ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC vs.
Revision 1.464 by root, Fri Mar 21 16:41:04 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
169#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 264# else
173# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
174# endif 266# endif
175#endif 267#endif
176 268
177#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 271#endif
180 272
181#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 276# else
185# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
186# endif 278# endif
187#endif 279#endif
188 280
189#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 283#endif
192 284
193#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
194# ifdef _WIN32 286# ifdef _WIN32
195# define EV_USE_POLL 0 287# define EV_USE_POLL 0
196# else 288# else
197# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 290# endif
199#endif 291#endif
200 292
201#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 296# else
205# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
206# endif 298# endif
207#endif 299#endif
208 300
214# define EV_USE_PORT 0 306# define EV_USE_PORT 0
215#endif 307#endif
216 308
217#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 312# else
221# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
222# endif 314# endif
223#endif 315#endif
224 316
225#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 319#endif
232 320
233#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 323#endif
240 324
241#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 328# else
245# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
246# endif 338# endif
247#endif 339#endif
248 340
249#if 0 /* debugging */ 341#if 0 /* debugging */
250# define EV_VERIFY 3 342# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
253#endif 345#endif
254 346
255#ifndef EV_VERIFY 347#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 349#endif
258 350
259#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 353#endif
262 354
263#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
265#endif 387#endif
266 388
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 390
269#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
282#endif 404#endif
283 405
284#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 409# include <sys/select.h>
287# endif 410# endif
288#endif 411#endif
289 412
290#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h> 414# include <sys/statfs.h>
293# include <sys/inotify.h> 415# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
298# endif 420# endif
299#endif 421#endif
300 422
301#if EV_SELECT_IS_WINSOCKET
302# include <winsock.h>
303#endif
304
305#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 425# include <stdint.h>
308# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
309extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
310# endif 428# endif
311int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
312# ifdef __cplusplus 430# ifdef O_CLOEXEC
313} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
314# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
315#endif 459#endif
316 460
317/**/ 461/**/
318 462
319#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
321#else 465#else
322# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
323#endif 467#endif
324 468
325/* 469/*
326 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */ 472 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
334 475
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
338 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
339#if __GNUC__ >= 4 526 #if __GNUC__
340# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
341# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
342#else 542#else
343# define expect(expr,value) (expr) 543 #include <inttypes.h>
344# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
346# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
347# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
348#endif 557 #endif
558#endif
349 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_CPP (__cplusplus+0)
576#define ECB_CPP11 (__cplusplus >= 201103L)
577
578#if ECB_CPP
579 #define ECB_C 0
580 #define ECB_STDC_VERSION 0
581#else
582 #define ECB_C 1
583 #define ECB_STDC_VERSION __STDC_VERSION__
584#endif
585
586#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
587#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
588
589#if ECB_CPP
590 #define ECB_EXTERN_C extern "C"
591 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
592 #define ECB_EXTERN_C_END }
593#else
594 #define ECB_EXTERN_C extern
595 #define ECB_EXTERN_C_BEG
596 #define ECB_EXTERN_C_END
597#endif
598
599/*****************************************************************************/
600
601/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
602/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
603
604#if ECB_NO_THREADS
605 #define ECB_NO_SMP 1
606#endif
607
608#if ECB_NO_SMP
609 #define ECB_MEMORY_FENCE do { } while (0)
610#endif
611
612#ifndef ECB_MEMORY_FENCE
613 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
614 #if __i386 || __i386__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
616 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
617 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
618 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
619 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
620 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
621 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
622 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
625 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
627 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
628 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
629 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
630 #elif __aarch64__
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
632 #elif (__sparc || __sparc__) && !__sparcv8
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
634 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
635 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
636 #elif defined __s390__ || defined __s390x__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
638 #elif defined __mips__
639 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
640 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
642 #elif defined __alpha__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
644 #elif defined __hppa__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
647 #elif defined __ia64__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
649 #elif defined __m68k__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
651 #elif defined __m88k__
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
653 #elif defined __sh__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
655 #endif
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_GCC_VERSION(4,7)
661 /* see comment below (stdatomic.h) about the C11 memory model. */
662 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
663 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
664 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
665
666 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
667 * without risking compile time errors with other compilers. We *could*
668 * define our own ecb_clang_has_feature, but I just can't be bothered to work
669 * around this shit time and again.
670 * #elif defined __clang && __has_feature (cxx_atomic)
671 * // see comment below (stdatomic.h) about the C11 memory model.
672 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
673 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
674 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
675 */
676
677 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
678 #define ECB_MEMORY_FENCE __sync_synchronize ()
679 #elif _MSC_VER >= 1500 /* VC++ 2008 */
680 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
681 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
682 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
683 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
684 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
685 #elif _MSC_VER >= 1400 /* VC++ 2005 */
686 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
687 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
688 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
689 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
690 #elif defined _WIN32
691 #include <WinNT.h>
692 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
693 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
694 #include <mbarrier.h>
695 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
696 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
697 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
698 #elif __xlC__
699 #define ECB_MEMORY_FENCE __sync ()
700 #endif
701#endif
702
703#ifndef ECB_MEMORY_FENCE
704 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
705 /* we assume that these memory fences work on all variables/all memory accesses, */
706 /* not just C11 atomics and atomic accesses */
707 #include <stdatomic.h>
708 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
709 /* any fence other than seq_cst, which isn't very efficient for us. */
710 /* Why that is, we don't know - either the C11 memory model is quite useless */
711 /* for most usages, or gcc and clang have a bug */
712 /* I *currently* lean towards the latter, and inefficiently implement */
713 /* all three of ecb's fences as a seq_cst fence */
714 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
715 /* for all __atomic_thread_fence's except seq_cst */
716 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
717 #endif
718#endif
719
720#ifndef ECB_MEMORY_FENCE
721 #if !ECB_AVOID_PTHREADS
722 /*
723 * if you get undefined symbol references to pthread_mutex_lock,
724 * or failure to find pthread.h, then you should implement
725 * the ECB_MEMORY_FENCE operations for your cpu/compiler
726 * OR provide pthread.h and link against the posix thread library
727 * of your system.
728 */
729 #include <pthread.h>
730 #define ECB_NEEDS_PTHREADS 1
731 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
732
733 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
734 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
735 #endif
736#endif
737
738#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
739 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
740#endif
741
742#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
743 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
744#endif
745
746/*****************************************************************************/
747
748#if __cplusplus
749 #define ecb_inline static inline
750#elif ECB_GCC_VERSION(2,5)
751 #define ecb_inline static __inline__
752#elif ECB_C99
753 #define ecb_inline static inline
754#else
755 #define ecb_inline static
756#endif
757
758#if ECB_GCC_VERSION(3,3)
759 #define ecb_restrict __restrict__
760#elif ECB_C99
761 #define ecb_restrict restrict
762#else
763 #define ecb_restrict
764#endif
765
766typedef int ecb_bool;
767
768#define ECB_CONCAT_(a, b) a ## b
769#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
770#define ECB_STRINGIFY_(a) # a
771#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
772
773#define ecb_function_ ecb_inline
774
775#if ECB_GCC_VERSION(3,1)
776 #define ecb_attribute(attrlist) __attribute__(attrlist)
777 #define ecb_is_constant(expr) __builtin_constant_p (expr)
778 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
779 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
780#else
781 #define ecb_attribute(attrlist)
782
783 /* possible C11 impl for integral types
784 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
785 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
786
787 #define ecb_is_constant(expr) 0
788 #define ecb_expect(expr,value) (expr)
789 #define ecb_prefetch(addr,rw,locality)
790#endif
791
792/* no emulation for ecb_decltype */
793#if ECB_GCC_VERSION(4,5)
794 #define ecb_decltype(x) __decltype(x)
795#elif ECB_GCC_VERSION(3,0)
796 #define ecb_decltype(x) __typeof(x)
797#endif
798
799#define ecb_noinline ecb_attribute ((__noinline__))
800#define ecb_unused ecb_attribute ((__unused__))
801#define ecb_const ecb_attribute ((__const__))
802#define ecb_pure ecb_attribute ((__pure__))
803
804#if ECB_C11
805 #define ecb_noreturn _Noreturn
806#else
807 #define ecb_noreturn ecb_attribute ((__noreturn__))
808#endif
809
810#if ECB_GCC_VERSION(4,3)
811 #define ecb_artificial ecb_attribute ((__artificial__))
812 #define ecb_hot ecb_attribute ((__hot__))
813 #define ecb_cold ecb_attribute ((__cold__))
814#else
815 #define ecb_artificial
816 #define ecb_hot
817 #define ecb_cold
818#endif
819
820/* put around conditional expressions if you are very sure that the */
821/* expression is mostly true or mostly false. note that these return */
822/* booleans, not the expression. */
350#define expect_false(expr) expect ((expr) != 0, 0) 823#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
351#define expect_true(expr) expect ((expr) != 0, 1) 824#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
825/* for compatibility to the rest of the world */
826#define ecb_likely(expr) ecb_expect_true (expr)
827#define ecb_unlikely(expr) ecb_expect_false (expr)
828
829/* count trailing zero bits and count # of one bits */
830#if ECB_GCC_VERSION(3,4)
831 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
832 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
833 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
834 #define ecb_ctz32(x) __builtin_ctz (x)
835 #define ecb_ctz64(x) __builtin_ctzll (x)
836 #define ecb_popcount32(x) __builtin_popcount (x)
837 /* no popcountll */
838#else
839 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
840 ecb_function_ int
841 ecb_ctz32 (uint32_t x)
842 {
843 int r = 0;
844
845 x &= ~x + 1; /* this isolates the lowest bit */
846
847#if ECB_branchless_on_i386
848 r += !!(x & 0xaaaaaaaa) << 0;
849 r += !!(x & 0xcccccccc) << 1;
850 r += !!(x & 0xf0f0f0f0) << 2;
851 r += !!(x & 0xff00ff00) << 3;
852 r += !!(x & 0xffff0000) << 4;
853#else
854 if (x & 0xaaaaaaaa) r += 1;
855 if (x & 0xcccccccc) r += 2;
856 if (x & 0xf0f0f0f0) r += 4;
857 if (x & 0xff00ff00) r += 8;
858 if (x & 0xffff0000) r += 16;
859#endif
860
861 return r;
862 }
863
864 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
865 ecb_function_ int
866 ecb_ctz64 (uint64_t x)
867 {
868 int shift = x & 0xffffffffU ? 0 : 32;
869 return ecb_ctz32 (x >> shift) + shift;
870 }
871
872 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
873 ecb_function_ int
874 ecb_popcount32 (uint32_t x)
875 {
876 x -= (x >> 1) & 0x55555555;
877 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
878 x = ((x >> 4) + x) & 0x0f0f0f0f;
879 x *= 0x01010101;
880
881 return x >> 24;
882 }
883
884 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
885 ecb_function_ int ecb_ld32 (uint32_t x)
886 {
887 int r = 0;
888
889 if (x >> 16) { x >>= 16; r += 16; }
890 if (x >> 8) { x >>= 8; r += 8; }
891 if (x >> 4) { x >>= 4; r += 4; }
892 if (x >> 2) { x >>= 2; r += 2; }
893 if (x >> 1) { r += 1; }
894
895 return r;
896 }
897
898 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
899 ecb_function_ int ecb_ld64 (uint64_t x)
900 {
901 int r = 0;
902
903 if (x >> 32) { x >>= 32; r += 32; }
904
905 return r + ecb_ld32 (x);
906 }
907#endif
908
909ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
910ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
911ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
912ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
913
914ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
915ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
916{
917 return ( (x * 0x0802U & 0x22110U)
918 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
919}
920
921ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
922ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
923{
924 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
925 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
926 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
927 x = ( x >> 8 ) | ( x << 8);
928
929 return x;
930}
931
932ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
933ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
934{
935 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
936 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
937 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
938 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
939 x = ( x >> 16 ) | ( x << 16);
940
941 return x;
942}
943
944/* popcount64 is only available on 64 bit cpus as gcc builtin */
945/* so for this version we are lazy */
946ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
947ecb_function_ int
948ecb_popcount64 (uint64_t x)
949{
950 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
951}
952
953ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
954ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
955ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
956ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
957ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
958ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
959ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
960ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
961
962ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
963ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
964ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
965ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
966ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
967ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
968ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
969ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
970
971#if ECB_GCC_VERSION(4,3)
972 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
973 #define ecb_bswap32(x) __builtin_bswap32 (x)
974 #define ecb_bswap64(x) __builtin_bswap64 (x)
975#else
976 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
977 ecb_function_ uint16_t
978 ecb_bswap16 (uint16_t x)
979 {
980 return ecb_rotl16 (x, 8);
981 }
982
983 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
984 ecb_function_ uint32_t
985 ecb_bswap32 (uint32_t x)
986 {
987 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
988 }
989
990 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
991 ecb_function_ uint64_t
992 ecb_bswap64 (uint64_t x)
993 {
994 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
995 }
996#endif
997
998#if ECB_GCC_VERSION(4,5)
999 #define ecb_unreachable() __builtin_unreachable ()
1000#else
1001 /* this seems to work fine, but gcc always emits a warning for it :/ */
1002 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1003 ecb_inline void ecb_unreachable (void) { }
1004#endif
1005
1006/* try to tell the compiler that some condition is definitely true */
1007#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1008
1009ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1010ecb_inline unsigned char
1011ecb_byteorder_helper (void)
1012{
1013 /* the union code still generates code under pressure in gcc, */
1014 /* but less than using pointers, and always seems to */
1015 /* successfully return a constant. */
1016 /* the reason why we have this horrible preprocessor mess */
1017 /* is to avoid it in all cases, at least on common architectures */
1018 /* or when using a recent enough gcc version (>= 4.6) */
1019#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1020 return 0x44;
1021#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1022 return 0x44;
1023#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1024 return 0x11;
1025#else
1026 union
1027 {
1028 uint32_t i;
1029 uint8_t c;
1030 } u = { 0x11223344 };
1031 return u.c;
1032#endif
1033}
1034
1035ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1036ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1037ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1038ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1039
1040#if ECB_GCC_VERSION(3,0) || ECB_C99
1041 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1042#else
1043 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1044#endif
1045
1046#if __cplusplus
1047 template<typename T>
1048 static inline T ecb_div_rd (T val, T div)
1049 {
1050 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1051 }
1052 template<typename T>
1053 static inline T ecb_div_ru (T val, T div)
1054 {
1055 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1056 }
1057#else
1058 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1059 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1060#endif
1061
1062#if ecb_cplusplus_does_not_suck
1063 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1064 template<typename T, int N>
1065 static inline int ecb_array_length (const T (&arr)[N])
1066 {
1067 return N;
1068 }
1069#else
1070 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1071#endif
1072
1073/*******************************************************************************/
1074/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1075
1076/* basically, everything uses "ieee pure-endian" floating point numbers */
1077/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1078#if 0 \
1079 || __i386 || __i386__ \
1080 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1081 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1082 || defined __arm__ && defined __ARM_EABI__ \
1083 || defined __s390__ || defined __s390x__ \
1084 || defined __mips__ \
1085 || defined __alpha__ \
1086 || defined __hppa__ \
1087 || defined __ia64__ \
1088 || defined __m68k__ \
1089 || defined __m88k__ \
1090 || defined __sh__ \
1091 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1092 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__))
1093 #define ECB_STDFP 1
1094 #include <string.h> /* for memcpy */
1095#else
1096 #define ECB_STDFP 0
1097#endif
1098
1099#ifndef ECB_NO_LIBM
1100
1101 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1102
1103 /* only the oldest of old doesn't have this one. solaris. */
1104 #ifdef INFINITY
1105 #define ECB_INFINITY INFINITY
1106 #else
1107 #define ECB_INFINITY HUGE_VAL
1108 #endif
1109
1110 #ifdef NAN
1111 #define ECB_NAN NAN
1112 #else
1113 #define ECB_NAN ECB_INFINITY
1114 #endif
1115
1116 /* converts an ieee half/binary16 to a float */
1117 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1118 ecb_function_ float
1119 ecb_binary16_to_float (uint16_t x)
1120 {
1121 int e = (x >> 10) & 0x1f;
1122 int m = x & 0x3ff;
1123 float r;
1124
1125 if (!e ) r = ldexpf (m , -24);
1126 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1127 else if (m ) r = ECB_NAN;
1128 else r = ECB_INFINITY;
1129
1130 return x & 0x8000 ? -r : r;
1131 }
1132
1133 /* convert a float to ieee single/binary32 */
1134 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1135 ecb_function_ uint32_t
1136 ecb_float_to_binary32 (float x)
1137 {
1138 uint32_t r;
1139
1140 #if ECB_STDFP
1141 memcpy (&r, &x, 4);
1142 #else
1143 /* slow emulation, works for anything but -0 */
1144 uint32_t m;
1145 int e;
1146
1147 if (x == 0e0f ) return 0x00000000U;
1148 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1149 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1150 if (x != x ) return 0x7fbfffffU;
1151
1152 m = frexpf (x, &e) * 0x1000000U;
1153
1154 r = m & 0x80000000U;
1155
1156 if (r)
1157 m = -m;
1158
1159 if (e <= -126)
1160 {
1161 m &= 0xffffffU;
1162 m >>= (-125 - e);
1163 e = -126;
1164 }
1165
1166 r |= (e + 126) << 23;
1167 r |= m & 0x7fffffU;
1168 #endif
1169
1170 return r;
1171 }
1172
1173 /* converts an ieee single/binary32 to a float */
1174 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1175 ecb_function_ float
1176 ecb_binary32_to_float (uint32_t x)
1177 {
1178 float r;
1179
1180 #if ECB_STDFP
1181 memcpy (&r, &x, 4);
1182 #else
1183 /* emulation, only works for normals and subnormals and +0 */
1184 int neg = x >> 31;
1185 int e = (x >> 23) & 0xffU;
1186
1187 x &= 0x7fffffU;
1188
1189 if (e)
1190 x |= 0x800000U;
1191 else
1192 e = 1;
1193
1194 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1195 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1196
1197 r = neg ? -r : r;
1198 #endif
1199
1200 return r;
1201 }
1202
1203 /* convert a double to ieee double/binary64 */
1204 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1205 ecb_function_ uint64_t
1206 ecb_double_to_binary64 (double x)
1207 {
1208 uint64_t r;
1209
1210 #if ECB_STDFP
1211 memcpy (&r, &x, 8);
1212 #else
1213 /* slow emulation, works for anything but -0 */
1214 uint64_t m;
1215 int e;
1216
1217 if (x == 0e0 ) return 0x0000000000000000U;
1218 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1219 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1220 if (x != x ) return 0X7ff7ffffffffffffU;
1221
1222 m = frexp (x, &e) * 0x20000000000000U;
1223
1224 r = m & 0x8000000000000000;;
1225
1226 if (r)
1227 m = -m;
1228
1229 if (e <= -1022)
1230 {
1231 m &= 0x1fffffffffffffU;
1232 m >>= (-1021 - e);
1233 e = -1022;
1234 }
1235
1236 r |= ((uint64_t)(e + 1022)) << 52;
1237 r |= m & 0xfffffffffffffU;
1238 #endif
1239
1240 return r;
1241 }
1242
1243 /* converts an ieee double/binary64 to a double */
1244 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1245 ecb_function_ double
1246 ecb_binary64_to_double (uint64_t x)
1247 {
1248 double r;
1249
1250 #if ECB_STDFP
1251 memcpy (&r, &x, 8);
1252 #else
1253 /* emulation, only works for normals and subnormals and +0 */
1254 int neg = x >> 63;
1255 int e = (x >> 52) & 0x7ffU;
1256
1257 x &= 0xfffffffffffffU;
1258
1259 if (e)
1260 x |= 0x10000000000000U;
1261 else
1262 e = 1;
1263
1264 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1265 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1266
1267 r = neg ? -r : r;
1268 #endif
1269
1270 return r;
1271 }
1272
1273#endif
1274
1275#endif
1276
1277/* ECB.H END */
1278
1279#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1280/* if your architecture doesn't need memory fences, e.g. because it is
1281 * single-cpu/core, or if you use libev in a project that doesn't use libev
1282 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1283 * libev, in which cases the memory fences become nops.
1284 * alternatively, you can remove this #error and link against libpthread,
1285 * which will then provide the memory fences.
1286 */
1287# error "memory fences not defined for your architecture, please report"
1288#endif
1289
1290#ifndef ECB_MEMORY_FENCE
1291# define ECB_MEMORY_FENCE do { } while (0)
1292# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1293# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1294#endif
1295
1296#define expect_false(cond) ecb_expect_false (cond)
1297#define expect_true(cond) ecb_expect_true (cond)
1298#define noinline ecb_noinline
1299
352#define inline_size static inline 1300#define inline_size ecb_inline
353 1301
354#if EV_MINIMAL 1302#if EV_FEATURE_CODE
1303# define inline_speed ecb_inline
1304#else
355# define inline_speed static noinline 1305# define inline_speed static noinline
1306#endif
1307
1308#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1309
1310#if EV_MINPRI == EV_MAXPRI
1311# define ABSPRI(w) (((W)w), 0)
356#else 1312#else
357# define inline_speed static inline
358#endif
359
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1313# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1314#endif
362 1315
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1316#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */ 1317#define EMPTY2(a,b) /* used to suppress some warnings */
365 1318
366typedef ev_watcher *W; 1319typedef ev_watcher *W;
368typedef ev_watcher_time *WT; 1321typedef ev_watcher_time *WT;
369 1322
370#define ev_active(w) ((W)(w))->active 1323#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 1324#define ev_at(w) ((WT)(w))->at
372 1325
1326#if EV_USE_REALTIME
1327/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1328/* giving it a reasonably high chance of working on typical architectures */
1329static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1330#endif
1331
373#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1334#endif
1335
1336#ifndef EV_FD_TO_WIN32_HANDLE
1337# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1338#endif
1339#ifndef EV_WIN32_HANDLE_TO_FD
1340# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1341#endif
1342#ifndef EV_WIN32_CLOSE_FD
1343# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 1344#endif
378 1345
379#ifdef _WIN32 1346#ifdef _WIN32
380# include "ev_win32.c" 1347# include "ev_win32.c"
381#endif 1348#endif
382 1349
383/*****************************************************************************/ 1350/*****************************************************************************/
384 1351
1352/* define a suitable floor function (only used by periodics atm) */
1353
1354#if EV_USE_FLOOR
1355# include <math.h>
1356# define ev_floor(v) floor (v)
1357#else
1358
1359#include <float.h>
1360
1361/* a floor() replacement function, should be independent of ev_tstamp type */
1362static ev_tstamp noinline
1363ev_floor (ev_tstamp v)
1364{
1365 /* the choice of shift factor is not terribly important */
1366#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1367 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1368#else
1369 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1370#endif
1371
1372 /* argument too large for an unsigned long? */
1373 if (expect_false (v >= shift))
1374 {
1375 ev_tstamp f;
1376
1377 if (v == v - 1.)
1378 return v; /* very large number */
1379
1380 f = shift * ev_floor (v * (1. / shift));
1381 return f + ev_floor (v - f);
1382 }
1383
1384 /* special treatment for negative args? */
1385 if (expect_false (v < 0.))
1386 {
1387 ev_tstamp f = -ev_floor (-v);
1388
1389 return f - (f == v ? 0 : 1);
1390 }
1391
1392 /* fits into an unsigned long */
1393 return (unsigned long)v;
1394}
1395
1396#endif
1397
1398/*****************************************************************************/
1399
1400#ifdef __linux
1401# include <sys/utsname.h>
1402#endif
1403
1404static unsigned int noinline ecb_cold
1405ev_linux_version (void)
1406{
1407#ifdef __linux
1408 unsigned int v = 0;
1409 struct utsname buf;
1410 int i;
1411 char *p = buf.release;
1412
1413 if (uname (&buf))
1414 return 0;
1415
1416 for (i = 3+1; --i; )
1417 {
1418 unsigned int c = 0;
1419
1420 for (;;)
1421 {
1422 if (*p >= '0' && *p <= '9')
1423 c = c * 10 + *p++ - '0';
1424 else
1425 {
1426 p += *p == '.';
1427 break;
1428 }
1429 }
1430
1431 v = (v << 8) | c;
1432 }
1433
1434 return v;
1435#else
1436 return 0;
1437#endif
1438}
1439
1440/*****************************************************************************/
1441
1442#if EV_AVOID_STDIO
1443static void noinline ecb_cold
1444ev_printerr (const char *msg)
1445{
1446 write (STDERR_FILENO, msg, strlen (msg));
1447}
1448#endif
1449
385static void (*syserr_cb)(const char *msg); 1450static void (*syserr_cb)(const char *msg) EV_THROW;
386 1451
387void 1452void ecb_cold
388ev_set_syserr_cb (void (*cb)(const char *msg)) 1453ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
389{ 1454{
390 syserr_cb = cb; 1455 syserr_cb = cb;
391} 1456}
392 1457
393static void noinline 1458static void noinline ecb_cold
394ev_syserr (const char *msg) 1459ev_syserr (const char *msg)
395{ 1460{
396 if (!msg) 1461 if (!msg)
397 msg = "(libev) system error"; 1462 msg = "(libev) system error";
398 1463
399 if (syserr_cb) 1464 if (syserr_cb)
400 syserr_cb (msg); 1465 syserr_cb (msg);
401 else 1466 else
402 { 1467 {
1468#if EV_AVOID_STDIO
1469 ev_printerr (msg);
1470 ev_printerr (": ");
1471 ev_printerr (strerror (errno));
1472 ev_printerr ("\n");
1473#else
403 perror (msg); 1474 perror (msg);
1475#endif
404 abort (); 1476 abort ();
405 } 1477 }
406} 1478}
407 1479
408static void * 1480static void *
409ev_realloc_emul (void *ptr, long size) 1481ev_realloc_emul (void *ptr, long size) EV_THROW
410{ 1482{
411 /* some systems, notably openbsd and darwin, fail to properly 1483 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and 1484 * implement realloc (x, 0) (as required by both ansi c-89 and
413 * the single unix specification, so work around them here. 1485 * the single unix specification, so work around them here.
1486 * recently, also (at least) fedora and debian started breaking it,
1487 * despite documenting it otherwise.
414 */ 1488 */
415 1489
416 if (size) 1490 if (size)
417 return realloc (ptr, size); 1491 return realloc (ptr, size);
418 1492
419 free (ptr); 1493 free (ptr);
420 return 0; 1494 return 0;
421} 1495}
422 1496
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1497static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
424 1498
425void 1499void ecb_cold
426ev_set_allocator (void *(*cb)(void *ptr, long size)) 1500ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
427{ 1501{
428 alloc = cb; 1502 alloc = cb;
429} 1503}
430 1504
431inline_speed void * 1505inline_speed void *
433{ 1507{
434 ptr = alloc (ptr, size); 1508 ptr = alloc (ptr, size);
435 1509
436 if (!ptr && size) 1510 if (!ptr && size)
437 { 1511 {
1512#if EV_AVOID_STDIO
1513 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1514#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1515 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1516#endif
439 abort (); 1517 abort ();
440 } 1518 }
441 1519
442 return ptr; 1520 return ptr;
443} 1521}
445#define ev_malloc(size) ev_realloc (0, (size)) 1523#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 1524#define ev_free(ptr) ev_realloc ((ptr), 0)
447 1525
448/*****************************************************************************/ 1526/*****************************************************************************/
449 1527
1528/* set in reify when reification needed */
1529#define EV_ANFD_REIFY 1
1530
1531/* file descriptor info structure */
450typedef struct 1532typedef struct
451{ 1533{
452 WL head; 1534 WL head;
453 unsigned char events; 1535 unsigned char events; /* the events watched for */
454 unsigned char reify; 1536 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1537 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused; 1538 unsigned char unused;
457#if EV_USE_EPOLL 1539#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 1540 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 1541#endif
460#if EV_SELECT_IS_WINSOCKET 1542#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
461 SOCKET handle; 1543 SOCKET handle;
462#endif 1544#endif
1545#if EV_USE_IOCP
1546 OVERLAPPED or, ow;
1547#endif
463} ANFD; 1548} ANFD;
464 1549
1550/* stores the pending event set for a given watcher */
465typedef struct 1551typedef struct
466{ 1552{
467 W w; 1553 W w;
468 int events; 1554 int events; /* the pending event set for the given watcher */
469} ANPENDING; 1555} ANPENDING;
470 1556
471#if EV_USE_INOTIFY 1557#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 1558/* hash table entry per inotify-id */
473typedef struct 1559typedef struct
476} ANFS; 1562} ANFS;
477#endif 1563#endif
478 1564
479/* Heap Entry */ 1565/* Heap Entry */
480#if EV_HEAP_CACHE_AT 1566#if EV_HEAP_CACHE_AT
1567 /* a heap element */
481 typedef struct { 1568 typedef struct {
482 ev_tstamp at; 1569 ev_tstamp at;
483 WT w; 1570 WT w;
484 } ANHE; 1571 } ANHE;
485 1572
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1573 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1574 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1575 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 1576#else
1577 /* a heap element */
490 typedef WT ANHE; 1578 typedef WT ANHE;
491 1579
492 #define ANHE_w(he) (he) 1580 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 1581 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 1582 #define ANHE_at_cache(he)
505 #undef VAR 1593 #undef VAR
506 }; 1594 };
507 #include "ev_wrap.h" 1595 #include "ev_wrap.h"
508 1596
509 static struct ev_loop default_loop_struct; 1597 static struct ev_loop default_loop_struct;
510 struct ev_loop *ev_default_loop_ptr; 1598 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
511 1599
512#else 1600#else
513 1601
514 ev_tstamp ev_rt_now; 1602 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
515 #define VAR(name,decl) static decl; 1603 #define VAR(name,decl) static decl;
516 #include "ev_vars.h" 1604 #include "ev_vars.h"
517 #undef VAR 1605 #undef VAR
518 1606
519 static int ev_default_loop_ptr; 1607 static int ev_default_loop_ptr;
520 1608
521#endif 1609#endif
522 1610
1611#if EV_FEATURE_API
1612# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1613# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1614# define EV_INVOKE_PENDING invoke_cb (EV_A)
1615#else
1616# define EV_RELEASE_CB (void)0
1617# define EV_ACQUIRE_CB (void)0
1618# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1619#endif
1620
1621#define EVBREAK_RECURSE 0x80
1622
523/*****************************************************************************/ 1623/*****************************************************************************/
524 1624
1625#ifndef EV_HAVE_EV_TIME
525ev_tstamp 1626ev_tstamp
526ev_time (void) 1627ev_time (void) EV_THROW
527{ 1628{
528#if EV_USE_REALTIME 1629#if EV_USE_REALTIME
1630 if (expect_true (have_realtime))
1631 {
529 struct timespec ts; 1632 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 1633 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 1634 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 1635 }
1636#endif
1637
533 struct timeval tv; 1638 struct timeval tv;
534 gettimeofday (&tv, 0); 1639 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 1640 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 1641}
1642#endif
538 1643
539ev_tstamp inline_size 1644inline_size ev_tstamp
540get_clock (void) 1645get_clock (void)
541{ 1646{
542#if EV_USE_MONOTONIC 1647#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 1648 if (expect_true (have_monotonic))
544 { 1649 {
551 return ev_time (); 1656 return ev_time ();
552} 1657}
553 1658
554#if EV_MULTIPLICITY 1659#if EV_MULTIPLICITY
555ev_tstamp 1660ev_tstamp
556ev_now (EV_P) 1661ev_now (EV_P) EV_THROW
557{ 1662{
558 return ev_rt_now; 1663 return ev_rt_now;
559} 1664}
560#endif 1665#endif
561 1666
562void 1667void
563ev_sleep (ev_tstamp delay) 1668ev_sleep (ev_tstamp delay) EV_THROW
564{ 1669{
565 if (delay > 0.) 1670 if (delay > 0.)
566 { 1671 {
567#if EV_USE_NANOSLEEP 1672#if EV_USE_NANOSLEEP
568 struct timespec ts; 1673 struct timespec ts;
569 1674
570 ts.tv_sec = (time_t)delay; 1675 EV_TS_SET (ts, delay);
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0); 1676 nanosleep (&ts, 0);
574#elif defined(_WIN32) 1677#elif defined _WIN32
575 Sleep ((unsigned long)(delay * 1e3)); 1678 Sleep ((unsigned long)(delay * 1e3));
576#else 1679#else
577 struct timeval tv; 1680 struct timeval tv;
578 1681
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1682 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1683 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 1684 /* by older ones */
1685 EV_TV_SET (tv, delay);
585 select (0, 0, 0, 0, &tv); 1686 select (0, 0, 0, 0, &tv);
586#endif 1687#endif
587 } 1688 }
588} 1689}
589 1690
590/*****************************************************************************/ 1691/*****************************************************************************/
591 1692
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1693#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 1694
594int inline_size 1695/* find a suitable new size for the given array, */
1696/* hopefully by rounding to a nice-to-malloc size */
1697inline_size int
595array_nextsize (int elem, int cur, int cnt) 1698array_nextsize (int elem, int cur, int cnt)
596{ 1699{
597 int ncur = cur + 1; 1700 int ncur = cur + 1;
598 1701
599 do 1702 do
600 ncur <<= 1; 1703 ncur <<= 1;
601 while (cnt > ncur); 1704 while (cnt > ncur);
602 1705
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1706 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1707 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 { 1708 {
606 ncur *= elem; 1709 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1710 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4; 1711 ncur = ncur - sizeof (void *) * 4;
610 } 1713 }
611 1714
612 return ncur; 1715 return ncur;
613} 1716}
614 1717
615static noinline void * 1718static void * noinline ecb_cold
616array_realloc (int elem, void *base, int *cur, int cnt) 1719array_realloc (int elem, void *base, int *cur, int cnt)
617{ 1720{
618 *cur = array_nextsize (elem, *cur, cnt); 1721 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur); 1722 return ev_realloc (base, elem * *cur);
620} 1723}
623 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1726 memset ((void *)(base), 0, sizeof (*(base)) * (count))
624 1727
625#define array_needsize(type,base,cur,cnt,init) \ 1728#define array_needsize(type,base,cur,cnt,init) \
626 if (expect_false ((cnt) > (cur))) \ 1729 if (expect_false ((cnt) > (cur))) \
627 { \ 1730 { \
628 int ocur_ = (cur); \ 1731 int ecb_unused ocur_ = (cur); \
629 (base) = (type *)array_realloc \ 1732 (base) = (type *)array_realloc \
630 (sizeof (type), (base), &(cur), (cnt)); \ 1733 (sizeof (type), (base), &(cur), (cnt)); \
631 init ((base) + (ocur_), (cur) - ocur_); \ 1734 init ((base) + (ocur_), (cur) - ocur_); \
632 } 1735 }
633 1736
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1743 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 1744 }
642#endif 1745#endif
643 1746
644#define array_free(stem, idx) \ 1747#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1748 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 1749
647/*****************************************************************************/ 1750/*****************************************************************************/
648 1751
1752/* dummy callback for pending events */
1753static void noinline
1754pendingcb (EV_P_ ev_prepare *w, int revents)
1755{
1756}
1757
649void noinline 1758void noinline
650ev_feed_event (EV_P_ void *w, int revents) 1759ev_feed_event (EV_P_ void *w, int revents) EV_THROW
651{ 1760{
652 W w_ = (W)w; 1761 W w_ = (W)w;
653 int pri = ABSPRI (w_); 1762 int pri = ABSPRI (w_);
654 1763
655 if (expect_false (w_->pending)) 1764 if (expect_false (w_->pending))
659 w_->pending = ++pendingcnt [pri]; 1768 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1769 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_; 1770 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 1771 pendings [pri][w_->pending - 1].events = revents;
663 } 1772 }
664}
665 1773
666void inline_speed 1774 pendingpri = NUMPRI - 1;
1775}
1776
1777inline_speed void
1778feed_reverse (EV_P_ W w)
1779{
1780 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1781 rfeeds [rfeedcnt++] = w;
1782}
1783
1784inline_size void
1785feed_reverse_done (EV_P_ int revents)
1786{
1787 do
1788 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1789 while (rfeedcnt);
1790}
1791
1792inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 1793queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 1794{
669 int i; 1795 int i;
670 1796
671 for (i = 0; i < eventcnt; ++i) 1797 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 1798 ev_feed_event (EV_A_ events [i], type);
673} 1799}
674 1800
675/*****************************************************************************/ 1801/*****************************************************************************/
676 1802
677void inline_speed 1803inline_speed void
678fd_event (EV_P_ int fd, int revents) 1804fd_event_nocheck (EV_P_ int fd, int revents)
679{ 1805{
680 ANFD *anfd = anfds + fd; 1806 ANFD *anfd = anfds + fd;
681 ev_io *w; 1807 ev_io *w;
682 1808
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1809 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 1813 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 1814 ev_feed_event (EV_A_ (W)w, ev);
689 } 1815 }
690} 1816}
691 1817
1818/* do not submit kernel events for fds that have reify set */
1819/* because that means they changed while we were polling for new events */
1820inline_speed void
1821fd_event (EV_P_ int fd, int revents)
1822{
1823 ANFD *anfd = anfds + fd;
1824
1825 if (expect_true (!anfd->reify))
1826 fd_event_nocheck (EV_A_ fd, revents);
1827}
1828
692void 1829void
693ev_feed_fd_event (EV_P_ int fd, int revents) 1830ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
694{ 1831{
695 if (fd >= 0 && fd < anfdmax) 1832 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 1833 fd_event_nocheck (EV_A_ fd, revents);
697} 1834}
698 1835
699void inline_size 1836/* make sure the external fd watch events are in-sync */
1837/* with the kernel/libev internal state */
1838inline_size void
700fd_reify (EV_P) 1839fd_reify (EV_P)
701{ 1840{
702 int i; 1841 int i;
1842
1843#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1844 for (i = 0; i < fdchangecnt; ++i)
1845 {
1846 int fd = fdchanges [i];
1847 ANFD *anfd = anfds + fd;
1848
1849 if (anfd->reify & EV__IOFDSET && anfd->head)
1850 {
1851 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1852
1853 if (handle != anfd->handle)
1854 {
1855 unsigned long arg;
1856
1857 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1858
1859 /* handle changed, but fd didn't - we need to do it in two steps */
1860 backend_modify (EV_A_ fd, anfd->events, 0);
1861 anfd->events = 0;
1862 anfd->handle = handle;
1863 }
1864 }
1865 }
1866#endif
703 1867
704 for (i = 0; i < fdchangecnt; ++i) 1868 for (i = 0; i < fdchangecnt; ++i)
705 { 1869 {
706 int fd = fdchanges [i]; 1870 int fd = fdchanges [i];
707 ANFD *anfd = anfds + fd; 1871 ANFD *anfd = anfds + fd;
708 ev_io *w; 1872 ev_io *w;
709 1873
710 unsigned char events = 0; 1874 unsigned char o_events = anfd->events;
1875 unsigned char o_reify = anfd->reify;
711 1876
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1877 anfd->reify = 0;
713 events |= (unsigned char)w->events;
714 1878
715#if EV_SELECT_IS_WINSOCKET 1879 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
716 if (events)
717 { 1880 {
718 unsigned long arg; 1881 anfd->events = 0;
719 #ifdef EV_FD_TO_WIN32_HANDLE 1882
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1883 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
721 #else 1884 anfd->events |= (unsigned char)w->events;
722 anfd->handle = _get_osfhandle (fd); 1885
723 #endif 1886 if (o_events != anfd->events)
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1887 o_reify = EV__IOFDSET; /* actually |= */
725 } 1888 }
726#endif
727 1889
728 { 1890 if (o_reify & EV__IOFDSET)
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 1891 backend_modify (EV_A_ fd, o_events, anfd->events);
737 }
738 } 1892 }
739 1893
740 fdchangecnt = 0; 1894 fdchangecnt = 0;
741} 1895}
742 1896
743void inline_size 1897/* something about the given fd changed */
1898inline_size void
744fd_change (EV_P_ int fd, int flags) 1899fd_change (EV_P_ int fd, int flags)
745{ 1900{
746 unsigned char reify = anfds [fd].reify; 1901 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 1902 anfds [fd].reify |= flags;
748 1903
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1907 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
753 fdchanges [fdchangecnt - 1] = fd; 1908 fdchanges [fdchangecnt - 1] = fd;
754 } 1909 }
755} 1910}
756 1911
757void inline_speed 1912/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1913inline_speed void ecb_cold
758fd_kill (EV_P_ int fd) 1914fd_kill (EV_P_ int fd)
759{ 1915{
760 ev_io *w; 1916 ev_io *w;
761 1917
762 while ((w = (ev_io *)anfds [fd].head)) 1918 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 1920 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1921 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 1922 }
767} 1923}
768 1924
769int inline_size 1925/* check whether the given fd is actually valid, for error recovery */
1926inline_size int ecb_cold
770fd_valid (int fd) 1927fd_valid (int fd)
771{ 1928{
772#ifdef _WIN32 1929#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 1930 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 1931#else
775 return fcntl (fd, F_GETFD) != -1; 1932 return fcntl (fd, F_GETFD) != -1;
776#endif 1933#endif
777} 1934}
778 1935
779/* called on EBADF to verify fds */ 1936/* called on EBADF to verify fds */
780static void noinline 1937static void noinline ecb_cold
781fd_ebadf (EV_P) 1938fd_ebadf (EV_P)
782{ 1939{
783 int fd; 1940 int fd;
784 1941
785 for (fd = 0; fd < anfdmax; ++fd) 1942 for (fd = 0; fd < anfdmax; ++fd)
787 if (!fd_valid (fd) && errno == EBADF) 1944 if (!fd_valid (fd) && errno == EBADF)
788 fd_kill (EV_A_ fd); 1945 fd_kill (EV_A_ fd);
789} 1946}
790 1947
791/* called on ENOMEM in select/poll to kill some fds and retry */ 1948/* called on ENOMEM in select/poll to kill some fds and retry */
792static void noinline 1949static void noinline ecb_cold
793fd_enomem (EV_P) 1950fd_enomem (EV_P)
794{ 1951{
795 int fd; 1952 int fd;
796 1953
797 for (fd = anfdmax; fd--; ) 1954 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 1955 if (anfds [fd].events)
799 { 1956 {
800 fd_kill (EV_A_ fd); 1957 fd_kill (EV_A_ fd);
801 return; 1958 break;
802 } 1959 }
803} 1960}
804 1961
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 1962/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 1963static void noinline
811 for (fd = 0; fd < anfdmax; ++fd) 1968 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 1969 if (anfds [fd].events)
813 { 1970 {
814 anfds [fd].events = 0; 1971 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 1972 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1973 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 1974 }
818} 1975}
819 1976
1977/* used to prepare libev internal fd's */
1978/* this is not fork-safe */
1979inline_speed void
1980fd_intern (int fd)
1981{
1982#ifdef _WIN32
1983 unsigned long arg = 1;
1984 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1985#else
1986 fcntl (fd, F_SETFD, FD_CLOEXEC);
1987 fcntl (fd, F_SETFL, O_NONBLOCK);
1988#endif
1989}
1990
820/*****************************************************************************/ 1991/*****************************************************************************/
821 1992
822/* 1993/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not 1994 * the heap functions want a real array index. array index 0 is guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree. 1996 * the branching factor of the d-tree.
826 */ 1997 */
827 1998
828/* 1999/*
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 2010#define UPHEAP_DONE(p,k) ((p) == (k))
840 2011
841/* away from the root */ 2012/* away from the root */
842void inline_speed 2013inline_speed void
843downheap (ANHE *heap, int N, int k) 2014downheap (ANHE *heap, int N, int k)
844{ 2015{
845 ANHE he = heap [k]; 2016 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 2017 ANHE *E = heap + N + HEAP0;
847 2018
887#define HEAP0 1 2058#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 2059#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 2060#define UPHEAP_DONE(p,k) (!(p))
890 2061
891/* away from the root */ 2062/* away from the root */
892void inline_speed 2063inline_speed void
893downheap (ANHE *heap, int N, int k) 2064downheap (ANHE *heap, int N, int k)
894{ 2065{
895 ANHE he = heap [k]; 2066 ANHE he = heap [k];
896 2067
897 for (;;) 2068 for (;;)
898 { 2069 {
899 int c = k << 1; 2070 int c = k << 1;
900 2071
901 if (c > N + HEAP0 - 1) 2072 if (c >= N + HEAP0)
902 break; 2073 break;
903 2074
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 2076 ? 1 : 0;
906 2077
917 ev_active (ANHE_w (he)) = k; 2088 ev_active (ANHE_w (he)) = k;
918} 2089}
919#endif 2090#endif
920 2091
921/* towards the root */ 2092/* towards the root */
922void inline_speed 2093inline_speed void
923upheap (ANHE *heap, int k) 2094upheap (ANHE *heap, int k)
924{ 2095{
925 ANHE he = heap [k]; 2096 ANHE he = heap [k];
926 2097
927 for (;;) 2098 for (;;)
938 2109
939 heap [k] = he; 2110 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 2111 ev_active (ANHE_w (he)) = k;
941} 2112}
942 2113
943void inline_size 2114/* move an element suitably so it is in a correct place */
2115inline_size void
944adjustheap (ANHE *heap, int N, int k) 2116adjustheap (ANHE *heap, int N, int k)
945{ 2117{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 2119 upheap (heap, k);
948 else 2120 else
949 downheap (heap, N, k); 2121 downheap (heap, N, k);
950} 2122}
951 2123
952/* rebuild the heap: this function is used only once and executed rarely */ 2124/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 2125inline_size void
954reheap (ANHE *heap, int N) 2126reheap (ANHE *heap, int N)
955{ 2127{
956 int i; 2128 int i;
957 2129
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 2133 upheap (heap, i + HEAP0);
962} 2134}
963 2135
964/*****************************************************************************/ 2136/*****************************************************************************/
965 2137
2138/* associate signal watchers to a signal signal */
966typedef struct 2139typedef struct
967{ 2140{
2141 EV_ATOMIC_T pending;
2142#if EV_MULTIPLICITY
2143 EV_P;
2144#endif
968 WL head; 2145 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 2146} ANSIG;
971 2147
972static ANSIG *signals; 2148static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 2149
977/*****************************************************************************/ 2150/*****************************************************************************/
978 2151
979void inline_speed 2152#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990 2153
991static void noinline 2154static void noinline ecb_cold
992evpipe_init (EV_P) 2155evpipe_init (EV_P)
993{ 2156{
994 if (!ev_is_active (&pipeev)) 2157 if (!ev_is_active (&pipe_w))
2158 {
2159 int fds [2];
2160
2161# if EV_USE_EVENTFD
2162 fds [0] = -1;
2163 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2164 if (fds [1] < 0 && errno == EINVAL)
2165 fds [1] = eventfd (0, 0);
2166
2167 if (fds [1] < 0)
2168# endif
2169 {
2170 while (pipe (fds))
2171 ev_syserr ("(libev) error creating signal/async pipe");
2172
2173 fd_intern (fds [0]);
2174 }
2175
2176 evpipe [0] = fds [0];
2177
2178 if (evpipe [1] < 0)
2179 evpipe [1] = fds [1]; /* first call, set write fd */
2180 else
2181 {
2182 /* on subsequent calls, do not change evpipe [1] */
2183 /* so that evpipe_write can always rely on its value. */
2184 /* this branch does not do anything sensible on windows, */
2185 /* so must not be executed on windows */
2186
2187 dup2 (fds [1], evpipe [1]);
2188 close (fds [1]);
2189 }
2190
2191 fd_intern (evpipe [1]);
2192
2193 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2194 ev_io_start (EV_A_ &pipe_w);
2195 ev_unref (EV_A); /* watcher should not keep loop alive */
995 { 2196 }
2197}
2198
2199inline_speed void
2200evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2201{
2202 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2203
2204 if (expect_true (*flag))
2205 return;
2206
2207 *flag = 1;
2208 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2209
2210 pipe_write_skipped = 1;
2211
2212 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2213
2214 if (pipe_write_wanted)
2215 {
2216 int old_errno;
2217
2218 pipe_write_skipped = 0;
2219 ECB_MEMORY_FENCE_RELEASE;
2220
2221 old_errno = errno; /* save errno because write will clobber it */
2222
996#if EV_USE_EVENTFD 2223#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0) 2224 if (evpipe [0] < 0)
998 { 2225 {
999 evpipe [0] = -1; 2226 uint64_t counter = 1;
1000 fd_intern (evfd); 2227 write (evpipe [1], &counter, sizeof (uint64_t));
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 } 2228 }
1003 else 2229 else
1004#endif 2230#endif
1005 { 2231 {
1006 while (pipe (evpipe)) 2232#ifdef _WIN32
1007 ev_syserr ("(libev) error creating signal/async pipe"); 2233 WSABUF buf;
1008 2234 DWORD sent;
1009 fd_intern (evpipe [0]); 2235 buf.buf = &buf;
1010 fd_intern (evpipe [1]); 2236 buf.len = 1;
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 2237 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2238#else
2239 write (evpipe [1], &(evpipe [1]), 1);
2240#endif
1012 } 2241 }
1013 2242
1014 ev_io_start (EV_A_ &pipeev); 2243 errno = old_errno;
1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 { 2244 }
1024 int old_errno = errno; /* save errno because write might clobber it */ 2245}
1025 2246
1026 *flag = 1; 2247/* called whenever the libev signal pipe */
2248/* got some events (signal, async) */
2249static void
2250pipecb (EV_P_ ev_io *iow, int revents)
2251{
2252 int i;
1027 2253
2254 if (revents & EV_READ)
2255 {
1028#if EV_USE_EVENTFD 2256#if EV_USE_EVENTFD
1029 if (evfd >= 0) 2257 if (evpipe [0] < 0)
1030 { 2258 {
1031 uint64_t counter = 1; 2259 uint64_t counter;
1032 write (evfd, &counter, sizeof (uint64_t)); 2260 read (evpipe [1], &counter, sizeof (uint64_t));
1033 } 2261 }
1034 else 2262 else
1035#endif 2263#endif
1036 write (evpipe [1], &old_errno, 1); 2264 {
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy; 2265 char dummy[4];
2266#ifdef _WIN32
2267 WSABUF buf;
2268 DWORD recvd;
2269 DWORD flags = 0;
2270 buf.buf = dummy;
2271 buf.len = sizeof (dummy);
2272 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2273#else
1055 read (evpipe [0], &dummy, 1); 2274 read (evpipe [0], &dummy, sizeof (dummy));
2275#endif
2276 }
2277 }
2278
2279 pipe_write_skipped = 0;
2280
2281 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2282
2283#if EV_SIGNAL_ENABLE
2284 if (sig_pending)
1056 } 2285 {
2286 sig_pending = 0;
1057 2287
1058 if (gotsig && ev_is_default_loop (EV_A)) 2288 ECB_MEMORY_FENCE;
1059 {
1060 int signum;
1061 gotsig = 0;
1062 2289
1063 for (signum = signalmax; signum--; ) 2290 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 2291 if (expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 2292 ev_feed_signal_event (EV_A_ i + 1);
1066 } 2293 }
2294#endif
1067 2295
1068#if EV_ASYNC_ENABLE 2296#if EV_ASYNC_ENABLE
1069 if (gotasync) 2297 if (async_pending)
1070 { 2298 {
1071 int i; 2299 async_pending = 0;
1072 gotasync = 0; 2300
2301 ECB_MEMORY_FENCE;
1073 2302
1074 for (i = asynccnt; i--; ) 2303 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 2304 if (asyncs [i]->sent)
1076 { 2305 {
1077 asyncs [i]->sent = 0; 2306 asyncs [i]->sent = 0;
2307 ECB_MEMORY_FENCE_RELEASE;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2308 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 } 2309 }
1080 } 2310 }
1081#endif 2311#endif
1082} 2312}
1083 2313
1084/*****************************************************************************/ 2314/*****************************************************************************/
1085 2315
2316void
2317ev_feed_signal (int signum) EV_THROW
2318{
2319#if EV_MULTIPLICITY
2320 EV_P;
2321 ECB_MEMORY_FENCE_ACQUIRE;
2322 EV_A = signals [signum - 1].loop;
2323
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328 signals [signum - 1].pending = 1;
2329 evpipe_write (EV_A_ &sig_pending);
2330}
2331
1086static void 2332static void
1087ev_sighandler (int signum) 2333ev_sighandler (int signum)
1088{ 2334{
2335#ifdef _WIN32
2336 signal (signum, ev_sighandler);
2337#endif
2338
2339 ev_feed_signal (signum);
2340}
2341
2342void noinline
2343ev_feed_signal_event (EV_P_ int signum) EV_THROW
2344{
2345 WL w;
2346
2347 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2348 return;
2349
2350 --signum;
2351
1089#if EV_MULTIPLICITY 2352#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct; 2353 /* it is permissible to try to feed a signal to the wrong loop */
1091#endif 2354 /* or, likely more useful, feeding a signal nobody is waiting for */
1092 2355
1093#if _WIN32 2356 if (expect_false (signals [signum].loop != EV_A))
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 2357 return;
2358#endif
1114 2359
1115 signals [signum].gotsig = 0; 2360 signals [signum].pending = 0;
2361 ECB_MEMORY_FENCE_RELEASE;
1116 2362
1117 for (w = signals [signum].head; w; w = w->next) 2363 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2364 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 2365}
1120 2366
2367#if EV_USE_SIGNALFD
2368static void
2369sigfdcb (EV_P_ ev_io *iow, int revents)
2370{
2371 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2372
2373 for (;;)
2374 {
2375 ssize_t res = read (sigfd, si, sizeof (si));
2376
2377 /* not ISO-C, as res might be -1, but works with SuS */
2378 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2379 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2380
2381 if (res < (ssize_t)sizeof (si))
2382 break;
2383 }
2384}
2385#endif
2386
2387#endif
2388
1121/*****************************************************************************/ 2389/*****************************************************************************/
1122 2390
2391#if EV_CHILD_ENABLE
1123static WL childs [EV_PID_HASHSIZE]; 2392static WL childs [EV_PID_HASHSIZE];
1124
1125#ifndef _WIN32
1126 2393
1127static ev_signal childev; 2394static ev_signal childev;
1128 2395
1129#ifndef WIFCONTINUED 2396#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 2397# define WIFCONTINUED(status) 0
1131#endif 2398#endif
1132 2399
1133void inline_speed 2400/* handle a single child status event */
2401inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 2402child_reap (EV_P_ int chain, int pid, int status)
1135{ 2403{
1136 ev_child *w; 2404 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2405 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 2406
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2407 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 { 2408 {
1141 if ((w->pid == pid || !w->pid) 2409 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1))) 2410 && (!traced || (w->flags & 1)))
1143 { 2411 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2412 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 2419
1152#ifndef WCONTINUED 2420#ifndef WCONTINUED
1153# define WCONTINUED 0 2421# define WCONTINUED 0
1154#endif 2422#endif
1155 2423
2424/* called on sigchld etc., calls waitpid */
1156static void 2425static void
1157childcb (EV_P_ ev_signal *sw, int revents) 2426childcb (EV_P_ ev_signal *sw, int revents)
1158{ 2427{
1159 int pid, status; 2428 int pid, status;
1160 2429
1168 /* make sure we are called again until all children have been reaped */ 2437 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */ 2438 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2439 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171 2440
1172 child_reap (EV_A_ pid, pid, status); 2441 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1) 2442 if ((EV_PID_HASHSIZE) > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2443 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1175} 2444}
1176 2445
1177#endif 2446#endif
1178 2447
1179/*****************************************************************************/ 2448/*****************************************************************************/
1180 2449
2450#if EV_USE_IOCP
2451# include "ev_iocp.c"
2452#endif
1181#if EV_USE_PORT 2453#if EV_USE_PORT
1182# include "ev_port.c" 2454# include "ev_port.c"
1183#endif 2455#endif
1184#if EV_USE_KQUEUE 2456#if EV_USE_KQUEUE
1185# include "ev_kqueue.c" 2457# include "ev_kqueue.c"
1192#endif 2464#endif
1193#if EV_USE_SELECT 2465#if EV_USE_SELECT
1194# include "ev_select.c" 2466# include "ev_select.c"
1195#endif 2467#endif
1196 2468
1197int 2469int ecb_cold
1198ev_version_major (void) 2470ev_version_major (void) EV_THROW
1199{ 2471{
1200 return EV_VERSION_MAJOR; 2472 return EV_VERSION_MAJOR;
1201} 2473}
1202 2474
1203int 2475int ecb_cold
1204ev_version_minor (void) 2476ev_version_minor (void) EV_THROW
1205{ 2477{
1206 return EV_VERSION_MINOR; 2478 return EV_VERSION_MINOR;
1207} 2479}
1208 2480
1209/* return true if we are running with elevated privileges and should ignore env variables */ 2481/* return true if we are running with elevated privileges and should ignore env variables */
1210int inline_size 2482int inline_size ecb_cold
1211enable_secure (void) 2483enable_secure (void)
1212{ 2484{
1213#ifdef _WIN32 2485#ifdef _WIN32
1214 return 0; 2486 return 0;
1215#else 2487#else
1216 return getuid () != geteuid () 2488 return getuid () != geteuid ()
1217 || getgid () != getegid (); 2489 || getgid () != getegid ();
1218#endif 2490#endif
1219} 2491}
1220 2492
1221unsigned int 2493unsigned int ecb_cold
1222ev_supported_backends (void) 2494ev_supported_backends (void) EV_THROW
1223{ 2495{
1224 unsigned int flags = 0; 2496 unsigned int flags = 0;
1225 2497
1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2498 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2499 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2502 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1231 2503
1232 return flags; 2504 return flags;
1233} 2505}
1234 2506
1235unsigned int 2507unsigned int ecb_cold
1236ev_recommended_backends (void) 2508ev_recommended_backends (void) EV_THROW
1237{ 2509{
1238 unsigned int flags = ev_supported_backends (); 2510 unsigned int flags = ev_supported_backends ();
1239 2511
1240#ifndef __NetBSD__ 2512#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */ 2513 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 2514 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 2515 flags &= ~EVBACKEND_KQUEUE;
1244#endif 2516#endif
1245#ifdef __APPLE__ 2517#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 2518 /* only select works correctly on that "unix-certified" platform */
1247 flags &= ~EVBACKEND_POLL; 2519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2521#endif
2522#ifdef __FreeBSD__
2523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1248#endif 2524#endif
1249 2525
1250 return flags; 2526 return flags;
1251} 2527}
1252 2528
2529unsigned int ecb_cold
2530ev_embeddable_backends (void) EV_THROW
2531{
2532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2533
2534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2535 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2536 flags &= ~EVBACKEND_EPOLL;
2537
2538 return flags;
2539}
2540
1253unsigned int 2541unsigned int
1254ev_embeddable_backends (void) 2542ev_backend (EV_P) EV_THROW
1255{ 2543{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2544 return backend;
1257
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
1263} 2545}
1264 2546
2547#if EV_FEATURE_API
1265unsigned int 2548unsigned int
1266ev_backend (EV_P) 2549ev_iteration (EV_P) EV_THROW
1267{ 2550{
1268 return backend; 2551 return loop_count;
1269} 2552}
1270 2553
1271unsigned int 2554unsigned int
1272ev_loop_count (EV_P) 2555ev_depth (EV_P) EV_THROW
1273{ 2556{
1274 return loop_count; 2557 return loop_depth;
1275} 2558}
1276 2559
1277void 2560void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2561ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1279{ 2562{
1280 io_blocktime = interval; 2563 io_blocktime = interval;
1281} 2564}
1282 2565
1283void 2566void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1285{ 2568{
1286 timeout_blocktime = interval; 2569 timeout_blocktime = interval;
1287} 2570}
1288 2571
2572void
2573ev_set_userdata (EV_P_ void *data) EV_THROW
2574{
2575 userdata = data;
2576}
2577
2578void *
2579ev_userdata (EV_P) EV_THROW
2580{
2581 return userdata;
2582}
2583
2584void
2585ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2586{
2587 invoke_cb = invoke_pending_cb;
2588}
2589
2590void
2591ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2592{
2593 release_cb = release;
2594 acquire_cb = acquire;
2595}
2596#endif
2597
2598/* initialise a loop structure, must be zero-initialised */
1289static void noinline 2599static void noinline ecb_cold
1290loop_init (EV_P_ unsigned int flags) 2600loop_init (EV_P_ unsigned int flags) EV_THROW
1291{ 2601{
1292 if (!backend) 2602 if (!backend)
1293 { 2603 {
2604 origflags = flags;
2605
2606#if EV_USE_REALTIME
2607 if (!have_realtime)
2608 {
2609 struct timespec ts;
2610
2611 if (!clock_gettime (CLOCK_REALTIME, &ts))
2612 have_realtime = 1;
2613 }
2614#endif
2615
1294#if EV_USE_MONOTONIC 2616#if EV_USE_MONOTONIC
2617 if (!have_monotonic)
1295 { 2618 {
1296 struct timespec ts; 2619 struct timespec ts;
2620
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 2622 have_monotonic = 1;
1299 } 2623 }
1300#endif
1301
1302 ev_rt_now = ev_time ();
1303 mn_now = get_clock ();
1304 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif 2624#endif
1315 2625
1316 /* pid check not overridable via env */ 2626 /* pid check not overridable via env */
1317#ifndef _WIN32 2627#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK) 2628 if (flags & EVFLAG_FORKCHECK)
1322 if (!(flags & EVFLAG_NOENV) 2632 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure () 2633 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS")) 2634 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS")); 2635 flags = atoi (getenv ("LIBEV_FLAGS"));
1326 2636
1327 if (!(flags & 0x0000ffffU)) 2637 ev_rt_now = ev_time ();
2638 mn_now = get_clock ();
2639 now_floor = mn_now;
2640 rtmn_diff = ev_rt_now - mn_now;
2641#if EV_FEATURE_API
2642 invoke_cb = ev_invoke_pending;
2643#endif
2644
2645 io_blocktime = 0.;
2646 timeout_blocktime = 0.;
2647 backend = 0;
2648 backend_fd = -1;
2649 sig_pending = 0;
2650#if EV_ASYNC_ENABLE
2651 async_pending = 0;
2652#endif
2653 pipe_write_skipped = 0;
2654 pipe_write_wanted = 0;
2655 evpipe [0] = -1;
2656 evpipe [1] = -1;
2657#if EV_USE_INOTIFY
2658 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2659#endif
2660#if EV_USE_SIGNALFD
2661 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2662#endif
2663
2664 if (!(flags & EVBACKEND_MASK))
1328 flags |= ev_recommended_backends (); 2665 flags |= ev_recommended_backends ();
1329 2666
2667#if EV_USE_IOCP
2668 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2669#endif
1330#if EV_USE_PORT 2670#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif 2672#endif
1333#if EV_USE_KQUEUE 2673#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2674 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1341#endif 2681#endif
1342#if EV_USE_SELECT 2682#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1344#endif 2684#endif
1345 2685
2686 ev_prepare_init (&pending_w, pendingcb);
2687
2688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1346 ev_init (&pipeev, pipecb); 2689 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 2690 ev_set_priority (&pipe_w, EV_MAXPRI);
2691#endif
1348 } 2692 }
1349} 2693}
1350 2694
1351static void noinline 2695/* free up a loop structure */
2696void ecb_cold
1352loop_destroy (EV_P) 2697ev_loop_destroy (EV_P)
1353{ 2698{
1354 int i; 2699 int i;
1355 2700
2701#if EV_MULTIPLICITY
2702 /* mimic free (0) */
2703 if (!EV_A)
2704 return;
2705#endif
2706
2707#if EV_CLEANUP_ENABLE
2708 /* queue cleanup watchers (and execute them) */
2709 if (expect_false (cleanupcnt))
2710 {
2711 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2712 EV_INVOKE_PENDING;
2713 }
2714#endif
2715
2716#if EV_CHILD_ENABLE
2717 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2718 {
2719 ev_ref (EV_A); /* child watcher */
2720 ev_signal_stop (EV_A_ &childev);
2721 }
2722#endif
2723
1356 if (ev_is_active (&pipeev)) 2724 if (ev_is_active (&pipe_w))
1357 { 2725 {
1358 ev_ref (EV_A); /* signal watcher */ 2726 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 2727 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 2728
2729 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2730 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2731 }
2732
1361#if EV_USE_EVENTFD 2733#if EV_USE_SIGNALFD
1362 if (evfd >= 0) 2734 if (ev_is_active (&sigfd_w))
1363 close (evfd); 2735 close (sigfd);
1364#endif 2736#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1372 2737
1373#if EV_USE_INOTIFY 2738#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 2739 if (fs_fd >= 0)
1375 close (fs_fd); 2740 close (fs_fd);
1376#endif 2741#endif
1377 2742
1378 if (backend_fd >= 0) 2743 if (backend_fd >= 0)
1379 close (backend_fd); 2744 close (backend_fd);
1380 2745
2746#if EV_USE_IOCP
2747 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2748#endif
1381#if EV_USE_PORT 2749#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2750 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif 2751#endif
1384#if EV_USE_KQUEUE 2752#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2753 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1400#if EV_IDLE_ENABLE 2768#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 2769 array_free (idle, [i]);
1402#endif 2770#endif
1403 } 2771 }
1404 2772
1405 ev_free (anfds); anfdmax = 0; 2773 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 2774
1407 /* have to use the microsoft-never-gets-it-right macro */ 2775 /* have to use the microsoft-never-gets-it-right macro */
2776 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 2777 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 2778 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 2780 array_free (periodic, EMPTY);
1412#endif 2781#endif
1413#if EV_FORK_ENABLE 2782#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY); 2783 array_free (fork, EMPTY);
1415#endif 2784#endif
2785#if EV_CLEANUP_ENABLE
2786 array_free (cleanup, EMPTY);
2787#endif
1416 array_free (prepare, EMPTY); 2788 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY); 2789 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE 2790#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY); 2791 array_free (async, EMPTY);
1420#endif 2792#endif
1421 2793
1422 backend = 0; 2794 backend = 0;
2795
2796#if EV_MULTIPLICITY
2797 if (ev_is_default_loop (EV_A))
2798#endif
2799 ev_default_loop_ptr = 0;
2800#if EV_MULTIPLICITY
2801 else
2802 ev_free (EV_A);
2803#endif
1423} 2804}
1424 2805
1425#if EV_USE_INOTIFY 2806#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 2807inline_size void infy_fork (EV_P);
1427#endif 2808#endif
1428 2809
1429void inline_size 2810inline_size void
1430loop_fork (EV_P) 2811loop_fork (EV_P)
1431{ 2812{
1432#if EV_USE_PORT 2813#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 2815#endif
1440#endif 2821#endif
1441#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 2823 infy_fork (EV_A);
1443#endif 2824#endif
1444 2825
2826#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1445 if (ev_is_active (&pipeev)) 2827 if (ev_is_active (&pipe_w))
1446 { 2828 {
1447 /* this "locks" the handlers against writing to the pipe */ 2829 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1453 2830
1454 ev_ref (EV_A); 2831 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 2832 ev_io_stop (EV_A_ &pipe_w);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461 2833
1462 if (evpipe [0] >= 0) 2834 if (evpipe [0] >= 0)
1463 { 2835 EV_WIN32_CLOSE_FD (evpipe [0]);
1464 close (evpipe [0]);
1465 close (evpipe [1]);
1466 }
1467 2836
1468 evpipe_init (EV_A); 2837 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 2838 /* iterate over everything, in case we missed something before */
1470 pipecb (EV_A_ &pipeev, EV_READ); 2839 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1471 } 2840 }
2841#endif
1472 2842
1473 postfork = 0; 2843 postfork = 0;
1474} 2844}
1475 2845
1476#if EV_MULTIPLICITY 2846#if EV_MULTIPLICITY
1477 2847
1478struct ev_loop * 2848struct ev_loop * ecb_cold
1479ev_loop_new (unsigned int flags) 2849ev_loop_new (unsigned int flags) EV_THROW
1480{ 2850{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2851 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 2852
1483 memset (loop, 0, sizeof (struct ev_loop)); 2853 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 2854 loop_init (EV_A_ flags);
1486 2855
1487 if (ev_backend (EV_A)) 2856 if (ev_backend (EV_A))
1488 return loop; 2857 return EV_A;
1489 2858
2859 ev_free (EV_A);
1490 return 0; 2860 return 0;
1491} 2861}
1492 2862
1493void 2863#endif /* multiplicity */
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505 2864
1506#if EV_VERIFY 2865#if EV_VERIFY
1507static void noinline 2866static void noinline ecb_cold
1508verify_watcher (EV_P_ W w) 2867verify_watcher (EV_P_ W w)
1509{ 2868{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2869 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 2870
1512 if (w->pending) 2871 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2872 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 2873}
1515 2874
1516static void noinline 2875static void noinline ecb_cold
1517verify_heap (EV_P_ ANHE *heap, int N) 2876verify_heap (EV_P_ ANHE *heap, int N)
1518{ 2877{
1519 int i; 2878 int i;
1520 2879
1521 for (i = HEAP0; i < N + HEAP0; ++i) 2880 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 2881 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2882 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2883 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2884 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 2885
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2886 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 2887 }
1529} 2888}
1530 2889
1531static void noinline 2890static void noinline ecb_cold
1532array_verify (EV_P_ W *ws, int cnt) 2891array_verify (EV_P_ W *ws, int cnt)
1533{ 2892{
1534 while (cnt--) 2893 while (cnt--)
1535 { 2894 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2895 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 2896 verify_watcher (EV_A_ ws [cnt]);
1538 } 2897 }
1539} 2898}
1540#endif 2899#endif
1541 2900
1542void 2901#if EV_FEATURE_API
1543ev_loop_verify (EV_P) 2902void ecb_cold
2903ev_verify (EV_P) EV_THROW
1544{ 2904{
1545#if EV_VERIFY 2905#if EV_VERIFY
1546 int i; 2906 int i;
1547 WL w; 2907 WL w, w2;
1548 2908
1549 assert (activecnt >= -1); 2909 assert (activecnt >= -1);
1550 2910
1551 assert (fdchangemax >= fdchangecnt); 2911 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 2912 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2913 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 2914
1555 assert (anfdmax >= 0); 2915 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 2916 for (i = 0; i < anfdmax; ++i)
2917 {
2918 int j = 0;
2919
1557 for (w = anfds [i].head; w; w = w->next) 2920 for (w = w2 = anfds [i].head; w; w = w->next)
1558 { 2921 {
1559 verify_watcher (EV_A_ (W)w); 2922 verify_watcher (EV_A_ (W)w);
2923
2924 if (j++ & 1)
2925 {
2926 assert (("libev: io watcher list contains a loop", w != w2));
2927 w2 = w2->next;
2928 }
2929
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2930 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2931 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 2932 }
2933 }
1563 2934
1564 assert (timermax >= timercnt); 2935 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 2936 verify_heap (EV_A_ timers, timercnt);
1566 2937
1567#if EV_PERIODIC_ENABLE 2938#if EV_PERIODIC_ENABLE
1582#if EV_FORK_ENABLE 2953#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt); 2954 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt); 2955 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif 2956#endif
1586 2957
2958#if EV_CLEANUP_ENABLE
2959 assert (cleanupmax >= cleanupcnt);
2960 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2961#endif
2962
1587#if EV_ASYNC_ENABLE 2963#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt); 2964 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt); 2965 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif 2966#endif
1591 2967
2968#if EV_PREPARE_ENABLE
1592 assert (preparemax >= preparecnt); 2969 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt); 2970 array_verify (EV_A_ (W *)prepares, preparecnt);
2971#endif
1594 2972
2973#if EV_CHECK_ENABLE
1595 assert (checkmax >= checkcnt); 2974 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 2975 array_verify (EV_A_ (W *)checks, checkcnt);
2976#endif
1597 2977
1598# if 0 2978# if 0
2979#if EV_CHILD_ENABLE
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2980 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2981 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2982#endif
1601# endif 2983# endif
1602#endif 2984#endif
1603} 2985}
1604 2986#endif
1605#endif /* multiplicity */
1606 2987
1607#if EV_MULTIPLICITY 2988#if EV_MULTIPLICITY
1608struct ev_loop * 2989struct ev_loop * ecb_cold
1609ev_default_loop_init (unsigned int flags)
1610#else 2990#else
1611int 2991int
2992#endif
1612ev_default_loop (unsigned int flags) 2993ev_default_loop (unsigned int flags) EV_THROW
1613#endif
1614{ 2994{
1615 if (!ev_default_loop_ptr) 2995 if (!ev_default_loop_ptr)
1616 { 2996 {
1617#if EV_MULTIPLICITY 2997#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2998 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 2999#else
1620 ev_default_loop_ptr = 1; 3000 ev_default_loop_ptr = 1;
1621#endif 3001#endif
1622 3002
1623 loop_init (EV_A_ flags); 3003 loop_init (EV_A_ flags);
1624 3004
1625 if (ev_backend (EV_A)) 3005 if (ev_backend (EV_A))
1626 { 3006 {
1627#ifndef _WIN32 3007#if EV_CHILD_ENABLE
1628 ev_signal_init (&childev, childcb, SIGCHLD); 3008 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI); 3009 ev_set_priority (&childev, EV_MAXPRI);
1630 ev_signal_start (EV_A_ &childev); 3010 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3011 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif 3012#endif
1637 3017
1638 return ev_default_loop_ptr; 3018 return ev_default_loop_ptr;
1639} 3019}
1640 3020
1641void 3021void
1642ev_default_destroy (void) 3022ev_loop_fork (EV_P) EV_THROW
1643{ 3023{
1644#if EV_MULTIPLICITY 3024 postfork = 1;
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */
1666} 3025}
1667 3026
1668/*****************************************************************************/ 3027/*****************************************************************************/
1669 3028
1670void 3029void
1671ev_invoke (EV_P_ void *w, int revents) 3030ev_invoke (EV_P_ void *w, int revents)
1672{ 3031{
1673 EV_CB_INVOKE ((W)w, revents); 3032 EV_CB_INVOKE ((W)w, revents);
1674} 3033}
1675 3034
1676void inline_speed 3035unsigned int
1677call_pending (EV_P) 3036ev_pending_count (EV_P) EV_THROW
1678{ 3037{
1679 int pri; 3038 int pri;
3039 unsigned int count = 0;
1680 3040
1681 for (pri = NUMPRI; pri--; ) 3041 for (pri = NUMPRI; pri--; )
3042 count += pendingcnt [pri];
3043
3044 return count;
3045}
3046
3047void noinline
3048ev_invoke_pending (EV_P)
3049{
3050 pendingpri = NUMPRI;
3051
3052 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3053 {
3054 --pendingpri;
3055
1682 while (pendingcnt [pri]) 3056 while (pendingcnt [pendingpri])
1683 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685
1686 if (expect_true (p->w))
1687 { 3057 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3058 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1689 3059
1690 p->w->pending = 0; 3060 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 3061 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 3062 EV_FREQUENT_CHECK;
1693 } 3063 }
1694 } 3064 }
1695} 3065}
1696 3066
1697#if EV_IDLE_ENABLE 3067#if EV_IDLE_ENABLE
1698void inline_size 3068/* make idle watchers pending. this handles the "call-idle */
3069/* only when higher priorities are idle" logic */
3070inline_size void
1699idle_reify (EV_P) 3071idle_reify (EV_P)
1700{ 3072{
1701 if (expect_false (idleall)) 3073 if (expect_false (idleall))
1702 { 3074 {
1703 int pri; 3075 int pri;
1715 } 3087 }
1716 } 3088 }
1717} 3089}
1718#endif 3090#endif
1719 3091
1720void inline_size 3092/* make timers pending */
3093inline_size void
1721timers_reify (EV_P) 3094timers_reify (EV_P)
1722{ 3095{
1723 EV_FREQUENT_CHECK; 3096 EV_FREQUENT_CHECK;
1724 3097
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3098 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 3099 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3100 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 3101 {
3102 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3103
3104 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3105
3106 /* first reschedule or stop timer */
3107 if (w->repeat)
3108 {
1734 ev_at (w) += w->repeat; 3109 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 3110 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 3111 ev_at (w) = mn_now;
1737 3112
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3113 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 3114
1740 ANHE_at_cache (timers [HEAP0]); 3115 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 3116 downheap (timers, timercnt, HEAP0);
3117 }
3118 else
3119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3120
3121 EV_FREQUENT_CHECK;
3122 feed_reverse (EV_A_ (W)w);
1742 } 3123 }
1743 else 3124 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 3125
1746 EV_FREQUENT_CHECK; 3126 feed_reverse_done (EV_A_ EV_TIMER);
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 } 3127 }
1749} 3128}
1750 3129
1751#if EV_PERIODIC_ENABLE 3130#if EV_PERIODIC_ENABLE
1752void inline_size 3131
3132static void noinline
3133periodic_recalc (EV_P_ ev_periodic *w)
3134{
3135 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3136 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3137
3138 /* the above almost always errs on the low side */
3139 while (at <= ev_rt_now)
3140 {
3141 ev_tstamp nat = at + w->interval;
3142
3143 /* when resolution fails us, we use ev_rt_now */
3144 if (expect_false (nat == at))
3145 {
3146 at = ev_rt_now;
3147 break;
3148 }
3149
3150 at = nat;
3151 }
3152
3153 ev_at (w) = at;
3154}
3155
3156/* make periodics pending */
3157inline_size void
1753periodics_reify (EV_P) 3158periodics_reify (EV_P)
1754{ 3159{
1755 EV_FREQUENT_CHECK; 3160 EV_FREQUENT_CHECK;
1756 3161
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3162 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 3163 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3164 do
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 3165 {
3166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3167
3168 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3169
3170 /* first reschedule or stop timer */
3171 if (w->reschedule_cb)
3172 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3173 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 3174
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3175 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 3176
1770 ANHE_at_cache (periodics [HEAP0]); 3177 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 3178 downheap (periodics, periodiccnt, HEAP0);
3179 }
3180 else if (w->interval)
3181 {
3182 periodic_recalc (EV_A_ w);
3183 ANHE_at_cache (periodics [HEAP0]);
3184 downheap (periodics, periodiccnt, HEAP0);
3185 }
3186 else
3187 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3188
3189 EV_FREQUENT_CHECK;
3190 feed_reverse (EV_A_ (W)w);
1772 } 3191 }
1773 else if (w->interval) 3192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 3193
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3194 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 3195 }
1798} 3196}
1799 3197
3198/* simply recalculate all periodics */
3199/* TODO: maybe ensure that at least one event happens when jumping forward? */
1800static void noinline 3200static void noinline ecb_cold
1801periodics_reschedule (EV_P) 3201periodics_reschedule (EV_P)
1802{ 3202{
1803 int i; 3203 int i;
1804 3204
1805 /* adjust periodics after time jump */ 3205 /* adjust periodics after time jump */
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809 3209
1810 if (w->reschedule_cb) 3210 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3211 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval) 3212 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3213 periodic_recalc (EV_A_ w);
1814 3214
1815 ANHE_at_cache (periodics [i]); 3215 ANHE_at_cache (periodics [i]);
1816 } 3216 }
1817 3217
1818 reheap (periodics, periodiccnt); 3218 reheap (periodics, periodiccnt);
1819} 3219}
1820#endif 3220#endif
1821 3221
1822void inline_speed 3222/* adjust all timers by a given offset */
3223static void noinline ecb_cold
3224timers_reschedule (EV_P_ ev_tstamp adjust)
3225{
3226 int i;
3227
3228 for (i = 0; i < timercnt; ++i)
3229 {
3230 ANHE *he = timers + i + HEAP0;
3231 ANHE_w (*he)->at += adjust;
3232 ANHE_at_cache (*he);
3233 }
3234}
3235
3236/* fetch new monotonic and realtime times from the kernel */
3237/* also detect if there was a timejump, and act accordingly */
3238inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 3239time_update (EV_P_ ev_tstamp max_block)
1824{ 3240{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 3241#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 3242 if (expect_true (have_monotonic))
1829 { 3243 {
3244 int i;
1830 ev_tstamp odiff = rtmn_diff; 3245 ev_tstamp odiff = rtmn_diff;
1831 3246
1832 mn_now = get_clock (); 3247 mn_now = get_clock ();
1833 3248
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3249 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1850 * doesn't hurt either as we only do this on time-jumps or 3265 * doesn't hurt either as we only do this on time-jumps or
1851 * in the unlikely event of having been preempted here. 3266 * in the unlikely event of having been preempted here.
1852 */ 3267 */
1853 for (i = 4; --i; ) 3268 for (i = 4; --i; )
1854 { 3269 {
3270 ev_tstamp diff;
1855 rtmn_diff = ev_rt_now - mn_now; 3271 rtmn_diff = ev_rt_now - mn_now;
1856 3272
3273 diff = odiff - rtmn_diff;
3274
1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3275 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1858 return; /* all is well */ 3276 return; /* all is well */
1859 3277
1860 ev_rt_now = ev_time (); 3278 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 3279 mn_now = get_clock ();
1862 now_floor = mn_now; 3280 now_floor = mn_now;
1863 } 3281 }
1864 3282
3283 /* no timer adjustment, as the monotonic clock doesn't jump */
3284 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 3285# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 3286 periodics_reschedule (EV_A);
1867# endif 3287# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 3288 }
1871 else 3289 else
1872#endif 3290#endif
1873 { 3291 {
1874 ev_rt_now = ev_time (); 3292 ev_rt_now = ev_time ();
1875 3293
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3294 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 3295 {
3296 /* adjust timers. this is easy, as the offset is the same for all of them */
3297 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 3298#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 3299 periodics_reschedule (EV_A);
1880#endif 3300#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 3301 }
1889 3302
1890 mn_now = ev_rt_now; 3303 mn_now = ev_rt_now;
1891 } 3304 }
1892} 3305}
1893 3306
1894void 3307int
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 3308ev_run (EV_P_ int flags)
1916{ 3309{
3310#if EV_FEATURE_API
3311 ++loop_depth;
3312#endif
3313
3314 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3315
1917 loop_done = EVUNLOOP_CANCEL; 3316 loop_done = EVBREAK_CANCEL;
1918 3317
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3318 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 3319
1921 do 3320 do
1922 { 3321 {
1923#if EV_VERIFY >= 2 3322#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 3323 ev_verify (EV_A);
1925#endif 3324#endif
1926 3325
1927#ifndef _WIN32 3326#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */ 3327 if (expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid)) 3328 if (expect_false (getpid () != curpid))
1937 /* we might have forked, so queue fork handlers */ 3336 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 3337 if (expect_false (postfork))
1939 if (forkcnt) 3338 if (forkcnt)
1940 { 3339 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3340 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 3341 EV_INVOKE_PENDING;
1943 } 3342 }
1944#endif 3343#endif
1945 3344
3345#if EV_PREPARE_ENABLE
1946 /* queue prepare watchers (and execute them) */ 3346 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 3347 if (expect_false (preparecnt))
1948 { 3348 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3349 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 3350 EV_INVOKE_PENDING;
1951 } 3351 }
3352#endif
1952 3353
1953 if (expect_false (!activecnt)) 3354 if (expect_false (loop_done))
1954 break; 3355 break;
1955 3356
1956 /* we might have forked, so reify kernel state if necessary */ 3357 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 3358 if (expect_false (postfork))
1958 loop_fork (EV_A); 3359 loop_fork (EV_A);
1963 /* calculate blocking time */ 3364 /* calculate blocking time */
1964 { 3365 {
1965 ev_tstamp waittime = 0.; 3366 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 3367 ev_tstamp sleeptime = 0.;
1967 3368
3369 /* remember old timestamp for io_blocktime calculation */
3370 ev_tstamp prev_mn_now = mn_now;
3371
3372 /* update time to cancel out callback processing overhead */
3373 time_update (EV_A_ 1e100);
3374
3375 /* from now on, we want a pipe-wake-up */
3376 pipe_write_wanted = 1;
3377
3378 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3379
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3380 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1969 { 3381 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
1973 waittime = MAX_BLOCKTIME; 3382 waittime = MAX_BLOCKTIME;
1974 3383
1975 if (timercnt) 3384 if (timercnt)
1976 { 3385 {
1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3386 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1978 if (waittime > to) waittime = to; 3387 if (waittime > to) waittime = to;
1979 } 3388 }
1980 3389
1981#if EV_PERIODIC_ENABLE 3390#if EV_PERIODIC_ENABLE
1982 if (periodiccnt) 3391 if (periodiccnt)
1983 { 3392 {
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3393 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1985 if (waittime > to) waittime = to; 3394 if (waittime > to) waittime = to;
1986 } 3395 }
1987#endif 3396#endif
1988 3397
3398 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 3399 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 3400 waittime = timeout_blocktime;
1991 3401
1992 sleeptime = waittime - backend_fudge; 3402 /* at this point, we NEED to wait, so we have to ensure */
3403 /* to pass a minimum nonzero value to the backend */
3404 if (expect_false (waittime < backend_mintime))
3405 waittime = backend_mintime;
1993 3406
3407 /* extra check because io_blocktime is commonly 0 */
1994 if (expect_true (sleeptime > io_blocktime)) 3408 if (expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 3409 {
3410 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3411
3412 if (sleeptime > waittime - backend_mintime)
3413 sleeptime = waittime - backend_mintime;
3414
3415 if (expect_true (sleeptime > 0.))
3416 {
1999 ev_sleep (sleeptime); 3417 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 3418 waittime -= sleeptime;
3419 }
2001 } 3420 }
2002 } 3421 }
2003 3422
3423#if EV_FEATURE_API
2004 ++loop_count; 3424 ++loop_count;
3425#endif
3426 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 3427 backend_poll (EV_A_ waittime);
3428 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3429
3430 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3431
3432 ECB_MEMORY_FENCE_ACQUIRE;
3433 if (pipe_write_skipped)
3434 {
3435 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3436 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3437 }
3438
2006 3439
2007 /* update ev_rt_now, do magic */ 3440 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 3441 time_update (EV_A_ waittime + sleeptime);
2009 } 3442 }
2010 3443
2017#if EV_IDLE_ENABLE 3450#if EV_IDLE_ENABLE
2018 /* queue idle watchers unless other events are pending */ 3451 /* queue idle watchers unless other events are pending */
2019 idle_reify (EV_A); 3452 idle_reify (EV_A);
2020#endif 3453#endif
2021 3454
3455#if EV_CHECK_ENABLE
2022 /* queue check watchers, to be executed first */ 3456 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 3457 if (expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3458 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3459#endif
2025 3460
2026 call_pending (EV_A); 3461 EV_INVOKE_PENDING;
2027 } 3462 }
2028 while (expect_true ( 3463 while (expect_true (
2029 activecnt 3464 activecnt
2030 && !loop_done 3465 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3466 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2032 )); 3467 ));
2033 3468
2034 if (loop_done == EVUNLOOP_ONE) 3469 if (loop_done == EVBREAK_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 3470 loop_done = EVBREAK_CANCEL;
3471
3472#if EV_FEATURE_API
3473 --loop_depth;
3474#endif
3475
3476 return activecnt;
2036} 3477}
2037 3478
2038void 3479void
2039ev_unloop (EV_P_ int how) 3480ev_break (EV_P_ int how) EV_THROW
2040{ 3481{
2041 loop_done = how; 3482 loop_done = how;
2042} 3483}
2043 3484
3485void
3486ev_ref (EV_P) EV_THROW
3487{
3488 ++activecnt;
3489}
3490
3491void
3492ev_unref (EV_P) EV_THROW
3493{
3494 --activecnt;
3495}
3496
3497void
3498ev_now_update (EV_P) EV_THROW
3499{
3500 time_update (EV_A_ 1e100);
3501}
3502
3503void
3504ev_suspend (EV_P) EV_THROW
3505{
3506 ev_now_update (EV_A);
3507}
3508
3509void
3510ev_resume (EV_P) EV_THROW
3511{
3512 ev_tstamp mn_prev = mn_now;
3513
3514 ev_now_update (EV_A);
3515 timers_reschedule (EV_A_ mn_now - mn_prev);
3516#if EV_PERIODIC_ENABLE
3517 /* TODO: really do this? */
3518 periodics_reschedule (EV_A);
3519#endif
3520}
3521
2044/*****************************************************************************/ 3522/*****************************************************************************/
3523/* singly-linked list management, used when the expected list length is short */
2045 3524
2046void inline_size 3525inline_size void
2047wlist_add (WL *head, WL elem) 3526wlist_add (WL *head, WL elem)
2048{ 3527{
2049 elem->next = *head; 3528 elem->next = *head;
2050 *head = elem; 3529 *head = elem;
2051} 3530}
2052 3531
2053void inline_size 3532inline_size void
2054wlist_del (WL *head, WL elem) 3533wlist_del (WL *head, WL elem)
2055{ 3534{
2056 while (*head) 3535 while (*head)
2057 { 3536 {
2058 if (*head == elem) 3537 if (expect_true (*head == elem))
2059 { 3538 {
2060 *head = elem->next; 3539 *head = elem->next;
2061 return; 3540 break;
2062 } 3541 }
2063 3542
2064 head = &(*head)->next; 3543 head = &(*head)->next;
2065 } 3544 }
2066} 3545}
2067 3546
2068void inline_speed 3547/* internal, faster, version of ev_clear_pending */
3548inline_speed void
2069clear_pending (EV_P_ W w) 3549clear_pending (EV_P_ W w)
2070{ 3550{
2071 if (w->pending) 3551 if (w->pending)
2072 { 3552 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3553 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 3554 w->pending = 0;
2075 } 3555 }
2076} 3556}
2077 3557
2078int 3558int
2079ev_clear_pending (EV_P_ void *w) 3559ev_clear_pending (EV_P_ void *w) EV_THROW
2080{ 3560{
2081 W w_ = (W)w; 3561 W w_ = (W)w;
2082 int pending = w_->pending; 3562 int pending = w_->pending;
2083 3563
2084 if (expect_true (pending)) 3564 if (expect_true (pending))
2085 { 3565 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3567 p->w = (W)&pending_w;
2087 w_->pending = 0; 3568 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 3569 return p->events;
2090 } 3570 }
2091 else 3571 else
2092 return 0; 3572 return 0;
2093} 3573}
2094 3574
2095void inline_size 3575inline_size void
2096pri_adjust (EV_P_ W w) 3576pri_adjust (EV_P_ W w)
2097{ 3577{
2098 int pri = w->priority; 3578 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 3581 ev_set_priority (w, pri);
2102} 3582}
2103 3583
2104void inline_speed 3584inline_speed void
2105ev_start (EV_P_ W w, int active) 3585ev_start (EV_P_ W w, int active)
2106{ 3586{
2107 pri_adjust (EV_A_ w); 3587 pri_adjust (EV_A_ w);
2108 w->active = active; 3588 w->active = active;
2109 ev_ref (EV_A); 3589 ev_ref (EV_A);
2110} 3590}
2111 3591
2112void inline_size 3592inline_size void
2113ev_stop (EV_P_ W w) 3593ev_stop (EV_P_ W w)
2114{ 3594{
2115 ev_unref (EV_A); 3595 ev_unref (EV_A);
2116 w->active = 0; 3596 w->active = 0;
2117} 3597}
2118 3598
2119/*****************************************************************************/ 3599/*****************************************************************************/
2120 3600
2121void noinline 3601void noinline
2122ev_io_start (EV_P_ ev_io *w) 3602ev_io_start (EV_P_ ev_io *w) EV_THROW
2123{ 3603{
2124 int fd = w->fd; 3604 int fd = w->fd;
2125 3605
2126 if (expect_false (ev_is_active (w))) 3606 if (expect_false (ev_is_active (w)))
2127 return; 3607 return;
2128 3608
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 3609 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3610 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 3611
2132 EV_FREQUENT_CHECK; 3612 EV_FREQUENT_CHECK;
2133 3613
2134 ev_start (EV_A_ (W)w, 1); 3614 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3615 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2136 wlist_add (&anfds[fd].head, (WL)w); 3616 wlist_add (&anfds[fd].head, (WL)w);
2137 3617
3618 /* common bug, apparently */
3619 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3620
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3621 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 3622 w->events &= ~EV__IOFDSET;
2140 3623
2141 EV_FREQUENT_CHECK; 3624 EV_FREQUENT_CHECK;
2142} 3625}
2143 3626
2144void noinline 3627void noinline
2145ev_io_stop (EV_P_ ev_io *w) 3628ev_io_stop (EV_P_ ev_io *w) EV_THROW
2146{ 3629{
2147 clear_pending (EV_A_ (W)w); 3630 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 3631 if (expect_false (!ev_is_active (w)))
2149 return; 3632 return;
2150 3633
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3634 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 3635
2153 EV_FREQUENT_CHECK; 3636 EV_FREQUENT_CHECK;
2154 3637
2155 wlist_del (&anfds[w->fd].head, (WL)w); 3638 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
2157 3640
2158 fd_change (EV_A_ w->fd, 1); 3641 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2159 3642
2160 EV_FREQUENT_CHECK; 3643 EV_FREQUENT_CHECK;
2161} 3644}
2162 3645
2163void noinline 3646void noinline
2164ev_timer_start (EV_P_ ev_timer *w) 3647ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2165{ 3648{
2166 if (expect_false (ev_is_active (w))) 3649 if (expect_false (ev_is_active (w)))
2167 return; 3650 return;
2168 3651
2169 ev_at (w) += mn_now; 3652 ev_at (w) += mn_now;
2170 3653
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3654 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 3655
2173 EV_FREQUENT_CHECK; 3656 EV_FREQUENT_CHECK;
2174 3657
2175 ++timercnt; 3658 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3659 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2179 ANHE_at_cache (timers [ev_active (w)]); 3662 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 3663 upheap (timers, ev_active (w));
2181 3664
2182 EV_FREQUENT_CHECK; 3665 EV_FREQUENT_CHECK;
2183 3666
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3667 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 3668}
2186 3669
2187void noinline 3670void noinline
2188ev_timer_stop (EV_P_ ev_timer *w) 3671ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2189{ 3672{
2190 clear_pending (EV_A_ (W)w); 3673 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3674 if (expect_false (!ev_is_active (w)))
2192 return; 3675 return;
2193 3676
2194 EV_FREQUENT_CHECK; 3677 EV_FREQUENT_CHECK;
2195 3678
2196 { 3679 {
2197 int active = ev_active (w); 3680 int active = ev_active (w);
2198 3681
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3682 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 3683
2201 --timercnt; 3684 --timercnt;
2202 3685
2203 if (expect_true (active < timercnt + HEAP0)) 3686 if (expect_true (active < timercnt + HEAP0))
2204 { 3687 {
2205 timers [active] = timers [timercnt + HEAP0]; 3688 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 3689 adjustheap (timers, timercnt, active);
2207 } 3690 }
2208 } 3691 }
2209 3692
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 3693 ev_at (w) -= mn_now;
2213 3694
2214 ev_stop (EV_A_ (W)w); 3695 ev_stop (EV_A_ (W)w);
3696
3697 EV_FREQUENT_CHECK;
2215} 3698}
2216 3699
2217void noinline 3700void noinline
2218ev_timer_again (EV_P_ ev_timer *w) 3701ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2219{ 3702{
2220 EV_FREQUENT_CHECK; 3703 EV_FREQUENT_CHECK;
3704
3705 clear_pending (EV_A_ (W)w);
2221 3706
2222 if (ev_is_active (w)) 3707 if (ev_is_active (w))
2223 { 3708 {
2224 if (w->repeat) 3709 if (w->repeat)
2225 { 3710 {
2237 } 3722 }
2238 3723
2239 EV_FREQUENT_CHECK; 3724 EV_FREQUENT_CHECK;
2240} 3725}
2241 3726
3727ev_tstamp
3728ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3729{
3730 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3731}
3732
2242#if EV_PERIODIC_ENABLE 3733#if EV_PERIODIC_ENABLE
2243void noinline 3734void noinline
2244ev_periodic_start (EV_P_ ev_periodic *w) 3735ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2245{ 3736{
2246 if (expect_false (ev_is_active (w))) 3737 if (expect_false (ev_is_active (w)))
2247 return; 3738 return;
2248 3739
2249 if (w->reschedule_cb) 3740 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 3742 else if (w->interval)
2252 { 3743 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3744 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 3745 periodic_recalc (EV_A_ w);
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 3746 }
2257 else 3747 else
2258 ev_at (w) = w->offset; 3748 ev_at (w) = w->offset;
2259 3749
2260 EV_FREQUENT_CHECK; 3750 EV_FREQUENT_CHECK;
2266 ANHE_at_cache (periodics [ev_active (w)]); 3756 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 3757 upheap (periodics, ev_active (w));
2268 3758
2269 EV_FREQUENT_CHECK; 3759 EV_FREQUENT_CHECK;
2270 3760
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3761 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 3762}
2273 3763
2274void noinline 3764void noinline
2275ev_periodic_stop (EV_P_ ev_periodic *w) 3765ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2276{ 3766{
2277 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
2278 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
2279 return; 3769 return;
2280 3770
2281 EV_FREQUENT_CHECK; 3771 EV_FREQUENT_CHECK;
2282 3772
2283 { 3773 {
2284 int active = ev_active (w); 3774 int active = ev_active (w);
2285 3775
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3776 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 3777
2288 --periodiccnt; 3778 --periodiccnt;
2289 3779
2290 if (expect_true (active < periodiccnt + HEAP0)) 3780 if (expect_true (active < periodiccnt + HEAP0))
2291 { 3781 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 3782 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 3783 adjustheap (periodics, periodiccnt, active);
2294 } 3784 }
2295 } 3785 }
2296 3786
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 3787 ev_stop (EV_A_ (W)w);
3788
3789 EV_FREQUENT_CHECK;
2300} 3790}
2301 3791
2302void noinline 3792void noinline
2303ev_periodic_again (EV_P_ ev_periodic *w) 3793ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2304{ 3794{
2305 /* TODO: use adjustheap and recalculation */ 3795 /* TODO: use adjustheap and recalculation */
2306 ev_periodic_stop (EV_A_ w); 3796 ev_periodic_stop (EV_A_ w);
2307 ev_periodic_start (EV_A_ w); 3797 ev_periodic_start (EV_A_ w);
2308} 3798}
2310 3800
2311#ifndef SA_RESTART 3801#ifndef SA_RESTART
2312# define SA_RESTART 0 3802# define SA_RESTART 0
2313#endif 3803#endif
2314 3804
3805#if EV_SIGNAL_ENABLE
3806
2315void noinline 3807void noinline
2316ev_signal_start (EV_P_ ev_signal *w) 3808ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2317{ 3809{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
2321 if (expect_false (ev_is_active (w))) 3810 if (expect_false (ev_is_active (w)))
2322 return; 3811 return;
2323 3812
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3813 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2325 3814
2326 evpipe_init (EV_A); 3815#if EV_MULTIPLICITY
3816 assert (("libev: a signal must not be attached to two different loops",
3817 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2327 3818
2328 EV_FREQUENT_CHECK; 3819 signals [w->signum - 1].loop = EV_A;
3820 ECB_MEMORY_FENCE_RELEASE;
3821#endif
2329 3822
3823 EV_FREQUENT_CHECK;
3824
3825#if EV_USE_SIGNALFD
3826 if (sigfd == -2)
2330 { 3827 {
2331#ifndef _WIN32 3828 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 3829 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 3830 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 3831
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3832 if (sigfd >= 0)
3833 {
3834 fd_intern (sigfd); /* doing it twice will not hurt */
2338 3835
2339#ifndef _WIN32 3836 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 3837
2341#endif 3838 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3839 ev_set_priority (&sigfd_w, EV_MAXPRI);
3840 ev_io_start (EV_A_ &sigfd_w);
3841 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3842 }
2342 } 3843 }
3844
3845 if (sigfd >= 0)
3846 {
3847 /* TODO: check .head */
3848 sigaddset (&sigfd_set, w->signum);
3849 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3850
3851 signalfd (sigfd, &sigfd_set, 0);
3852 }
3853#endif
2343 3854
2344 ev_start (EV_A_ (W)w, 1); 3855 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 3856 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 3857
2347 if (!((WL)w)->next) 3858 if (!((WL)w)->next)
3859# if EV_USE_SIGNALFD
3860 if (sigfd < 0) /*TODO*/
3861# endif
2348 { 3862 {
2349#if _WIN32 3863# ifdef _WIN32
3864 evpipe_init (EV_A);
3865
2350 signal (w->signum, ev_sighandler); 3866 signal (w->signum, ev_sighandler);
2351#else 3867# else
2352 struct sigaction sa; 3868 struct sigaction sa;
3869
3870 evpipe_init (EV_A);
3871
2353 sa.sa_handler = ev_sighandler; 3872 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 3873 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 3875 sigaction (w->signum, &sa, 0);
3876
3877 if (origflags & EVFLAG_NOSIGMASK)
3878 {
3879 sigemptyset (&sa.sa_mask);
3880 sigaddset (&sa.sa_mask, w->signum);
3881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3882 }
2357#endif 3883#endif
2358 } 3884 }
2359 3885
2360 EV_FREQUENT_CHECK; 3886 EV_FREQUENT_CHECK;
2361} 3887}
2362 3888
2363void noinline 3889void noinline
2364ev_signal_stop (EV_P_ ev_signal *w) 3890ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2365{ 3891{
2366 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
2367 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
2368 return; 3894 return;
2369 3895
2371 3897
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 3898 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 3899 ev_stop (EV_A_ (W)w);
2374 3900
2375 if (!signals [w->signum - 1].head) 3901 if (!signals [w->signum - 1].head)
3902 {
3903#if EV_MULTIPLICITY
3904 signals [w->signum - 1].loop = 0; /* unattach from signal */
3905#endif
3906#if EV_USE_SIGNALFD
3907 if (sigfd >= 0)
3908 {
3909 sigset_t ss;
3910
3911 sigemptyset (&ss);
3912 sigaddset (&ss, w->signum);
3913 sigdelset (&sigfd_set, w->signum);
3914
3915 signalfd (sigfd, &sigfd_set, 0);
3916 sigprocmask (SIG_UNBLOCK, &ss, 0);
3917 }
3918 else
3919#endif
2376 signal (w->signum, SIG_DFL); 3920 signal (w->signum, SIG_DFL);
3921 }
2377 3922
2378 EV_FREQUENT_CHECK; 3923 EV_FREQUENT_CHECK;
2379} 3924}
3925
3926#endif
3927
3928#if EV_CHILD_ENABLE
2380 3929
2381void 3930void
2382ev_child_start (EV_P_ ev_child *w) 3931ev_child_start (EV_P_ ev_child *w) EV_THROW
2383{ 3932{
2384#if EV_MULTIPLICITY 3933#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 3935#endif
2387 if (expect_false (ev_is_active (w))) 3936 if (expect_false (ev_is_active (w)))
2388 return; 3937 return;
2389 3938
2390 EV_FREQUENT_CHECK; 3939 EV_FREQUENT_CHECK;
2391 3940
2392 ev_start (EV_A_ (W)w, 1); 3941 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2394 3943
2395 EV_FREQUENT_CHECK; 3944 EV_FREQUENT_CHECK;
2396} 3945}
2397 3946
2398void 3947void
2399ev_child_stop (EV_P_ ev_child *w) 3948ev_child_stop (EV_P_ ev_child *w) EV_THROW
2400{ 3949{
2401 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
2403 return; 3952 return;
2404 3953
2405 EV_FREQUENT_CHECK; 3954 EV_FREQUENT_CHECK;
2406 3955
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2408 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2409 3958
2410 EV_FREQUENT_CHECK; 3959 EV_FREQUENT_CHECK;
2411} 3960}
3961
3962#endif
2412 3963
2413#if EV_STAT_ENABLE 3964#if EV_STAT_ENABLE
2414 3965
2415# ifdef _WIN32 3966# ifdef _WIN32
2416# undef lstat 3967# undef lstat
2422#define MIN_STAT_INTERVAL 0.1074891 3973#define MIN_STAT_INTERVAL 0.1074891
2423 3974
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 3976
2426#if EV_USE_INOTIFY 3977#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 3978
3979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2428 3981
2429static void noinline 3982static void noinline
2430infy_add (EV_P_ ev_stat *w) 3983infy_add (EV_P_ ev_stat *w)
2431{ 3984{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3985 w->wd = inotify_add_watch (fs_fd, w->path,
3986 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3987 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3988 | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 3989
2434 if (w->wd < 0) 3990 if (w->wd >= 0)
3991 {
3992 struct statfs sfs;
3993
3994 /* now local changes will be tracked by inotify, but remote changes won't */
3995 /* unless the filesystem is known to be local, we therefore still poll */
3996 /* also do poll on <2.6.25, but with normal frequency */
3997
3998 if (!fs_2625)
3999 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4000 else if (!statfs (w->path, &sfs)
4001 && (sfs.f_type == 0x1373 /* devfs */
4002 || sfs.f_type == 0x4006 /* fat */
4003 || sfs.f_type == 0x4d44 /* msdos */
4004 || sfs.f_type == 0xEF53 /* ext2/3 */
4005 || sfs.f_type == 0x72b6 /* jffs2 */
4006 || sfs.f_type == 0x858458f6 /* ramfs */
4007 || sfs.f_type == 0x5346544e /* ntfs */
4008 || sfs.f_type == 0x3153464a /* jfs */
4009 || sfs.f_type == 0x9123683e /* btrfs */
4010 || sfs.f_type == 0x52654973 /* reiser3 */
4011 || sfs.f_type == 0x01021994 /* tmpfs */
4012 || sfs.f_type == 0x58465342 /* xfs */))
4013 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4014 else
4015 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2435 { 4016 }
4017 else
4018 {
4019 /* can't use inotify, continue to stat */
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4020 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2438 4021
2439 /* monitor some parent directory for speedup hints */ 4022 /* if path is not there, monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4023 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */ 4024 /* but an efficiency issue only */
2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4025 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2443 { 4026 {
2444 char path [4096]; 4027 char path [4096];
2449 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4032 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2450 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4033 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2451 4034
2452 char *pend = strrchr (path, '/'); 4035 char *pend = strrchr (path, '/');
2453 4036
2454 if (!pend) 4037 if (!pend || pend == path)
2455 break; /* whoops, no '/', complain to your admin */ 4038 break;
2456 4039
2457 *pend = 0; 4040 *pend = 0;
2458 w->wd = inotify_add_watch (fs_fd, path, mask); 4041 w->wd = inotify_add_watch (fs_fd, path, mask);
2459 } 4042 }
2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4043 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2461 } 4044 }
2462 } 4045 }
2463 else 4046
2464 { 4047 if (w->wd >= 0)
2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4048 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2466 4049
2467 /* now local changes will be tracked by inotify, but remote changes won't */ 4050 /* now re-arm timer, if required */
2468 /* unless the filesystem it known to be local, we therefore still poll */ 4051 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer); 4052 ev_timer_again (EV_A_ &w->timer);
2483 } 4053 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2484} 4054}
2485 4055
2486static void noinline 4056static void noinline
2487infy_del (EV_P_ ev_stat *w) 4057infy_del (EV_P_ ev_stat *w)
2488{ 4058{
2491 4061
2492 if (wd < 0) 4062 if (wd < 0)
2493 return; 4063 return;
2494 4064
2495 w->wd = -2; 4065 w->wd = -2;
2496 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4066 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2497 wlist_del (&fs_hash [slot].head, (WL)w); 4067 wlist_del (&fs_hash [slot].head, (WL)w);
2498 4068
2499 /* remove this watcher, if others are watching it, they will rearm */ 4069 /* remove this watcher, if others are watching it, they will rearm */
2500 inotify_rm_watch (fs_fd, wd); 4070 inotify_rm_watch (fs_fd, wd);
2501} 4071}
2503static void noinline 4073static void noinline
2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4074infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2505{ 4075{
2506 if (slot < 0) 4076 if (slot < 0)
2507 /* overflow, need to check for all hash slots */ 4077 /* overflow, need to check for all hash slots */
2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4078 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2509 infy_wd (EV_A_ slot, wd, ev); 4079 infy_wd (EV_A_ slot, wd, ev);
2510 else 4080 else
2511 { 4081 {
2512 WL w_; 4082 WL w_;
2513 4083
2514 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4084 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2515 { 4085 {
2516 ev_stat *w = (ev_stat *)w_; 4086 ev_stat *w = (ev_stat *)w_;
2517 w_ = w_->next; /* lets us remove this watcher and all before it */ 4087 w_ = w_->next; /* lets us remove this watcher and all before it */
2518 4088
2519 if (w->wd == wd || wd == -1) 4089 if (w->wd == wd || wd == -1)
2520 { 4090 {
2521 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4091 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2522 { 4092 {
4093 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2523 w->wd = -1; 4094 w->wd = -1;
2524 infy_add (EV_A_ w); /* re-add, no matter what */ 4095 infy_add (EV_A_ w); /* re-add, no matter what */
2525 } 4096 }
2526 4097
2527 stat_timer_cb (EV_A_ &w->timer, 0); 4098 stat_timer_cb (EV_A_ &w->timer, 0);
2532 4103
2533static void 4104static void
2534infy_cb (EV_P_ ev_io *w, int revents) 4105infy_cb (EV_P_ ev_io *w, int revents)
2535{ 4106{
2536 char buf [EV_INOTIFY_BUFSIZE]; 4107 char buf [EV_INOTIFY_BUFSIZE];
2537 struct inotify_event *ev = (struct inotify_event *)buf;
2538 int ofs; 4108 int ofs;
2539 int len = read (fs_fd, buf, sizeof (buf)); 4109 int len = read (fs_fd, buf, sizeof (buf));
2540 4110
2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4111 for (ofs = 0; ofs < len; )
4112 {
4113 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2542 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4114 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4115 ofs += sizeof (struct inotify_event) + ev->len;
4116 }
2543} 4117}
2544 4118
2545void inline_size 4119inline_size void ecb_cold
2546check_2625 (EV_P) 4120ev_check_2625 (EV_P)
2547{ 4121{
2548 /* kernels < 2.6.25 are borked 4122 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4123 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */ 4124 */
2551 struct utsname buf; 4125 if (ev_linux_version () < 0x020619)
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return; 4126 return;
2556 4127
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1; 4128 fs_2625 = 1;
2566} 4129}
2567 4130
2568void inline_size 4131inline_size int
4132infy_newfd (void)
4133{
4134#if defined IN_CLOEXEC && defined IN_NONBLOCK
4135 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4136 if (fd >= 0)
4137 return fd;
4138#endif
4139 return inotify_init ();
4140}
4141
4142inline_size void
2569infy_init (EV_P) 4143infy_init (EV_P)
2570{ 4144{
2571 if (fs_fd != -2) 4145 if (fs_fd != -2)
2572 return; 4146 return;
2573 4147
2574 fs_fd = -1; 4148 fs_fd = -1;
2575 4149
2576 check_2625 (EV_A); 4150 ev_check_2625 (EV_A);
2577 4151
2578 fs_fd = inotify_init (); 4152 fs_fd = infy_newfd ();
2579 4153
2580 if (fs_fd >= 0) 4154 if (fs_fd >= 0)
2581 { 4155 {
4156 fd_intern (fs_fd);
2582 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4157 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2583 ev_set_priority (&fs_w, EV_MAXPRI); 4158 ev_set_priority (&fs_w, EV_MAXPRI);
2584 ev_io_start (EV_A_ &fs_w); 4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
2585 } 4161 }
2586} 4162}
2587 4163
2588void inline_size 4164inline_size void
2589infy_fork (EV_P) 4165infy_fork (EV_P)
2590{ 4166{
2591 int slot; 4167 int slot;
2592 4168
2593 if (fs_fd < 0) 4169 if (fs_fd < 0)
2594 return; 4170 return;
2595 4171
4172 ev_ref (EV_A);
4173 ev_io_stop (EV_A_ &fs_w);
2596 close (fs_fd); 4174 close (fs_fd);
2597 fs_fd = inotify_init (); 4175 fs_fd = infy_newfd ();
2598 4176
4177 if (fs_fd >= 0)
4178 {
4179 fd_intern (fs_fd);
4180 ev_io_set (&fs_w, fs_fd, EV_READ);
4181 ev_io_start (EV_A_ &fs_w);
4182 ev_unref (EV_A);
4183 }
4184
2599 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4185 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2600 { 4186 {
2601 WL w_ = fs_hash [slot].head; 4187 WL w_ = fs_hash [slot].head;
2602 fs_hash [slot].head = 0; 4188 fs_hash [slot].head = 0;
2603 4189
2604 while (w_) 4190 while (w_)
2609 w->wd = -1; 4195 w->wd = -1;
2610 4196
2611 if (fs_fd >= 0) 4197 if (fs_fd >= 0)
2612 infy_add (EV_A_ w); /* re-add, no matter what */ 4198 infy_add (EV_A_ w); /* re-add, no matter what */
2613 else 4199 else
4200 {
4201 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4202 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2614 ev_timer_again (EV_A_ &w->timer); 4203 ev_timer_again (EV_A_ &w->timer);
4204 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4205 }
2615 } 4206 }
2616 } 4207 }
2617} 4208}
2618 4209
2619#endif 4210#endif
2623#else 4214#else
2624# define EV_LSTAT(p,b) lstat (p, b) 4215# define EV_LSTAT(p,b) lstat (p, b)
2625#endif 4216#endif
2626 4217
2627void 4218void
2628ev_stat_stat (EV_P_ ev_stat *w) 4219ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2629{ 4220{
2630 if (lstat (w->path, &w->attr) < 0) 4221 if (lstat (w->path, &w->attr) < 0)
2631 w->attr.st_nlink = 0; 4222 w->attr.st_nlink = 0;
2632 else if (!w->attr.st_nlink) 4223 else if (!w->attr.st_nlink)
2633 w->attr.st_nlink = 1; 4224 w->attr.st_nlink = 1;
2636static void noinline 4227static void noinline
2637stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4228stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2638{ 4229{
2639 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4230 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2640 4231
2641 /* we copy this here each the time so that */ 4232 ev_statdata prev = w->attr;
2642 /* prev has the old value when the callback gets invoked */
2643 w->prev = w->attr;
2644 ev_stat_stat (EV_A_ w); 4233 ev_stat_stat (EV_A_ w);
2645 4234
2646 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4235 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2647 if ( 4236 if (
2648 w->prev.st_dev != w->attr.st_dev 4237 prev.st_dev != w->attr.st_dev
2649 || w->prev.st_ino != w->attr.st_ino 4238 || prev.st_ino != w->attr.st_ino
2650 || w->prev.st_mode != w->attr.st_mode 4239 || prev.st_mode != w->attr.st_mode
2651 || w->prev.st_nlink != w->attr.st_nlink 4240 || prev.st_nlink != w->attr.st_nlink
2652 || w->prev.st_uid != w->attr.st_uid 4241 || prev.st_uid != w->attr.st_uid
2653 || w->prev.st_gid != w->attr.st_gid 4242 || prev.st_gid != w->attr.st_gid
2654 || w->prev.st_rdev != w->attr.st_rdev 4243 || prev.st_rdev != w->attr.st_rdev
2655 || w->prev.st_size != w->attr.st_size 4244 || prev.st_size != w->attr.st_size
2656 || w->prev.st_atime != w->attr.st_atime 4245 || prev.st_atime != w->attr.st_atime
2657 || w->prev.st_mtime != w->attr.st_mtime 4246 || prev.st_mtime != w->attr.st_mtime
2658 || w->prev.st_ctime != w->attr.st_ctime 4247 || prev.st_ctime != w->attr.st_ctime
2659 ) { 4248 ) {
4249 /* we only update w->prev on actual differences */
4250 /* in case we test more often than invoke the callback, */
4251 /* to ensure that prev is always different to attr */
4252 w->prev = prev;
4253
2660 #if EV_USE_INOTIFY 4254 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0) 4255 if (fs_fd >= 0)
2662 { 4256 {
2663 infy_del (EV_A_ w); 4257 infy_del (EV_A_ w);
2664 infy_add (EV_A_ w); 4258 infy_add (EV_A_ w);
2669 ev_feed_event (EV_A_ w, EV_STAT); 4263 ev_feed_event (EV_A_ w, EV_STAT);
2670 } 4264 }
2671} 4265}
2672 4266
2673void 4267void
2674ev_stat_start (EV_P_ ev_stat *w) 4268ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2675{ 4269{
2676 if (expect_false (ev_is_active (w))) 4270 if (expect_false (ev_is_active (w)))
2677 return; 4271 return;
2678 4272
2679 ev_stat_stat (EV_A_ w); 4273 ev_stat_stat (EV_A_ w);
2689 4283
2690 if (fs_fd >= 0) 4284 if (fs_fd >= 0)
2691 infy_add (EV_A_ w); 4285 infy_add (EV_A_ w);
2692 else 4286 else
2693#endif 4287#endif
4288 {
2694 ev_timer_again (EV_A_ &w->timer); 4289 ev_timer_again (EV_A_ &w->timer);
4290 ev_unref (EV_A);
4291 }
2695 4292
2696 ev_start (EV_A_ (W)w, 1); 4293 ev_start (EV_A_ (W)w, 1);
2697 4294
2698 EV_FREQUENT_CHECK; 4295 EV_FREQUENT_CHECK;
2699} 4296}
2700 4297
2701void 4298void
2702ev_stat_stop (EV_P_ ev_stat *w) 4299ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2703{ 4300{
2704 clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
2705 if (expect_false (!ev_is_active (w))) 4302 if (expect_false (!ev_is_active (w)))
2706 return; 4303 return;
2707 4304
2708 EV_FREQUENT_CHECK; 4305 EV_FREQUENT_CHECK;
2709 4306
2710#if EV_USE_INOTIFY 4307#if EV_USE_INOTIFY
2711 infy_del (EV_A_ w); 4308 infy_del (EV_A_ w);
2712#endif 4309#endif
4310
4311 if (ev_is_active (&w->timer))
4312 {
4313 ev_ref (EV_A);
2713 ev_timer_stop (EV_A_ &w->timer); 4314 ev_timer_stop (EV_A_ &w->timer);
4315 }
2714 4316
2715 ev_stop (EV_A_ (W)w); 4317 ev_stop (EV_A_ (W)w);
2716 4318
2717 EV_FREQUENT_CHECK; 4319 EV_FREQUENT_CHECK;
2718} 4320}
2719#endif 4321#endif
2720 4322
2721#if EV_IDLE_ENABLE 4323#if EV_IDLE_ENABLE
2722void 4324void
2723ev_idle_start (EV_P_ ev_idle *w) 4325ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2724{ 4326{
2725 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
2726 return; 4328 return;
2727 4329
2728 pri_adjust (EV_A_ (W)w); 4330 pri_adjust (EV_A_ (W)w);
2741 4343
2742 EV_FREQUENT_CHECK; 4344 EV_FREQUENT_CHECK;
2743} 4345}
2744 4346
2745void 4347void
2746ev_idle_stop (EV_P_ ev_idle *w) 4348ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2747{ 4349{
2748 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2749 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2750 return; 4352 return;
2751 4353
2763 4365
2764 EV_FREQUENT_CHECK; 4366 EV_FREQUENT_CHECK;
2765} 4367}
2766#endif 4368#endif
2767 4369
4370#if EV_PREPARE_ENABLE
2768void 4371void
2769ev_prepare_start (EV_P_ ev_prepare *w) 4372ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2770{ 4373{
2771 if (expect_false (ev_is_active (w))) 4374 if (expect_false (ev_is_active (w)))
2772 return; 4375 return;
2773 4376
2774 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2779 4382
2780 EV_FREQUENT_CHECK; 4383 EV_FREQUENT_CHECK;
2781} 4384}
2782 4385
2783void 4386void
2784ev_prepare_stop (EV_P_ ev_prepare *w) 4387ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2785{ 4388{
2786 clear_pending (EV_A_ (W)w); 4389 clear_pending (EV_A_ (W)w);
2787 if (expect_false (!ev_is_active (w))) 4390 if (expect_false (!ev_is_active (w)))
2788 return; 4391 return;
2789 4392
2798 4401
2799 ev_stop (EV_A_ (W)w); 4402 ev_stop (EV_A_ (W)w);
2800 4403
2801 EV_FREQUENT_CHECK; 4404 EV_FREQUENT_CHECK;
2802} 4405}
4406#endif
2803 4407
4408#if EV_CHECK_ENABLE
2804void 4409void
2805ev_check_start (EV_P_ ev_check *w) 4410ev_check_start (EV_P_ ev_check *w) EV_THROW
2806{ 4411{
2807 if (expect_false (ev_is_active (w))) 4412 if (expect_false (ev_is_active (w)))
2808 return; 4413 return;
2809 4414
2810 EV_FREQUENT_CHECK; 4415 EV_FREQUENT_CHECK;
2815 4420
2816 EV_FREQUENT_CHECK; 4421 EV_FREQUENT_CHECK;
2817} 4422}
2818 4423
2819void 4424void
2820ev_check_stop (EV_P_ ev_check *w) 4425ev_check_stop (EV_P_ ev_check *w) EV_THROW
2821{ 4426{
2822 clear_pending (EV_A_ (W)w); 4427 clear_pending (EV_A_ (W)w);
2823 if (expect_false (!ev_is_active (w))) 4428 if (expect_false (!ev_is_active (w)))
2824 return; 4429 return;
2825 4430
2834 4439
2835 ev_stop (EV_A_ (W)w); 4440 ev_stop (EV_A_ (W)w);
2836 4441
2837 EV_FREQUENT_CHECK; 4442 EV_FREQUENT_CHECK;
2838} 4443}
4444#endif
2839 4445
2840#if EV_EMBED_ENABLE 4446#if EV_EMBED_ENABLE
2841void noinline 4447void noinline
2842ev_embed_sweep (EV_P_ ev_embed *w) 4448ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2843{ 4449{
2844 ev_loop (w->other, EVLOOP_NONBLOCK); 4450 ev_run (w->other, EVRUN_NOWAIT);
2845} 4451}
2846 4452
2847static void 4453static void
2848embed_io_cb (EV_P_ ev_io *io, int revents) 4454embed_io_cb (EV_P_ ev_io *io, int revents)
2849{ 4455{
2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4456 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2851 4457
2852 if (ev_cb (w)) 4458 if (ev_cb (w))
2853 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4459 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2854 else 4460 else
2855 ev_loop (w->other, EVLOOP_NONBLOCK); 4461 ev_run (w->other, EVRUN_NOWAIT);
2856} 4462}
2857 4463
2858static void 4464static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4465embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{ 4466{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4467 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862 4468
2863 { 4469 {
2864 struct ev_loop *loop = w->other; 4470 EV_P = w->other;
2865 4471
2866 while (fdchangecnt) 4472 while (fdchangecnt)
2867 { 4473 {
2868 fd_reify (EV_A); 4474 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4475 ev_run (EV_A_ EVRUN_NOWAIT);
2870 } 4476 }
2871 } 4477 }
2872} 4478}
2873 4479
2874static void 4480static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4481embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{ 4482{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4483 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878 4484
4485 ev_embed_stop (EV_A_ w);
4486
2879 { 4487 {
2880 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2881 4489
2882 ev_loop_fork (EV_A); 4490 ev_loop_fork (EV_A);
4491 ev_run (EV_A_ EVRUN_NOWAIT);
2883 } 4492 }
4493
4494 ev_embed_start (EV_A_ w);
2884} 4495}
2885 4496
2886#if 0 4497#if 0
2887static void 4498static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4499embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2890 ev_idle_stop (EV_A_ idle); 4501 ev_idle_stop (EV_A_ idle);
2891} 4502}
2892#endif 4503#endif
2893 4504
2894void 4505void
2895ev_embed_start (EV_P_ ev_embed *w) 4506ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2896{ 4507{
2897 if (expect_false (ev_is_active (w))) 4508 if (expect_false (ev_is_active (w)))
2898 return; 4509 return;
2899 4510
2900 { 4511 {
2901 struct ev_loop *loop = w->other; 4512 EV_P = w->other;
2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4513 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4514 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2904 } 4515 }
2905 4516
2906 EV_FREQUENT_CHECK; 4517 EV_FREQUENT_CHECK;
2907 4518
2921 4532
2922 EV_FREQUENT_CHECK; 4533 EV_FREQUENT_CHECK;
2923} 4534}
2924 4535
2925void 4536void
2926ev_embed_stop (EV_P_ ev_embed *w) 4537ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2927{ 4538{
2928 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2929 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2930 return; 4541 return;
2931 4542
2933 4544
2934 ev_io_stop (EV_A_ &w->io); 4545 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare); 4546 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork); 4547 ev_fork_stop (EV_A_ &w->fork);
2937 4548
4549 ev_stop (EV_A_ (W)w);
4550
2938 EV_FREQUENT_CHECK; 4551 EV_FREQUENT_CHECK;
2939} 4552}
2940#endif 4553#endif
2941 4554
2942#if EV_FORK_ENABLE 4555#if EV_FORK_ENABLE
2943void 4556void
2944ev_fork_start (EV_P_ ev_fork *w) 4557ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2945{ 4558{
2946 if (expect_false (ev_is_active (w))) 4559 if (expect_false (ev_is_active (w)))
2947 return; 4560 return;
2948 4561
2949 EV_FREQUENT_CHECK; 4562 EV_FREQUENT_CHECK;
2954 4567
2955 EV_FREQUENT_CHECK; 4568 EV_FREQUENT_CHECK;
2956} 4569}
2957 4570
2958void 4571void
2959ev_fork_stop (EV_P_ ev_fork *w) 4572ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2960{ 4573{
2961 clear_pending (EV_A_ (W)w); 4574 clear_pending (EV_A_ (W)w);
2962 if (expect_false (!ev_is_active (w))) 4575 if (expect_false (!ev_is_active (w)))
2963 return; 4576 return;
2964 4577
2975 4588
2976 EV_FREQUENT_CHECK; 4589 EV_FREQUENT_CHECK;
2977} 4590}
2978#endif 4591#endif
2979 4592
4593#if EV_CLEANUP_ENABLE
4594void
4595ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4596{
4597 if (expect_false (ev_is_active (w)))
4598 return;
4599
4600 EV_FREQUENT_CHECK;
4601
4602 ev_start (EV_A_ (W)w, ++cleanupcnt);
4603 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4604 cleanups [cleanupcnt - 1] = w;
4605
4606 /* cleanup watchers should never keep a refcount on the loop */
4607 ev_unref (EV_A);
4608 EV_FREQUENT_CHECK;
4609}
4610
4611void
4612ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4613{
4614 clear_pending (EV_A_ (W)w);
4615 if (expect_false (!ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619 ev_ref (EV_A);
4620
4621 {
4622 int active = ev_active (w);
4623
4624 cleanups [active - 1] = cleanups [--cleanupcnt];
4625 ev_active (cleanups [active - 1]) = active;
4626 }
4627
4628 ev_stop (EV_A_ (W)w);
4629
4630 EV_FREQUENT_CHECK;
4631}
4632#endif
4633
2980#if EV_ASYNC_ENABLE 4634#if EV_ASYNC_ENABLE
2981void 4635void
2982ev_async_start (EV_P_ ev_async *w) 4636ev_async_start (EV_P_ ev_async *w) EV_THROW
2983{ 4637{
2984 if (expect_false (ev_is_active (w))) 4638 if (expect_false (ev_is_active (w)))
2985 return; 4639 return;
4640
4641 w->sent = 0;
2986 4642
2987 evpipe_init (EV_A); 4643 evpipe_init (EV_A);
2988 4644
2989 EV_FREQUENT_CHECK; 4645 EV_FREQUENT_CHECK;
2990 4646
2994 4650
2995 EV_FREQUENT_CHECK; 4651 EV_FREQUENT_CHECK;
2996} 4652}
2997 4653
2998void 4654void
2999ev_async_stop (EV_P_ ev_async *w) 4655ev_async_stop (EV_P_ ev_async *w) EV_THROW
3000{ 4656{
3001 clear_pending (EV_A_ (W)w); 4657 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w))) 4658 if (expect_false (!ev_is_active (w)))
3003 return; 4659 return;
3004 4660
3015 4671
3016 EV_FREQUENT_CHECK; 4672 EV_FREQUENT_CHECK;
3017} 4673}
3018 4674
3019void 4675void
3020ev_async_send (EV_P_ ev_async *w) 4676ev_async_send (EV_P_ ev_async *w) EV_THROW
3021{ 4677{
3022 w->sent = 1; 4678 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync); 4679 evpipe_write (EV_A_ &async_pending);
3024} 4680}
3025#endif 4681#endif
3026 4682
3027/*****************************************************************************/ 4683/*****************************************************************************/
3028 4684
3062 4718
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4719 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3064} 4720}
3065 4721
3066void 4722void
3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4723ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3068{ 4724{
3069 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4725 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3070 4726
3071 if (expect_false (!once)) 4727 if (expect_false (!once))
3072 { 4728 {
3073 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4729 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3074 return; 4730 return;
3075 } 4731 }
3076 4732
3077 once->cb = cb; 4733 once->cb = cb;
3078 once->arg = arg; 4734 once->arg = arg;
3090 ev_timer_set (&once->to, timeout, 0.); 4746 ev_timer_set (&once->to, timeout, 0.);
3091 ev_timer_start (EV_A_ &once->to); 4747 ev_timer_start (EV_A_ &once->to);
3092 } 4748 }
3093} 4749}
3094 4750
4751/*****************************************************************************/
4752
4753#if EV_WALK_ENABLE
4754void ecb_cold
4755ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4756{
4757 int i, j;
4758 ev_watcher_list *wl, *wn;
4759
4760 if (types & (EV_IO | EV_EMBED))
4761 for (i = 0; i < anfdmax; ++i)
4762 for (wl = anfds [i].head; wl; )
4763 {
4764 wn = wl->next;
4765
4766#if EV_EMBED_ENABLE
4767 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4768 {
4769 if (types & EV_EMBED)
4770 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4771 }
4772 else
4773#endif
4774#if EV_USE_INOTIFY
4775 if (ev_cb ((ev_io *)wl) == infy_cb)
4776 ;
4777 else
4778#endif
4779 if ((ev_io *)wl != &pipe_w)
4780 if (types & EV_IO)
4781 cb (EV_A_ EV_IO, wl);
4782
4783 wl = wn;
4784 }
4785
4786 if (types & (EV_TIMER | EV_STAT))
4787 for (i = timercnt + HEAP0; i-- > HEAP0; )
4788#if EV_STAT_ENABLE
4789 /*TODO: timer is not always active*/
4790 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4791 {
4792 if (types & EV_STAT)
4793 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4794 }
4795 else
4796#endif
4797 if (types & EV_TIMER)
4798 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4799
4800#if EV_PERIODIC_ENABLE
4801 if (types & EV_PERIODIC)
4802 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4803 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4804#endif
4805
4806#if EV_IDLE_ENABLE
4807 if (types & EV_IDLE)
4808 for (j = NUMPRI; j--; )
4809 for (i = idlecnt [j]; i--; )
4810 cb (EV_A_ EV_IDLE, idles [j][i]);
4811#endif
4812
4813#if EV_FORK_ENABLE
4814 if (types & EV_FORK)
4815 for (i = forkcnt; i--; )
4816 if (ev_cb (forks [i]) != embed_fork_cb)
4817 cb (EV_A_ EV_FORK, forks [i]);
4818#endif
4819
4820#if EV_ASYNC_ENABLE
4821 if (types & EV_ASYNC)
4822 for (i = asynccnt; i--; )
4823 cb (EV_A_ EV_ASYNC, asyncs [i]);
4824#endif
4825
4826#if EV_PREPARE_ENABLE
4827 if (types & EV_PREPARE)
4828 for (i = preparecnt; i--; )
4829# if EV_EMBED_ENABLE
4830 if (ev_cb (prepares [i]) != embed_prepare_cb)
4831# endif
4832 cb (EV_A_ EV_PREPARE, prepares [i]);
4833#endif
4834
4835#if EV_CHECK_ENABLE
4836 if (types & EV_CHECK)
4837 for (i = checkcnt; i--; )
4838 cb (EV_A_ EV_CHECK, checks [i]);
4839#endif
4840
4841#if EV_SIGNAL_ENABLE
4842 if (types & EV_SIGNAL)
4843 for (i = 0; i < EV_NSIG - 1; ++i)
4844 for (wl = signals [i].head; wl; )
4845 {
4846 wn = wl->next;
4847 cb (EV_A_ EV_SIGNAL, wl);
4848 wl = wn;
4849 }
4850#endif
4851
4852#if EV_CHILD_ENABLE
4853 if (types & EV_CHILD)
4854 for (i = (EV_PID_HASHSIZE); i--; )
4855 for (wl = childs [i]; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_CHILD, wl);
4859 wl = wn;
4860 }
4861#endif
4862/* EV_STAT 0x00001000 /* stat data changed */
4863/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4864}
4865#endif
4866
3095#if EV_MULTIPLICITY 4867#if EV_MULTIPLICITY
3096 #include "ev_wrap.h" 4868 #include "ev_wrap.h"
3097#endif 4869#endif
3098 4870
3099#ifdef __cplusplus
3100}
3101#endif
3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines