ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
86# endif
87
88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
102# endif
103
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
144#endif
145
1#include <math.h> 146#include <math.h>
2#include <stdlib.h> 147#include <stdlib.h>
3#include <unistd.h>
4#include <fcntl.h> 148#include <fcntl.h>
5#include <signal.h>
6#include <stddef.h> 149#include <stddef.h>
7 150
8#include <stdio.h> 151#include <stdio.h>
9 152
10#include <assert.h> 153#include <assert.h>
11#include <errno.h> 154#include <errno.h>
12#include <sys/time.h> 155#include <sys/types.h>
13#include <time.h> 156#include <time.h>
14 157
15#define HAVE_EPOLL 1 158#include <signal.h>
16 159
17#ifndef HAVE_MONOTONIC 160#ifdef EV_H
18# ifdef CLOCK_MONOTONIC 161# include EV_H
19# define HAVE_MONOTONIC 1 162#else
163# include "ev.h"
164#endif
165
166#ifndef _WIN32
167# include <sys/time.h>
168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
20# endif 176# endif
21#endif 177#endif
22 178
23#ifndef HAVE_SELECT 179/* this block tries to deduce configuration from header-defined symbols and defaults */
24# define HAVE_SELECT 1 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
25#endif 186# endif
187#endif
26 188
27#ifndef HAVE_EPOLL 189#ifndef EV_USE_MONOTONIC
28# define HAVE_EPOLL 0 190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
29#endif 194# endif
195#endif
30 196
31#ifndef HAVE_REALTIME 197#ifndef EV_USE_REALTIME
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
33#endif 206# endif
207#endif
208
209#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1
211#endif
212
213#ifndef EV_USE_POLL
214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
219#endif
220
221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
225# define EV_USE_EPOLL 0
226# endif
227#endif
228
229#ifndef EV_USE_KQUEUE
230# define EV_USE_KQUEUE 0
231#endif
232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0
292#endif
293
294#ifndef CLOCK_REALTIME
295# undef EV_USE_REALTIME
296# define EV_USE_REALTIME 0
297#endif
298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
34 363
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
37 367
38#include "ev.h" 368#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline))
371#else
372# define expect(expr,value) (expr)
373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
377#endif
39 378
379#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
40typedef struct ev_watcher *W; 395typedef ev_watcher *W;
41typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
42typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
43 398
44static ev_tstamp now, diff; /* monotonic clock */ 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
407
408#ifdef _WIN32
409# include "ev_win32.c"
410#endif
411
412/*****************************************************************************/
413
414static void (*syserr_cb)(const char *msg);
415
416void
417ev_set_syserr_cb (void (*cb)(const char *msg))
418{
419 syserr_cb = cb;
420}
421
422static void noinline
423ev_syserr (const char *msg)
424{
425 if (!msg)
426 msg = "(libev) system error";
427
428 if (syserr_cb)
429 syserr_cb (msg);
430 else
431 {
432 perror (msg);
433 abort ();
434 }
435}
436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
453
454void
455ev_set_allocator (void *(*cb)(void *ptr, long size))
456{
457 alloc = cb;
458}
459
460inline_speed void *
461ev_realloc (void *ptr, long size)
462{
463 ptr = alloc (ptr, size);
464
465 if (!ptr && size)
466 {
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
468 abort ();
469 }
470
471 return ptr;
472}
473
474#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0)
476
477/*****************************************************************************/
478
479typedef struct
480{
481 WL head;
482 unsigned char events;
483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
489#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle;
491#endif
492} ANFD;
493
494typedef struct
495{
496 W w;
497 int events;
498} ANPENDING;
499
500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
502typedef struct
503{
504 WL head;
505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524#endif
525
526#if EV_MULTIPLICITY
527
528 struct ev_loop
529 {
530 ev_tstamp ev_rt_now;
531 #define ev_rt_now ((loop)->ev_rt_now)
532 #define VAR(name,decl) decl;
533 #include "ev_vars.h"
534 #undef VAR
535 };
536 #include "ev_wrap.h"
537
538 static struct ev_loop default_loop_struct;
539 struct ev_loop *ev_default_loop_ptr;
540
541#else
542
45ev_tstamp ev_now; 543 ev_tstamp ev_rt_now;
46int ev_method; 544 #define VAR(name,decl) static decl;
545 #include "ev_vars.h"
546 #undef VAR
47 547
48static int have_monotonic; /* runtime */ 548 static int ev_default_loop_ptr;
49 549
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 550#endif
51static void (*method_modify)(int fd, int oev, int nev);
52static void (*method_poll)(ev_tstamp timeout);
53 551
54/*****************************************************************************/ 552/*****************************************************************************/
55 553
56ev_tstamp 554ev_tstamp
57ev_time (void) 555ev_time (void)
58{ 556{
59#if HAVE_REALTIME 557#if EV_USE_REALTIME
60 struct timespec ts; 558 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 559 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 560 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 561#else
64 struct timeval tv; 562 struct timeval tv;
65 gettimeofday (&tv, 0); 563 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 564 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif 565#endif
68} 566}
69 567
70static ev_tstamp 568ev_tstamp inline_size
71get_clock (void) 569get_clock (void)
72{ 570{
73#if HAVE_MONOTONIC 571#if EV_USE_MONOTONIC
74 if (have_monotonic) 572 if (expect_true (have_monotonic))
75 { 573 {
76 struct timespec ts; 574 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 575 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 576 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 577 }
80#endif 578#endif
81 579
82 return ev_time (); 580 return ev_time ();
83} 581}
84 582
85#define array_needsize(base,cur,cnt,init) \ 583#if EV_MULTIPLICITY
86 if ((cnt) > cur) \ 584ev_tstamp
87 { \ 585ev_now (EV_P)
88 int newcnt = cur ? cur << 1 : 16; \ 586{
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 587 return ev_rt_now;
90 init (base + cur, newcnt - cur); \ 588}
91 cur = newcnt; \ 589#endif
590
591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
92 } 595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
93 618
94/*****************************************************************************/ 619/*****************************************************************************/
95 620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623int inline_size
624array_nextsize (int elem, int cur, int cnt)
625{
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642}
643
644static noinline void *
645array_realloc (int elem, void *base, int *cur, int cnt)
646{
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
653
654#define array_needsize(type,base,cur,cnt,init) \
655 if (expect_false ((cnt) > (cur))) \
656 { \
657 int ocur_ = (cur); \
658 (base) = (type *)array_realloc \
659 (sizeof (type), (base), &(cur), (cnt)); \
660 init ((base) + (ocur_), (cur) - ocur_); \
661 }
662
663#if 0
664#define array_slim(type,stem) \
665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
666 { \
667 stem ## max = array_roundsize (stem ## cnt >> 1); \
668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 }
671#endif
672
673#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
675
676/*****************************************************************************/
677
678void noinline
679ev_feed_event (EV_P_ void *w, int revents)
680{
681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
683
684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents;
692 }
693}
694
695void inline_speed
696queue_events (EV_P_ W *events, int eventcnt, int type)
697{
698 int i;
699
700 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type);
702}
703
704/*****************************************************************************/
705
706void inline_speed
707fd_event (EV_P_ int fd, int revents)
708{
709 ANFD *anfd = anfds + fd;
710 ev_io *w;
711
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
713 {
714 int ev = w->events & revents;
715
716 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev);
718 }
719}
720
721void
722ev_feed_fd_event (EV_P_ int fd, int revents)
723{
724 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents);
726}
727
728void inline_size
729fd_reify (EV_P)
730{
731 int i;
732
733 for (i = 0; i < fdchangecnt; ++i)
734 {
735 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd;
737 ev_io *w;
738
739 unsigned char events = 0;
740
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
742 events |= (unsigned char)w->events;
743
744#if EV_SELECT_IS_WINSOCKET
745 if (events)
746 {
747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 }
755#endif
756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
767 }
768
769 fdchangecnt = 0;
770}
771
772void inline_size
773fd_change (EV_P_ int fd, int flags)
774{
775 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags;
777
778 if (expect_true (!reify))
779 {
780 ++fdchangecnt;
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd;
783 }
784}
785
786void inline_speed
787fd_kill (EV_P_ int fd)
788{
789 ev_io *w;
790
791 while ((w = (ev_io *)anfds [fd].head))
792 {
793 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 }
796}
797
798int inline_size
799fd_valid (int fd)
800{
801#ifdef _WIN32
802 return _get_osfhandle (fd) != -1;
803#else
804 return fcntl (fd, F_GETFD) != -1;
805#endif
806}
807
808/* called on EBADF to verify fds */
809static void noinline
810fd_ebadf (EV_P)
811{
812 int fd;
813
814 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events)
816 if (!fd_valid (fd) && errno == EBADF)
817 fd_kill (EV_A_ fd);
818}
819
820/* called on ENOMEM in select/poll to kill some fds and retry */
821static void noinline
822fd_enomem (EV_P)
823{
824 int fd;
825
826 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events)
828 {
829 fd_kill (EV_A_ fd);
830 return;
831 }
832}
833
834/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline
836fd_rearm_all (EV_P)
837{
838 int fd;
839
840 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events)
842 {
843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
846 }
847}
848
849/*****************************************************************************/
850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
871void inline_speed
872downheap (ANHE *heap, int N, int k)
873{
874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
876
877 for (;;)
878 {
879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
882
883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
899 break;
900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
970}
971
972void inline_size
973adjustheap (ANHE *heap, int N, int k)
974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k);
977 else
978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
991}
992
993/*****************************************************************************/
994
96typedef struct 995typedef struct
97{ 996{
98 struct ev_io *head; 997 WL head;
99 unsigned char wev, rev; /* want, received event set */ 998 EV_ATOMIC_T gotsig;
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void
109anfds_init (ANFD *base, int count)
110{
111 while (count--)
112 {
113 base->head = 0;
114 base->wev = base->rev = EV_NONE;
115 ++base;
116 }
117}
118
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void
129event (W w, int events)
130{
131 if (w->active)
132 {
133 w->pending = ++pendingcnt;
134 array_needsize (pendings, pendingmax, pendingcnt, );
135 pendings [pendingcnt - 1].w = w;
136 pendings [pendingcnt - 1].events = events;
137 }
138}
139
140static void
141fd_event (int fd, int events)
142{
143 ANFD *anfd = anfds + fd;
144 struct ev_io *w;
145
146 for (w = anfd->head; w; w = w->next)
147 {
148 int ev = w->events & events;
149
150 if (ev)
151 event ((W)w, ev);
152 }
153}
154
155static void
156queue_events (W *events, int eventcnt, int type)
157{
158 int i;
159
160 for (i = 0; i < eventcnt; ++i)
161 event (events [i], type);
162}
163
164/*****************************************************************************/
165
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void
173upheap (WT *timers, int k)
174{
175 WT w = timers [k];
176
177 while (k && timers [k >> 1]->at > w->at)
178 {
179 timers [k] = timers [k >> 1];
180 timers [k]->active = k + 1;
181 k >>= 1;
182 }
183
184 timers [k] = w;
185 timers [k]->active = k + 1;
186
187}
188
189static void
190downheap (WT *timers, int N, int k)
191{
192 WT w = timers [k];
193
194 while (k < (N >> 1))
195 {
196 int j = k << 1;
197
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
199 ++j;
200
201 if (w->at <= timers [j]->at)
202 break;
203
204 timers [k] = timers [j];
205 timers [k]->active = k + 1;
206 k = j;
207 }
208
209 timers [k] = w;
210 timers [k]->active = k + 1;
211}
212
213/*****************************************************************************/
214
215typedef struct
216{
217 struct ev_signal *head;
218 sig_atomic_t gotsig;
219} ANSIG; 999} ANSIG;
220 1000
221static ANSIG *signals; 1001static ANSIG *signals;
222static int signalmax; 1002static int signalmax;
223 1003
224static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
225static sig_atomic_t gotsig; 1005
226static struct ev_io sigev; 1006/*****************************************************************************/
1007
1008void inline_speed
1009fd_intern (int fd)
1010{
1011#ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif
1018}
1019
1020static void noinline
1021evpipe_init (EV_P)
1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
1038 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
1042
1043 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
227 1070
228static void 1071static void
229signals_init (ANSIG *base, int count) 1072pipecb (EV_P_ ev_io *iow, int revents)
230{ 1073{
231 while (count--) 1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
232 { 1079 }
233 base->head = 0; 1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
234 base->gotsig = 0; 1090 gotsig = 0;
235 ++base; 1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
236 } 1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
237} 1111}
1112
1113/*****************************************************************************/
238 1114
239static void 1115static void
240sighandler (int signum) 1116ev_sighandler (int signum)
241{ 1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
242 signals [signum - 1].gotsig = 1; 1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
243 1129
244 if (!gotsig) 1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
1152static WL childs [EV_PID_HASHSIZE];
1153
1154#ifndef _WIN32
1155
1156static ev_signal childev;
1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
1162void inline_speed
1163child_reap (EV_P_ int chain, int pid, int status)
1164{
1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
1172 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1174 w->rpid = pid;
1175 w->rstatus = status;
1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1177 }
1178 }
1179}
1180
1181#ifndef WCONTINUED
1182# define WCONTINUED 0
1183#endif
1184
1185static void
1186childcb (EV_P_ ev_signal *sw, int revents)
1187{
1188 int pid, status;
1189
1190 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1191 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1192 if (!WCONTINUED
1193 || errno != EINVAL
1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1195 return;
1196
1197 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200
1201 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204}
1205
1206#endif
1207
1208/*****************************************************************************/
1209
1210#if EV_USE_PORT
1211# include "ev_port.c"
1212#endif
1213#if EV_USE_KQUEUE
1214# include "ev_kqueue.c"
1215#endif
1216#if EV_USE_EPOLL
1217# include "ev_epoll.c"
1218#endif
1219#if EV_USE_POLL
1220# include "ev_poll.c"
1221#endif
1222#if EV_USE_SELECT
1223# include "ev_select.c"
1224#endif
1225
1226int
1227ev_version_major (void)
1228{
1229 return EV_VERSION_MAJOR;
1230}
1231
1232int
1233ev_version_minor (void)
1234{
1235 return EV_VERSION_MINOR;
1236}
1237
1238/* return true if we are running with elevated privileges and should ignore env variables */
1239int inline_size
1240enable_secure (void)
1241{
1242#ifdef _WIN32
1243 return 0;
1244#else
1245 return getuid () != geteuid ()
1246 || getgid () != getegid ();
1247#endif
1248}
1249
1250unsigned int
1251ev_supported_backends (void)
1252{
1253 unsigned int flags = 0;
1254
1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1257 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1258 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_recommended_backends (void)
1266{
1267 unsigned int flags = ev_supported_backends ();
1268
1269#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE;
1273#endif
1274#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation
1276 flags &= ~EVBACKEND_POLL;
1277#endif
1278
1279 return flags;
1280}
1281
1282unsigned int
1283ev_embeddable_backends (void)
1284{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
1292}
1293
1294unsigned int
1295ev_backend (EV_P)
1296{
1297 return backend;
1298}
1299
1300unsigned int
1301ev_loop_count (EV_P)
1302{
1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
1316}
1317
1318static void noinline
1319loop_init (EV_P_ unsigned int flags)
1320{
1321 if (!backend)
1322 {
1323#if EV_USE_MONOTONIC
245 { 1324 {
1325 struct timespec ts;
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1;
1328 }
1329#endif
1330
1331 ev_rt_now = ev_time ();
1332 mn_now = get_clock ();
1333 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1344
1345 /* pid check not overridable via env */
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif
1350
1351 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1355
1356 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends ();
1358
1359#if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361#endif
1362#if EV_USE_KQUEUE
1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1364#endif
1365#if EV_USE_EPOLL
1366 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1367#endif
1368#if EV_USE_POLL
1369 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1370#endif
1371#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif
1374
1375 ev_init (&pipeev, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI);
1377 }
1378}
1379
1380static void noinline
1381loop_destroy (EV_P)
1382{
1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401
1402#if EV_USE_INOTIFY
1403 if (fs_fd >= 0)
1404 close (fs_fd);
1405#endif
1406
1407 if (backend_fd >= 0)
1408 close (backend_fd);
1409
1410#if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412#endif
1413#if EV_USE_KQUEUE
1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1415#endif
1416#if EV_USE_EPOLL
1417 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1418#endif
1419#if EV_USE_POLL
1420 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1421#endif
1422#if EV_USE_SELECT
1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1424#endif
1425
1426 for (i = NUMPRI; i--; )
1427 {
1428 array_free (pending, [i]);
1429#if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431#endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
1435
1436 /* have to use the microsoft-never-gets-it-right macro */
1437 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY);
1441#endif
1442#if EV_FORK_ENABLE
1443 array_free (fork, EMPTY);
1444#endif
1445 array_free (prepare, EMPTY);
1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1450
1451 backend = 0;
1452}
1453
1454#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P);
1456#endif
1457
1458void inline_size
1459loop_fork (EV_P)
1460{
1461#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif
1464#if EV_USE_KQUEUE
1465 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1466#endif
1467#if EV_USE_EPOLL
1468 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1469#endif
1470#if EV_USE_INOTIFY
1471 infy_fork (EV_A);
1472#endif
1473
1474 if (ev_is_active (&pipeev))
1475 {
1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
246 gotsig = 1; 1478 gotsig = 1;
247 write (sigpipe [1], &gotsig, 1); 1479#if EV_ASYNC_ENABLE
248 } 1480 gotasync = 1;
249} 1481#endif
250 1482
251static void 1483 ev_ref (EV_A);
252sigcb (struct ev_io *iow, int revents) 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1493 close (evpipe [0]);
1494 close (evpipe [1]);
1495 }
1496
1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1500 }
1501
1502 postfork = 0;
1503}
1504
1505#if EV_MULTIPLICITY
1506
1507struct ev_loop *
1508ev_loop_new (unsigned int flags)
253{ 1509{
254 struct ev_signal *w; 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511
1512 memset (loop, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags);
1515
1516 if (ev_backend (EV_A))
1517 return loop;
1518
1519 return 0;
1520}
1521
1522void
1523ev_loop_destroy (EV_P)
1524{
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527}
1528
1529void
1530ev_loop_fork (EV_P)
1531{
1532 postfork = 1; /* must be in line with ev_default_fork */
1533}
1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
255 int sig; 1548 int i;
256 1549
257 gotsig = 0; 1550 for (i = HEAP0; i < N + HEAP0; ++i)
258 read (sigpipe [0], &revents, 1); 1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
259 1555
260 for (sig = signalmax; sig--; ) 1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
261 if (signals [sig].gotsig) 1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
262 { 1587 {
263 signals [sig].gotsig = 0; 1588 verify_watcher (EV_A_ (W)w);
264 1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
265 for (w = signals [sig].head; w; w = w->next) 1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
266 event ((W)w, EV_SIGNAL);
267 } 1591 }
268}
269 1592
270static void 1593 assert (timermax >= timercnt);
271siginit (void) 1594 verify_heap (EV_A_ timers, timercnt);
272{
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275 1595
276 /* rather than sort out wether we really need nb, set it */ 1596#if EV_PERIODIC_ENABLE
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 1597 assert (periodicmax >= periodiccnt);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
279 1600
280 evio_set (&sigev, sigpipe [0], EV_READ); 1601 for (i = NUMPRI; i--; )
281 evio_start (&sigev); 1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1635
1636#if EV_MULTIPLICITY
1637struct ev_loop *
1638ev_default_loop_init (unsigned int flags)
1639#else
1640int
1641ev_default_loop (unsigned int flags)
1642#endif
1643{
1644 if (!ev_default_loop_ptr)
1645 {
1646#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1648#else
1649 ev_default_loop_ptr = 1;
1650#endif
1651
1652 loop_init (EV_A_ flags);
1653
1654 if (ev_backend (EV_A))
1655 {
1656#ifndef _WIN32
1657 ev_signal_init (&childev, childcb, SIGCHLD);
1658 ev_set_priority (&childev, EV_MAXPRI);
1659 ev_signal_start (EV_A_ &childev);
1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1661#endif
1662 }
1663 else
1664 ev_default_loop_ptr = 0;
1665 }
1666
1667 return ev_default_loop_ptr;
1668}
1669
1670void
1671ev_default_destroy (void)
1672{
1673#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 ev_default_loop_ptr = 0;
1678
1679#ifndef _WIN32
1680 ev_ref (EV_A); /* child watcher */
1681 ev_signal_stop (EV_A_ &childev);
1682#endif
1683
1684 loop_destroy (EV_A);
1685}
1686
1687void
1688ev_default_fork (void)
1689{
1690#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr;
1692#endif
1693
1694 postfork = 1; /* must be in line with ev_loop_fork */
282} 1695}
283 1696
284/*****************************************************************************/ 1697/*****************************************************************************/
285 1698
286static struct ev_idle **idles; 1699void
287static int idlemax, idlecnt; 1700ev_invoke (EV_P_ void *w, int revents)
288
289static struct ev_check **checks;
290static int checkmax, checkcnt;
291
292/*****************************************************************************/
293
294#if HAVE_EPOLL
295# include "ev_epoll.c"
296#endif
297#if HAVE_SELECT
298# include "ev_select.c"
299#endif
300
301int ev_init (int flags)
302{ 1701{
303#if HAVE_MONOTONIC 1702 EV_CB_INVOKE ((W)w, revents);
304 {
305 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1;
308 }
309#endif
310
311 ev_now = ev_time ();
312 now = get_clock ();
313 diff = ev_now - now;
314
315 if (pipe (sigpipe))
316 return 0;
317
318 ev_method = EVMETHOD_NONE;
319#if HAVE_EPOLL
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
321#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325
326 if (ev_method)
327 {
328 evw_init (&sigev, sigcb);
329 siginit ();
330 }
331
332 return ev_method;
333} 1703}
334 1704
335/*****************************************************************************/ 1705void inline_speed
336 1706call_pending (EV_P)
337void ev_prefork (void)
338{ 1707{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif
353
354 evio_stop (&sigev);
355 close (sigpipe [0]);
356 close (sigpipe [1]);
357 pipe (sigpipe);
358 siginit ();
359}
360
361/*****************************************************************************/
362
363static void
364fd_reify (void)
365{
366 int i; 1708 int pri;
367 1709
368 for (i = 0; i < fdchangecnt; ++i) 1710 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri])
369 { 1712 {
370 int fd = fdchanges [i]; 1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373 1714
374 int wev = 0; 1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
375 1718
376 for (w = anfd->head; w; w = w->next) 1719 p->w->pending = 0;
377 wev |= w->events; 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1722 }
1723 }
1724}
378 1725
379 if (anfd->wev != wev) 1726#if EV_IDLE_ENABLE
1727void inline_size
1728idle_reify (EV_P)
1729{
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
380 { 1735 {
381 method_modify (fd, anfd->wev, wev); 1736 if (pendingcnt [pri])
382 anfd->wev = wev; 1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
383 } 1744 }
384 } 1745 }
385
386 fdchangecnt = 0;
387} 1746}
1747#endif
388 1748
389static void 1749void inline_size
390call_pending ()
391{
392 int i;
393
394 for (i = 0; i < pendingcnt; ++i)
395 {
396 ANPENDING *p = pendings + i;
397
398 if (p->w)
399 {
400 p->w->pending = 0;
401 p->w->cb (p->w, p->events);
402 }
403 }
404
405 pendingcnt = 0;
406}
407
408static void
409timers_reify () 1750timers_reify (EV_P)
410{ 1751{
1752 EV_FREQUENT_CHECK;
1753
411 while (timercnt && timers [0]->at <= now) 1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
412 { 1755 {
413 struct ev_timer *w = timers [0]; 1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
414 1757
415 event ((W)w, EV_TIMEOUT); 1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
416 1759
417 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
418 if (w->repeat) 1761 if (w->repeat)
419 { 1762 {
420 w->at = now + w->repeat; 1763 ev_at (w) += w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
422 downheap ((WT *)timers, timercnt, 0); 1770 downheap (timers, timercnt, HEAP0);
423 } 1771 }
424 else 1772 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
426 }
427}
428 1774
429static void 1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
430periodics_reify () 1782periodics_reify (EV_P)
431{ 1783{
1784 EV_FREQUENT_CHECK;
1785
432 while (periodiccnt && periodics [0]->at <= ev_now) 1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
433 { 1787 {
434 struct ev_periodic *w = periodics [0]; 1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
435 1791
436 /* first reschedule or stop timer */ 1792 /* first reschedule or stop timer */
437 if (w->interval) 1793 if (w->reschedule_cb)
438 { 1794 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
441 downheap ((WT *)periodics, periodiccnt, 0); 1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
442 } 1820 }
443 else 1821 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
445 1823
446 event ((W)w, EV_TIMEOUT); 1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
447 } 1826 }
448} 1827}
449 1828
450static void 1829static void noinline
451periodics_reschedule (ev_tstamp diff) 1830periodics_reschedule (EV_P)
452{ 1831{
453 int i; 1832 int i;
454 1833
455 /* adjust periodics after time jump */ 1834 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i) 1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
457 { 1836 {
458 struct ev_periodic *w = periodics [i]; 1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
459 1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
460 if (w->interval) 1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848}
1849#endif
1850
1851void inline_speed
1852time_update (EV_P_ ev_tstamp max_block)
1853{
1854 int i;
1855
1856#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1858 {
1859 ev_tstamp odiff = rtmn_diff;
1860
1861 mn_now = get_clock ();
1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
461 { 1866 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1867 ev_rt_now = rtmn_diff + mn_now;
1868 return;
1869 }
463 1870
464 if (fabs (diff) >= 1e-4) 1871 now_floor = mn_now;
1872 ev_rt_now = ev_time ();
1873
1874 /* loop a few times, before making important decisions.
1875 * on the choice of "4": one iteration isn't enough,
1876 * in case we get preempted during the calls to
1877 * ev_time and get_clock. a second call is almost guaranteed
1878 * to succeed in that case, though. and looping a few more times
1879 * doesn't hurt either as we only do this on time-jumps or
1880 * in the unlikely event of having been preempted here.
1881 */
1882 for (i = 4; --i; )
1883 {
1884 rtmn_diff = ev_rt_now - mn_now;
1885
1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1887 return; /* all is well */
1888
1889 ev_rt_now = ev_time ();
1890 mn_now = get_clock ();
1891 now_floor = mn_now;
1892 }
1893
1894# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A);
1896# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 }
1900 else
1901#endif
1902 {
1903 ev_rt_now = ev_time ();
1904
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 {
1907#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A);
1909#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
465 { 1912 {
466 evperiodic_stop (w); 1913 ANHE *he = timers + i + HEAP0;
467 evperiodic_start (w); 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
468 1915 ANHE_at_cache (*he);
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */
470 } 1916 }
471 } 1917 }
472 }
473}
474 1918
475static void 1919 mn_now = ev_rt_now;
476time_update ()
477{
478 int i;
479
480 ev_now = ev_time ();
481
482 if (have_monotonic)
483 { 1920 }
484 ev_tstamp odiff = diff; 1921}
485 1922
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1923void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags)
1945{
1946 loop_done = EVUNLOOP_CANCEL;
1947
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1949
1950 do
1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1956#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid))
1959 {
1960 curpid = getpid ();
1961 postfork = 1;
1962 }
1963#endif
1964
1965#if EV_FORK_ENABLE
1966 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork))
1968 if (forkcnt)
1969 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A);
1972 }
1973#endif
1974
1975 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt))
487 { 1977 {
488 now = get_clock (); 1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
489 diff = ev_now - now; 1979 call_pending (EV_A);
490
491 if (fabs (odiff - diff) < MIN_TIMEJUMP)
492 return; /* all is well */
493
494 ev_now = ev_time ();
495 } 1980 }
496 1981
497 periodics_reschedule (diff - odiff); 1982 if (expect_false (!activecnt))
498 /* no timer adjustment, as the monotonic clock doesn't jump */ 1983 break;
499 }
500 else
501 {
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
503 {
504 periodics_reschedule (ev_now - now);
505 1984
506 /* adjust timers. this is easy, as the offset is the same for all */ 1985 /* we might have forked, so reify kernel state if necessary */
507 for (i = 0; i < timercnt; ++i) 1986 if (expect_false (postfork))
508 timers [i]->at += diff; 1987 loop_fork (EV_A);
509 }
510 1988
511 now = ev_now;
512 }
513}
514
515int ev_loop_done;
516
517void ev_loop (int flags)
518{
519 double block;
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
521
522 if (checkcnt)
523 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK);
525 call_pending ();
526 }
527
528 do
529 {
530 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
531 fd_reify (); 1990 fd_reify (EV_A);
532 1991
533 /* calculate blocking time */ 1992 /* calculate blocking time */
1993 {
1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
534 1996
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
536 ev_now = ev_time ();
537
538 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.;
540 else
541 { 1998 {
1999 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100);
2001
542 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
543 2003
544 if (timercnt) 2004 if (timercnt)
545 { 2005 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
547 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
548 } 2008 }
549 2009
2010#if EV_PERIODIC_ENABLE
550 if (periodiccnt) 2011 if (periodiccnt)
551 { 2012 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
553 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
554 } 2015 }
2016#endif
555 2017
556 if (block < 0.) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
557 } 2031 }
558 2032
559 method_poll (block); 2033 ++loop_count;
2034 backend_poll (EV_A_ waittime);
560 2035
561 /* update ev_now, do magic */ 2036 /* update ev_rt_now, do magic */
562 time_update (); 2037 time_update (EV_A_ waittime + sleeptime);
2038 }
563 2039
564 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
2041 timers_reify (EV_A); /* relative timers called last */
2042#if EV_PERIODIC_ENABLE
565 periodics_reify (); /* absolute timers first */ 2043 periodics_reify (EV_A); /* absolute timers called first */
566 timers_reify (); /* relative timers second */ 2044#endif
567 2045
2046#if EV_IDLE_ENABLE
568 /* queue idle watchers unless io or timers are pending */ 2047 /* queue idle watchers unless other events are pending */
569 if (!pendingcnt) 2048 idle_reify (EV_A);
570 queue_events ((W *)idles, idlecnt, EV_IDLE); 2049#endif
571 2050
572 /* queue check and possibly idle watchers */ 2051 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt))
573 queue_events ((W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
574 2054
575 call_pending (); 2055 call_pending (EV_A);
576 } 2056 }
577 while (!ev_loop_done); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
578 2062
579 if (ev_loop_done != 2) 2063 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL;
2065}
2066
2067void
2068ev_unloop (EV_P_ int how)
2069{
580 ev_loop_done = 0; 2070 loop_done = how;
581} 2071}
582 2072
583/*****************************************************************************/ 2073/*****************************************************************************/
584 2074
585static void 2075void inline_size
586wlist_add (WL *head, WL elem) 2076wlist_add (WL *head, WL elem)
587{ 2077{
588 elem->next = *head; 2078 elem->next = *head;
589 *head = elem; 2079 *head = elem;
590} 2080}
591 2081
592static void 2082void inline_size
593wlist_del (WL *head, WL elem) 2083wlist_del (WL *head, WL elem)
594{ 2084{
595 while (*head) 2085 while (*head)
596 { 2086 {
597 if (*head == elem) 2087 if (*head == elem)
602 2092
603 head = &(*head)->next; 2093 head = &(*head)->next;
604 } 2094 }
605} 2095}
606 2096
607static void 2097void inline_speed
608ev_clear (W w) 2098clear_pending (EV_P_ W w)
609{ 2099{
610 if (w->pending) 2100 if (w->pending)
611 { 2101 {
612 pendings [w->pending - 1].w = 0; 2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
613 w->pending = 0; 2103 w->pending = 0;
614 } 2104 }
615} 2105}
616 2106
617static void 2107int
2108ev_clear_pending (EV_P_ void *w)
2109{
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122}
2123
2124void inline_size
2125pri_adjust (EV_P_ W w)
2126{
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131}
2132
2133void inline_speed
618ev_start (W w, int active) 2134ev_start (EV_P_ W w, int active)
619{ 2135{
2136 pri_adjust (EV_A_ w);
620 w->active = active; 2137 w->active = active;
2138 ev_ref (EV_A);
621} 2139}
622 2140
623static void 2141void inline_size
624ev_stop (W w) 2142ev_stop (EV_P_ W w)
625{ 2143{
2144 ev_unref (EV_A);
626 w->active = 0; 2145 w->active = 0;
627} 2146}
628 2147
629/*****************************************************************************/ 2148/*****************************************************************************/
630 2149
631void 2150void noinline
632evio_start (struct ev_io *w) 2151ev_io_start (EV_P_ ev_io *w)
633{ 2152{
2153 int fd = w->fd;
2154
634 if (ev_is_active (w)) 2155 if (expect_false (ev_is_active (w)))
635 return; 2156 return;
636 2157
637 int fd = w->fd; 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
638 2160
2161 EV_FREQUENT_CHECK;
2162
639 ev_start ((W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
642 2166
643 ++fdchangecnt; 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2168 w->events &= ~EV_IOFDSET;
645 fdchanges [fdchangecnt - 1] = fd;
646}
647 2169
648void 2170 EV_FREQUENT_CHECK;
2171}
2172
2173void noinline
649evio_stop (struct ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
650{ 2175{
651 ev_clear ((W)w); 2176 clear_pending (EV_A_ (W)w);
652 if (!ev_is_active (w)) 2177 if (expect_false (!ev_is_active (w)))
653 return; 2178 return;
654 2179
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
2183
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w); 2185 ev_stop (EV_A_ (W)w);
657 2186
658 ++fdchangecnt; 2187 fd_change (EV_A_ w->fd, 1);
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661}
662 2188
663void 2189 EV_FREQUENT_CHECK;
2190}
2191
2192void noinline
664evtimer_start (struct ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
665{ 2194{
666 if (ev_is_active (w)) 2195 if (expect_false (ev_is_active (w)))
667 return; 2196 return;
668 2197
669 w->at += now; 2198 ev_at (w) += mn_now;
670 2199
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
672 2201
673 ev_start ((W)w, ++timercnt); 2202 EV_FREQUENT_CHECK;
674 array_needsize (timers, timermax, timercnt, );
675 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1);
677}
678 2203
679void 2204 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
2210
2211 EV_FREQUENT_CHECK;
2212
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214}
2215
2216void noinline
680evtimer_stop (struct ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
681{ 2218{
682 ev_clear ((W)w); 2219 clear_pending (EV_A_ (W)w);
683 if (!ev_is_active (w)) 2220 if (expect_false (!ev_is_active (w)))
684 return; 2221 return;
685 2222
686 if (w->active < timercnt--) 2223 EV_FREQUENT_CHECK;
2224
2225 {
2226 int active = ev_active (w);
2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
2232 if (expect_true (active < timercnt + HEAP0))
687 { 2233 {
688 timers [w->active - 1] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
689 downheap ((WT *)timers, timercnt, w->active - 1); 2235 adjustheap (timers, timercnt, active);
690 } 2236 }
2237 }
691 2238
692 w->at = w->repeat; 2239 EV_FREQUENT_CHECK;
693 2240
2241 ev_at (w) -= mn_now;
2242
694 ev_stop ((W)w); 2243 ev_stop (EV_A_ (W)w);
695} 2244}
696 2245
697void 2246void noinline
698evtimer_again (struct ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
699{ 2248{
2249 EV_FREQUENT_CHECK;
2250
700 if (ev_is_active (w)) 2251 if (ev_is_active (w))
701 { 2252 {
702 if (w->repeat) 2253 if (w->repeat)
703 { 2254 {
704 w->at = now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
705 downheap ((WT *)timers, timercnt, w->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
706 } 2258 }
707 else 2259 else
708 evtimer_stop (w); 2260 ev_timer_stop (EV_A_ w);
709 } 2261 }
710 else if (w->repeat) 2262 else if (w->repeat)
2263 {
2264 ev_at (w) = w->repeat;
711 evtimer_start (w); 2265 ev_timer_start (EV_A_ w);
712} 2266 }
713 2267
714void 2268 EV_FREQUENT_CHECK;
2269}
2270
2271#if EV_PERIODIC_ENABLE
2272void noinline
715evperiodic_start (struct ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
716{ 2274{
717 if (ev_is_active (w)) 2275 if (expect_false (ev_is_active (w)))
718 return; 2276 return;
719 2277
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2278 if (w->reschedule_cb)
721 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval)
2281 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
722 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 }
2286 else
2287 ev_at (w) = w->offset;
725 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
726 ev_start ((W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
727 array_needsize (periodics, periodicmax, periodiccnt, ); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
728 periodics [periodiccnt - 1] = w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
729 upheap ((WT *)periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
730} 2296 upheap (periodics, ev_active (w));
731 2297
732void 2298 EV_FREQUENT_CHECK;
2299
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301}
2302
2303void noinline
733evperiodic_stop (struct ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
734{ 2305{
735 ev_clear ((W)w); 2306 clear_pending (EV_A_ (W)w);
736 if (!ev_is_active (w)) 2307 if (expect_false (!ev_is_active (w)))
737 return; 2308 return;
738 2309
739 if (w->active < periodiccnt--) 2310 EV_FREQUENT_CHECK;
2311
2312 {
2313 int active = ev_active (w);
2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
2319 if (expect_true (active < periodiccnt + HEAP0))
740 { 2320 {
741 periodics [w->active - 1] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2322 adjustheap (periodics, periodiccnt, active);
743 } 2323 }
2324 }
744 2325
2326 EV_FREQUENT_CHECK;
2327
745 ev_stop ((W)w); 2328 ev_stop (EV_A_ (W)w);
746} 2329}
747 2330
748void 2331void noinline
2332ev_periodic_again (EV_P_ ev_periodic *w)
2333{
2334 /* TODO: use adjustheap and recalculation */
2335 ev_periodic_stop (EV_A_ w);
2336 ev_periodic_start (EV_A_ w);
2337}
2338#endif
2339
2340#ifndef SA_RESTART
2341# define SA_RESTART 0
2342#endif
2343
2344void noinline
749evsignal_start (struct ev_signal *w) 2345ev_signal_start (EV_P_ ev_signal *w)
750{ 2346{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
751 if (ev_is_active (w)) 2350 if (expect_false (ev_is_active (w)))
752 return; 2351 return;
753 2352
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360#ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368#ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370#endif
2371 }
2372
754 ev_start ((W)w, 1); 2373 ev_start (EV_A_ (W)w, 1);
755 array_needsize (signals, signalmax, w->signum, signals_init);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
757 2375
758 if (!w->next) 2376 if (!((WL)w)->next)
759 { 2377 {
2378#if _WIN32
2379 signal (w->signum, ev_sighandler);
2380#else
760 struct sigaction sa; 2381 struct sigaction sa;
761 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
762 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0; 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
764 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
2386#endif
765 } 2387 }
766}
767 2388
768void 2389 EV_FREQUENT_CHECK;
2390}
2391
2392void noinline
769evsignal_stop (struct ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
770{ 2394{
771 ev_clear ((W)w); 2395 clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 2396 if (expect_false (!ev_is_active (w)))
773 return; 2397 return;
774 2398
2399 EV_FREQUENT_CHECK;
2400
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w); 2402 ev_stop (EV_A_ (W)w);
777 2403
778 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
780}
781 2406
782void evidle_start (struct ev_idle *w) 2407 EV_FREQUENT_CHECK;
2408}
2409
2410void
2411ev_child_start (EV_P_ ev_child *w)
783{ 2412{
2413#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif
784 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
785 return; 2417 return;
786 2418
787 ev_start ((W)w, ++idlecnt); 2419 EV_FREQUENT_CHECK;
788 array_needsize (idles, idlemax, idlecnt, );
789 idles [idlecnt - 1] = w;
790}
791 2420
792void evidle_stop (struct ev_idle *w) 2421 ev_start (EV_A_ (W)w, 1);
2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
2425}
2426
2427void
2428ev_child_stop (EV_P_ ev_child *w)
793{ 2429{
794 ev_clear ((W)w); 2430 clear_pending (EV_A_ (W)w);
795 if (ev_is_active (w)) 2431 if (expect_false (!ev_is_active (w)))
796 return; 2432 return;
797 2433
798 idles [w->active - 1] = idles [--idlecnt]; 2434 EV_FREQUENT_CHECK;
2435
2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
799 ev_stop ((W)w); 2437 ev_stop (EV_A_ (W)w);
800}
801 2438
802void evcheck_start (struct ev_check *w) 2439 EV_FREQUENT_CHECK;
2440}
2441
2442#if EV_STAT_ENABLE
2443
2444# ifdef _WIN32
2445# undef lstat
2446# define lstat(a,b) _stati64 (a,b)
2447# endif
2448
2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2451#define MIN_STAT_INTERVAL 0.1074891
2452
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454
2455#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192
2457
2458static void noinline
2459infy_add (EV_P_ ev_stat *w)
803{ 2460{
804 if (ev_is_active (w)) 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462
2463 if (w->wd < 0)
2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467
2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 {
2473 char path [4096];
2474 strcpy (path, w->path);
2475
2476 do
2477 {
2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2480
2481 char *pend = strrchr (path, '/');
2482
2483 if (!pend || pend == path)
2484 break;
2485
2486 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 }
2491 }
2492
2493 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
2514}
2515
2516static void noinline
2517infy_del (EV_P_ ev_stat *w)
2518{
2519 int slot;
2520 int wd = w->wd;
2521
2522 if (wd < 0)
805 return; 2523 return;
806 2524
2525 w->wd = -2;
2526 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2527 wlist_del (&fs_hash [slot].head, (WL)w);
2528
2529 /* remove this watcher, if others are watching it, they will rearm */
2530 inotify_rm_watch (fs_fd, wd);
2531}
2532
2533static void noinline
2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2535{
2536 if (slot < 0)
2537 /* overflow, need to check for all hash slots */
2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2539 infy_wd (EV_A_ slot, wd, ev);
2540 else
2541 {
2542 WL w_;
2543
2544 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2545 {
2546 ev_stat *w = (ev_stat *)w_;
2547 w_ = w_->next; /* lets us remove this watcher and all before it */
2548
2549 if (w->wd == wd || wd == -1)
2550 {
2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2554 w->wd = -1;
2555 infy_add (EV_A_ w); /* re-add, no matter what */
2556 }
2557
2558 stat_timer_cb (EV_A_ &w->timer, 0);
2559 }
2560 }
2561 }
2562}
2563
2564static void
2565infy_cb (EV_P_ ev_io *w, int revents)
2566{
2567 char buf [EV_INOTIFY_BUFSIZE];
2568 struct inotify_event *ev = (struct inotify_event *)buf;
2569 int ofs;
2570 int len = read (fs_fd, buf, sizeof (buf));
2571
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574}
2575
2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
2600infy_init (EV_P)
2601{
2602 if (fs_fd != -2)
2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
2608
2609 fs_fd = inotify_init ();
2610
2611 if (fs_fd >= 0)
2612 {
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w);
2616 }
2617}
2618
2619void inline_size
2620infy_fork (EV_P)
2621{
2622 int slot;
2623
2624 if (fs_fd < 0)
2625 return;
2626
2627 close (fs_fd);
2628 fs_fd = inotify_init ();
2629
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2631 {
2632 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0;
2634
2635 while (w_)
2636 {
2637 ev_stat *w = (ev_stat *)w_;
2638 w_ = w_->next; /* lets us add this watcher */
2639
2640 w->wd = -1;
2641
2642 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else
2645 ev_timer_again (EV_A_ &w->timer);
2646 }
2647 }
2648}
2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
2656#endif
2657
2658void
2659ev_stat_stat (EV_P_ ev_stat *w)
2660{
2661 if (lstat (w->path, &w->attr) < 0)
2662 w->attr.st_nlink = 0;
2663 else if (!w->attr.st_nlink)
2664 w->attr.st_nlink = 1;
2665}
2666
2667static void noinline
2668stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2669{
2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2671
2672 /* we copy this here each the time so that */
2673 /* prev has the old value when the callback gets invoked */
2674 w->prev = w->attr;
2675 ev_stat_stat (EV_A_ w);
2676
2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if (
2679 w->prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime
2690 ) {
2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
2694 infy_del (EV_A_ w);
2695 infy_add (EV_A_ w);
2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
2698 #endif
2699
2700 ev_feed_event (EV_A_ w, EV_STAT);
2701 }
2702}
2703
2704void
2705ev_stat_start (EV_P_ ev_stat *w)
2706{
2707 if (expect_false (ev_is_active (w)))
2708 return;
2709
2710 ev_stat_stat (EV_A_ w);
2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2713 w->interval = MIN_STAT_INTERVAL;
2714
2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2716 ev_set_priority (&w->timer, ev_priority (w));
2717
2718#if EV_USE_INOTIFY
2719 infy_init (EV_A);
2720
2721 if (fs_fd >= 0)
2722 infy_add (EV_A_ w);
2723 else
2724#endif
2725 ev_timer_again (EV_A_ &w->timer);
2726
2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
2730}
2731
2732void
2733ev_stat_stop (EV_P_ ev_stat *w)
2734{
2735 clear_pending (EV_A_ (W)w);
2736 if (expect_false (!ev_is_active (w)))
2737 return;
2738
2739 EV_FREQUENT_CHECK;
2740
2741#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w);
2743#endif
2744 ev_timer_stop (EV_A_ &w->timer);
2745
2746 ev_stop (EV_A_ (W)w);
2747
2748 EV_FREQUENT_CHECK;
2749}
2750#endif
2751
2752#if EV_IDLE_ENABLE
2753void
2754ev_idle_start (EV_P_ ev_idle *w)
2755{
2756 if (expect_false (ev_is_active (w)))
2757 return;
2758
2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ++idlecnt [ABSPRI (w)];
2765
2766 ++idleall;
2767 ev_start (EV_A_ (W)w, active);
2768
2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2770 idles [ABSPRI (w)][active - 1] = w;
2771 }
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_idle_stop (EV_P_ ev_idle *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2790
2791 ev_stop (EV_A_ (W)w);
2792 --idleall;
2793 }
2794
2795 EV_FREQUENT_CHECK;
2796}
2797#endif
2798
2799void
2800ev_prepare_start (EV_P_ ev_prepare *w)
2801{
2802 if (expect_false (ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 ev_start (EV_A_ (W)w, ++preparecnt);
2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2812}
2813
2814void
2815ev_prepare_stop (EV_P_ ev_prepare *w)
2816{
2817 clear_pending (EV_A_ (W)w);
2818 if (expect_false (!ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
2822
2823 {
2824 int active = ev_active (w);
2825
2826 prepares [active - 1] = prepares [--preparecnt];
2827 ev_active (prepares [active - 1]) = active;
2828 }
2829
2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2833}
2834
2835void
2836ev_check_start (EV_P_ ev_check *w)
2837{
2838 if (expect_false (ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
807 ev_start ((W)w, ++checkcnt); 2843 ev_start (EV_A_ (W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, ); 2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
809 checks [checkcnt - 1] = w; 2845 checks [checkcnt - 1] = w;
810}
811 2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
812void evcheck_stop (struct ev_check *w) 2851ev_check_stop (EV_P_ ev_check *w)
813{ 2852{
814 ev_clear ((W)w); 2853 clear_pending (EV_A_ (W)w);
815 if (ev_is_active (w)) 2854 if (expect_false (!ev_is_active (w)))
816 return; 2855 return;
817 2856
2857 EV_FREQUENT_CHECK;
2858
2859 {
2860 int active = ev_active (w);
2861
818 checks [w->active - 1] = checks [--checkcnt]; 2862 checks [active - 1] = checks [--checkcnt];
2863 ev_active (checks [active - 1]) = active;
2864 }
2865
819 ev_stop ((W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
820} 2869}
2870
2871#if EV_EMBED_ENABLE
2872void noinline
2873ev_embed_sweep (EV_P_ ev_embed *w)
2874{
2875 ev_loop (w->other, EVLOOP_NONBLOCK);
2876}
2877
2878static void
2879embed_io_cb (EV_P_ ev_io *io, int revents)
2880{
2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2882
2883 if (ev_cb (w))
2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2885 else
2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2887}
2888
2889static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893
2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 {
2911 struct ev_loop *loop = w->other;
2912
2913 ev_loop_fork (EV_A);
2914 }
2915}
2916
2917#if 0
2918static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2920{
2921 ev_idle_stop (EV_A_ idle);
2922}
2923#endif
2924
2925void
2926ev_embed_start (EV_P_ ev_embed *w)
2927{
2928 if (expect_false (ev_is_active (w)))
2929 return;
2930
2931 {
2932 struct ev_loop *loop = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 }
2936
2937 EV_FREQUENT_CHECK;
2938
2939 ev_set_priority (&w->io, ev_priority (w));
2940 ev_io_start (EV_A_ &w->io);
2941
2942 ev_prepare_init (&w->prepare, embed_prepare_cb);
2943 ev_set_priority (&w->prepare, EV_MINPRI);
2944 ev_prepare_start (EV_A_ &w->prepare);
2945
2946 ev_fork_init (&w->fork, embed_fork_cb);
2947 ev_fork_start (EV_A_ &w->fork);
2948
2949 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2950
2951 ev_start (EV_A_ (W)w, 1);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955
2956void
2957ev_embed_stop (EV_P_ ev_embed *w)
2958{
2959 clear_pending (EV_A_ (W)w);
2960 if (expect_false (!ev_is_active (w)))
2961 return;
2962
2963 EV_FREQUENT_CHECK;
2964
2965 ev_io_stop (EV_A_ &w->io);
2966 ev_prepare_stop (EV_A_ &w->prepare);
2967 ev_fork_stop (EV_A_ &w->fork);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_FORK_ENABLE
2974void
2975ev_fork_start (EV_P_ ev_fork *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 EV_FREQUENT_CHECK;
2981
2982 ev_start (EV_A_ (W)w, ++forkcnt);
2983 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2984 forks [forkcnt - 1] = w;
2985
2986 EV_FREQUENT_CHECK;
2987}
2988
2989void
2990ev_fork_stop (EV_P_ ev_fork *w)
2991{
2992 clear_pending (EV_A_ (W)w);
2993 if (expect_false (!ev_is_active (w)))
2994 return;
2995
2996 EV_FREQUENT_CHECK;
2997
2998 {
2999 int active = ev_active (w);
3000
3001 forks [active - 1] = forks [--forkcnt];
3002 ev_active (forks [active - 1]) = active;
3003 }
3004
3005 ev_stop (EV_A_ (W)w);
3006
3007 EV_FREQUENT_CHECK;
3008}
3009#endif
3010
3011#if EV_ASYNC_ENABLE
3012void
3013ev_async_start (EV_P_ ev_async *w)
3014{
3015 if (expect_false (ev_is_active (w)))
3016 return;
3017
3018 evpipe_init (EV_A);
3019
3020 EV_FREQUENT_CHECK;
3021
3022 ev_start (EV_A_ (W)w, ++asynccnt);
3023 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3024 asyncs [asynccnt - 1] = w;
3025
3026 EV_FREQUENT_CHECK;
3027}
3028
3029void
3030ev_async_stop (EV_P_ ev_async *w)
3031{
3032 clear_pending (EV_A_ (W)w);
3033 if (expect_false (!ev_is_active (w)))
3034 return;
3035
3036 EV_FREQUENT_CHECK;
3037
3038 {
3039 int active = ev_active (w);
3040
3041 asyncs [active - 1] = asyncs [--asynccnt];
3042 ev_active (asyncs [active - 1]) = active;
3043 }
3044
3045 ev_stop (EV_A_ (W)w);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049
3050void
3051ev_async_send (EV_P_ ev_async *w)
3052{
3053 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync);
3055}
3056#endif
821 3057
822/*****************************************************************************/ 3058/*****************************************************************************/
823 3059
824struct ev_once 3060struct ev_once
825{ 3061{
826 struct ev_io io; 3062 ev_io io;
827 struct ev_timer to; 3063 ev_timer to;
828 void (*cb)(int revents, void *arg); 3064 void (*cb)(int revents, void *arg);
829 void *arg; 3065 void *arg;
830}; 3066};
831 3067
832static void 3068static void
833once_cb (struct ev_once *once, int revents) 3069once_cb (EV_P_ struct ev_once *once, int revents)
834{ 3070{
835 void (*cb)(int revents, void *arg) = once->cb; 3071 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 3072 void *arg = once->arg;
837 3073
838 evio_stop (&once->io); 3074 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 3075 ev_timer_stop (EV_A_ &once->to);
840 free (once); 3076 ev_free (once);
841 3077
842 cb (revents, arg); 3078 cb (revents, arg);
843} 3079}
844 3080
845static void 3081static void
846once_cb_io (struct ev_io *w, int revents) 3082once_cb_io (EV_P_ ev_io *w, int revents)
847{ 3083{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3084 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3085
3086 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
849} 3087}
850 3088
851static void 3089static void
852once_cb_to (struct ev_timer *w, int revents) 3090once_cb_to (EV_P_ ev_timer *w, int revents)
853{ 3091{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3092 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
855}
856 3093
3094 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3095}
3096
857void 3097void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3098ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
859{ 3099{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 3100 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
861 3101
862 if (!once) 3102 if (expect_false (!once))
863 cb (EV_ERROR, arg); 3103 {
864 else 3104 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3105 return;
865 { 3106 }
3107
866 once->cb = cb; 3108 once->cb = cb;
867 once->arg = arg; 3109 once->arg = arg;
868 3110
869 evw_init (&once->io, once_cb_io); 3111 ev_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 3112 if (fd >= 0)
872 { 3113 {
873 evio_set (&once->io, fd, events); 3114 ev_io_set (&once->io, fd, events);
874 evio_start (&once->io); 3115 ev_io_start (EV_A_ &once->io);
875 } 3116 }
876 3117
877 evw_init (&once->to, once_cb_to); 3118 ev_init (&once->to, once_cb_to);
878
879 if (timeout >= 0.) 3119 if (timeout >= 0.)
880 { 3120 {
881 evtimer_set (&once->to, timeout, 0.); 3121 ev_timer_set (&once->to, timeout, 0.);
882 evtimer_start (&once->to); 3122 ev_timer_start (EV_A_ &once->to);
883 }
884 }
885}
886
887/*****************************************************************************/
888
889#if 0
890
891struct ev_io wio;
892
893static void
894sin_cb (struct ev_io *w, int revents)
895{
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
897}
898
899static void
900ocb (struct ev_timer *w, int revents)
901{
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
903 evtimer_stop (w);
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 { 3123 }
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif
943
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963} 3124}
964 3125
3126#if EV_MULTIPLICITY
3127 #include "ev_wrap.h"
965#endif 3128#endif
966 3129
3130#ifdef __cplusplus
3131}
3132#endif
967 3133
968
969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines