2113 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2114 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2117 #endif 2667 #endif
2118 2668
2119 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 2670 }
2121} 2671}
2124ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2125{ 2675{
2126 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2127 return; 2677 return;
2128 2678
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2134 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 2683
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2140 2686
2141#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2142 infy_init (EV_A); 2688 infy_init (EV_A);
2143 2689
2144 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2146 else 2692 else
2147#endif 2693#endif
2148 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2149 2695
2150 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2151} 2699}
2152 2700
2153void 2701void
2154ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2703{
2156 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2158 return; 2706 return;
2159 2707
2708 EV_FREQUENT_CHECK;
2709
2160#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2162#endif 2712#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2164 2714
2165 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2166} 2718}
2167#endif 2719#endif
2168 2720
2169#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2170void 2722void
2172{ 2724{
2173 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2174 return; 2726 return;
2175 2727
2176 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2177 2731
2178 { 2732 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2180 2734
2181 ++idleall; 2735 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2183 2737
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2186 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2187} 2743}
2188 2744
2189void 2745void
2190ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2747{
2192 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2194 return; 2750 return;
2195 2751
2752 EV_FREQUENT_CHECK;
2753
2196 { 2754 {
2197 int active = ((W)w)->active; 2755 int active = ev_active (w);
2198 2756
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2759
2202 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2203 --idleall; 2761 --idleall;
2204 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2205} 2765}
2206#endif 2766#endif
2207 2767
2208void 2768void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2770{
2211 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2212 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2213 2775
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2217} 2781}
2218 2782
2219void 2783void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 2785{
2222 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2224 return; 2788 return;
2225 2789
2790 EV_FREQUENT_CHECK;
2791
2226 { 2792 {
2227 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2228 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2230 } 2797 }
2231 2798
2232 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2233} 2802}
2234 2803
2235void 2804void
2236ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2237{ 2806{
2238 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2239 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2240 2811
2241 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2244} 2817}
2245 2818
2246void 2819void
2247ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2248{ 2821{
2249 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2251 return; 2824 return;
2252 2825
2826 EV_FREQUENT_CHECK;
2827
2253 { 2828 {
2254 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2255 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2257 } 2833 }
2258 2834
2259 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2260} 2838}
2261 2839
2262#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2263void noinline 2841void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 2870 }
2293 } 2871 }
2294} 2872}
2295 2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2296#if 0 2886#if 0
2297static void 2887static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 2889{
2300 ev_idle_stop (EV_A_ idle); 2890 ev_idle_stop (EV_A_ idle);
2311 struct ev_loop *loop = w->other; 2901 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 2904 }
2315 2905
2906 EV_FREQUENT_CHECK;
2907
2316 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2318 2910
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 2912 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 2913 ev_prepare_start (EV_A_ &w->prepare);
2322 2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 2919
2325 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2326} 2923}
2327 2924
2328void 2925void
2329ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2330{ 2927{
2331 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2333 return; 2930 return;
2334 2931
2932 EV_FREQUENT_CHECK;
2933
2335 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2337 2937
2338 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2339} 2939}
2340#endif 2940#endif
2341 2941
2342#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2343void 2943void
2344ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2345{ 2945{
2346 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2347 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2348 2950
2349 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2352} 2956}
2353 2957
2354void 2958void
2355ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2356{ 2960{
2357 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2359 return; 2963 return;
2360 2964
2965 EV_FREQUENT_CHECK;
2966
2361 { 2967 {
2362 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2363 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2365 } 2972 }
2366 2973
2367 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2368} 3024}
2369#endif 3025#endif
2370 3026
2371/*****************************************************************************/ 3027/*****************************************************************************/
2372 3028
2382once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3039{
2384 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3041 void *arg = once->arg;
2386 3042
2387 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3045 ev_free (once);
2390 3046
2391 cb (revents, arg); 3047 cb (revents, arg);
2392} 3048}
2393 3049
2394static void 3050static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3052{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3056}
2399 3057
2400static void 3058static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3060{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3064}
2405 3065
2406void 3066void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3068{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines