ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC vs.
Revision 1.274 by root, Thu Nov 20 00:35:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
220 353
221/* 354/*
222 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
230 363
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 367
235#if __GNUC__ >= 3 368#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
238#else 371#else
239# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
240# define noinline 373# define noinline
241# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 375# define inline
243# endif 376# endif
244#endif 377#endif
245 378
246#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
261 394
262typedef ev_watcher *W; 395typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
265 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
267 407
268#ifdef _WIN32 408#ifdef _WIN32
269# include "ev_win32.c" 409# include "ev_win32.c"
270#endif 410#endif
271 411
278{ 418{
279 syserr_cb = cb; 419 syserr_cb = cb;
280} 420}
281 421
282static void noinline 422static void noinline
283syserr (const char *msg) 423ev_syserr (const char *msg)
284{ 424{
285 if (!msg) 425 if (!msg)
286 msg = "(libev) system error"; 426 msg = "(libev) system error";
287 427
288 if (syserr_cb) 428 if (syserr_cb)
292 perror (msg); 432 perror (msg);
293 abort (); 433 abort ();
294 } 434 }
295} 435}
296 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
297static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 453
299void 454void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 456{
302 alloc = cb; 457 alloc = cb;
303} 458}
304 459
305inline_speed void * 460inline_speed void *
306ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
307{ 462{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
309 464
310 if (!ptr && size) 465 if (!ptr && size)
311 { 466 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 468 abort ();
324typedef struct 479typedef struct
325{ 480{
326 WL head; 481 WL head;
327 unsigned char events; 482 unsigned char events;
328 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
329#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 490 SOCKET handle;
331#endif 491#endif
332} ANFD; 492} ANFD;
333 493
336 W w; 496 W w;
337 int events; 497 int events;
338} ANPENDING; 498} ANPENDING;
339 499
340#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
341typedef struct 502typedef struct
342{ 503{
343 WL head; 504 WL head;
344} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
345#endif 524#endif
346 525
347#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
348 527
349 struct ev_loop 528 struct ev_loop
407{ 586{
408 return ev_rt_now; 587 return ev_rt_now;
409} 588}
410#endif 589#endif
411 590
591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
412int inline_size 623int inline_size
413array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
414{ 625{
415 int ncur = cur + 1; 626 int ncur = cur + 1;
416 627
417 do 628 do
418 ncur <<= 1; 629 ncur <<= 1;
419 while (cnt > ncur); 630 while (cnt > ncur);
420 631
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 634 {
424 ncur *= elem; 635 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 638 ncur /= elem;
428 } 639 }
429 640
430 return ncur; 641 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
435{ 646{
436 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
438} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 653
440#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
442 { \ 656 { \
443 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
487 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
488} 702}
489 703
490/*****************************************************************************/ 704/*****************************************************************************/
491 705
492void inline_size
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed 706void inline_speed
506fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
507{ 708{
508 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
509 ev_io *w; 710 ev_io *w;
533 { 734 {
534 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
536 ev_io *w; 737 ev_io *w;
537 738
538 int events = 0; 739 unsigned char events = 0;
539 740
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 742 events |= (unsigned char)w->events;
542 743
543#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
544 if (events) 745 if (events)
545 { 746 {
546 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
547 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 754 }
550#endif 755#endif
551 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
552 anfd->reify = 0; 761 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
556 } 767 }
557 768
558 fdchangecnt = 0; 769 fdchangecnt = 0;
559} 770}
560 771
561void inline_size 772void inline_size
562fd_change (EV_P_ int fd, int flags) 773fd_change (EV_P_ int fd, int flags)
563{ 774{
564 unsigned char reify = anfds [fd].reify; 775 unsigned char reify = anfds [fd].reify;
565 anfds [fd].reify |= flags | 1; 776 anfds [fd].reify |= flags;
566 777
567 if (expect_true (!reify)) 778 if (expect_true (!reify))
568 { 779 {
569 ++fdchangecnt; 780 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
600{ 811{
601 int fd; 812 int fd;
602 813
603 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 815 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
607} 818}
608 819
609/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 821static void noinline
628 839
629 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 841 if (anfds [fd].events)
631 { 842 {
632 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd, EV_IOFDSET); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 846 }
635} 847}
636 848
637/*****************************************************************************/ 849/*****************************************************************************/
638 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
639void inline_speed 871void inline_speed
640upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
641{ 873{
642 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
643 876
644 while (k) 877 for (;;)
645 { 878 {
646 int p = (k - 1) >> 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
647 882
648 if (heap [p]->at <= w->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
649 break; 899 break;
650 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
651 heap [k] = heap [p]; 963 heap [k] = heap [p];
652 ((W)heap [k])->active = k + 1; 964 ev_active (ANHE_w (heap [k])) = k;
653 k = p; 965 k = p;
654 } 966 }
655 967
656 heap [k] = w; 968 heap [k] = he;
657 ((W)heap [k])->active = k + 1; 969 ev_active (ANHE_w (he)) = k;
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686} 970}
687 971
688void inline_size 972void inline_size
689adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
690{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 976 upheap (heap, k);
977 else
692 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
693} 991}
694 992
695/*****************************************************************************/ 993/*****************************************************************************/
696 994
697typedef struct 995typedef struct
698{ 996{
699 WL head; 997 WL head;
700 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
701} ANSIG; 999} ANSIG;
702 1000
703static ANSIG *signals; 1001static ANSIG *signals;
704static int signalmax; 1002static int signalmax;
705 1003
706static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1005
710void inline_size 1006/*****************************************************************************/
711signals_init (ANSIG *base, int count)
712{
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 1007
773void inline_speed 1008void inline_speed
774fd_intern (int fd) 1009fd_intern (int fd)
775{ 1010{
776#ifdef _WIN32 1011#ifdef _WIN32
777 int arg = 1; 1012 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1014#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1017#endif
783} 1018}
784 1019
785static void noinline 1020static void noinline
786siginit (EV_P) 1021evpipe_init (EV_P)
787{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
788 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
790 1042
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
794} 1111}
795 1112
796/*****************************************************************************/ 1113/*****************************************************************************/
797 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
798static WL childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
799 1153
800#ifndef _WIN32 1154#ifndef _WIN32
801 1155
802static ev_signal childev; 1156static ev_signal childev;
803 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
804void inline_speed 1162void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
806{ 1164{
807 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1167
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
810 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
811 { 1172 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1174 w->rpid = pid;
814 w->rstatus = status; 1175 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1177 }
1178 }
817} 1179}
818 1180
819#ifndef WCONTINUED 1181#ifndef WCONTINUED
820# define WCONTINUED 0 1182# define WCONTINUED 0
821#endif 1183#endif
830 if (!WCONTINUED 1192 if (!WCONTINUED
831 || errno != EINVAL 1193 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1195 return;
834 1196
835 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1200
839 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1204}
843 1205
844#endif 1206#endif
845 1207
846/*****************************************************************************/ 1208/*****************************************************************************/
918} 1280}
919 1281
920unsigned int 1282unsigned int
921ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
922{ 1284{
923 return EVBACKEND_EPOLL 1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1286
925 | EVBACKEND_PORT; 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
926} 1292}
927 1293
928unsigned int 1294unsigned int
929ev_backend (EV_P) 1295ev_backend (EV_P)
930{ 1296{
933 1299
934unsigned int 1300unsigned int
935ev_loop_count (EV_P) 1301ev_loop_count (EV_P)
936{ 1302{
937 return loop_count; 1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
938} 1316}
939 1317
940static void noinline 1318static void noinline
941loop_init (EV_P_ unsigned int flags) 1319loop_init (EV_P_ unsigned int flags)
942{ 1320{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1327 have_monotonic = 1;
950 } 1328 }
951#endif 1329#endif
952 1330
953 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1332 mn_now = get_clock ();
955 now_floor = mn_now; 1333 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
957 1344
958 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
959#ifndef _WIN32 1346#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1348 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1352 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1355
969 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1358
978#if EV_USE_PORT 1359#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1361#endif
981#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
989#endif 1370#endif
990#if EV_USE_SELECT 1371#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1373#endif
993 1374
994 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1377 }
997} 1378}
998 1379
999static void noinline 1380static void noinline
1000loop_destroy (EV_P) 1381loop_destroy (EV_P)
1001{ 1382{
1002 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1003 1401
1004#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
1006 close (fs_fd); 1404 close (fs_fd);
1007#endif 1405#endif
1030 array_free (pending, [i]); 1428 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1429#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1430 array_free (idle, [i]);
1033#endif 1431#endif
1034 } 1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
1035 1435
1036 /* have to use the microsoft-never-gets-it-right macro */ 1436 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1437 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1438 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1439#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1440 array_free (periodic, EMPTY);
1041#endif 1441#endif
1442#if EV_FORK_ENABLE
1443 array_free (fork, EMPTY);
1444#endif
1042 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1044 1450
1045 backend = 0; 1451 backend = 0;
1046} 1452}
1047 1453
1454#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1049 1457
1050void inline_size 1458void inline_size
1051loop_fork (EV_P) 1459loop_fork (EV_P)
1052{ 1460{
1053#if EV_USE_PORT 1461#if EV_USE_PORT
1061#endif 1469#endif
1062#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1471 infy_fork (EV_A);
1064#endif 1472#endif
1065 1473
1066 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1067 { 1475 {
1068 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1069 1482
1070 ev_ref (EV_A); 1483 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1072 close (sigpipe [0]); 1493 close (evpipe [0]);
1073 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1074 1496
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1500 }
1080 1501
1081 postfork = 0; 1502 postfork = 0;
1082} 1503}
1083 1504
1084#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1085struct ev_loop * 1507struct ev_loop *
1086ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1087{ 1509{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1511
1105} 1527}
1106 1528
1107void 1529void
1108ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1109{ 1531{
1110 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1111} 1533}
1112 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1113#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1114 1635
1115#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1116struct ev_loop * 1637struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1118#else 1639#else
1119int 1640int
1120ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1121#endif 1642#endif
1122{ 1643{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1128 { 1645 {
1129#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1648#else
1134 1651
1135 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1136 1653
1137 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1138 { 1655 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1656#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1157{ 1672{
1158#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1675#endif
1161 1676
1677 ev_default_loop_ptr = 0;
1678
1162#ifndef _WIN32 1679#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1165#endif 1682#endif
1166 1683
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1174} 1685}
1175 1686
1176void 1687void
1177ev_default_fork (void) 1688ev_default_fork (void)
1178{ 1689{
1179#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1692#endif
1182 1693
1183 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1695}
1186 1696
1187/*****************************************************************************/ 1697/*****************************************************************************/
1188 1698
1189void 1699void
1206 { 1716 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208 1718
1209 p->w->pending = 0; 1719 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1211 } 1722 }
1212 } 1723 }
1213} 1724}
1214
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = (ev_timer *)timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap (timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = (ev_periodic *)periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap (periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = (ev_periodic *)periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap (periodics, periodiccnt, i);
1292}
1293#endif
1294 1725
1295#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1296void inline_size 1727void inline_size
1297idle_reify (EV_P) 1728idle_reify (EV_P)
1298{ 1729{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1742 break;
1312 } 1743 }
1313 } 1744 }
1314 } 1745 }
1746}
1747#endif
1748
1749void inline_size
1750timers_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
1782periodics_reify (EV_P)
1783{
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827}
1828
1829static void noinline
1830periodics_reschedule (EV_P)
1831{
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1315} 1848}
1316#endif 1849#endif
1317 1850
1318void inline_speed 1851void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1852time_update (EV_P_ ev_tstamp max_block)
1348 */ 1881 */
1349 for (i = 4; --i; ) 1882 for (i = 4; --i; )
1350 { 1883 {
1351 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1352 1885
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1887 return; /* all is well */
1355 1888
1356 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1890 mn_now = get_clock ();
1358 now_floor = mn_now; 1891 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1376#endif 1909#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1380 } 1917 }
1381 1918
1382 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1383 } 1920 }
1384} 1921}
1393ev_unref (EV_P) 1930ev_unref (EV_P)
1394{ 1931{
1395 --activecnt; 1932 --activecnt;
1396} 1933}
1397 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1398static int loop_done; 1941static int loop_done;
1399 1942
1400void 1943void
1401ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1402{ 1945{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1947
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1949
1409 do 1950 do
1410 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1411#ifndef _WIN32 1956#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1414 { 1959 {
1415 curpid = getpid (); 1960 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1990 fd_reify (EV_A);
1446 1991
1447 /* calculate blocking time */ 1992 /* calculate blocking time */
1448 { 1993 {
1449 ev_tstamp block; 1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1450 1996
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1998 {
1455 /* update time to cancel out callback processing overhead */ 1999 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2000 time_update (EV_A_ 1e100);
1457 2001
1458 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1459 2003
1460 if (timercnt) 2004 if (timercnt)
1461 { 2005 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1464 } 2008 }
1465 2009
1466#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2011 if (periodiccnt)
1468 { 2012 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1471 } 2015 }
1472#endif 2016#endif
1473 2017
1474 if (expect_false (block < 0.)) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1475 } 2031 }
1476 2032
1477 ++loop_count; 2033 ++loop_count;
1478 backend_poll (EV_A_ block); 2034 backend_poll (EV_A_ waittime);
1479 2035
1480 /* update ev_rt_now, do magic */ 2036 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2037 time_update (EV_A_ waittime + sleeptime);
1482 } 2038 }
1483 2039
1484 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2042#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2054
1499 call_pending (EV_A); 2055 call_pending (EV_A);
1500
1501 } 2056 }
1502 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1503 2062
1504 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1506} 2065}
1507 2066
1595 2154
1596 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1597 return; 2156 return;
1598 2157
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1600 2162
1601 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add (&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1604 2166
1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1606 w->events &= ~ EV_IOFDSET; 2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
1607} 2171}
1608 2172
1609void noinline 2173void noinline
1610ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1611{ 2175{
1612 clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1613 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1614 return; 2178 return;
1615 2179
1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
1617 2183
1618 wlist_del (&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1619 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1620 2186
1621 fd_change (EV_A_ w->fd, 0); 2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
1622} 2190}
1623 2191
1624void noinline 2192void noinline
1625ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1626{ 2194{
1627 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1628 return; 2196 return;
1629 2197
1630 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1631 2199
1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1633 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1634 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1636 timers [timercnt - 1] = (WT)w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1637 upheap (timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1638 2210
2211 EV_FREQUENT_CHECK;
2212
1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1640} 2214}
1641 2215
1642void noinline 2216void noinline
1643ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1644{ 2218{
1645 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1646 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1647 return; 2221 return;
1648 2222
1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2223 EV_FREQUENT_CHECK;
1650 2224
1651 { 2225 {
1652 int active = ((W)w)->active; 2226 int active = ev_active (w);
1653 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1654 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1655 { 2233 {
1656 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1657 adjustheap (timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1658 } 2236 }
1659 } 2237 }
1660 2238
1661 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1662 2242
1663 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1664} 2244}
1665 2245
1666void noinline 2246void noinline
1667ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1668{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1669 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1670 { 2252 {
1671 if (w->repeat) 2253 if (w->repeat)
1672 { 2254 {
1673 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1674 adjustheap (timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1675 } 2258 }
1676 else 2259 else
1677 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1678 } 2261 }
1679 else if (w->repeat) 2262 else if (w->repeat)
1680 { 2263 {
1681 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1682 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1683 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1684} 2269}
1685 2270
1686#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1687void noinline 2272void noinline
1688ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1689{ 2274{
1690 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1691 return; 2276 return;
1692 2277
1693 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1695 else if (w->interval) 2280 else if (w->interval)
1696 { 2281 {
1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1698 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1700 } 2285 }
1701 else 2286 else
1702 ((WT)w)->at = w->offset; 2287 ev_at (w) = w->offset;
1703 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1704 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1706 periodics [periodiccnt - 1] = (WT)w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1707 upheap (periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1708 2297
2298 EV_FREQUENT_CHECK;
2299
1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1710} 2301}
1711 2302
1712void noinline 2303void noinline
1713ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1714{ 2305{
1715 clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1717 return; 2308 return;
1718 2309
1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2310 EV_FREQUENT_CHECK;
1720 2311
1721 { 2312 {
1722 int active = ((W)w)->active; 2313 int active = ev_active (w);
1723 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1724 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1725 { 2320 {
1726 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1727 adjustheap (periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1728 } 2323 }
1729 } 2324 }
1730 2325
2326 EV_FREQUENT_CHECK;
2327
1731 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1732} 2329}
1733 2330
1734void noinline 2331void noinline
1735ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1752#endif 2349#endif
1753 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1754 return; 2351 return;
1755 2352
1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
1757 2358
1758 { 2359 {
1759#ifndef _WIN32 2360#ifndef _WIN32
1760 sigset_t full, prev; 2361 sigset_t full, prev;
1761 sigfillset (&full); 2362 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev); 2363 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif 2364#endif
1764 2365
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1766 2367
1767#ifndef _WIN32 2368#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0); 2369 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif 2370#endif
1770 } 2371 }
1773 wlist_add (&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1774 2375
1775 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1776 { 2377 {
1777#if _WIN32 2378#if _WIN32
1778 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1779#else 2380#else
1780 struct sigaction sa; 2381 struct sigaction sa;
1781 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1782 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1784 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1785#endif 2386#endif
1786 } 2387 }
2388
2389 EV_FREQUENT_CHECK;
1787} 2390}
1788 2391
1789void noinline 2392void noinline
1790ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1791{ 2394{
1792 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1794 return; 2397 return;
1795 2398
2399 EV_FREQUENT_CHECK;
2400
1796 wlist_del (&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1797 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1798 2403
1799 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1800 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1801} 2408}
1802 2409
1803void 2410void
1804ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1805{ 2412{
1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1808#endif 2415#endif
1809 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1810 return; 2417 return;
1811 2418
2419 EV_FREQUENT_CHECK;
2420
1812 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1814} 2425}
1815 2426
1816void 2427void
1817ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1818{ 2429{
1819 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1821 return; 2432 return;
1822 2433
2434 EV_FREQUENT_CHECK;
2435
1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1824 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1825} 2440}
1826 2441
1827#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1828 2443
1829# ifdef _WIN32 2444# ifdef _WIN32
1830# undef lstat 2445# undef lstat
1831# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1832# endif 2447# endif
1833 2448
1834#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1835#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1836 2452
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838 2454
1839#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1844{ 2460{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846 2462
1847 if (w->wd < 0) 2463 if (w->wd < 0)
1848 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850 2467
1851 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 { 2472 {
1854 char path [4096]; 2473 char path [4096];
1855 strcpy (path, w->path); 2474 strcpy (path, w->path);
1856 2475
1869 } 2488 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 } 2490 }
1872 } 2491 }
1873 else 2492 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2493 {
1875
1876 if (w->wd >= 0)
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2494 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2495
2496 /* now local changes will be tracked by inotify, but remote changes won't */
2497 /* unless the filesystem it known to be local, we therefore still poll */
2498 /* also do poll on <2.6.25, but with normal frequency */
2499 struct statfs sfs;
2500
2501 if (fs_2625 && !statfs (w->path, &sfs))
2502 if (sfs.f_type == 0x1373 /* devfs */
2503 || sfs.f_type == 0xEF53 /* ext2/3 */
2504 || sfs.f_type == 0x3153464a /* jfs */
2505 || sfs.f_type == 0x52654973 /* reiser3 */
2506 || sfs.f_type == 0x01021994 /* tempfs */
2507 || sfs.f_type == 0x58465342 /* xfs */)
2508 return;
2509
2510 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer);
2512 }
1878} 2513}
1879 2514
1880static void noinline 2515static void noinline
1881infy_del (EV_P_ ev_stat *w) 2516infy_del (EV_P_ ev_stat *w)
1882{ 2517{
1896 2531
1897static void noinline 2532static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2533infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{ 2534{
1900 if (slot < 0) 2535 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */ 2536 /* overflow, need to check for all hash slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2537 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev); 2538 infy_wd (EV_A_ slot, wd, ev);
1904 else 2539 else
1905 { 2540 {
1906 WL w_; 2541 WL w_;
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2570 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937} 2572}
1938 2573
1939void inline_size 2574void inline_size
2575check_2625 (EV_P)
2576{
2577 /* kernels < 2.6.25 are borked
2578 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2579 */
2580 struct utsname buf;
2581 int major, minor, micro;
2582
2583 if (uname (&buf))
2584 return;
2585
2586 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2587 return;
2588
2589 if (major < 2
2590 || (major == 2 && minor < 6)
2591 || (major == 2 && minor == 6 && micro < 25))
2592 return;
2593
2594 fs_2625 = 1;
2595}
2596
2597void inline_size
1940infy_init (EV_P) 2598infy_init (EV_P)
1941{ 2599{
1942 if (fs_fd != -2) 2600 if (fs_fd != -2)
1943 return; 2601 return;
2602
2603 fs_fd = -1;
2604
2605 check_2625 (EV_A);
1944 2606
1945 fs_fd = inotify_init (); 2607 fs_fd = inotify_init ();
1946 2608
1947 if (fs_fd >= 0) 2609 if (fs_fd >= 0)
1948 { 2610 {
1976 w->wd = -1; 2638 w->wd = -1;
1977 2639
1978 if (fs_fd >= 0) 2640 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */ 2641 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else 2642 else
1981 ev_timer_start (EV_A_ &w->timer); 2643 ev_timer_again (EV_A_ &w->timer);
1982 } 2644 }
1983
1984 } 2645 }
1985} 2646}
1986 2647
2648#endif
2649
2650#ifdef _WIN32
2651# define EV_LSTAT(p,b) _stati64 (p, b)
2652#else
2653# define EV_LSTAT(p,b) lstat (p, b)
1987#endif 2654#endif
1988 2655
1989void 2656void
1990ev_stat_stat (EV_P_ ev_stat *w) 2657ev_stat_stat (EV_P_ ev_stat *w)
1991{ 2658{
2018 || w->prev.st_atime != w->attr.st_atime 2685 || w->prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime 2686 || w->prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime 2687 || w->prev.st_ctime != w->attr.st_ctime
2021 ) { 2688 ) {
2022 #if EV_USE_INOTIFY 2689 #if EV_USE_INOTIFY
2690 if (fs_fd >= 0)
2691 {
2023 infy_del (EV_A_ w); 2692 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w); 2693 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */ 2694 ev_stat_stat (EV_A_ w); /* avoid race... */
2695 }
2026 #endif 2696 #endif
2027 2697
2028 ev_feed_event (EV_A_ w, EV_STAT); 2698 ev_feed_event (EV_A_ w, EV_STAT);
2029 } 2699 }
2030} 2700}
2033ev_stat_start (EV_P_ ev_stat *w) 2703ev_stat_start (EV_P_ ev_stat *w)
2034{ 2704{
2035 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
2036 return; 2706 return;
2037 2707
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w); 2708 ev_stat_stat (EV_A_ w);
2043 2709
2710 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2044 if (w->interval < MIN_STAT_INTERVAL) 2711 w->interval = MIN_STAT_INTERVAL;
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046 2712
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2713 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2048 ev_set_priority (&w->timer, ev_priority (w)); 2714 ev_set_priority (&w->timer, ev_priority (w));
2049 2715
2050#if EV_USE_INOTIFY 2716#if EV_USE_INOTIFY
2051 infy_init (EV_A); 2717 infy_init (EV_A);
2052 2718
2053 if (fs_fd >= 0) 2719 if (fs_fd >= 0)
2054 infy_add (EV_A_ w); 2720 infy_add (EV_A_ w);
2055 else 2721 else
2056#endif 2722#endif
2057 ev_timer_start (EV_A_ &w->timer); 2723 ev_timer_again (EV_A_ &w->timer);
2058 2724
2059 ev_start (EV_A_ (W)w, 1); 2725 ev_start (EV_A_ (W)w, 1);
2726
2727 EV_FREQUENT_CHECK;
2060} 2728}
2061 2729
2062void 2730void
2063ev_stat_stop (EV_P_ ev_stat *w) 2731ev_stat_stop (EV_P_ ev_stat *w)
2064{ 2732{
2065 clear_pending (EV_A_ (W)w); 2733 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2734 if (expect_false (!ev_is_active (w)))
2067 return; 2735 return;
2068 2736
2737 EV_FREQUENT_CHECK;
2738
2069#if EV_USE_INOTIFY 2739#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w); 2740 infy_del (EV_A_ w);
2071#endif 2741#endif
2072 ev_timer_stop (EV_A_ &w->timer); 2742 ev_timer_stop (EV_A_ &w->timer);
2073 2743
2074 ev_stop (EV_A_ (W)w); 2744 ev_stop (EV_A_ (W)w);
2745
2746 EV_FREQUENT_CHECK;
2075} 2747}
2076#endif 2748#endif
2077 2749
2078#if EV_IDLE_ENABLE 2750#if EV_IDLE_ENABLE
2079void 2751void
2081{ 2753{
2082 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
2083 return; 2755 return;
2084 2756
2085 pri_adjust (EV_A_ (W)w); 2757 pri_adjust (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2086 2760
2087 { 2761 {
2088 int active = ++idlecnt [ABSPRI (w)]; 2762 int active = ++idlecnt [ABSPRI (w)];
2089 2763
2090 ++idleall; 2764 ++idleall;
2091 ev_start (EV_A_ (W)w, active); 2765 ev_start (EV_A_ (W)w, active);
2092 2766
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2767 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w; 2768 idles [ABSPRI (w)][active - 1] = w;
2095 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
2096} 2772}
2097 2773
2098void 2774void
2099ev_idle_stop (EV_P_ ev_idle *w) 2775ev_idle_stop (EV_P_ ev_idle *w)
2100{ 2776{
2101 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2103 return; 2779 return;
2104 2780
2781 EV_FREQUENT_CHECK;
2782
2105 { 2783 {
2106 int active = ((W)w)->active; 2784 int active = ev_active (w);
2107 2785
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2786 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2787 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2110 2788
2111 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2112 --idleall; 2790 --idleall;
2113 } 2791 }
2792
2793 EV_FREQUENT_CHECK;
2114} 2794}
2115#endif 2795#endif
2116 2796
2117void 2797void
2118ev_prepare_start (EV_P_ ev_prepare *w) 2798ev_prepare_start (EV_P_ ev_prepare *w)
2119{ 2799{
2120 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2121 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2122 2804
2123 ev_start (EV_A_ (W)w, ++preparecnt); 2805 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2806 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w; 2807 prepares [preparecnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2126} 2810}
2127 2811
2128void 2812void
2129ev_prepare_stop (EV_P_ ev_prepare *w) 2813ev_prepare_stop (EV_P_ ev_prepare *w)
2130{ 2814{
2131 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2133 return; 2817 return;
2134 2818
2819 EV_FREQUENT_CHECK;
2820
2135 { 2821 {
2136 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2137 prepares [active - 1] = prepares [--preparecnt]; 2824 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active; 2825 ev_active (prepares [active - 1]) = active;
2139 } 2826 }
2140 2827
2141 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2142} 2831}
2143 2832
2144void 2833void
2145ev_check_start (EV_P_ ev_check *w) 2834ev_check_start (EV_P_ ev_check *w)
2146{ 2835{
2147 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
2148 return; 2837 return;
2838
2839 EV_FREQUENT_CHECK;
2149 2840
2150 ev_start (EV_A_ (W)w, ++checkcnt); 2841 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2842 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w; 2843 checks [checkcnt - 1] = w;
2844
2845 EV_FREQUENT_CHECK;
2153} 2846}
2154 2847
2155void 2848void
2156ev_check_stop (EV_P_ ev_check *w) 2849ev_check_stop (EV_P_ ev_check *w)
2157{ 2850{
2158 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
2160 return; 2853 return;
2161 2854
2855 EV_FREQUENT_CHECK;
2856
2162 { 2857 {
2163 int active = ((W)w)->active; 2858 int active = ev_active (w);
2859
2164 checks [active - 1] = checks [--checkcnt]; 2860 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active; 2861 ev_active (checks [active - 1]) = active;
2166 } 2862 }
2167 2863
2168 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2169} 2867}
2170 2868
2171#if EV_EMBED_ENABLE 2869#if EV_EMBED_ENABLE
2172void noinline 2870void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w) 2871ev_embed_sweep (EV_P_ ev_embed *w)
2174{ 2872{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK); 2873 ev_loop (w->other, EVLOOP_NONBLOCK);
2176} 2874}
2177 2875
2178static void 2876static void
2179embed_cb (EV_P_ ev_io *io, int revents) 2877embed_io_cb (EV_P_ ev_io *io, int revents)
2180{ 2878{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2879 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182 2880
2183 if (ev_cb (w)) 2881 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2882 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else 2883 else
2186 ev_embed_sweep (loop, w); 2884 ev_loop (w->other, EVLOOP_NONBLOCK);
2187} 2885}
2886
2887static void
2888embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2889{
2890 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2891
2892 {
2893 struct ev_loop *loop = w->other;
2894
2895 while (fdchangecnt)
2896 {
2897 fd_reify (EV_A);
2898 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2899 }
2900 }
2901}
2902
2903static void
2904embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2905{
2906 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2907
2908 {
2909 struct ev_loop *loop = w->other;
2910
2911 ev_loop_fork (EV_A);
2912 }
2913}
2914
2915#if 0
2916static void
2917embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2918{
2919 ev_idle_stop (EV_A_ idle);
2920}
2921#endif
2188 2922
2189void 2923void
2190ev_embed_start (EV_P_ ev_embed *w) 2924ev_embed_start (EV_P_ ev_embed *w)
2191{ 2925{
2192 if (expect_false (ev_is_active (w))) 2926 if (expect_false (ev_is_active (w)))
2193 return; 2927 return;
2194 2928
2195 { 2929 {
2196 struct ev_loop *loop = w->loop; 2930 struct ev_loop *loop = w->other;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2931 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2932 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2199 } 2933 }
2934
2935 EV_FREQUENT_CHECK;
2200 2936
2201 ev_set_priority (&w->io, ev_priority (w)); 2937 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io); 2938 ev_io_start (EV_A_ &w->io);
2203 2939
2940 ev_prepare_init (&w->prepare, embed_prepare_cb);
2941 ev_set_priority (&w->prepare, EV_MINPRI);
2942 ev_prepare_start (EV_A_ &w->prepare);
2943
2944 ev_fork_init (&w->fork, embed_fork_cb);
2945 ev_fork_start (EV_A_ &w->fork);
2946
2947 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2948
2204 ev_start (EV_A_ (W)w, 1); 2949 ev_start (EV_A_ (W)w, 1);
2950
2951 EV_FREQUENT_CHECK;
2205} 2952}
2206 2953
2207void 2954void
2208ev_embed_stop (EV_P_ ev_embed *w) 2955ev_embed_stop (EV_P_ ev_embed *w)
2209{ 2956{
2210 clear_pending (EV_A_ (W)w); 2957 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w))) 2958 if (expect_false (!ev_is_active (w)))
2212 return; 2959 return;
2213 2960
2961 EV_FREQUENT_CHECK;
2962
2214 ev_io_stop (EV_A_ &w->io); 2963 ev_io_stop (EV_A_ &w->io);
2964 ev_prepare_stop (EV_A_ &w->prepare);
2965 ev_fork_stop (EV_A_ &w->fork);
2215 2966
2216 ev_stop (EV_A_ (W)w); 2967 EV_FREQUENT_CHECK;
2217} 2968}
2218#endif 2969#endif
2219 2970
2220#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
2221void 2972void
2222ev_fork_start (EV_P_ ev_fork *w) 2973ev_fork_start (EV_P_ ev_fork *w)
2223{ 2974{
2224 if (expect_false (ev_is_active (w))) 2975 if (expect_false (ev_is_active (w)))
2225 return; 2976 return;
2977
2978 EV_FREQUENT_CHECK;
2226 2979
2227 ev_start (EV_A_ (W)w, ++forkcnt); 2980 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2981 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w; 2982 forks [forkcnt - 1] = w;
2983
2984 EV_FREQUENT_CHECK;
2230} 2985}
2231 2986
2232void 2987void
2233ev_fork_stop (EV_P_ ev_fork *w) 2988ev_fork_stop (EV_P_ ev_fork *w)
2234{ 2989{
2235 clear_pending (EV_A_ (W)w); 2990 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2991 if (expect_false (!ev_is_active (w)))
2237 return; 2992 return;
2238 2993
2994 EV_FREQUENT_CHECK;
2995
2239 { 2996 {
2240 int active = ((W)w)->active; 2997 int active = ev_active (w);
2998
2241 forks [active - 1] = forks [--forkcnt]; 2999 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active; 3000 ev_active (forks [active - 1]) = active;
2243 } 3001 }
2244 3002
2245 ev_stop (EV_A_ (W)w); 3003 ev_stop (EV_A_ (W)w);
3004
3005 EV_FREQUENT_CHECK;
3006}
3007#endif
3008
3009#if EV_ASYNC_ENABLE
3010void
3011ev_async_start (EV_P_ ev_async *w)
3012{
3013 if (expect_false (ev_is_active (w)))
3014 return;
3015
3016 evpipe_init (EV_A);
3017
3018 EV_FREQUENT_CHECK;
3019
3020 ev_start (EV_A_ (W)w, ++asynccnt);
3021 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3022 asyncs [asynccnt - 1] = w;
3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027void
3028ev_async_stop (EV_P_ ev_async *w)
3029{
3030 clear_pending (EV_A_ (W)w);
3031 if (expect_false (!ev_is_active (w)))
3032 return;
3033
3034 EV_FREQUENT_CHECK;
3035
3036 {
3037 int active = ev_active (w);
3038
3039 asyncs [active - 1] = asyncs [--asynccnt];
3040 ev_active (asyncs [active - 1]) = active;
3041 }
3042
3043 ev_stop (EV_A_ (W)w);
3044
3045 EV_FREQUENT_CHECK;
3046}
3047
3048void
3049ev_async_send (EV_P_ ev_async *w)
3050{
3051 w->sent = 1;
3052 evpipe_write (EV_A_ &gotasync);
2246} 3053}
2247#endif 3054#endif
2248 3055
2249/*****************************************************************************/ 3056/*****************************************************************************/
2250 3057
2260once_cb (EV_P_ struct ev_once *once, int revents) 3067once_cb (EV_P_ struct ev_once *once, int revents)
2261{ 3068{
2262 void (*cb)(int revents, void *arg) = once->cb; 3069 void (*cb)(int revents, void *arg) = once->cb;
2263 void *arg = once->arg; 3070 void *arg = once->arg;
2264 3071
2265 ev_io_stop (EV_A_ &once->io); 3072 ev_io_stop (EV_A_ &once->io);
2266 ev_timer_stop (EV_A_ &once->to); 3073 ev_timer_stop (EV_A_ &once->to);
2267 ev_free (once); 3074 ev_free (once);
2268 3075
2269 cb (revents, arg); 3076 cb (revents, arg);
2270} 3077}
2271 3078
2272static void 3079static void
2273once_cb_io (EV_P_ ev_io *w, int revents) 3080once_cb_io (EV_P_ ev_io *w, int revents)
2274{ 3081{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3082 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3083
3084 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2276} 3085}
2277 3086
2278static void 3087static void
2279once_cb_to (EV_P_ ev_timer *w, int revents) 3088once_cb_to (EV_P_ ev_timer *w, int revents)
2280{ 3089{
2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3090 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3091
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2282} 3093}
2283 3094
2284void 3095void
2285ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3096ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2286{ 3097{
2308 ev_timer_set (&once->to, timeout, 0.); 3119 ev_timer_set (&once->to, timeout, 0.);
2309 ev_timer_start (EV_A_ &once->to); 3120 ev_timer_start (EV_A_ &once->to);
2310 } 3121 }
2311} 3122}
2312 3123
3124#if EV_MULTIPLICITY
3125 #include "ev_wrap.h"
3126#endif
3127
2313#ifdef __cplusplus 3128#ifdef __cplusplus
2314} 3129}
2315#endif 3130#endif
2316 3131

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines