ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.274 by root, Thu Nov 20 00:35:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
285#if EV_USE_MONOTONIC 402#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 406#endif
290 407
291#ifdef _WIN32 408#ifdef _WIN32
292# include "ev_win32.c" 409# include "ev_win32.c"
293#endif 410#endif
301{ 418{
302 syserr_cb = cb; 419 syserr_cb = cb;
303} 420}
304 421
305static void noinline 422static void noinline
306syserr (const char *msg) 423ev_syserr (const char *msg)
307{ 424{
308 if (!msg) 425 if (!msg)
309 msg = "(libev) system error"; 426 msg = "(libev) system error";
310 427
311 if (syserr_cb) 428 if (syserr_cb)
315 perror (msg); 432 perror (msg);
316 abort (); 433 abort ();
317 } 434 }
318} 435}
319 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
320static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 453
322void 454void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 456{
325 alloc = cb; 457 alloc = cb;
326} 458}
327 459
328inline_speed void * 460inline_speed void *
329ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
330{ 462{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
332 464
333 if (!ptr && size) 465 if (!ptr && size)
334 { 466 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 468 abort ();
347typedef struct 479typedef struct
348{ 480{
349 WL head; 481 WL head;
350 unsigned char events; 482 unsigned char events;
351 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
352#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 490 SOCKET handle;
354#endif 491#endif
355} ANFD; 492} ANFD;
356 493
359 W w; 496 W w;
360 int events; 497 int events;
361} ANPENDING; 498} ANPENDING;
362 499
363#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
364typedef struct 502typedef struct
365{ 503{
366 WL head; 504 WL head;
367} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
368#endif 524#endif
369 525
370#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
371 527
372 struct ev_loop 528 struct ev_loop
443 ts.tv_sec = (time_t)delay; 599 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 601
446 nanosleep (&ts, 0); 602 nanosleep (&ts, 0);
447#elif defined(_WIN32) 603#elif defined(_WIN32)
448 Sleep (delay * 1e3); 604 Sleep ((unsigned long)(delay * 1e3));
449#else 605#else
450 struct timeval tv; 606 struct timeval tv;
451 607
452 tv.tv_sec = (time_t)delay; 608 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
455 select (0, 0, 0, 0, &tv); 614 select (0, 0, 0, 0, &tv);
456#endif 615#endif
457 } 616 }
458} 617}
459 618
460/*****************************************************************************/ 619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
461 622
462int inline_size 623int inline_size
463array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
464{ 625{
465 int ncur = cur + 1; 626 int ncur = cur + 1;
466 627
467 do 628 do
468 ncur <<= 1; 629 ncur <<= 1;
469 while (cnt > ncur); 630 while (cnt > ncur);
470 631
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 634 {
474 ncur *= elem; 635 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 638 ncur /= elem;
478 } 639 }
479 640
480 return ncur; 641 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
485{ 646{
486 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
488} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 653
490#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
492 { \ 656 { \
493 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
537 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
538} 702}
539 703
540/*****************************************************************************/ 704/*****************************************************************************/
541 705
542void inline_size
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed 706void inline_speed
556fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
557{ 708{
558 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
559 ev_io *w; 710 ev_io *w;
591 events |= (unsigned char)w->events; 742 events |= (unsigned char)w->events;
592 743
593#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
594 if (events) 745 if (events)
595 { 746 {
596 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
597 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 754 }
600#endif 755#endif
601 756
602 { 757 {
603 unsigned char o_events = anfd->events; 758 unsigned char o_events = anfd->events;
656{ 811{
657 int fd; 812 int fd;
658 813
659 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 815 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
663} 818}
664 819
665/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 821static void noinline
684 839
685 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 841 if (anfds [fd].events)
687 { 842 {
688 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
690 } 846 }
691} 847}
692 848
693/*****************************************************************************/ 849/*****************************************************************************/
694 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
695void inline_speed 871void inline_speed
696upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
697{ 873{
698 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
699 876
700 while (k) 877 for (;;)
701 { 878 {
702 int p = (k - 1) >> 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
703 882
704 if (heap [p]->at <= w->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
705 break; 899 break;
706 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
707 heap [k] = heap [p]; 963 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 964 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 965 k = p;
710 } 966 }
711 967
712 heap [k] = w; 968 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 969 ev_active (ANHE_w (he)) = k;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742} 970}
743 971
744void inline_size 972void inline_size
745adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
746{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 976 upheap (heap, k);
977 else
748 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
749} 991}
750 992
751/*****************************************************************************/ 993/*****************************************************************************/
752 994
753typedef struct 995typedef struct
754{ 996{
755 WL head; 997 WL head;
756 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
757} ANSIG; 999} ANSIG;
758 1000
759static ANSIG *signals; 1001static ANSIG *signals;
760static int signalmax; 1002static int signalmax;
761 1003
762static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 1005
766void inline_size 1006/*****************************************************************************/
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828 1007
829void inline_speed 1008void inline_speed
830fd_intern (int fd) 1009fd_intern (int fd)
831{ 1010{
832#ifdef _WIN32 1011#ifdef _WIN32
833 int arg = 1; 1012 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 1014#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1017#endif
839} 1018}
840 1019
841static void noinline 1020static void noinline
842siginit (EV_P) 1021evpipe_init (EV_P)
843{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
844 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
846 1042
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
850} 1111}
851 1112
852/*****************************************************************************/ 1113/*****************************************************************************/
853 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
854static WL childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
855 1153
856#ifndef _WIN32 1154#ifndef _WIN32
857 1155
858static ev_signal childev; 1156static ev_signal childev;
859 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
860void inline_speed 1162void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
862{ 1164{
863 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1167
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
866 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
867 { 1172 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1174 w->rpid = pid;
870 w->rstatus = status; 1175 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1177 }
1178 }
873} 1179}
874 1180
875#ifndef WCONTINUED 1181#ifndef WCONTINUED
876# define WCONTINUED 0 1182# define WCONTINUED 0
877#endif 1183#endif
886 if (!WCONTINUED 1192 if (!WCONTINUED
887 || errno != EINVAL 1193 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1195 return;
890 1196
891 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1200
895 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1204}
899 1205
900#endif 1206#endif
901 1207
902/*****************************************************************************/ 1208/*****************************************************************************/
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1327 have_monotonic = 1;
1022 } 1328 }
1023#endif 1329#endif
1024 1330
1025 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1332 mn_now = get_clock ();
1027 now_floor = mn_now; 1333 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1029 1335
1030 io_blocktime = 0.; 1336 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1032 1344
1033 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
1034#ifndef _WIN32 1346#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1348 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1352 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1355
1044 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1358
1053#if EV_USE_PORT 1359#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1361#endif
1056#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
1064#endif 1370#endif
1065#if EV_USE_SELECT 1371#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1373#endif
1068 1374
1069 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
1071 } 1377 }
1072} 1378}
1073 1379
1074static void noinline 1380static void noinline
1075loop_destroy (EV_P) 1381loop_destroy (EV_P)
1076{ 1382{
1077 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1078 1401
1079#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
1081 close (fs_fd); 1404 close (fs_fd);
1082#endif 1405#endif
1119#if EV_FORK_ENABLE 1442#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1443 array_free (fork, EMPTY);
1121#endif 1444#endif
1122 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1124 1450
1125 backend = 0; 1451 backend = 0;
1126} 1452}
1127 1453
1454#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1129 1457
1130void inline_size 1458void inline_size
1131loop_fork (EV_P) 1459loop_fork (EV_P)
1132{ 1460{
1133#if EV_USE_PORT 1461#if EV_USE_PORT
1141#endif 1469#endif
1142#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1471 infy_fork (EV_A);
1144#endif 1472#endif
1145 1473
1146 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1147 { 1475 {
1148 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1149 1482
1150 ev_ref (EV_A); 1483 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1152 close (sigpipe [0]); 1493 close (evpipe [0]);
1153 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1154 1496
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1159 } 1500 }
1160 1501
1161 postfork = 0; 1502 postfork = 0;
1162} 1503}
1163 1504
1164#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1165struct ev_loop * 1507struct ev_loop *
1166ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1167{ 1509{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1511
1185} 1527}
1186 1528
1187void 1529void
1188ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1189{ 1531{
1190 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1191} 1533}
1192 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1193#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1194 1635
1195#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1196struct ev_loop * 1637struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1198#else 1639#else
1199int 1640int
1200ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1201#endif 1642#endif
1202{ 1643{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1208 { 1645 {
1209#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1648#else
1214 1651
1215 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1216 1653
1217 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1218 { 1655 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1656#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1237{ 1672{
1238#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1240#endif 1675#endif
1241 1676
1677 ev_default_loop_ptr = 0;
1678
1242#ifndef _WIN32 1679#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1245#endif 1682#endif
1246 1683
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1254} 1685}
1255 1686
1256void 1687void
1257ev_default_fork (void) 1688ev_default_fork (void)
1258{ 1689{
1259#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1692#endif
1262 1693
1263 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 1695}
1266 1696
1267/*****************************************************************************/ 1697/*****************************************************************************/
1268 1698
1269void 1699void
1286 { 1716 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288 1718
1289 p->w->pending = 0; 1719 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1291 } 1722 }
1292 } 1723 }
1293} 1724}
1294
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374 1725
1375#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1376void inline_size 1727void inline_size
1377idle_reify (EV_P) 1728idle_reify (EV_P)
1378{ 1729{
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break; 1742 break;
1392 } 1743 }
1393 } 1744 }
1394 } 1745 }
1746}
1747#endif
1748
1749void inline_size
1750timers_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
1782periodics_reify (EV_P)
1783{
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827}
1828
1829static void noinline
1830periodics_reschedule (EV_P)
1831{
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1395} 1848}
1396#endif 1849#endif
1397 1850
1398void inline_speed 1851void inline_speed
1399time_update (EV_P_ ev_tstamp max_block) 1852time_update (EV_P_ ev_tstamp max_block)
1428 */ 1881 */
1429 for (i = 4; --i; ) 1882 for (i = 4; --i; )
1430 { 1883 {
1431 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1432 1885
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 1887 return; /* all is well */
1435 1888
1436 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 1890 mn_now = get_clock ();
1438 now_floor = mn_now; 1891 now_floor = mn_now;
1454#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1456#endif 1909#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1459 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1460 } 1917 }
1461 1918
1462 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1463 } 1920 }
1464} 1921}
1473ev_unref (EV_P) 1930ev_unref (EV_P)
1474{ 1931{
1475 --activecnt; 1932 --activecnt;
1476} 1933}
1477 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1478static int loop_done; 1941static int loop_done;
1479 1942
1480void 1943void
1481ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1482{ 1945{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486 1947
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488 1949
1489 do 1950 do
1490 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1491#ifndef _WIN32 1956#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1494 { 1959 {
1495 curpid = getpid (); 1960 curpid = getpid ();
1536 2001
1537 waittime = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1538 2003
1539 if (timercnt) 2004 if (timercnt)
1540 { 2005 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2007 if (waittime > to) waittime = to;
1543 } 2008 }
1544 2009
1545#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2011 if (periodiccnt)
1547 { 2012 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2014 if (waittime > to) waittime = to;
1550 } 2015 }
1551#endif 2016#endif
1552 2017
1553 if (expect_false (waittime < timeout_blocktime)) 2018 if (expect_false (waittime < timeout_blocktime))
1586 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2054
1590 call_pending (EV_A); 2055 call_pending (EV_A);
1591
1592 } 2056 }
1593 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1594 2062
1595 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1597} 2065}
1598 2066
1686 2154
1687 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1688 return; 2156 return;
1689 2157
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1691 2162
1692 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1695 2166
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
1698} 2171}
1699 2172
1700void noinline 2173void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1702{ 2175{
1703 clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1705 return; 2178 return;
1706 2179
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
1708 2183
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1711 2186
1712 fd_change (EV_A_ w->fd, 1); 2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
1713} 2190}
1714 2191
1715void noinline 2192void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1717{ 2194{
1718 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1719 return; 2196 return;
1720 2197
1721 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1722 2199
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1729 2210
2211 EV_FREQUENT_CHECK;
2212
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2214}
1732 2215
1733void noinline 2216void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2218{
1736 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1738 return; 2221 return;
1739 2222
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2223 EV_FREQUENT_CHECK;
1741 2224
1742 { 2225 {
1743 int active = ((W)w)->active; 2226 int active = ev_active (w);
1744 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1745 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1746 { 2233 {
1747 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1749 } 2236 }
1750 } 2237 }
1751 2238
1752 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1753 2242
1754 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1755} 2244}
1756 2245
1757void noinline 2246void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1759{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1760 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1761 { 2252 {
1762 if (w->repeat) 2253 if (w->repeat)
1763 { 2254 {
1764 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1766 } 2258 }
1767 else 2259 else
1768 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1769 } 2261 }
1770 else if (w->repeat) 2262 else if (w->repeat)
1771 { 2263 {
1772 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1774 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1775} 2269}
1776 2270
1777#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1778void noinline 2272void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2274{
1781 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1782 return; 2276 return;
1783 2277
1784 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2280 else if (w->interval)
1787 { 2281 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2285 }
1792 else 2286 else
1793 ((WT)w)->at = w->offset; 2287 ev_at (w) = w->offset;
1794 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1799 2297
2298 EV_FREQUENT_CHECK;
2299
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2301}
1802 2302
1803void noinline 2303void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2305{
1806 clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1808 return; 2308 return;
1809 2309
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2310 EV_FREQUENT_CHECK;
1811 2311
1812 { 2312 {
1813 int active = ((W)w)->active; 2313 int active = ev_active (w);
1814 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1815 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2320 {
1817 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1819 } 2323 }
1820 } 2324 }
1821 2325
2326 EV_FREQUENT_CHECK;
2327
1822 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1823} 2329}
1824 2330
1825void noinline 2331void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1843#endif 2349#endif
1844 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1845 return; 2351 return;
1846 2352
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
1848 2358
1849 { 2359 {
1850#ifndef _WIN32 2360#ifndef _WIN32
1851 sigset_t full, prev; 2361 sigset_t full, prev;
1852 sigfillset (&full); 2362 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev); 2363 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif 2364#endif
1855 2365
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1857 2367
1858#ifndef _WIN32 2368#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2369 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif 2370#endif
1861 } 2371 }
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2375
1866 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1867 { 2377 {
1868#if _WIN32 2378#if _WIN32
1869 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1870#else 2380#else
1871 struct sigaction sa; 2381 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1876#endif 2386#endif
1877 } 2387 }
2388
2389 EV_FREQUENT_CHECK;
1878} 2390}
1879 2391
1880void noinline 2392void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2394{
1883 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1885 return; 2397 return;
1886 2398
2399 EV_FREQUENT_CHECK;
2400
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1889 2403
1890 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1892} 2408}
1893 2409
1894void 2410void
1895ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1896{ 2412{
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2415#endif
1900 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1901 return; 2417 return;
1902 2418
2419 EV_FREQUENT_CHECK;
2420
1903 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1905} 2425}
1906 2426
1907void 2427void
1908ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1909{ 2429{
1910 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1912 return; 2432 return;
1913 2433
2434 EV_FREQUENT_CHECK;
2435
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1916} 2440}
1917 2441
1918#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1919 2443
1920# ifdef _WIN32 2444# ifdef _WIN32
1921# undef lstat 2445# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1923# endif 2447# endif
1924 2448
1925#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1927 2452
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2454
1930#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1935{ 2460{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2462
1938 if (w->wd < 0) 2463 if (w->wd < 0)
1939 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2467
1942 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2472 {
1945 char path [4096]; 2473 char path [4096];
1946 strcpy (path, w->path); 2474 strcpy (path, w->path);
1947 2475
1960 } 2488 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2490 }
1963 } 2491 }
1964 else 2492 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2493 {
1966
1967 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2494 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2495
2496 /* now local changes will be tracked by inotify, but remote changes won't */
2497 /* unless the filesystem it known to be local, we therefore still poll */
2498 /* also do poll on <2.6.25, but with normal frequency */
2499 struct statfs sfs;
2500
2501 if (fs_2625 && !statfs (w->path, &sfs))
2502 if (sfs.f_type == 0x1373 /* devfs */
2503 || sfs.f_type == 0xEF53 /* ext2/3 */
2504 || sfs.f_type == 0x3153464a /* jfs */
2505 || sfs.f_type == 0x52654973 /* reiser3 */
2506 || sfs.f_type == 0x01021994 /* tempfs */
2507 || sfs.f_type == 0x58465342 /* xfs */)
2508 return;
2509
2510 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer);
2512 }
1969} 2513}
1970 2514
1971static void noinline 2515static void noinline
1972infy_del (EV_P_ ev_stat *w) 2516infy_del (EV_P_ ev_stat *w)
1973{ 2517{
1987 2531
1988static void noinline 2532static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2533infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2534{
1991 if (slot < 0) 2535 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 2536 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2537 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 2538 infy_wd (EV_A_ slot, wd, ev);
1995 else 2539 else
1996 { 2540 {
1997 WL w_; 2541 WL w_;
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2570 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028} 2572}
2029 2573
2030void inline_size 2574void inline_size
2575check_2625 (EV_P)
2576{
2577 /* kernels < 2.6.25 are borked
2578 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2579 */
2580 struct utsname buf;
2581 int major, minor, micro;
2582
2583 if (uname (&buf))
2584 return;
2585
2586 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2587 return;
2588
2589 if (major < 2
2590 || (major == 2 && minor < 6)
2591 || (major == 2 && minor == 6 && micro < 25))
2592 return;
2593
2594 fs_2625 = 1;
2595}
2596
2597void inline_size
2031infy_init (EV_P) 2598infy_init (EV_P)
2032{ 2599{
2033 if (fs_fd != -2) 2600 if (fs_fd != -2)
2034 return; 2601 return;
2602
2603 fs_fd = -1;
2604
2605 check_2625 (EV_A);
2035 2606
2036 fs_fd = inotify_init (); 2607 fs_fd = inotify_init ();
2037 2608
2038 if (fs_fd >= 0) 2609 if (fs_fd >= 0)
2039 { 2610 {
2067 w->wd = -1; 2638 w->wd = -1;
2068 2639
2069 if (fs_fd >= 0) 2640 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 2641 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 2642 else
2072 ev_timer_start (EV_A_ &w->timer); 2643 ev_timer_again (EV_A_ &w->timer);
2073 } 2644 }
2074
2075 } 2645 }
2076} 2646}
2077 2647
2648#endif
2649
2650#ifdef _WIN32
2651# define EV_LSTAT(p,b) _stati64 (p, b)
2652#else
2653# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 2654#endif
2079 2655
2080void 2656void
2081ev_stat_stat (EV_P_ ev_stat *w) 2657ev_stat_stat (EV_P_ ev_stat *w)
2082{ 2658{
2109 || w->prev.st_atime != w->attr.st_atime 2685 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 2686 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 2687 || w->prev.st_ctime != w->attr.st_ctime
2112 ) { 2688 ) {
2113 #if EV_USE_INOTIFY 2689 #if EV_USE_INOTIFY
2690 if (fs_fd >= 0)
2691 {
2114 infy_del (EV_A_ w); 2692 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 2693 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 2694 ev_stat_stat (EV_A_ w); /* avoid race... */
2695 }
2117 #endif 2696 #endif
2118 2697
2119 ev_feed_event (EV_A_ w, EV_STAT); 2698 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 2699 }
2121} 2700}
2124ev_stat_start (EV_P_ ev_stat *w) 2703ev_stat_start (EV_P_ ev_stat *w)
2125{ 2704{
2126 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
2127 return; 2706 return;
2128 2707
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 2708 ev_stat_stat (EV_A_ w);
2134 2709
2710 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 2711 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 2712
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2713 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 2714 ev_set_priority (&w->timer, ev_priority (w));
2140 2715
2141#if EV_USE_INOTIFY 2716#if EV_USE_INOTIFY
2142 infy_init (EV_A); 2717 infy_init (EV_A);
2143 2718
2144 if (fs_fd >= 0) 2719 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 2720 infy_add (EV_A_ w);
2146 else 2721 else
2147#endif 2722#endif
2148 ev_timer_start (EV_A_ &w->timer); 2723 ev_timer_again (EV_A_ &w->timer);
2149 2724
2150 ev_start (EV_A_ (W)w, 1); 2725 ev_start (EV_A_ (W)w, 1);
2726
2727 EV_FREQUENT_CHECK;
2151} 2728}
2152 2729
2153void 2730void
2154ev_stat_stop (EV_P_ ev_stat *w) 2731ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2732{
2156 clear_pending (EV_A_ (W)w); 2733 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2734 if (expect_false (!ev_is_active (w)))
2158 return; 2735 return;
2159 2736
2737 EV_FREQUENT_CHECK;
2738
2160#if EV_USE_INOTIFY 2739#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2740 infy_del (EV_A_ w);
2162#endif 2741#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2742 ev_timer_stop (EV_A_ &w->timer);
2164 2743
2165 ev_stop (EV_A_ (W)w); 2744 ev_stop (EV_A_ (W)w);
2745
2746 EV_FREQUENT_CHECK;
2166} 2747}
2167#endif 2748#endif
2168 2749
2169#if EV_IDLE_ENABLE 2750#if EV_IDLE_ENABLE
2170void 2751void
2172{ 2753{
2173 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
2174 return; 2755 return;
2175 2756
2176 pri_adjust (EV_A_ (W)w); 2757 pri_adjust (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2177 2760
2178 { 2761 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2762 int active = ++idlecnt [ABSPRI (w)];
2180 2763
2181 ++idleall; 2764 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2765 ev_start (EV_A_ (W)w, active);
2183 2766
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2767 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2768 idles [ABSPRI (w)][active - 1] = w;
2186 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
2187} 2772}
2188 2773
2189void 2774void
2190ev_idle_stop (EV_P_ ev_idle *w) 2775ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2776{
2192 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2194 return; 2779 return;
2195 2780
2781 EV_FREQUENT_CHECK;
2782
2196 { 2783 {
2197 int active = ((W)w)->active; 2784 int active = ev_active (w);
2198 2785
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2786 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2787 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2788
2202 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2203 --idleall; 2790 --idleall;
2204 } 2791 }
2792
2793 EV_FREQUENT_CHECK;
2205} 2794}
2206#endif 2795#endif
2207 2796
2208void 2797void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2798ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2799{
2211 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2212 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2213 2804
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2805 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2806 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2807 prepares [preparecnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2217} 2810}
2218 2811
2219void 2812void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 2813ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 2814{
2222 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2224 return; 2817 return;
2225 2818
2819 EV_FREQUENT_CHECK;
2820
2226 { 2821 {
2227 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2228 prepares [active - 1] = prepares [--preparecnt]; 2824 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 2825 ev_active (prepares [active - 1]) = active;
2230 } 2826 }
2231 2827
2232 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2233} 2831}
2234 2832
2235void 2833void
2236ev_check_start (EV_P_ ev_check *w) 2834ev_check_start (EV_P_ ev_check *w)
2237{ 2835{
2238 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
2239 return; 2837 return;
2838
2839 EV_FREQUENT_CHECK;
2240 2840
2241 ev_start (EV_A_ (W)w, ++checkcnt); 2841 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2842 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 2843 checks [checkcnt - 1] = w;
2844
2845 EV_FREQUENT_CHECK;
2244} 2846}
2245 2847
2246void 2848void
2247ev_check_stop (EV_P_ ev_check *w) 2849ev_check_stop (EV_P_ ev_check *w)
2248{ 2850{
2249 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
2251 return; 2853 return;
2252 2854
2855 EV_FREQUENT_CHECK;
2856
2253 { 2857 {
2254 int active = ((W)w)->active; 2858 int active = ev_active (w);
2859
2255 checks [active - 1] = checks [--checkcnt]; 2860 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 2861 ev_active (checks [active - 1]) = active;
2257 } 2862 }
2258 2863
2259 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2260} 2867}
2261 2868
2262#if EV_EMBED_ENABLE 2869#if EV_EMBED_ENABLE
2263void noinline 2870void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 2871ev_embed_sweep (EV_P_ ev_embed *w)
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2898 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 2899 }
2293 } 2900 }
2294} 2901}
2295 2902
2903static void
2904embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2905{
2906 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2907
2908 {
2909 struct ev_loop *loop = w->other;
2910
2911 ev_loop_fork (EV_A);
2912 }
2913}
2914
2296#if 0 2915#if 0
2297static void 2916static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2917embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 2918{
2300 ev_idle_stop (EV_A_ idle); 2919 ev_idle_stop (EV_A_ idle);
2311 struct ev_loop *loop = w->other; 2930 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2931 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2932 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 2933 }
2315 2934
2935 EV_FREQUENT_CHECK;
2936
2316 ev_set_priority (&w->io, ev_priority (w)); 2937 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 2938 ev_io_start (EV_A_ &w->io);
2318 2939
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 2940 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 2941 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 2942 ev_prepare_start (EV_A_ &w->prepare);
2322 2943
2944 ev_fork_init (&w->fork, embed_fork_cb);
2945 ev_fork_start (EV_A_ &w->fork);
2946
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2947 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 2948
2325 ev_start (EV_A_ (W)w, 1); 2949 ev_start (EV_A_ (W)w, 1);
2950
2951 EV_FREQUENT_CHECK;
2326} 2952}
2327 2953
2328void 2954void
2329ev_embed_stop (EV_P_ ev_embed *w) 2955ev_embed_stop (EV_P_ ev_embed *w)
2330{ 2956{
2331 clear_pending (EV_A_ (W)w); 2957 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2958 if (expect_false (!ev_is_active (w)))
2333 return; 2959 return;
2334 2960
2961 EV_FREQUENT_CHECK;
2962
2335 ev_io_stop (EV_A_ &w->io); 2963 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 2964 ev_prepare_stop (EV_A_ &w->prepare);
2965 ev_fork_stop (EV_A_ &w->fork);
2337 2966
2338 ev_stop (EV_A_ (W)w); 2967 EV_FREQUENT_CHECK;
2339} 2968}
2340#endif 2969#endif
2341 2970
2342#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
2343void 2972void
2344ev_fork_start (EV_P_ ev_fork *w) 2973ev_fork_start (EV_P_ ev_fork *w)
2345{ 2974{
2346 if (expect_false (ev_is_active (w))) 2975 if (expect_false (ev_is_active (w)))
2347 return; 2976 return;
2977
2978 EV_FREQUENT_CHECK;
2348 2979
2349 ev_start (EV_A_ (W)w, ++forkcnt); 2980 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2981 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 2982 forks [forkcnt - 1] = w;
2983
2984 EV_FREQUENT_CHECK;
2352} 2985}
2353 2986
2354void 2987void
2355ev_fork_stop (EV_P_ ev_fork *w) 2988ev_fork_stop (EV_P_ ev_fork *w)
2356{ 2989{
2357 clear_pending (EV_A_ (W)w); 2990 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 2991 if (expect_false (!ev_is_active (w)))
2359 return; 2992 return;
2360 2993
2994 EV_FREQUENT_CHECK;
2995
2361 { 2996 {
2362 int active = ((W)w)->active; 2997 int active = ev_active (w);
2998
2363 forks [active - 1] = forks [--forkcnt]; 2999 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3000 ev_active (forks [active - 1]) = active;
2365 } 3001 }
2366 3002
2367 ev_stop (EV_A_ (W)w); 3003 ev_stop (EV_A_ (W)w);
3004
3005 EV_FREQUENT_CHECK;
3006}
3007#endif
3008
3009#if EV_ASYNC_ENABLE
3010void
3011ev_async_start (EV_P_ ev_async *w)
3012{
3013 if (expect_false (ev_is_active (w)))
3014 return;
3015
3016 evpipe_init (EV_A);
3017
3018 EV_FREQUENT_CHECK;
3019
3020 ev_start (EV_A_ (W)w, ++asynccnt);
3021 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3022 asyncs [asynccnt - 1] = w;
3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027void
3028ev_async_stop (EV_P_ ev_async *w)
3029{
3030 clear_pending (EV_A_ (W)w);
3031 if (expect_false (!ev_is_active (w)))
3032 return;
3033
3034 EV_FREQUENT_CHECK;
3035
3036 {
3037 int active = ev_active (w);
3038
3039 asyncs [active - 1] = asyncs [--asynccnt];
3040 ev_active (asyncs [active - 1]) = active;
3041 }
3042
3043 ev_stop (EV_A_ (W)w);
3044
3045 EV_FREQUENT_CHECK;
3046}
3047
3048void
3049ev_async_send (EV_P_ ev_async *w)
3050{
3051 w->sent = 1;
3052 evpipe_write (EV_A_ &gotasync);
2368} 3053}
2369#endif 3054#endif
2370 3055
2371/*****************************************************************************/ 3056/*****************************************************************************/
2372 3057
2382once_cb (EV_P_ struct ev_once *once, int revents) 3067once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3068{
2384 void (*cb)(int revents, void *arg) = once->cb; 3069 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3070 void *arg = once->arg;
2386 3071
2387 ev_io_stop (EV_A_ &once->io); 3072 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3073 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3074 ev_free (once);
2390 3075
2391 cb (revents, arg); 3076 cb (revents, arg);
2392} 3077}
2393 3078
2394static void 3079static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3080once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3081{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3082 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3083
3084 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3085}
2399 3086
2400static void 3087static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3088once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3089{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3090 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3091
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3093}
2405 3094
2406void 3095void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3096ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3097{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines