ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.274 by root, Thu Nov 20 00:35:10 2008 UTC vs.
Revision 1.459 by root, Tue Oct 29 12:13:37 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
67# endif 71# endif
68# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
70# endif 74# endif
71# else 75# else
72# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
74# endif 78# endif
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
180 252
181#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 256# else
185# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
186# endif 258# endif
187#endif 259#endif
188 260
189#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 264# else
193# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
194# endif 266# endif
195#endif 267#endif
196 268
197#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 271#endif
200 272
201#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 276# else
205# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
206# endif 278# endif
207#endif 279#endif
208 280
209#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 283#endif
212 284
213#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
214# ifdef _WIN32 286# ifdef _WIN32
215# define EV_USE_POLL 0 287# define EV_USE_POLL 0
216# else 288# else
217# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 290# endif
219#endif 291#endif
220 292
221#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 296# else
225# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
226# endif 298# endif
227#endif 299#endif
228 300
234# define EV_USE_PORT 0 306# define EV_USE_PORT 0
235#endif 307#endif
236 308
237#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 312# else
241# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
242# endif 314# endif
243#endif 315#endif
244 316
245#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 319#endif
252 320
253#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 323#endif
260 324
261#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 328# else
265# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
266# endif 338# endif
267#endif 339#endif
268 340
269#if 0 /* debugging */ 341#if 0 /* debugging */
270# define EV_VERIFY 3 342# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
273#endif 345#endif
274 346
275#ifndef EV_VERIFY 347#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 349#endif
278 350
279#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 353#endif
282 354
283#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
285#endif 387#endif
286 388
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 390
289#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
302#endif 404#endif
303 405
304#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 409# include <sys/select.h>
307# endif 410# endif
308#endif 411#endif
309 412
310#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 414# include <sys/statfs.h>
313# include <sys/inotify.h> 415# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
318# endif 420# endif
319#endif 421#endif
320 422
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 425# include <stdint.h>
337# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
338extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
339# endif 428# endif
340int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 430# ifdef O_CLOEXEC
342} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
343# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
344#endif 459#endif
345 460
346/**/ 461/**/
347 462
348#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 465#else
351# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
352#endif 467#endif
353 468
354/* 469/*
355 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 472 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 475
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 526 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
371#else 542#else
372# define expect(expr,value) (expr) 543 #include <inttypes.h>
373# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
375# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
376# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __x86_64 || _M_AMD64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
377#endif 557 #endif
558#endif
378 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681#endif
682
683#ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696#endif
697
698#ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714#endif
715
716#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718#endif
719
720#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722#endif
723
724/*****************************************************************************/
725
726#if __cplusplus
727 #define ecb_inline static inline
728#elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730#elif ECB_C99
731 #define ecb_inline static inline
732#else
733 #define ecb_inline static
734#endif
735
736#if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738#elif ECB_C99
739 #define ecb_restrict restrict
740#else
741 #define ecb_restrict
742#endif
743
744typedef int ecb_bool;
745
746#define ECB_CONCAT_(a, b) a ## b
747#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748#define ECB_STRINGIFY_(a) # a
749#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751#define ecb_function_ ecb_inline
752
753#if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758#else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
761 #define ecb_expect(expr,value) (expr)
762 #define ecb_prefetch(addr,rw,locality)
763#endif
764
765/* no emulation for ecb_decltype */
766#if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768#elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770#endif
771
772#define ecb_noinline ecb_attribute ((__noinline__))
773#define ecb_unused ecb_attribute ((__unused__))
774#define ecb_const ecb_attribute ((__const__))
775#define ecb_pure ecb_attribute ((__pure__))
776
777#if ECB_C11
778 #define ecb_noreturn _Noreturn
779#else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781#endif
782
783#if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787#else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791#endif
792
793/* put around conditional expressions if you are very sure that the */
794/* expression is mostly true or mostly false. note that these return */
795/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 796#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 797#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798/* for compatibility to the rest of the world */
799#define ecb_likely(expr) ecb_expect_true (expr)
800#define ecb_unlikely(expr) ecb_expect_false (expr)
801
802/* count trailing zero bits and count # of one bits */
803#if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811#else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820#if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826#else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832#endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880#endif
881
882ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889{
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892}
893
894ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896{
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903}
904
905ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907{
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915}
916
917/* popcount64 is only available on 64 bit cpus as gcc builtin */
918/* so for this version we are lazy */
919ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920ecb_function_ int
921ecb_popcount64 (uint64_t x)
922{
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924}
925
926ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944#if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948#else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969#endif
970
971#if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973#else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977#endif
978
979/* try to tell the compiler that some condition is definitely true */
980#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983ecb_inline unsigned char
984ecb_byteorder_helper (void)
985{
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998#else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005#endif
1006}
1007
1008ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013#if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015#else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017#endif
1018
1019#if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030#else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033#endif
1034
1035#if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042#else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044#endif
1045
1046/*******************************************************************************/
1047/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049/* basically, everything uses "ieee pure-endian" floating point numbers */
1050/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051#if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067#else
1068 #define ECB_STDFP 0
1069#endif
1070
1071#ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238#endif
1239
1240#endif
1241
1242/* ECB.H END */
1243
1244#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245/* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252# error "memory fences not defined for your architecture, please report"
1253#endif
1254
1255#ifndef ECB_MEMORY_FENCE
1256# define ECB_MEMORY_FENCE do { } while (0)
1257# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259#endif
1260
1261#define expect_false(cond) ecb_expect_false (cond)
1262#define expect_true(cond) ecb_expect_true (cond)
1263#define noinline ecb_noinline
1264
381#define inline_size static inline 1265#define inline_size ecb_inline
382 1266
383#if EV_MINIMAL 1267#if EV_FEATURE_CODE
1268# define inline_speed ecb_inline
1269#else
384# define inline_speed static noinline 1270# define inline_speed static noinline
1271#endif
1272
1273#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275#if EV_MINPRI == EV_MAXPRI
1276# define ABSPRI(w) (((W)w), 0)
385#else 1277#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1278# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279#endif
391 1280
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1281#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1282#define EMPTY2(a,b) /* used to suppress some warnings */
394 1283
395typedef ev_watcher *W; 1284typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 1286typedef ev_watcher_time *WT;
398 1287
399#define ev_active(w) ((W)(w))->active 1288#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1289#define ev_at(w) ((WT)(w))->at
401 1290
1291#if EV_USE_REALTIME
1292/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293/* giving it a reasonably high chance of working on typical architectures */
1294static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295#endif
1296
402#if EV_USE_MONOTONIC 1297#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1298static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299#endif
1300
1301#ifndef EV_FD_TO_WIN32_HANDLE
1302# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303#endif
1304#ifndef EV_WIN32_HANDLE_TO_FD
1305# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306#endif
1307#ifndef EV_WIN32_CLOSE_FD
1308# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 1309#endif
407 1310
408#ifdef _WIN32 1311#ifdef _WIN32
409# include "ev_win32.c" 1312# include "ev_win32.c"
410#endif 1313#endif
411 1314
412/*****************************************************************************/ 1315/*****************************************************************************/
413 1316
1317/* define a suitable floor function (only used by periodics atm) */
1318
1319#if EV_USE_FLOOR
1320# include <math.h>
1321# define ev_floor(v) floor (v)
1322#else
1323
1324#include <float.h>
1325
1326/* a floor() replacement function, should be independent of ev_tstamp type */
1327static ev_tstamp noinline
1328ev_floor (ev_tstamp v)
1329{
1330 /* the choice of shift factor is not terribly important */
1331#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333#else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335#endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359}
1360
1361#endif
1362
1363/*****************************************************************************/
1364
1365#ifdef __linux
1366# include <sys/utsname.h>
1367#endif
1368
1369static unsigned int noinline ecb_cold
1370ev_linux_version (void)
1371{
1372#ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405/*****************************************************************************/
1406
1407#if EV_AVOID_STDIO
1408static void noinline ecb_cold
1409ev_printerr (const char *msg)
1410{
1411 write (STDERR_FILENO, msg, strlen (msg));
1412}
1413#endif
1414
414static void (*syserr_cb)(const char *msg); 1415static void (*syserr_cb)(const char *msg) EV_THROW;
415 1416
416void 1417void ecb_cold
417ev_set_syserr_cb (void (*cb)(const char *msg)) 1418ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
418{ 1419{
419 syserr_cb = cb; 1420 syserr_cb = cb;
420} 1421}
421 1422
422static void noinline 1423static void noinline ecb_cold
423ev_syserr (const char *msg) 1424ev_syserr (const char *msg)
424{ 1425{
425 if (!msg) 1426 if (!msg)
426 msg = "(libev) system error"; 1427 msg = "(libev) system error";
427 1428
428 if (syserr_cb) 1429 if (syserr_cb)
429 syserr_cb (msg); 1430 syserr_cb (msg);
430 else 1431 else
431 { 1432 {
1433#if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438#else
432 perror (msg); 1439 perror (msg);
1440#endif
433 abort (); 1441 abort ();
434 } 1442 }
435} 1443}
436 1444
437static void * 1445static void *
438ev_realloc_emul (void *ptr, long size) 1446ev_realloc_emul (void *ptr, long size) EV_THROW
439{ 1447{
440 /* some systems, notably openbsd and darwin, fail to properly 1448 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 1449 * implement realloc (x, 0) (as required by both ansi c-89 and
442 * the single unix specification, so work around them here. 1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
443 */ 1453 */
444 1454
445 if (size) 1455 if (size)
446 return realloc (ptr, size); 1456 return realloc (ptr, size);
447 1457
448 free (ptr); 1458 free (ptr);
449 return 0; 1459 return 0;
450} 1460}
451 1461
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1462static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
453 1463
454void 1464void ecb_cold
455ev_set_allocator (void *(*cb)(void *ptr, long size)) 1465ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
456{ 1466{
457 alloc = cb; 1467 alloc = cb;
458} 1468}
459 1469
460inline_speed void * 1470inline_speed void *
462{ 1472{
463 ptr = alloc (ptr, size); 1473 ptr = alloc (ptr, size);
464 1474
465 if (!ptr && size) 1475 if (!ptr && size)
466 { 1476 {
1477#if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481#endif
468 abort (); 1482 abort ();
469 } 1483 }
470 1484
471 return ptr; 1485 return ptr;
472} 1486}
474#define ev_malloc(size) ev_realloc (0, (size)) 1488#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 1489#define ev_free(ptr) ev_realloc ((ptr), 0)
476 1490
477/*****************************************************************************/ 1491/*****************************************************************************/
478 1492
1493/* set in reify when reification needed */
1494#define EV_ANFD_REIFY 1
1495
1496/* file descriptor info structure */
479typedef struct 1497typedef struct
480{ 1498{
481 WL head; 1499 WL head;
482 unsigned char events; 1500 unsigned char events; /* the events watched for */
483 unsigned char reify; 1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 1503 unsigned char unused;
486#if EV_USE_EPOLL 1504#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 1505 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 1506#endif
489#if EV_SELECT_IS_WINSOCKET 1507#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
490 SOCKET handle; 1508 SOCKET handle;
491#endif 1509#endif
1510#if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512#endif
492} ANFD; 1513} ANFD;
493 1514
1515/* stores the pending event set for a given watcher */
494typedef struct 1516typedef struct
495{ 1517{
496 W w; 1518 W w;
497 int events; 1519 int events; /* the pending event set for the given watcher */
498} ANPENDING; 1520} ANPENDING;
499 1521
500#if EV_USE_INOTIFY 1522#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 1523/* hash table entry per inotify-id */
502typedef struct 1524typedef struct
505} ANFS; 1527} ANFS;
506#endif 1528#endif
507 1529
508/* Heap Entry */ 1530/* Heap Entry */
509#if EV_HEAP_CACHE_AT 1531#if EV_HEAP_CACHE_AT
1532 /* a heap element */
510 typedef struct { 1533 typedef struct {
511 ev_tstamp at; 1534 ev_tstamp at;
512 WT w; 1535 WT w;
513 } ANHE; 1536 } ANHE;
514 1537
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 1541#else
1542 /* a heap element */
519 typedef WT ANHE; 1543 typedef WT ANHE;
520 1544
521 #define ANHE_w(he) (he) 1545 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 1546 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 1547 #define ANHE_at_cache(he)
534 #undef VAR 1558 #undef VAR
535 }; 1559 };
536 #include "ev_wrap.h" 1560 #include "ev_wrap.h"
537 1561
538 static struct ev_loop default_loop_struct; 1562 static struct ev_loop default_loop_struct;
539 struct ev_loop *ev_default_loop_ptr; 1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
540 1564
541#else 1565#else
542 1566
543 ev_tstamp ev_rt_now; 1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
544 #define VAR(name,decl) static decl; 1568 #define VAR(name,decl) static decl;
545 #include "ev_vars.h" 1569 #include "ev_vars.h"
546 #undef VAR 1570 #undef VAR
547 1571
548 static int ev_default_loop_ptr; 1572 static int ev_default_loop_ptr;
549 1573
550#endif 1574#endif
551 1575
1576#if EV_FEATURE_API
1577# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579# define EV_INVOKE_PENDING invoke_cb (EV_A)
1580#else
1581# define EV_RELEASE_CB (void)0
1582# define EV_ACQUIRE_CB (void)0
1583# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584#endif
1585
1586#define EVBREAK_RECURSE 0x80
1587
552/*****************************************************************************/ 1588/*****************************************************************************/
553 1589
1590#ifndef EV_HAVE_EV_TIME
554ev_tstamp 1591ev_tstamp
555ev_time (void) 1592ev_time (void) EV_THROW
556{ 1593{
557#if EV_USE_REALTIME 1594#if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
558 struct timespec ts; 1597 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 1598 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 1600 }
1601#endif
1602
562 struct timeval tv; 1603 struct timeval tv;
563 gettimeofday (&tv, 0); 1604 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 1605 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 1606}
1607#endif
567 1608
568ev_tstamp inline_size 1609inline_size ev_tstamp
569get_clock (void) 1610get_clock (void)
570{ 1611{
571#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 1613 if (expect_true (have_monotonic))
573 { 1614 {
580 return ev_time (); 1621 return ev_time ();
581} 1622}
582 1623
583#if EV_MULTIPLICITY 1624#if EV_MULTIPLICITY
584ev_tstamp 1625ev_tstamp
585ev_now (EV_P) 1626ev_now (EV_P) EV_THROW
586{ 1627{
587 return ev_rt_now; 1628 return ev_rt_now;
588} 1629}
589#endif 1630#endif
590 1631
591void 1632void
592ev_sleep (ev_tstamp delay) 1633ev_sleep (ev_tstamp delay) EV_THROW
593{ 1634{
594 if (delay > 0.) 1635 if (delay > 0.)
595 { 1636 {
596#if EV_USE_NANOSLEEP 1637#if EV_USE_NANOSLEEP
597 struct timespec ts; 1638 struct timespec ts;
598 1639
599 ts.tv_sec = (time_t)delay; 1640 EV_TS_SET (ts, delay);
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0); 1641 nanosleep (&ts, 0);
603#elif defined(_WIN32) 1642#elif defined _WIN32
604 Sleep ((unsigned long)(delay * 1e3)); 1643 Sleep ((unsigned long)(delay * 1e3));
605#else 1644#else
606 struct timeval tv; 1645 struct timeval tv;
607 1646
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1648 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
614 select (0, 0, 0, 0, &tv); 1651 select (0, 0, 0, 0, &tv);
615#endif 1652#endif
616 } 1653 }
617} 1654}
618 1655
619/*****************************************************************************/ 1656/*****************************************************************************/
620 1657
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1658#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 1659
623int inline_size 1660/* find a suitable new size for the given array, */
1661/* hopefully by rounding to a nice-to-malloc size */
1662inline_size int
624array_nextsize (int elem, int cur, int cnt) 1663array_nextsize (int elem, int cur, int cnt)
625{ 1664{
626 int ncur = cur + 1; 1665 int ncur = cur + 1;
627 1666
628 do 1667 do
629 ncur <<= 1; 1668 ncur <<= 1;
630 while (cnt > ncur); 1669 while (cnt > ncur);
631 1670
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 { 1673 {
635 ncur *= elem; 1674 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4; 1676 ncur = ncur - sizeof (void *) * 4;
639 } 1678 }
640 1679
641 return ncur; 1680 return ncur;
642} 1681}
643 1682
644static noinline void * 1683static void * noinline ecb_cold
645array_realloc (int elem, void *base, int *cur, int cnt) 1684array_realloc (int elem, void *base, int *cur, int cnt)
646{ 1685{
647 *cur = array_nextsize (elem, *cur, cnt); 1686 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur); 1687 return ev_realloc (base, elem * *cur);
649} 1688}
652 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
653 1692
654#define array_needsize(type,base,cur,cnt,init) \ 1693#define array_needsize(type,base,cur,cnt,init) \
655 if (expect_false ((cnt) > (cur))) \ 1694 if (expect_false ((cnt) > (cur))) \
656 { \ 1695 { \
657 int ocur_ = (cur); \ 1696 int ecb_unused ocur_ = (cur); \
658 (base) = (type *)array_realloc \ 1697 (base) = (type *)array_realloc \
659 (sizeof (type), (base), &(cur), (cnt)); \ 1698 (sizeof (type), (base), &(cur), (cnt)); \
660 init ((base) + (ocur_), (cur) - ocur_); \ 1699 init ((base) + (ocur_), (cur) - ocur_); \
661 } 1700 }
662 1701
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 1709 }
671#endif 1710#endif
672 1711
673#define array_free(stem, idx) \ 1712#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 1714
676/*****************************************************************************/ 1715/*****************************************************************************/
677 1716
1717/* dummy callback for pending events */
1718static void noinline
1719pendingcb (EV_P_ ev_prepare *w, int revents)
1720{
1721}
1722
678void noinline 1723void noinline
679ev_feed_event (EV_P_ void *w, int revents) 1724ev_feed_event (EV_P_ void *w, int revents) EV_THROW
680{ 1725{
681 W w_ = (W)w; 1726 W w_ = (W)w;
682 int pri = ABSPRI (w_); 1727 int pri = ABSPRI (w_);
683 1728
684 if (expect_false (w_->pending)) 1729 if (expect_false (w_->pending))
688 w_->pending = ++pendingcnt [pri]; 1733 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_; 1735 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 1736 pendings [pri][w_->pending - 1].events = revents;
692 } 1737 }
693}
694 1738
695void inline_speed 1739 pendingpri = NUMPRI - 1;
1740}
1741
1742inline_speed void
1743feed_reverse (EV_P_ W w)
1744{
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747}
1748
1749inline_size void
1750feed_reverse_done (EV_P_ int revents)
1751{
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755}
1756
1757inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 1758queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 1759{
698 int i; 1760 int i;
699 1761
700 for (i = 0; i < eventcnt; ++i) 1762 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 1763 ev_feed_event (EV_A_ events [i], type);
702} 1764}
703 1765
704/*****************************************************************************/ 1766/*****************************************************************************/
705 1767
706void inline_speed 1768inline_speed void
707fd_event (EV_P_ int fd, int revents) 1769fd_event_nocheck (EV_P_ int fd, int revents)
708{ 1770{
709 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
710 ev_io *w; 1772 ev_io *w;
711 1773
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 1778 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 1779 ev_feed_event (EV_A_ (W)w, ev);
718 } 1780 }
719} 1781}
720 1782
1783/* do not submit kernel events for fds that have reify set */
1784/* because that means they changed while we were polling for new events */
1785inline_speed void
1786fd_event (EV_P_ int fd, int revents)
1787{
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792}
1793
721void 1794void
722ev_feed_fd_event (EV_P_ int fd, int revents) 1795ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
723{ 1796{
724 if (fd >= 0 && fd < anfdmax) 1797 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 1798 fd_event_nocheck (EV_A_ fd, revents);
726} 1799}
727 1800
728void inline_size 1801/* make sure the external fd watch events are in-sync */
1802/* with the kernel/libev internal state */
1803inline_size void
729fd_reify (EV_P) 1804fd_reify (EV_P)
730{ 1805{
731 int i; 1806 int i;
1807
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 for (i = 0; i < fdchangecnt; ++i)
1810 {
1811 int fd = fdchanges [i];
1812 ANFD *anfd = anfds + fd;
1813
1814 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
1820 unsigned long arg;
1821
1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
1829 }
1830 }
1831#endif
732 1832
733 for (i = 0; i < fdchangecnt; ++i) 1833 for (i = 0; i < fdchangecnt; ++i)
734 { 1834 {
735 int fd = fdchanges [i]; 1835 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd; 1836 ANFD *anfd = anfds + fd;
737 ev_io *w; 1837 ev_io *w;
738 1838
739 unsigned char events = 0; 1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
740 1841
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1842 anfd->reify = 0;
742 events |= (unsigned char)w->events;
743 1843
744#if EV_SELECT_IS_WINSOCKET 1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
745 if (events)
746 { 1845 {
747 unsigned long arg; 1846 anfd->events = 0;
748 #ifdef EV_FD_TO_WIN32_HANDLE 1847
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
750 #else 1849 anfd->events |= (unsigned char)w->events;
751 anfd->handle = _get_osfhandle (fd); 1850
752 #endif 1851 if (o_events != anfd->events)
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1852 o_reify = EV__IOFDSET; /* actually |= */
754 } 1853 }
755#endif
756 1854
757 { 1855 if (o_reify & EV__IOFDSET)
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 1856 backend_modify (EV_A_ fd, o_events, anfd->events);
766 }
767 } 1857 }
768 1858
769 fdchangecnt = 0; 1859 fdchangecnt = 0;
770} 1860}
771 1861
772void inline_size 1862/* something about the given fd changed */
1863inline_size void
773fd_change (EV_P_ int fd, int flags) 1864fd_change (EV_P_ int fd, int flags)
774{ 1865{
775 unsigned char reify = anfds [fd].reify; 1866 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 1867 anfds [fd].reify |= flags;
777 1868
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 1873 fdchanges [fdchangecnt - 1] = fd;
783 } 1874 }
784} 1875}
785 1876
786void inline_speed 1877/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878inline_speed void ecb_cold
787fd_kill (EV_P_ int fd) 1879fd_kill (EV_P_ int fd)
788{ 1880{
789 ev_io *w; 1881 ev_io *w;
790 1882
791 while ((w = (ev_io *)anfds [fd].head)) 1883 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 1885 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 1887 }
796} 1888}
797 1889
798int inline_size 1890/* check whether the given fd is actually valid, for error recovery */
1891inline_size int ecb_cold
799fd_valid (int fd) 1892fd_valid (int fd)
800{ 1893{
801#ifdef _WIN32 1894#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 1896#else
804 return fcntl (fd, F_GETFD) != -1; 1897 return fcntl (fd, F_GETFD) != -1;
805#endif 1898#endif
806} 1899}
807 1900
808/* called on EBADF to verify fds */ 1901/* called on EBADF to verify fds */
809static void noinline 1902static void noinline ecb_cold
810fd_ebadf (EV_P) 1903fd_ebadf (EV_P)
811{ 1904{
812 int fd; 1905 int fd;
813 1906
814 for (fd = 0; fd < anfdmax; ++fd) 1907 for (fd = 0; fd < anfdmax; ++fd)
816 if (!fd_valid (fd) && errno == EBADF) 1909 if (!fd_valid (fd) && errno == EBADF)
817 fd_kill (EV_A_ fd); 1910 fd_kill (EV_A_ fd);
818} 1911}
819 1912
820/* called on ENOMEM in select/poll to kill some fds and retry */ 1913/* called on ENOMEM in select/poll to kill some fds and retry */
821static void noinline 1914static void noinline ecb_cold
822fd_enomem (EV_P) 1915fd_enomem (EV_P)
823{ 1916{
824 int fd; 1917 int fd;
825 1918
826 for (fd = anfdmax; fd--; ) 1919 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 1920 if (anfds [fd].events)
828 { 1921 {
829 fd_kill (EV_A_ fd); 1922 fd_kill (EV_A_ fd);
830 return; 1923 break;
831 } 1924 }
832} 1925}
833 1926
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1927/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1928static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1933 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1934 if (anfds [fd].events)
842 { 1935 {
843 anfds [fd].events = 0; 1936 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1937 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1939 }
847} 1940}
848 1941
1942/* used to prepare libev internal fd's */
1943/* this is not fork-safe */
1944inline_speed void
1945fd_intern (int fd)
1946{
1947#ifdef _WIN32
1948 unsigned long arg = 1;
1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1950#else
1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
1952 fcntl (fd, F_SETFL, O_NONBLOCK);
1953#endif
1954}
1955
849/*****************************************************************************/ 1956/*****************************************************************************/
850 1957
851/* 1958/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not 1959 * the heap functions want a real array index. array index 0 is guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree. 1961 * the branching factor of the d-tree.
855 */ 1962 */
856 1963
857/* 1964/*
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1973#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1974#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1975#define UPHEAP_DONE(p,k) ((p) == (k))
869 1976
870/* away from the root */ 1977/* away from the root */
871void inline_speed 1978inline_speed void
872downheap (ANHE *heap, int N, int k) 1979downheap (ANHE *heap, int N, int k)
873{ 1980{
874 ANHE he = heap [k]; 1981 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1982 ANHE *E = heap + N + HEAP0;
876 1983
916#define HEAP0 1 2023#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 2024#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 2025#define UPHEAP_DONE(p,k) (!(p))
919 2026
920/* away from the root */ 2027/* away from the root */
921void inline_speed 2028inline_speed void
922downheap (ANHE *heap, int N, int k) 2029downheap (ANHE *heap, int N, int k)
923{ 2030{
924 ANHE he = heap [k]; 2031 ANHE he = heap [k];
925 2032
926 for (;;) 2033 for (;;)
927 { 2034 {
928 int c = k << 1; 2035 int c = k << 1;
929 2036
930 if (c > N + HEAP0 - 1) 2037 if (c >= N + HEAP0)
931 break; 2038 break;
932 2039
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 2041 ? 1 : 0;
935 2042
946 ev_active (ANHE_w (he)) = k; 2053 ev_active (ANHE_w (he)) = k;
947} 2054}
948#endif 2055#endif
949 2056
950/* towards the root */ 2057/* towards the root */
951void inline_speed 2058inline_speed void
952upheap (ANHE *heap, int k) 2059upheap (ANHE *heap, int k)
953{ 2060{
954 ANHE he = heap [k]; 2061 ANHE he = heap [k];
955 2062
956 for (;;) 2063 for (;;)
967 2074
968 heap [k] = he; 2075 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 2076 ev_active (ANHE_w (he)) = k;
970} 2077}
971 2078
972void inline_size 2079/* move an element suitably so it is in a correct place */
2080inline_size void
973adjustheap (ANHE *heap, int N, int k) 2081adjustheap (ANHE *heap, int N, int k)
974{ 2082{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 2084 upheap (heap, k);
977 else 2085 else
978 downheap (heap, N, k); 2086 downheap (heap, N, k);
979} 2087}
980 2088
981/* rebuild the heap: this function is used only once and executed rarely */ 2089/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 2090inline_size void
983reheap (ANHE *heap, int N) 2091reheap (ANHE *heap, int N)
984{ 2092{
985 int i; 2093 int i;
986 2094
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 2098 upheap (heap, i + HEAP0);
991} 2099}
992 2100
993/*****************************************************************************/ 2101/*****************************************************************************/
994 2102
2103/* associate signal watchers to a signal signal */
995typedef struct 2104typedef struct
996{ 2105{
2106 EV_ATOMIC_T pending;
2107#if EV_MULTIPLICITY
2108 EV_P;
2109#endif
997 WL head; 2110 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 2111} ANSIG;
1000 2112
1001static ANSIG *signals; 2113static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 2114
1006/*****************************************************************************/ 2115/*****************************************************************************/
1007 2116
1008void inline_speed 2117#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1009fd_intern (int fd)
1010{
1011#ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif
1018}
1019 2118
1020static void noinline 2119static void noinline ecb_cold
1021evpipe_init (EV_P) 2120evpipe_init (EV_P)
1022{ 2121{
1023 if (!ev_is_active (&pipeev)) 2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126# if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
2133# endif
2134 {
2135 while (pipe (fds))
2136 ev_syserr ("(libev) error creating signal/async pipe");
2137
2138 fd_intern (fds [0]);
2139 }
2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 ev_io_start (EV_A_ &pipe_w);
2160 ev_unref (EV_A); /* watcher should not keep loop alive */
1024 { 2161 }
2162}
2163
2164inline_speed void
2165evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166{
2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
2186 old_errno = errno; /* save errno because write will clobber it */
2187
1025#if EV_USE_EVENTFD 2188#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 2189 if (evpipe [0] < 0)
1027 { 2190 {
1028 evpipe [0] = -1; 2191 uint64_t counter = 1;
1029 fd_intern (evfd); 2192 write (evpipe [1], &counter, sizeof (uint64_t));
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 } 2193 }
1032 else 2194 else
1033#endif 2195#endif
1034 { 2196 {
1035 while (pipe (evpipe)) 2197#ifdef _WIN32
1036 ev_syserr ("(libev) error creating signal/async pipe"); 2198 WSABUF buf;
1037 2199 DWORD sent;
1038 fd_intern (evpipe [0]); 2200 buf.buf = &buf;
1039 fd_intern (evpipe [1]); 2201 buf.len = 1;
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203#else
2204 write (evpipe [1], &(evpipe [1]), 1);
2205#endif
1041 } 2206 }
1042 2207
1043 ev_io_start (EV_A_ &pipeev); 2208 errno = old_errno;
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 { 2209 }
1053 int old_errno = errno; /* save errno because write might clobber it */ 2210}
1054 2211
1055 *flag = 1; 2212/* called whenever the libev signal pipe */
2213/* got some events (signal, async) */
2214static void
2215pipecb (EV_P_ ev_io *iow, int revents)
2216{
2217 int i;
1056 2218
2219 if (revents & EV_READ)
2220 {
1057#if EV_USE_EVENTFD 2221#if EV_USE_EVENTFD
1058 if (evfd >= 0) 2222 if (evpipe [0] < 0)
1059 { 2223 {
1060 uint64_t counter = 1; 2224 uint64_t counter;
1061 write (evfd, &counter, sizeof (uint64_t)); 2225 read (evpipe [1], &counter, sizeof (uint64_t));
1062 } 2226 }
1063 else 2227 else
1064#endif 2228#endif
1065 write (evpipe [1], &old_errno, 1); 2229 {
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy; 2230 char dummy[4];
2231#ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238#else
1084 read (evpipe [0], &dummy, 1); 2239 read (evpipe [0], &dummy, sizeof (dummy));
2240#endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248#if EV_SIGNAL_ENABLE
2249 if (sig_pending)
1085 } 2250 {
2251 sig_pending = 0;
1086 2252
1087 if (gotsig && ev_is_default_loop (EV_A)) 2253 ECB_MEMORY_FENCE;
1088 {
1089 int signum;
1090 gotsig = 0;
1091 2254
1092 for (signum = signalmax; signum--; ) 2255 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 2256 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 2257 ev_feed_signal_event (EV_A_ i + 1);
1095 } 2258 }
2259#endif
1096 2260
1097#if EV_ASYNC_ENABLE 2261#if EV_ASYNC_ENABLE
1098 if (gotasync) 2262 if (async_pending)
1099 { 2263 {
1100 int i; 2264 async_pending = 0;
1101 gotasync = 0; 2265
2266 ECB_MEMORY_FENCE;
1102 2267
1103 for (i = asynccnt; i--; ) 2268 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 2269 if (asyncs [i]->sent)
1105 { 2270 {
1106 asyncs [i]->sent = 0; 2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 } 2274 }
1109 } 2275 }
1110#endif 2276#endif
1111} 2277}
1112 2278
1113/*****************************************************************************/ 2279/*****************************************************************************/
1114 2280
2281void
2282ev_feed_signal (int signum) EV_THROW
2283{
2284#if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
2288
2289 if (!EV_A)
2290 return;
2291#endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295}
2296
1115static void 2297static void
1116ev_sighandler (int signum) 2298ev_sighandler (int signum)
1117{ 2299{
2300#ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302#endif
2303
2304 ev_feed_signal (signum);
2305}
2306
2307void noinline
2308ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309{
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
1118#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 2318 /* it is permissible to try to feed a signal to the wrong loop */
1120#endif 2319 /* or, likely more useful, feeding a signal nobody is waiting for */
1121 2320
1122#if _WIN32 2321 if (expect_false (signals [signum].loop != EV_A))
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 2322 return;
2323#endif
1143 2324
1144 signals [signum].gotsig = 0; 2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
1145 2327
1146 for (w = signals [signum].head; w; w = w->next) 2328 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 2330}
1149 2331
2332#if EV_USE_SIGNALFD
2333static void
2334sigfdcb (EV_P_ ev_io *iow, int revents)
2335{
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349}
2350#endif
2351
2352#endif
2353
1150/*****************************************************************************/ 2354/*****************************************************************************/
1151 2355
2356#if EV_CHILD_ENABLE
1152static WL childs [EV_PID_HASHSIZE]; 2357static WL childs [EV_PID_HASHSIZE];
1153
1154#ifndef _WIN32
1155 2358
1156static ev_signal childev; 2359static ev_signal childev;
1157 2360
1158#ifndef WIFCONTINUED 2361#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 2362# define WIFCONTINUED(status) 0
1160#endif 2363#endif
1161 2364
1162void inline_speed 2365/* handle a single child status event */
2366inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 2367child_reap (EV_P_ int chain, int pid, int status)
1164{ 2368{
1165 ev_child *w; 2369 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 2371
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 { 2373 {
1170 if ((w->pid == pid || !w->pid) 2374 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1))) 2375 && (!traced || (w->flags & 1)))
1172 { 2376 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1180 2384
1181#ifndef WCONTINUED 2385#ifndef WCONTINUED
1182# define WCONTINUED 0 2386# define WCONTINUED 0
1183#endif 2387#endif
1184 2388
2389/* called on sigchld etc., calls waitpid */
1185static void 2390static void
1186childcb (EV_P_ ev_signal *sw, int revents) 2391childcb (EV_P_ ev_signal *sw, int revents)
1187{ 2392{
1188 int pid, status; 2393 int pid, status;
1189 2394
1197 /* make sure we are called again until all children have been reaped */ 2402 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */ 2403 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200 2405
1201 child_reap (EV_A_ pid, pid, status); 2406 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1) 2407 if ((EV_PID_HASHSIZE) > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204} 2409}
1205 2410
1206#endif 2411#endif
1207 2412
1208/*****************************************************************************/ 2413/*****************************************************************************/
1209 2414
2415#if EV_USE_IOCP
2416# include "ev_iocp.c"
2417#endif
1210#if EV_USE_PORT 2418#if EV_USE_PORT
1211# include "ev_port.c" 2419# include "ev_port.c"
1212#endif 2420#endif
1213#if EV_USE_KQUEUE 2421#if EV_USE_KQUEUE
1214# include "ev_kqueue.c" 2422# include "ev_kqueue.c"
1221#endif 2429#endif
1222#if EV_USE_SELECT 2430#if EV_USE_SELECT
1223# include "ev_select.c" 2431# include "ev_select.c"
1224#endif 2432#endif
1225 2433
1226int 2434int ecb_cold
1227ev_version_major (void) 2435ev_version_major (void) EV_THROW
1228{ 2436{
1229 return EV_VERSION_MAJOR; 2437 return EV_VERSION_MAJOR;
1230} 2438}
1231 2439
1232int 2440int ecb_cold
1233ev_version_minor (void) 2441ev_version_minor (void) EV_THROW
1234{ 2442{
1235 return EV_VERSION_MINOR; 2443 return EV_VERSION_MINOR;
1236} 2444}
1237 2445
1238/* return true if we are running with elevated privileges and should ignore env variables */ 2446/* return true if we are running with elevated privileges and should ignore env variables */
1239int inline_size 2447int inline_size ecb_cold
1240enable_secure (void) 2448enable_secure (void)
1241{ 2449{
1242#ifdef _WIN32 2450#ifdef _WIN32
1243 return 0; 2451 return 0;
1244#else 2452#else
1245 return getuid () != geteuid () 2453 return getuid () != geteuid ()
1246 || getgid () != getegid (); 2454 || getgid () != getegid ();
1247#endif 2455#endif
1248} 2456}
1249 2457
1250unsigned int 2458unsigned int ecb_cold
1251ev_supported_backends (void) 2459ev_supported_backends (void) EV_THROW
1252{ 2460{
1253 unsigned int flags = 0; 2461 unsigned int flags = 0;
1254 2462
1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260 2468
1261 return flags; 2469 return flags;
1262} 2470}
1263 2471
1264unsigned int 2472unsigned int ecb_cold
1265ev_recommended_backends (void) 2473ev_recommended_backends (void) EV_THROW
1266{ 2474{
1267 unsigned int flags = ev_supported_backends (); 2475 unsigned int flags = ev_supported_backends ();
1268 2476
1269#ifndef __NetBSD__ 2477#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */ 2478 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 2479 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 2480 flags &= ~EVBACKEND_KQUEUE;
1273#endif 2481#endif
1274#ifdef __APPLE__ 2482#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation 2483 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_POLL; 2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486#endif
2487#ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1277#endif 2489#endif
1278 2490
1279 return flags; 2491 return flags;
1280} 2492}
1281 2493
2494unsigned int ecb_cold
2495ev_embeddable_backends (void) EV_THROW
2496{
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504}
2505
1282unsigned int 2506unsigned int
1283ev_embeddable_backends (void) 2507ev_backend (EV_P) EV_THROW
1284{ 2508{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2509 return backend;
1286
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
1292} 2510}
1293 2511
2512#if EV_FEATURE_API
1294unsigned int 2513unsigned int
1295ev_backend (EV_P) 2514ev_iteration (EV_P) EV_THROW
1296{ 2515{
1297 return backend; 2516 return loop_count;
1298} 2517}
1299 2518
1300unsigned int 2519unsigned int
1301ev_loop_count (EV_P) 2520ev_depth (EV_P) EV_THROW
1302{ 2521{
1303 return loop_count; 2522 return loop_depth;
1304} 2523}
1305 2524
1306void 2525void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2526ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1308{ 2527{
1309 io_blocktime = interval; 2528 io_blocktime = interval;
1310} 2529}
1311 2530
1312void 2531void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2532ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1314{ 2533{
1315 timeout_blocktime = interval; 2534 timeout_blocktime = interval;
1316} 2535}
1317 2536
2537void
2538ev_set_userdata (EV_P_ void *data) EV_THROW
2539{
2540 userdata = data;
2541}
2542
2543void *
2544ev_userdata (EV_P) EV_THROW
2545{
2546 return userdata;
2547}
2548
2549void
2550ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2551{
2552 invoke_cb = invoke_pending_cb;
2553}
2554
2555void
2556ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2557{
2558 release_cb = release;
2559 acquire_cb = acquire;
2560}
2561#endif
2562
2563/* initialise a loop structure, must be zero-initialised */
1318static void noinline 2564static void noinline ecb_cold
1319loop_init (EV_P_ unsigned int flags) 2565loop_init (EV_P_ unsigned int flags) EV_THROW
1320{ 2566{
1321 if (!backend) 2567 if (!backend)
1322 { 2568 {
2569 origflags = flags;
2570
2571#if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579#endif
2580
1323#if EV_USE_MONOTONIC 2581#if EV_USE_MONOTONIC
2582 if (!have_monotonic)
1324 { 2583 {
1325 struct timespec ts; 2584 struct timespec ts;
2585
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 2587 have_monotonic = 1;
1328 } 2588 }
1329#endif
1330
1331 ev_rt_now = ev_time ();
1332 mn_now = get_clock ();
1333 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif 2589#endif
1344 2590
1345 /* pid check not overridable via env */ 2591 /* pid check not overridable via env */
1346#ifndef _WIN32 2592#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK) 2593 if (flags & EVFLAG_FORKCHECK)
1351 if (!(flags & EVFLAG_NOENV) 2597 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure () 2598 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS")) 2599 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS")); 2600 flags = atoi (getenv ("LIBEV_FLAGS"));
1355 2601
1356 if (!(flags & 0x0000ffffU)) 2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606#if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608#endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615#if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617#endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622#if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624#endif
2625#if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627#endif
2628
2629 if (!(flags & EVBACKEND_MASK))
1357 flags |= ev_recommended_backends (); 2630 flags |= ev_recommended_backends ();
1358 2631
2632#if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634#endif
1359#if EV_USE_PORT 2635#if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361#endif 2637#endif
1362#if EV_USE_KQUEUE 2638#if EV_USE_KQUEUE
1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1370#endif 2646#endif
1371#if EV_USE_SELECT 2647#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 2649#endif
1374 2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1375 ev_init (&pipeev, pipecb); 2654 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656#endif
1377 } 2657 }
1378} 2658}
1379 2659
1380static void noinline 2660/* free up a loop structure */
2661void ecb_cold
1381loop_destroy (EV_P) 2662ev_loop_destroy (EV_P)
1382{ 2663{
1383 int i; 2664 int i;
1384 2665
2666#if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679#endif
2680
2681#if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687#endif
2688
1385 if (ev_is_active (&pipeev)) 2689 if (ev_is_active (&pipe_w))
1386 { 2690 {
1387 ev_ref (EV_A); /* signal watcher */ 2691 /*ev_ref (EV_A);*/
1388 ev_io_stop (EV_A_ &pipeev); 2692 /*ev_io_stop (EV_A_ &pipe_w);*/
1389 2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
1390#if EV_USE_EVENTFD 2698#if EV_USE_SIGNALFD
1391 if (evfd >= 0) 2699 if (ev_is_active (&sigfd_w))
1392 close (evfd); 2700 close (sigfd);
1393#endif 2701#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401 2702
1402#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
1403 if (fs_fd >= 0) 2704 if (fs_fd >= 0)
1404 close (fs_fd); 2705 close (fs_fd);
1405#endif 2706#endif
1406 2707
1407 if (backend_fd >= 0) 2708 if (backend_fd >= 0)
1408 close (backend_fd); 2709 close (backend_fd);
1409 2710
2711#if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713#endif
1410#if EV_USE_PORT 2714#if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412#endif 2716#endif
1413#if EV_USE_KQUEUE 2717#if EV_USE_KQUEUE
1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1429#if EV_IDLE_ENABLE 2733#if EV_IDLE_ENABLE
1430 array_free (idle, [i]); 2734 array_free (idle, [i]);
1431#endif 2735#endif
1432 } 2736 }
1433 2737
1434 ev_free (anfds); anfdmax = 0; 2738 ev_free (anfds); anfds = 0; anfdmax = 0;
1435 2739
1436 /* have to use the microsoft-never-gets-it-right macro */ 2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 2742 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 2743 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 2744#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 2745 array_free (periodic, EMPTY);
1441#endif 2746#endif
1442#if EV_FORK_ENABLE 2747#if EV_FORK_ENABLE
1443 array_free (fork, EMPTY); 2748 array_free (fork, EMPTY);
1444#endif 2749#endif
2750#if EV_CLEANUP_ENABLE
2751 array_free (cleanup, EMPTY);
2752#endif
1445 array_free (prepare, EMPTY); 2753 array_free (prepare, EMPTY);
1446 array_free (check, EMPTY); 2754 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE 2755#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY); 2756 array_free (async, EMPTY);
1449#endif 2757#endif
1450 2758
1451 backend = 0; 2759 backend = 0;
2760
2761#if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763#endif
2764 ev_default_loop_ptr = 0;
2765#if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768#endif
1452} 2769}
1453 2770
1454#if EV_USE_INOTIFY 2771#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 2772inline_size void infy_fork (EV_P);
1456#endif 2773#endif
1457 2774
1458void inline_size 2775inline_size void
1459loop_fork (EV_P) 2776loop_fork (EV_P)
1460{ 2777{
1461#if EV_USE_PORT 2778#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 2780#endif
1469#endif 2786#endif
1470#if EV_USE_INOTIFY 2787#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 2788 infy_fork (EV_A);
1472#endif 2789#endif
1473 2790
2791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 if (ev_is_active (&pipeev)) 2792 if (ev_is_active (&pipe_w))
1475 { 2793 {
1476 /* this "locks" the handlers against writing to the pipe */ 2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1482 2795
1483 ev_ref (EV_A); 2796 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 2797 ev_io_stop (EV_A_ &pipe_w);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490 2798
1491 if (evpipe [0] >= 0) 2799 if (evpipe [0] >= 0)
1492 { 2800 EV_WIN32_CLOSE_FD (evpipe [0]);
1493 close (evpipe [0]);
1494 close (evpipe [1]);
1495 }
1496 2801
1497 evpipe_init (EV_A); 2802 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 2803 /* iterate over everything, in case we missed something before */
1499 pipecb (EV_A_ &pipeev, EV_READ); 2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1500 } 2805 }
2806#endif
1501 2807
1502 postfork = 0; 2808 postfork = 0;
1503} 2809}
1504 2810
1505#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
1506 2812
1507struct ev_loop * 2813struct ev_loop * ecb_cold
1508ev_loop_new (unsigned int flags) 2814ev_loop_new (unsigned int flags) EV_THROW
1509{ 2815{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511 2817
1512 memset (loop, 0, sizeof (struct ev_loop)); 2818 memset (EV_A, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags); 2819 loop_init (EV_A_ flags);
1515 2820
1516 if (ev_backend (EV_A)) 2821 if (ev_backend (EV_A))
1517 return loop; 2822 return EV_A;
1518 2823
2824 ev_free (EV_A);
1519 return 0; 2825 return 0;
1520} 2826}
1521 2827
1522void 2828#endif /* multiplicity */
1523ev_loop_destroy (EV_P)
1524{
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527}
1528
1529void
1530ev_loop_fork (EV_P)
1531{
1532 postfork = 1; /* must be in line with ev_default_fork */
1533}
1534 2829
1535#if EV_VERIFY 2830#if EV_VERIFY
1536static void noinline 2831static void noinline ecb_cold
1537verify_watcher (EV_P_ W w) 2832verify_watcher (EV_P_ W w)
1538{ 2833{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 2835
1541 if (w->pending) 2836 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 2838}
1544 2839
1545static void noinline 2840static void noinline ecb_cold
1546verify_heap (EV_P_ ANHE *heap, int N) 2841verify_heap (EV_P_ ANHE *heap, int N)
1547{ 2842{
1548 int i; 2843 int i;
1549 2844
1550 for (i = HEAP0; i < N + HEAP0; ++i) 2845 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 2846 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 2850
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 2852 }
1558} 2853}
1559 2854
1560static void noinline 2855static void noinline ecb_cold
1561array_verify (EV_P_ W *ws, int cnt) 2856array_verify (EV_P_ W *ws, int cnt)
1562{ 2857{
1563 while (cnt--) 2858 while (cnt--)
1564 { 2859 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 2861 verify_watcher (EV_A_ ws [cnt]);
1567 } 2862 }
1568} 2863}
1569#endif 2864#endif
1570 2865
1571void 2866#if EV_FEATURE_API
1572ev_loop_verify (EV_P) 2867void ecb_cold
2868ev_verify (EV_P) EV_THROW
1573{ 2869{
1574#if EV_VERIFY 2870#if EV_VERIFY
1575 int i; 2871 int i;
1576 WL w; 2872 WL w, w2;
1577 2873
1578 assert (activecnt >= -1); 2874 assert (activecnt >= -1);
1579 2875
1580 assert (fdchangemax >= fdchangecnt); 2876 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 2877 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 2879
1584 assert (anfdmax >= 0); 2880 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
1586 for (w = anfds [i].head; w; w = w->next) 2885 for (w = w2 = anfds [i].head; w; w = w->next)
1587 { 2886 {
1588 verify_watcher (EV_A_ (W)w); 2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 2897 }
2898 }
1592 2899
1593 assert (timermax >= timercnt); 2900 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 2901 verify_heap (EV_A_ timers, timercnt);
1595 2902
1596#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1611#if EV_FORK_ENABLE 2918#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt); 2919 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt); 2920 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif 2921#endif
1615 2922
2923#if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926#endif
2927
1616#if EV_ASYNC_ENABLE 2928#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt); 2929 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt); 2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif 2931#endif
1620 2932
2933#if EV_PREPARE_ENABLE
1621 assert (preparemax >= preparecnt); 2934 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt); 2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936#endif
1623 2937
2938#if EV_CHECK_ENABLE
1624 assert (checkmax >= checkcnt); 2939 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt); 2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941#endif
1626 2942
1627# if 0 2943# if 0
2944#if EV_CHILD_ENABLE
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947#endif
1630# endif 2948# endif
1631#endif 2949#endif
1632} 2950}
1633 2951#endif
1634#endif /* multiplicity */
1635 2952
1636#if EV_MULTIPLICITY 2953#if EV_MULTIPLICITY
1637struct ev_loop * 2954struct ev_loop * ecb_cold
1638ev_default_loop_init (unsigned int flags)
1639#else 2955#else
1640int 2956int
2957#endif
1641ev_default_loop (unsigned int flags) 2958ev_default_loop (unsigned int flags) EV_THROW
1642#endif
1643{ 2959{
1644 if (!ev_default_loop_ptr) 2960 if (!ev_default_loop_ptr)
1645 { 2961 {
1646#if EV_MULTIPLICITY 2962#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
1648#else 2964#else
1649 ev_default_loop_ptr = 1; 2965 ev_default_loop_ptr = 1;
1650#endif 2966#endif
1651 2967
1652 loop_init (EV_A_ flags); 2968 loop_init (EV_A_ flags);
1653 2969
1654 if (ev_backend (EV_A)) 2970 if (ev_backend (EV_A))
1655 { 2971 {
1656#ifndef _WIN32 2972#if EV_CHILD_ENABLE
1657 ev_signal_init (&childev, childcb, SIGCHLD); 2973 ev_signal_init (&childev, childcb, SIGCHLD);
1658 ev_set_priority (&childev, EV_MAXPRI); 2974 ev_set_priority (&childev, EV_MAXPRI);
1659 ev_signal_start (EV_A_ &childev); 2975 ev_signal_start (EV_A_ &childev);
1660 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
1661#endif 2977#endif
1666 2982
1667 return ev_default_loop_ptr; 2983 return ev_default_loop_ptr;
1668} 2984}
1669 2985
1670void 2986void
1671ev_default_destroy (void) 2987ev_loop_fork (EV_P) EV_THROW
1672{ 2988{
1673#if EV_MULTIPLICITY 2989 postfork = 1;
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 ev_default_loop_ptr = 0;
1678
1679#ifndef _WIN32
1680 ev_ref (EV_A); /* child watcher */
1681 ev_signal_stop (EV_A_ &childev);
1682#endif
1683
1684 loop_destroy (EV_A);
1685}
1686
1687void
1688ev_default_fork (void)
1689{
1690#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr;
1692#endif
1693
1694 postfork = 1; /* must be in line with ev_loop_fork */
1695} 2990}
1696 2991
1697/*****************************************************************************/ 2992/*****************************************************************************/
1698 2993
1699void 2994void
1700ev_invoke (EV_P_ void *w, int revents) 2995ev_invoke (EV_P_ void *w, int revents)
1701{ 2996{
1702 EV_CB_INVOKE ((W)w, revents); 2997 EV_CB_INVOKE ((W)w, revents);
1703} 2998}
1704 2999
1705void inline_speed 3000unsigned int
1706call_pending (EV_P) 3001ev_pending_count (EV_P) EV_THROW
1707{ 3002{
1708 int pri; 3003 int pri;
3004 unsigned int count = 0;
1709 3005
1710 for (pri = NUMPRI; pri--; ) 3006 for (pri = NUMPRI; pri--; )
3007 count += pendingcnt [pri];
3008
3009 return count;
3010}
3011
3012void noinline
3013ev_invoke_pending (EV_P)
3014{
3015 pendingpri = NUMPRI;
3016
3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
1711 while (pendingcnt [pri]) 3021 while (pendingcnt [pendingpri])
1712 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714
1715 if (expect_true (p->w))
1716 { 3022 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1718 3024
1719 p->w->pending = 0; 3025 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 3026 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 3027 EV_FREQUENT_CHECK;
1722 } 3028 }
1723 } 3029 }
1724} 3030}
1725 3031
1726#if EV_IDLE_ENABLE 3032#if EV_IDLE_ENABLE
1727void inline_size 3033/* make idle watchers pending. this handles the "call-idle */
3034/* only when higher priorities are idle" logic */
3035inline_size void
1728idle_reify (EV_P) 3036idle_reify (EV_P)
1729{ 3037{
1730 if (expect_false (idleall)) 3038 if (expect_false (idleall))
1731 { 3039 {
1732 int pri; 3040 int pri;
1744 } 3052 }
1745 } 3053 }
1746} 3054}
1747#endif 3055#endif
1748 3056
1749void inline_size 3057/* make timers pending */
3058inline_size void
1750timers_reify (EV_P) 3059timers_reify (EV_P)
1751{ 3060{
1752 EV_FREQUENT_CHECK; 3061 EV_FREQUENT_CHECK;
1753 3062
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 3064 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3065 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
1763 ev_at (w) += w->repeat; 3074 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 3075 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 3076 ev_at (w) = mn_now;
1766 3077
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 3079
1769 ANHE_at_cache (timers [HEAP0]); 3080 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
1771 } 3088 }
1772 else 3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 3090
1775 EV_FREQUENT_CHECK; 3091 feed_reverse_done (EV_A_ EV_TIMER);
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 } 3092 }
1778} 3093}
1779 3094
1780#if EV_PERIODIC_ENABLE 3095#if EV_PERIODIC_ENABLE
1781void inline_size 3096
3097static void noinline
3098periodic_recalc (EV_P_ ev_periodic *w)
3099{
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
3105 {
3106 ev_tstamp nat = at + w->interval;
3107
3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119}
3120
3121/* make periodics pending */
3122inline_size void
1782periodics_reify (EV_P) 3123periodics_reify (EV_P)
1783{ 3124{
1784 EV_FREQUENT_CHECK; 3125 EV_FREQUENT_CHECK;
1785 3126
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 3128 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3129 do
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132
3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134
3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 3139
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 3141
1799 ANHE_at_cache (periodics [HEAP0]); 3142 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
1801 } 3156 }
1802 else if (w->interval) 3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 3158
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3159 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 3160 }
1827} 3161}
1828 3162
3163/* simply recalculate all periodics */
3164/* TODO: maybe ensure that at least one event happens when jumping forward? */
1829static void noinline 3165static void noinline ecb_cold
1830periodics_reschedule (EV_P) 3166periodics_reschedule (EV_P)
1831{ 3167{
1832 int i; 3168 int i;
1833 3169
1834 /* adjust periodics after time jump */ 3170 /* adjust periodics after time jump */
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838 3174
1839 if (w->reschedule_cb) 3175 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval) 3177 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3178 periodic_recalc (EV_A_ w);
1843 3179
1844 ANHE_at_cache (periodics [i]); 3180 ANHE_at_cache (periodics [i]);
1845 } 3181 }
1846 3182
1847 reheap (periodics, periodiccnt); 3183 reheap (periodics, periodiccnt);
1848} 3184}
1849#endif 3185#endif
1850 3186
1851void inline_speed 3187/* adjust all timers by a given offset */
3188static void noinline ecb_cold
3189timers_reschedule (EV_P_ ev_tstamp adjust)
3190{
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
3194 {
3195 ANHE *he = timers + i + HEAP0;
3196 ANHE_w (*he)->at += adjust;
3197 ANHE_at_cache (*he);
3198 }
3199}
3200
3201/* fetch new monotonic and realtime times from the kernel */
3202/* also detect if there was a timejump, and act accordingly */
3203inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 3204time_update (EV_P_ ev_tstamp max_block)
1853{ 3205{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 3206#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 3207 if (expect_true (have_monotonic))
1858 { 3208 {
3209 int i;
1859 ev_tstamp odiff = rtmn_diff; 3210 ev_tstamp odiff = rtmn_diff;
1860 3211
1861 mn_now = get_clock (); 3212 mn_now = get_clock ();
1862 3213
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1879 * doesn't hurt either as we only do this on time-jumps or 3230 * doesn't hurt either as we only do this on time-jumps or
1880 * in the unlikely event of having been preempted here. 3231 * in the unlikely event of having been preempted here.
1881 */ 3232 */
1882 for (i = 4; --i; ) 3233 for (i = 4; --i; )
1883 { 3234 {
3235 ev_tstamp diff;
1884 rtmn_diff = ev_rt_now - mn_now; 3236 rtmn_diff = ev_rt_now - mn_now;
1885 3237
3238 diff = odiff - rtmn_diff;
3239
1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1887 return; /* all is well */ 3241 return; /* all is well */
1888 3242
1889 ev_rt_now = ev_time (); 3243 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 3244 mn_now = get_clock ();
1891 now_floor = mn_now; 3245 now_floor = mn_now;
1892 } 3246 }
1893 3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 3250# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 3251 periodics_reschedule (EV_A);
1896# endif 3252# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 3253 }
1900 else 3254 else
1901#endif 3255#endif
1902 { 3256 {
1903 ev_rt_now = ev_time (); 3257 ev_rt_now = ev_time ();
1904 3258
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 3263#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1909#endif 3265#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 3266 }
1918 3267
1919 mn_now = ev_rt_now; 3268 mn_now = ev_rt_now;
1920 } 3269 }
1921} 3270}
1922 3271
1923void 3272int
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 3273ev_run (EV_P_ int flags)
1945{ 3274{
3275#if EV_FEATURE_API
3276 ++loop_depth;
3277#endif
3278
3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
1946 loop_done = EVUNLOOP_CANCEL; 3281 loop_done = EVBREAK_CANCEL;
1947 3282
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 3284
1950 do 3285 do
1951 { 3286 {
1952#if EV_VERIFY >= 2 3287#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 3288 ev_verify (EV_A);
1954#endif 3289#endif
1955 3290
1956#ifndef _WIN32 3291#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */ 3292 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid)) 3293 if (expect_false (getpid () != curpid))
1966 /* we might have forked, so queue fork handlers */ 3301 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1968 if (forkcnt) 3303 if (forkcnt)
1969 { 3304 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 3306 EV_INVOKE_PENDING;
1972 } 3307 }
1973#endif 3308#endif
1974 3309
3310#if EV_PREPARE_ENABLE
1975 /* queue prepare watchers (and execute them) */ 3311 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 3312 if (expect_false (preparecnt))
1977 { 3313 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 3315 EV_INVOKE_PENDING;
1980 } 3316 }
3317#endif
1981 3318
1982 if (expect_false (!activecnt)) 3319 if (expect_false (loop_done))
1983 break; 3320 break;
1984 3321
1985 /* we might have forked, so reify kernel state if necessary */ 3322 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 3323 if (expect_false (postfork))
1987 loop_fork (EV_A); 3324 loop_fork (EV_A);
1992 /* calculate blocking time */ 3329 /* calculate blocking time */
1993 { 3330 {
1994 ev_tstamp waittime = 0.; 3331 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 3332 ev_tstamp sleeptime = 0.;
1996 3333
3334 /* remember old timestamp for io_blocktime calculation */
3335 ev_tstamp prev_mn_now = mn_now;
3336
3337 /* update time to cancel out callback processing overhead */
3338 time_update (EV_A_ 1e100);
3339
3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1998 { 3346 {
1999 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100);
2001
2002 waittime = MAX_BLOCKTIME; 3347 waittime = MAX_BLOCKTIME;
2003 3348
2004 if (timercnt) 3349 if (timercnt)
2005 { 3350 {
2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2007 if (waittime > to) waittime = to; 3352 if (waittime > to) waittime = to;
2008 } 3353 }
2009 3354
2010#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
2011 if (periodiccnt) 3356 if (periodiccnt)
2012 { 3357 {
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2014 if (waittime > to) waittime = to; 3359 if (waittime > to) waittime = to;
2015 } 3360 }
2016#endif 3361#endif
2017 3362
3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 3364 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 3365 waittime = timeout_blocktime;
2020 3366
2021 sleeptime = waittime - backend_fudge; 3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
2022 3371
3372 /* extra check because io_blocktime is commonly 0 */
2023 if (expect_true (sleeptime > io_blocktime)) 3373 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
2028 ev_sleep (sleeptime); 3382 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 3383 waittime -= sleeptime;
3384 }
2030 } 3385 }
2031 } 3386 }
2032 3387
3388#if EV_FEATURE_API
2033 ++loop_count; 3389 ++loop_count;
3390#endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
2035 3404
2036 /* update ev_rt_now, do magic */ 3405 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 3406 time_update (EV_A_ waittime + sleeptime);
2038 } 3407 }
2039 3408
2046#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
2047 /* queue idle watchers unless other events are pending */ 3416 /* queue idle watchers unless other events are pending */
2048 idle_reify (EV_A); 3417 idle_reify (EV_A);
2049#endif 3418#endif
2050 3419
3420#if EV_CHECK_ENABLE
2051 /* queue check watchers, to be executed first */ 3421 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 3422 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424#endif
2054 3425
2055 call_pending (EV_A); 3426 EV_INVOKE_PENDING;
2056 } 3427 }
2057 while (expect_true ( 3428 while (expect_true (
2058 activecnt 3429 activecnt
2059 && !loop_done 3430 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2061 )); 3432 ));
2062 3433
2063 if (loop_done == EVUNLOOP_ONE) 3434 if (loop_done == EVBREAK_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 3435 loop_done = EVBREAK_CANCEL;
3436
3437#if EV_FEATURE_API
3438 --loop_depth;
3439#endif
3440
3441 return activecnt;
2065} 3442}
2066 3443
2067void 3444void
2068ev_unloop (EV_P_ int how) 3445ev_break (EV_P_ int how) EV_THROW
2069{ 3446{
2070 loop_done = how; 3447 loop_done = how;
2071} 3448}
2072 3449
3450void
3451ev_ref (EV_P) EV_THROW
3452{
3453 ++activecnt;
3454}
3455
3456void
3457ev_unref (EV_P) EV_THROW
3458{
3459 --activecnt;
3460}
3461
3462void
3463ev_now_update (EV_P) EV_THROW
3464{
3465 time_update (EV_A_ 1e100);
3466}
3467
3468void
3469ev_suspend (EV_P) EV_THROW
3470{
3471 ev_now_update (EV_A);
3472}
3473
3474void
3475ev_resume (EV_P) EV_THROW
3476{
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481#if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484#endif
3485}
3486
2073/*****************************************************************************/ 3487/*****************************************************************************/
3488/* singly-linked list management, used when the expected list length is short */
2074 3489
2075void inline_size 3490inline_size void
2076wlist_add (WL *head, WL elem) 3491wlist_add (WL *head, WL elem)
2077{ 3492{
2078 elem->next = *head; 3493 elem->next = *head;
2079 *head = elem; 3494 *head = elem;
2080} 3495}
2081 3496
2082void inline_size 3497inline_size void
2083wlist_del (WL *head, WL elem) 3498wlist_del (WL *head, WL elem)
2084{ 3499{
2085 while (*head) 3500 while (*head)
2086 { 3501 {
2087 if (*head == elem) 3502 if (expect_true (*head == elem))
2088 { 3503 {
2089 *head = elem->next; 3504 *head = elem->next;
2090 return; 3505 break;
2091 } 3506 }
2092 3507
2093 head = &(*head)->next; 3508 head = &(*head)->next;
2094 } 3509 }
2095} 3510}
2096 3511
2097void inline_speed 3512/* internal, faster, version of ev_clear_pending */
3513inline_speed void
2098clear_pending (EV_P_ W w) 3514clear_pending (EV_P_ W w)
2099{ 3515{
2100 if (w->pending) 3516 if (w->pending)
2101 { 3517 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 3519 w->pending = 0;
2104 } 3520 }
2105} 3521}
2106 3522
2107int 3523int
2108ev_clear_pending (EV_P_ void *w) 3524ev_clear_pending (EV_P_ void *w) EV_THROW
2109{ 3525{
2110 W w_ = (W)w; 3526 W w_ = (W)w;
2111 int pending = w_->pending; 3527 int pending = w_->pending;
2112 3528
2113 if (expect_true (pending)) 3529 if (expect_true (pending))
2114 { 3530 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
2116 w_->pending = 0; 3533 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 3534 return p->events;
2119 } 3535 }
2120 else 3536 else
2121 return 0; 3537 return 0;
2122} 3538}
2123 3539
2124void inline_size 3540inline_size void
2125pri_adjust (EV_P_ W w) 3541pri_adjust (EV_P_ W w)
2126{ 3542{
2127 int pri = w->priority; 3543 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 3546 ev_set_priority (w, pri);
2131} 3547}
2132 3548
2133void inline_speed 3549inline_speed void
2134ev_start (EV_P_ W w, int active) 3550ev_start (EV_P_ W w, int active)
2135{ 3551{
2136 pri_adjust (EV_A_ w); 3552 pri_adjust (EV_A_ w);
2137 w->active = active; 3553 w->active = active;
2138 ev_ref (EV_A); 3554 ev_ref (EV_A);
2139} 3555}
2140 3556
2141void inline_size 3557inline_size void
2142ev_stop (EV_P_ W w) 3558ev_stop (EV_P_ W w)
2143{ 3559{
2144 ev_unref (EV_A); 3560 ev_unref (EV_A);
2145 w->active = 0; 3561 w->active = 0;
2146} 3562}
2147 3563
2148/*****************************************************************************/ 3564/*****************************************************************************/
2149 3565
2150void noinline 3566void noinline
2151ev_io_start (EV_P_ ev_io *w) 3567ev_io_start (EV_P_ ev_io *w) EV_THROW
2152{ 3568{
2153 int fd = w->fd; 3569 int fd = w->fd;
2154 3570
2155 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2156 return; 3572 return;
2157 3573
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 3576
2161 EV_FREQUENT_CHECK; 3577 EV_FREQUENT_CHECK;
2162 3578
2163 ev_start (EV_A_ (W)w, 1); 3579 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 3581 wlist_add (&anfds[fd].head, (WL)w);
2166 3582
3583 /* common bug, apparently */
3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 3587 w->events &= ~EV__IOFDSET;
2169 3588
2170 EV_FREQUENT_CHECK; 3589 EV_FREQUENT_CHECK;
2171} 3590}
2172 3591
2173void noinline 3592void noinline
2174ev_io_stop (EV_P_ ev_io *w) 3593ev_io_stop (EV_P_ ev_io *w) EV_THROW
2175{ 3594{
2176 clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
2178 return; 3597 return;
2179 3598
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 3600
2182 EV_FREQUENT_CHECK; 3601 EV_FREQUENT_CHECK;
2183 3602
2184 wlist_del (&anfds[w->fd].head, (WL)w); 3603 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3604 ev_stop (EV_A_ (W)w);
2186 3605
2187 fd_change (EV_A_ w->fd, 1); 3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2188 3607
2189 EV_FREQUENT_CHECK; 3608 EV_FREQUENT_CHECK;
2190} 3609}
2191 3610
2192void noinline 3611void noinline
2193ev_timer_start (EV_P_ ev_timer *w) 3612ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2194{ 3613{
2195 if (expect_false (ev_is_active (w))) 3614 if (expect_false (ev_is_active (w)))
2196 return; 3615 return;
2197 3616
2198 ev_at (w) += mn_now; 3617 ev_at (w) += mn_now;
2199 3618
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 3620
2202 EV_FREQUENT_CHECK; 3621 EV_FREQUENT_CHECK;
2203 3622
2204 ++timercnt; 3623 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 3627 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 3628 upheap (timers, ev_active (w));
2210 3629
2211 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2212 3631
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 3633}
2215 3634
2216void noinline 3635void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 3636ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2218{ 3637{
2219 clear_pending (EV_A_ (W)w); 3638 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3639 if (expect_false (!ev_is_active (w)))
2221 return; 3640 return;
2222 3641
2223 EV_FREQUENT_CHECK; 3642 EV_FREQUENT_CHECK;
2224 3643
2225 { 3644 {
2226 int active = ev_active (w); 3645 int active = ev_active (w);
2227 3646
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 3648
2230 --timercnt; 3649 --timercnt;
2231 3650
2232 if (expect_true (active < timercnt + HEAP0)) 3651 if (expect_true (active < timercnt + HEAP0))
2233 { 3652 {
2234 timers [active] = timers [timercnt + HEAP0]; 3653 timers [active] = timers [timercnt + HEAP0];
2235 adjustheap (timers, timercnt, active); 3654 adjustheap (timers, timercnt, active);
2236 } 3655 }
2237 } 3656 }
2238 3657
2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now; 3658 ev_at (w) -= mn_now;
2242 3659
2243 ev_stop (EV_A_ (W)w); 3660 ev_stop (EV_A_ (W)w);
3661
3662 EV_FREQUENT_CHECK;
2244} 3663}
2245 3664
2246void noinline 3665void noinline
2247ev_timer_again (EV_P_ ev_timer *w) 3666ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2248{ 3667{
2249 EV_FREQUENT_CHECK; 3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
2250 3671
2251 if (ev_is_active (w)) 3672 if (ev_is_active (w))
2252 { 3673 {
2253 if (w->repeat) 3674 if (w->repeat)
2254 { 3675 {
2266 } 3687 }
2267 3688
2268 EV_FREQUENT_CHECK; 3689 EV_FREQUENT_CHECK;
2269} 3690}
2270 3691
3692ev_tstamp
3693ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694{
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3696}
3697
2271#if EV_PERIODIC_ENABLE 3698#if EV_PERIODIC_ENABLE
2272void noinline 3699void noinline
2273ev_periodic_start (EV_P_ ev_periodic *w) 3700ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2274{ 3701{
2275 if (expect_false (ev_is_active (w))) 3702 if (expect_false (ev_is_active (w)))
2276 return; 3703 return;
2277 3704
2278 if (w->reschedule_cb) 3705 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 3707 else if (w->interval)
2281 { 3708 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 3710 periodic_recalc (EV_A_ w);
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 3711 }
2286 else 3712 else
2287 ev_at (w) = w->offset; 3713 ev_at (w) = w->offset;
2288 3714
2289 EV_FREQUENT_CHECK; 3715 EV_FREQUENT_CHECK;
2295 ANHE_at_cache (periodics [ev_active (w)]); 3721 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 3722 upheap (periodics, ev_active (w));
2297 3723
2298 EV_FREQUENT_CHECK; 3724 EV_FREQUENT_CHECK;
2299 3725
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 3727}
2302 3728
2303void noinline 3729void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 3730ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2305{ 3731{
2306 clear_pending (EV_A_ (W)w); 3732 clear_pending (EV_A_ (W)w);
2307 if (expect_false (!ev_is_active (w))) 3733 if (expect_false (!ev_is_active (w)))
2308 return; 3734 return;
2309 3735
2310 EV_FREQUENT_CHECK; 3736 EV_FREQUENT_CHECK;
2311 3737
2312 { 3738 {
2313 int active = ev_active (w); 3739 int active = ev_active (w);
2314 3740
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 3742
2317 --periodiccnt; 3743 --periodiccnt;
2318 3744
2319 if (expect_true (active < periodiccnt + HEAP0)) 3745 if (expect_true (active < periodiccnt + HEAP0))
2320 { 3746 {
2321 periodics [active] = periodics [periodiccnt + HEAP0]; 3747 periodics [active] = periodics [periodiccnt + HEAP0];
2322 adjustheap (periodics, periodiccnt, active); 3748 adjustheap (periodics, periodiccnt, active);
2323 } 3749 }
2324 } 3750 }
2325 3751
2326 EV_FREQUENT_CHECK;
2327
2328 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
2329} 3755}
2330 3756
2331void noinline 3757void noinline
2332ev_periodic_again (EV_P_ ev_periodic *w) 3758ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2333{ 3759{
2334 /* TODO: use adjustheap and recalculation */ 3760 /* TODO: use adjustheap and recalculation */
2335 ev_periodic_stop (EV_A_ w); 3761 ev_periodic_stop (EV_A_ w);
2336 ev_periodic_start (EV_A_ w); 3762 ev_periodic_start (EV_A_ w);
2337} 3763}
2339 3765
2340#ifndef SA_RESTART 3766#ifndef SA_RESTART
2341# define SA_RESTART 0 3767# define SA_RESTART 0
2342#endif 3768#endif
2343 3769
3770#if EV_SIGNAL_ENABLE
3771
2344void noinline 3772void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 3773ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2346{ 3774{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
2350 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
2351 return; 3776 return;
2352 3777
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2354 3779
2355 evpipe_init (EV_A); 3780#if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2356 3783
2357 EV_FREQUENT_CHECK; 3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786#endif
2358 3787
3788 EV_FREQUENT_CHECK;
3789
3790#if EV_USE_SIGNALFD
3791 if (sigfd == -2)
2359 { 3792 {
2360#ifndef _WIN32 3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2361 sigset_t full, prev; 3794 if (sigfd < 0 && errno == EINVAL)
2362 sigfillset (&full); 3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365 3796
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
2367 3800
2368#ifndef _WIN32 3801 sigemptyset (&sigfd_set);
2369 sigprocmask (SIG_SETMASK, &prev, 0); 3802
2370#endif 3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
2371 } 3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818#endif
2372 3819
2373 ev_start (EV_A_ (W)w, 1); 3820 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w); 3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375 3822
2376 if (!((WL)w)->next) 3823 if (!((WL)w)->next)
3824# if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826# endif
2377 { 3827 {
2378#if _WIN32 3828# ifdef _WIN32
3829 evpipe_init (EV_A);
3830
2379 signal (w->signum, ev_sighandler); 3831 signal (w->signum, ev_sighandler);
2380#else 3832# else
2381 struct sigaction sa; 3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
2382 sa.sa_handler = ev_sighandler; 3837 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask); 3838 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0); 3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
2386#endif 3848#endif
2387 } 3849 }
2388 3850
2389 EV_FREQUENT_CHECK; 3851 EV_FREQUENT_CHECK;
2390} 3852}
2391 3853
2392void noinline 3854void noinline
2393ev_signal_stop (EV_P_ ev_signal *w) 3855ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2394{ 3856{
2395 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2397 return; 3859 return;
2398 3860
2400 3862
2401 wlist_del (&signals [w->signum - 1].head, (WL)w); 3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w); 3864 ev_stop (EV_A_ (W)w);
2403 3865
2404 if (!signals [w->signum - 1].head) 3866 if (!signals [w->signum - 1].head)
3867 {
3868#if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870#endif
3871#if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884#endif
2405 signal (w->signum, SIG_DFL); 3885 signal (w->signum, SIG_DFL);
3886 }
2406 3887
2407 EV_FREQUENT_CHECK; 3888 EV_FREQUENT_CHECK;
2408} 3889}
3890
3891#endif
3892
3893#if EV_CHILD_ENABLE
2409 3894
2410void 3895void
2411ev_child_start (EV_P_ ev_child *w) 3896ev_child_start (EV_P_ ev_child *w) EV_THROW
2412{ 3897{
2413#if EV_MULTIPLICITY 3898#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 3900#endif
2416 if (expect_false (ev_is_active (w))) 3901 if (expect_false (ev_is_active (w)))
2417 return; 3902 return;
2418 3903
2419 EV_FREQUENT_CHECK; 3904 EV_FREQUENT_CHECK;
2420 3905
2421 ev_start (EV_A_ (W)w, 1); 3906 ev_start (EV_A_ (W)w, 1);
2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2423 3908
2424 EV_FREQUENT_CHECK; 3909 EV_FREQUENT_CHECK;
2425} 3910}
2426 3911
2427void 3912void
2428ev_child_stop (EV_P_ ev_child *w) 3913ev_child_stop (EV_P_ ev_child *w) EV_THROW
2429{ 3914{
2430 clear_pending (EV_A_ (W)w); 3915 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 3916 if (expect_false (!ev_is_active (w)))
2432 return; 3917 return;
2433 3918
2434 EV_FREQUENT_CHECK; 3919 EV_FREQUENT_CHECK;
2435 3920
2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2437 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
2438 3923
2439 EV_FREQUENT_CHECK; 3924 EV_FREQUENT_CHECK;
2440} 3925}
3926
3927#endif
2441 3928
2442#if EV_STAT_ENABLE 3929#if EV_STAT_ENABLE
2443 3930
2444# ifdef _WIN32 3931# ifdef _WIN32
2445# undef lstat 3932# undef lstat
2451#define MIN_STAT_INTERVAL 0.1074891 3938#define MIN_STAT_INTERVAL 0.1074891
2452 3939
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454 3941
2455#if EV_USE_INOTIFY 3942#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192 3943
3944/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2457 3946
2458static void noinline 3947static void noinline
2459infy_add (EV_P_ ev_stat *w) 3948infy_add (EV_P_ ev_stat *w)
2460{ 3949{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
2462 3954
2463 if (w->wd < 0) 3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2464 { 3981 }
3982 else
3983 {
3984 /* can't use inotify, continue to stat */
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467 3986
2468 /* monitor some parent directory for speedup hints */ 3987 /* if path is not there, monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */ 3989 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 { 3991 {
2473 char path [4096]; 3992 char path [4096];
2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2480 3999
2481 char *pend = strrchr (path, '/'); 4000 char *pend = strrchr (path, '/');
2482 4001
2483 if (!pend) 4002 if (!pend || pend == path)
2484 break; /* whoops, no '/', complain to your admin */ 4003 break;
2485 4004
2486 *pend = 0; 4005 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask); 4006 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 } 4007 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 } 4009 }
2491 } 4010 }
2492 else 4011
2493 { 4012 if (w->wd >= 0)
2494 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2495 4014
2496 /* now local changes will be tracked by inotify, but remote changes won't */ 4015 /* now re-arm timer, if required */
2497 /* unless the filesystem it known to be local, we therefore still poll */ 4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2498 /* also do poll on <2.6.25, but with normal frequency */
2499 struct statfs sfs;
2500
2501 if (fs_2625 && !statfs (w->path, &sfs))
2502 if (sfs.f_type == 0x1373 /* devfs */
2503 || sfs.f_type == 0xEF53 /* ext2/3 */
2504 || sfs.f_type == 0x3153464a /* jfs */
2505 || sfs.f_type == 0x52654973 /* reiser3 */
2506 || sfs.f_type == 0x01021994 /* tempfs */
2507 || sfs.f_type == 0x58465342 /* xfs */)
2508 return;
2509
2510 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer); 4017 ev_timer_again (EV_A_ &w->timer);
2512 } 4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2513} 4019}
2514 4020
2515static void noinline 4021static void noinline
2516infy_del (EV_P_ ev_stat *w) 4022infy_del (EV_P_ ev_stat *w)
2517{ 4023{
2520 4026
2521 if (wd < 0) 4027 if (wd < 0)
2522 return; 4028 return;
2523 4029
2524 w->wd = -2; 4030 w->wd = -2;
2525 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2526 wlist_del (&fs_hash [slot].head, (WL)w); 4032 wlist_del (&fs_hash [slot].head, (WL)w);
2527 4033
2528 /* remove this watcher, if others are watching it, they will rearm */ 4034 /* remove this watcher, if others are watching it, they will rearm */
2529 inotify_rm_watch (fs_fd, wd); 4035 inotify_rm_watch (fs_fd, wd);
2530} 4036}
2532static void noinline 4038static void noinline
2533infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4039infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2534{ 4040{
2535 if (slot < 0) 4041 if (slot < 0)
2536 /* overflow, need to check for all hash slots */ 4042 /* overflow, need to check for all hash slots */
2537 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2538 infy_wd (EV_A_ slot, wd, ev); 4044 infy_wd (EV_A_ slot, wd, ev);
2539 else 4045 else
2540 { 4046 {
2541 WL w_; 4047 WL w_;
2542 4048
2543 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2544 { 4050 {
2545 ev_stat *w = (ev_stat *)w_; 4051 ev_stat *w = (ev_stat *)w_;
2546 w_ = w_->next; /* lets us remove this watcher and all before it */ 4052 w_ = w_->next; /* lets us remove this watcher and all before it */
2547 4053
2548 if (w->wd == wd || wd == -1) 4054 if (w->wd == wd || wd == -1)
2549 { 4055 {
2550 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2551 { 4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2552 w->wd = -1; 4059 w->wd = -1;
2553 infy_add (EV_A_ w); /* re-add, no matter what */ 4060 infy_add (EV_A_ w); /* re-add, no matter what */
2554 } 4061 }
2555 4062
2556 stat_timer_cb (EV_A_ &w->timer, 0); 4063 stat_timer_cb (EV_A_ &w->timer, 0);
2561 4068
2562static void 4069static void
2563infy_cb (EV_P_ ev_io *w, int revents) 4070infy_cb (EV_P_ ev_io *w, int revents)
2564{ 4071{
2565 char buf [EV_INOTIFY_BUFSIZE]; 4072 char buf [EV_INOTIFY_BUFSIZE];
2566 struct inotify_event *ev = (struct inotify_event *)buf;
2567 int ofs; 4073 int ofs;
2568 int len = read (fs_fd, buf, sizeof (buf)); 4074 int len = read (fs_fd, buf, sizeof (buf));
2569 4075
2570 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2571 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
2572} 4082}
2573 4083
2574void inline_size 4084inline_size void ecb_cold
2575check_2625 (EV_P) 4085ev_check_2625 (EV_P)
2576{ 4086{
2577 /* kernels < 2.6.25 are borked 4087 /* kernels < 2.6.25 are borked
2578 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2579 */ 4089 */
2580 struct utsname buf; 4090 if (ev_linux_version () < 0x020619)
2581 int major, minor, micro;
2582
2583 if (uname (&buf))
2584 return; 4091 return;
2585 4092
2586 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2587 return;
2588
2589 if (major < 2
2590 || (major == 2 && minor < 6)
2591 || (major == 2 && minor == 6 && micro < 25))
2592 return;
2593
2594 fs_2625 = 1; 4093 fs_2625 = 1;
2595} 4094}
2596 4095
2597void inline_size 4096inline_size int
4097infy_newfd (void)
4098{
4099#if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103#endif
4104 return inotify_init ();
4105}
4106
4107inline_size void
2598infy_init (EV_P) 4108infy_init (EV_P)
2599{ 4109{
2600 if (fs_fd != -2) 4110 if (fs_fd != -2)
2601 return; 4111 return;
2602 4112
2603 fs_fd = -1; 4113 fs_fd = -1;
2604 4114
2605 check_2625 (EV_A); 4115 ev_check_2625 (EV_A);
2606 4116
2607 fs_fd = inotify_init (); 4117 fs_fd = infy_newfd ();
2608 4118
2609 if (fs_fd >= 0) 4119 if (fs_fd >= 0)
2610 { 4120 {
4121 fd_intern (fs_fd);
2611 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2612 ev_set_priority (&fs_w, EV_MAXPRI); 4123 ev_set_priority (&fs_w, EV_MAXPRI);
2613 ev_io_start (EV_A_ &fs_w); 4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
2614 } 4126 }
2615} 4127}
2616 4128
2617void inline_size 4129inline_size void
2618infy_fork (EV_P) 4130infy_fork (EV_P)
2619{ 4131{
2620 int slot; 4132 int slot;
2621 4133
2622 if (fs_fd < 0) 4134 if (fs_fd < 0)
2623 return; 4135 return;
2624 4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
2625 close (fs_fd); 4139 close (fs_fd);
2626 fs_fd = inotify_init (); 4140 fs_fd = infy_newfd ();
2627 4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
2628 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2629 { 4151 {
2630 WL w_ = fs_hash [slot].head; 4152 WL w_ = fs_hash [slot].head;
2631 fs_hash [slot].head = 0; 4153 fs_hash [slot].head = 0;
2632 4154
2633 while (w_) 4155 while (w_)
2638 w->wd = -1; 4160 w->wd = -1;
2639 4161
2640 if (fs_fd >= 0) 4162 if (fs_fd >= 0)
2641 infy_add (EV_A_ w); /* re-add, no matter what */ 4163 infy_add (EV_A_ w); /* re-add, no matter what */
2642 else 4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2643 ev_timer_again (EV_A_ &w->timer); 4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
2644 } 4171 }
2645 } 4172 }
2646} 4173}
2647 4174
2648#endif 4175#endif
2652#else 4179#else
2653# define EV_LSTAT(p,b) lstat (p, b) 4180# define EV_LSTAT(p,b) lstat (p, b)
2654#endif 4181#endif
2655 4182
2656void 4183void
2657ev_stat_stat (EV_P_ ev_stat *w) 4184ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2658{ 4185{
2659 if (lstat (w->path, &w->attr) < 0) 4186 if (lstat (w->path, &w->attr) < 0)
2660 w->attr.st_nlink = 0; 4187 w->attr.st_nlink = 0;
2661 else if (!w->attr.st_nlink) 4188 else if (!w->attr.st_nlink)
2662 w->attr.st_nlink = 1; 4189 w->attr.st_nlink = 1;
2665static void noinline 4192static void noinline
2666stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4193stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2667{ 4194{
2668 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2669 4196
2670 /* we copy this here each the time so that */ 4197 ev_statdata prev = w->attr;
2671 /* prev has the old value when the callback gets invoked */
2672 w->prev = w->attr;
2673 ev_stat_stat (EV_A_ w); 4198 ev_stat_stat (EV_A_ w);
2674 4199
2675 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2676 if ( 4201 if (
2677 w->prev.st_dev != w->attr.st_dev 4202 prev.st_dev != w->attr.st_dev
2678 || w->prev.st_ino != w->attr.st_ino 4203 || prev.st_ino != w->attr.st_ino
2679 || w->prev.st_mode != w->attr.st_mode 4204 || prev.st_mode != w->attr.st_mode
2680 || w->prev.st_nlink != w->attr.st_nlink 4205 || prev.st_nlink != w->attr.st_nlink
2681 || w->prev.st_uid != w->attr.st_uid 4206 || prev.st_uid != w->attr.st_uid
2682 || w->prev.st_gid != w->attr.st_gid 4207 || prev.st_gid != w->attr.st_gid
2683 || w->prev.st_rdev != w->attr.st_rdev 4208 || prev.st_rdev != w->attr.st_rdev
2684 || w->prev.st_size != w->attr.st_size 4209 || prev.st_size != w->attr.st_size
2685 || w->prev.st_atime != w->attr.st_atime 4210 || prev.st_atime != w->attr.st_atime
2686 || w->prev.st_mtime != w->attr.st_mtime 4211 || prev.st_mtime != w->attr.st_mtime
2687 || w->prev.st_ctime != w->attr.st_ctime 4212 || prev.st_ctime != w->attr.st_ctime
2688 ) { 4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
2689 #if EV_USE_INOTIFY 4219 #if EV_USE_INOTIFY
2690 if (fs_fd >= 0) 4220 if (fs_fd >= 0)
2691 { 4221 {
2692 infy_del (EV_A_ w); 4222 infy_del (EV_A_ w);
2693 infy_add (EV_A_ w); 4223 infy_add (EV_A_ w);
2698 ev_feed_event (EV_A_ w, EV_STAT); 4228 ev_feed_event (EV_A_ w, EV_STAT);
2699 } 4229 }
2700} 4230}
2701 4231
2702void 4232void
2703ev_stat_start (EV_P_ ev_stat *w) 4233ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2704{ 4234{
2705 if (expect_false (ev_is_active (w))) 4235 if (expect_false (ev_is_active (w)))
2706 return; 4236 return;
2707 4237
2708 ev_stat_stat (EV_A_ w); 4238 ev_stat_stat (EV_A_ w);
2718 4248
2719 if (fs_fd >= 0) 4249 if (fs_fd >= 0)
2720 infy_add (EV_A_ w); 4250 infy_add (EV_A_ w);
2721 else 4251 else
2722#endif 4252#endif
4253 {
2723 ev_timer_again (EV_A_ &w->timer); 4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
2724 4257
2725 ev_start (EV_A_ (W)w, 1); 4258 ev_start (EV_A_ (W)w, 1);
2726 4259
2727 EV_FREQUENT_CHECK; 4260 EV_FREQUENT_CHECK;
2728} 4261}
2729 4262
2730void 4263void
2731ev_stat_stop (EV_P_ ev_stat *w) 4264ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2732{ 4265{
2733 clear_pending (EV_A_ (W)w); 4266 clear_pending (EV_A_ (W)w);
2734 if (expect_false (!ev_is_active (w))) 4267 if (expect_false (!ev_is_active (w)))
2735 return; 4268 return;
2736 4269
2737 EV_FREQUENT_CHECK; 4270 EV_FREQUENT_CHECK;
2738 4271
2739#if EV_USE_INOTIFY 4272#if EV_USE_INOTIFY
2740 infy_del (EV_A_ w); 4273 infy_del (EV_A_ w);
2741#endif 4274#endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
2742 ev_timer_stop (EV_A_ &w->timer); 4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
2743 4281
2744 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
2745 4283
2746 EV_FREQUENT_CHECK; 4284 EV_FREQUENT_CHECK;
2747} 4285}
2748#endif 4286#endif
2749 4287
2750#if EV_IDLE_ENABLE 4288#if EV_IDLE_ENABLE
2751void 4289void
2752ev_idle_start (EV_P_ ev_idle *w) 4290ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2753{ 4291{
2754 if (expect_false (ev_is_active (w))) 4292 if (expect_false (ev_is_active (w)))
2755 return; 4293 return;
2756 4294
2757 pri_adjust (EV_A_ (W)w); 4295 pri_adjust (EV_A_ (W)w);
2770 4308
2771 EV_FREQUENT_CHECK; 4309 EV_FREQUENT_CHECK;
2772} 4310}
2773 4311
2774void 4312void
2775ev_idle_stop (EV_P_ ev_idle *w) 4313ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2776{ 4314{
2777 clear_pending (EV_A_ (W)w); 4315 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w))) 4316 if (expect_false (!ev_is_active (w)))
2779 return; 4317 return;
2780 4318
2792 4330
2793 EV_FREQUENT_CHECK; 4331 EV_FREQUENT_CHECK;
2794} 4332}
2795#endif 4333#endif
2796 4334
4335#if EV_PREPARE_ENABLE
2797void 4336void
2798ev_prepare_start (EV_P_ ev_prepare *w) 4337ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2799{ 4338{
2800 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
2801 return; 4340 return;
2802 4341
2803 EV_FREQUENT_CHECK; 4342 EV_FREQUENT_CHECK;
2808 4347
2809 EV_FREQUENT_CHECK; 4348 EV_FREQUENT_CHECK;
2810} 4349}
2811 4350
2812void 4351void
2813ev_prepare_stop (EV_P_ ev_prepare *w) 4352ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2814{ 4353{
2815 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2817 return; 4356 return;
2818 4357
2827 4366
2828 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
2829 4368
2830 EV_FREQUENT_CHECK; 4369 EV_FREQUENT_CHECK;
2831} 4370}
4371#endif
2832 4372
4373#if EV_CHECK_ENABLE
2833void 4374void
2834ev_check_start (EV_P_ ev_check *w) 4375ev_check_start (EV_P_ ev_check *w) EV_THROW
2835{ 4376{
2836 if (expect_false (ev_is_active (w))) 4377 if (expect_false (ev_is_active (w)))
2837 return; 4378 return;
2838 4379
2839 EV_FREQUENT_CHECK; 4380 EV_FREQUENT_CHECK;
2844 4385
2845 EV_FREQUENT_CHECK; 4386 EV_FREQUENT_CHECK;
2846} 4387}
2847 4388
2848void 4389void
2849ev_check_stop (EV_P_ ev_check *w) 4390ev_check_stop (EV_P_ ev_check *w) EV_THROW
2850{ 4391{
2851 clear_pending (EV_A_ (W)w); 4392 clear_pending (EV_A_ (W)w);
2852 if (expect_false (!ev_is_active (w))) 4393 if (expect_false (!ev_is_active (w)))
2853 return; 4394 return;
2854 4395
2863 4404
2864 ev_stop (EV_A_ (W)w); 4405 ev_stop (EV_A_ (W)w);
2865 4406
2866 EV_FREQUENT_CHECK; 4407 EV_FREQUENT_CHECK;
2867} 4408}
4409#endif
2868 4410
2869#if EV_EMBED_ENABLE 4411#if EV_EMBED_ENABLE
2870void noinline 4412void noinline
2871ev_embed_sweep (EV_P_ ev_embed *w) 4413ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2872{ 4414{
2873 ev_loop (w->other, EVLOOP_NONBLOCK); 4415 ev_run (w->other, EVRUN_NOWAIT);
2874} 4416}
2875 4417
2876static void 4418static void
2877embed_io_cb (EV_P_ ev_io *io, int revents) 4419embed_io_cb (EV_P_ ev_io *io, int revents)
2878{ 4420{
2879 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2880 4422
2881 if (ev_cb (w)) 4423 if (ev_cb (w))
2882 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2883 else 4425 else
2884 ev_loop (w->other, EVLOOP_NONBLOCK); 4426 ev_run (w->other, EVRUN_NOWAIT);
2885} 4427}
2886 4428
2887static void 4429static void
2888embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2889{ 4431{
2890 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2891 4433
2892 { 4434 {
2893 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2894 4436
2895 while (fdchangecnt) 4437 while (fdchangecnt)
2896 { 4438 {
2897 fd_reify (EV_A); 4439 fd_reify (EV_A);
2898 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4440 ev_run (EV_A_ EVRUN_NOWAIT);
2899 } 4441 }
2900 } 4442 }
2901} 4443}
2902 4444
2903static void 4445static void
2904embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4446embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2905{ 4447{
2906 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2907 4449
4450 ev_embed_stop (EV_A_ w);
4451
2908 { 4452 {
2909 struct ev_loop *loop = w->other; 4453 EV_P = w->other;
2910 4454
2911 ev_loop_fork (EV_A); 4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
2912 } 4457 }
4458
4459 ev_embed_start (EV_A_ w);
2913} 4460}
2914 4461
2915#if 0 4462#if 0
2916static void 4463static void
2917embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2919 ev_idle_stop (EV_A_ idle); 4466 ev_idle_stop (EV_A_ idle);
2920} 4467}
2921#endif 4468#endif
2922 4469
2923void 4470void
2924ev_embed_start (EV_P_ ev_embed *w) 4471ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2925{ 4472{
2926 if (expect_false (ev_is_active (w))) 4473 if (expect_false (ev_is_active (w)))
2927 return; 4474 return;
2928 4475
2929 { 4476 {
2930 struct ev_loop *loop = w->other; 4477 EV_P = w->other;
2931 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2932 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2933 } 4480 }
2934 4481
2935 EV_FREQUENT_CHECK; 4482 EV_FREQUENT_CHECK;
2936 4483
2950 4497
2951 EV_FREQUENT_CHECK; 4498 EV_FREQUENT_CHECK;
2952} 4499}
2953 4500
2954void 4501void
2955ev_embed_stop (EV_P_ ev_embed *w) 4502ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2956{ 4503{
2957 clear_pending (EV_A_ (W)w); 4504 clear_pending (EV_A_ (W)w);
2958 if (expect_false (!ev_is_active (w))) 4505 if (expect_false (!ev_is_active (w)))
2959 return; 4506 return;
2960 4507
2962 4509
2963 ev_io_stop (EV_A_ &w->io); 4510 ev_io_stop (EV_A_ &w->io);
2964 ev_prepare_stop (EV_A_ &w->prepare); 4511 ev_prepare_stop (EV_A_ &w->prepare);
2965 ev_fork_stop (EV_A_ &w->fork); 4512 ev_fork_stop (EV_A_ &w->fork);
2966 4513
4514 ev_stop (EV_A_ (W)w);
4515
2967 EV_FREQUENT_CHECK; 4516 EV_FREQUENT_CHECK;
2968} 4517}
2969#endif 4518#endif
2970 4519
2971#if EV_FORK_ENABLE 4520#if EV_FORK_ENABLE
2972void 4521void
2973ev_fork_start (EV_P_ ev_fork *w) 4522ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2974{ 4523{
2975 if (expect_false (ev_is_active (w))) 4524 if (expect_false (ev_is_active (w)))
2976 return; 4525 return;
2977 4526
2978 EV_FREQUENT_CHECK; 4527 EV_FREQUENT_CHECK;
2983 4532
2984 EV_FREQUENT_CHECK; 4533 EV_FREQUENT_CHECK;
2985} 4534}
2986 4535
2987void 4536void
2988ev_fork_stop (EV_P_ ev_fork *w) 4537ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2989{ 4538{
2990 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2991 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2992 return; 4541 return;
2993 4542
3004 4553
3005 EV_FREQUENT_CHECK; 4554 EV_FREQUENT_CHECK;
3006} 4555}
3007#endif 4556#endif
3008 4557
4558#if EV_CLEANUP_ENABLE
4559void
4560ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574}
4575
4576void
4577ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578{
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596}
4597#endif
4598
3009#if EV_ASYNC_ENABLE 4599#if EV_ASYNC_ENABLE
3010void 4600void
3011ev_async_start (EV_P_ ev_async *w) 4601ev_async_start (EV_P_ ev_async *w) EV_THROW
3012{ 4602{
3013 if (expect_false (ev_is_active (w))) 4603 if (expect_false (ev_is_active (w)))
3014 return; 4604 return;
4605
4606 w->sent = 0;
3015 4607
3016 evpipe_init (EV_A); 4608 evpipe_init (EV_A);
3017 4609
3018 EV_FREQUENT_CHECK; 4610 EV_FREQUENT_CHECK;
3019 4611
3023 4615
3024 EV_FREQUENT_CHECK; 4616 EV_FREQUENT_CHECK;
3025} 4617}
3026 4618
3027void 4619void
3028ev_async_stop (EV_P_ ev_async *w) 4620ev_async_stop (EV_P_ ev_async *w) EV_THROW
3029{ 4621{
3030 clear_pending (EV_A_ (W)w); 4622 clear_pending (EV_A_ (W)w);
3031 if (expect_false (!ev_is_active (w))) 4623 if (expect_false (!ev_is_active (w)))
3032 return; 4624 return;
3033 4625
3044 4636
3045 EV_FREQUENT_CHECK; 4637 EV_FREQUENT_CHECK;
3046} 4638}
3047 4639
3048void 4640void
3049ev_async_send (EV_P_ ev_async *w) 4641ev_async_send (EV_P_ ev_async *w) EV_THROW
3050{ 4642{
3051 w->sent = 1; 4643 w->sent = 1;
3052 evpipe_write (EV_A_ &gotasync); 4644 evpipe_write (EV_A_ &async_pending);
3053} 4645}
3054#endif 4646#endif
3055 4647
3056/*****************************************************************************/ 4648/*****************************************************************************/
3057 4649
3091 4683
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3093} 4685}
3094 4686
3095void 4687void
3096ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4688ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3097{ 4689{
3098 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3099 4691
3100 if (expect_false (!once)) 4692 if (expect_false (!once))
3101 { 4693 {
3102 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3103 return; 4695 return;
3104 } 4696 }
3105 4697
3106 once->cb = cb; 4698 once->cb = cb;
3107 once->arg = arg; 4699 once->arg = arg;
3119 ev_timer_set (&once->to, timeout, 0.); 4711 ev_timer_set (&once->to, timeout, 0.);
3120 ev_timer_start (EV_A_ &once->to); 4712 ev_timer_start (EV_A_ &once->to);
3121 } 4713 }
3122} 4714}
3123 4715
4716/*****************************************************************************/
4717
4718#if EV_WALK_ENABLE
4719void ecb_cold
4720ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721{
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731#if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738#endif
4739#if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743#endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753#if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761#endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765#if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769#endif
4770
4771#if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776#endif
4777
4778#if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783#endif
4784
4785#if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789#endif
4790
4791#if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794# if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796# endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798#endif
4799
4800#if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804#endif
4805
4806#if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815#endif
4816
4817#if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826#endif
4827/* EV_STAT 0x00001000 /* stat data changed */
4828/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829}
4830#endif
4831
3124#if EV_MULTIPLICITY 4832#if EV_MULTIPLICITY
3125 #include "ev_wrap.h" 4833 #include "ev_wrap.h"
3126#endif 4834#endif
3127 4835
3128#ifdef __cplusplus
3129}
3130#endif
3131

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines