ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
256 407
257#ifdef _WIN32 408#ifdef _WIN32
258# include "ev_win32.c" 409# include "ev_win32.c"
259#endif 410#endif
260 411
267{ 418{
268 syserr_cb = cb; 419 syserr_cb = cb;
269} 420}
270 421
271static void noinline 422static void noinline
272syserr (const char *msg) 423ev_syserr (const char *msg)
273{ 424{
274 if (!msg) 425 if (!msg)
275 msg = "(libev) system error"; 426 msg = "(libev) system error";
276 427
277 if (syserr_cb) 428 if (syserr_cb)
281 perror (msg); 432 perror (msg);
282 abort (); 433 abort ();
283 } 434 }
284} 435}
285 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
286static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 453
288void 454void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 456{
291 alloc = cb; 457 alloc = cb;
292} 458}
293 459
294inline_speed void * 460inline_speed void *
295ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
296{ 462{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
298 464
299 if (!ptr && size) 465 if (!ptr && size)
300 { 466 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 468 abort ();
313typedef struct 479typedef struct
314{ 480{
315 WL head; 481 WL head;
316 unsigned char events; 482 unsigned char events;
317 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
318#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 490 SOCKET handle;
320#endif 491#endif
321} ANFD; 492} ANFD;
322 493
325 W w; 496 W w;
326 int events; 497 int events;
327} ANPENDING; 498} ANPENDING;
328 499
329#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
330typedef struct 502typedef struct
331{ 503{
332 WL head; 504 WL head;
333} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
334#endif 524#endif
335 525
336#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
337 527
338 struct ev_loop 528 struct ev_loop
396{ 586{
397 return ev_rt_now; 587 return ev_rt_now;
398} 588}
399#endif 589#endif
400 590
591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
401int inline_size 623int inline_size
402array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
403{ 625{
404 int ncur = cur + 1; 626 int ncur = cur + 1;
405 627
406 do 628 do
407 ncur <<= 1; 629 ncur <<= 1;
408 while (cnt > ncur); 630 while (cnt > ncur);
409 631
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 634 {
413 ncur *= elem; 635 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 638 ncur /= elem;
417 } 639 }
418 640
419 return ncur; 641 return ncur;
420} 642}
421 643
422inline_speed void * 644static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
424{ 646{
425 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
427} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 653
429#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
431 { \ 656 { \
432 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
452 677
453void noinline 678void noinline
454ev_feed_event (EV_P_ void *w, int revents) 679ev_feed_event (EV_P_ void *w, int revents)
455{ 680{
456 W w_ = (W)w; 681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
457 683
458 if (expect_false (w_->pending)) 684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
459 { 687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 691 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 692 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 693}
469 694
470void inline_size 695void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 696queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 697{
473 int i; 698 int i;
474 699
475 for (i = 0; i < eventcnt; ++i) 700 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
477} 702}
478 703
479/*****************************************************************************/ 704/*****************************************************************************/
480 705
481void inline_size
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed 706void inline_speed
495fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
496{ 708{
497 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
498 ev_io *w; 710 ev_io *w;
507} 719}
508 720
509void 721void
510ev_feed_fd_event (EV_P_ int fd, int revents) 722ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 723{
724 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 725 fd_event (EV_A_ fd, revents);
513} 726}
514 727
515void inline_size 728void inline_size
516fd_reify (EV_P) 729fd_reify (EV_P)
517{ 730{
521 { 734 {
522 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
524 ev_io *w; 737 ev_io *w;
525 738
526 int events = 0; 739 unsigned char events = 0;
527 740
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 742 events |= (unsigned char)w->events;
530 743
531#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
532 if (events) 745 if (events)
533 { 746 {
534 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
535 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 754 }
538#endif 755#endif
539 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
540 anfd->reify = 0; 761 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
544 } 767 }
545 768
546 fdchangecnt = 0; 769 fdchangecnt = 0;
547} 770}
548 771
549void inline_size 772void inline_size
550fd_change (EV_P_ int fd) 773fd_change (EV_P_ int fd, int flags)
551{ 774{
552 if (expect_false (anfds [fd].reify)) 775 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 776 anfds [fd].reify |= flags;
556 777
778 if (expect_true (!reify))
779 {
557 ++fdchangecnt; 780 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 782 fdchanges [fdchangecnt - 1] = fd;
783 }
560} 784}
561 785
562void inline_speed 786void inline_speed
563fd_kill (EV_P_ int fd) 787fd_kill (EV_P_ int fd)
564{ 788{
587{ 811{
588 int fd; 812 int fd;
589 813
590 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 815 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
594} 818}
595 819
596/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 821static void noinline
615 839
616 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 841 if (anfds [fd].events)
618 { 842 {
619 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 846 }
622} 847}
623 848
624/*****************************************************************************/ 849/*****************************************************************************/
625 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
626void inline_speed 871void inline_speed
627upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
628{ 873{
629 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
630 876
631 while (k && heap [k >> 1]->at > w->at) 877 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 878 {
879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 882
883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
899 break;
900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
638 heap [k] = w; 910 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
640
641} 912}
642 913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
643void inline_speed 921void inline_speed
644downheap (WT *heap, int N, int k) 922downheap (ANHE *heap, int N, int k)
645{ 923{
646 WT w = heap [k]; 924 ANHE he = heap [k];
647 925
648 while (k < (N >> 1)) 926 for (;;)
649 { 927 {
650 int j = k << 1; 928 int c = k << 1;
651 929
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 930 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 931 break;
657 932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
658 heap [k] = heap [j]; 939 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (heap [k])) = k;
941
660 k = j; 942 k = c;
661 } 943 }
662 944
663 heap [k] = w; 945 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
665} 970}
666 971
667void inline_size 972void inline_size
668adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
669{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 976 upheap (heap, k);
977 else
671 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
672} 991}
673 992
674/*****************************************************************************/ 993/*****************************************************************************/
675 994
676typedef struct 995typedef struct
677{ 996{
678 WL head; 997 WL head;
679 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
680} ANSIG; 999} ANSIG;
681 1000
682static ANSIG *signals; 1001static ANSIG *signals;
683static int signalmax; 1002static int signalmax;
684 1003
685static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1005
1006/*****************************************************************************/
1007
689void inline_size 1008void inline_speed
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1009fd_intern (int fd)
754{ 1010{
755#ifdef _WIN32 1011#ifdef _WIN32
756 int arg = 1; 1012 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1014#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1017#endif
762} 1018}
763 1019
764static void noinline 1020static void noinline
765siginit (EV_P) 1021evpipe_init (EV_P)
766{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
767 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
769 1042
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
773} 1111}
774 1112
775/*****************************************************************************/ 1113/*****************************************************************************/
776 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
777static ev_child *childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
778 1153
779#ifndef _WIN32 1154#ifndef _WIN32
780 1155
781static ev_signal childev; 1156static ev_signal childev;
782 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
783void inline_speed 1162void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
785{ 1164{
786 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1167
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
789 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
790 { 1172 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1174 w->rpid = pid;
793 w->rstatus = status; 1175 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1177 }
1178 }
796} 1179}
797 1180
798#ifndef WCONTINUED 1181#ifndef WCONTINUED
799# define WCONTINUED 0 1182# define WCONTINUED 0
800#endif 1183#endif
809 if (!WCONTINUED 1192 if (!WCONTINUED
810 || errno != EINVAL 1193 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1195 return;
813 1196
814 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1200
818 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1204}
822 1205
823#endif 1206#endif
824 1207
825/*****************************************************************************/ 1208/*****************************************************************************/
897} 1280}
898 1281
899unsigned int 1282unsigned int
900ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
901{ 1284{
902 return EVBACKEND_EPOLL 1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1286
904 | EVBACKEND_PORT; 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
905} 1292}
906 1293
907unsigned int 1294unsigned int
908ev_backend (EV_P) 1295ev_backend (EV_P)
909{ 1296{
912 1299
913unsigned int 1300unsigned int
914ev_loop_count (EV_P) 1301ev_loop_count (EV_P)
915{ 1302{
916 return loop_count; 1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
917} 1316}
918 1317
919static void noinline 1318static void noinline
920loop_init (EV_P_ unsigned int flags) 1319loop_init (EV_P_ unsigned int flags)
921{ 1320{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1327 have_monotonic = 1;
929 } 1328 }
930#endif 1329#endif
931 1330
932 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1332 mn_now = get_clock ();
934 now_floor = mn_now; 1333 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
936 1344
937 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
938#ifndef _WIN32 1346#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1348 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1352 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1355
948 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1358
957#if EV_USE_PORT 1359#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1361#endif
960#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
968#endif 1370#endif
969#if EV_USE_SELECT 1371#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1373#endif
972 1374
973 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1377 }
976} 1378}
977 1379
978static void noinline 1380static void noinline
979loop_destroy (EV_P) 1381loop_destroy (EV_P)
980{ 1382{
981 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
982 1401
983#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
985 close (fs_fd); 1404 close (fs_fd);
986#endif 1405#endif
1003#if EV_USE_SELECT 1422#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1424#endif
1006 1425
1007 for (i = NUMPRI; i--; ) 1426 for (i = NUMPRI; i--; )
1427 {
1008 array_free (pending, [i]); 1428 array_free (pending, [i]);
1429#if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431#endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
1009 1435
1010 /* have to use the microsoft-never-gets-it-right macro */ 1436 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1437 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1438 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1439#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1440 array_free (periodic, EMPTY);
1015#endif 1441#endif
1442#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1443 array_free (fork, EMPTY);
1444#endif
1017 array_free (prepare, EMPTY0); 1445 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1019 1450
1020 backend = 0; 1451 backend = 0;
1021} 1452}
1022 1453
1454#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1024 1457
1025void inline_size 1458void inline_size
1026loop_fork (EV_P) 1459loop_fork (EV_P)
1027{ 1460{
1028#if EV_USE_PORT 1461#if EV_USE_PORT
1036#endif 1469#endif
1037#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1471 infy_fork (EV_A);
1039#endif 1472#endif
1040 1473
1041 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1042 { 1475 {
1043 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1044 1482
1045 ev_ref (EV_A); 1483 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1047 close (sigpipe [0]); 1493 close (evpipe [0]);
1048 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1049 1496
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1500 }
1055 1501
1056 postfork = 0; 1502 postfork = 0;
1057} 1503}
1058 1504
1059#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1060struct ev_loop * 1507struct ev_loop *
1061ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1062{ 1509{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1511
1080} 1527}
1081 1528
1082void 1529void
1083ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1084{ 1531{
1085 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1086} 1533}
1087 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1088#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1089 1635
1090#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1091struct ev_loop * 1637struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1093#else 1639#else
1094int 1640int
1095ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1096#endif 1642#endif
1097{ 1643{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1103 { 1645 {
1104#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1648#else
1109 1651
1110 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1111 1653
1112 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1113 { 1655 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1656#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1132{ 1672{
1133#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif 1675#endif
1136 1676
1677 ev_default_loop_ptr = 0;
1678
1137#ifndef _WIN32 1679#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1140#endif 1682#endif
1141 1683
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1149} 1685}
1150 1686
1151void 1687void
1152ev_default_fork (void) 1688ev_default_fork (void)
1153{ 1689{
1154#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1692#endif
1157 1693
1158 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1695}
1161 1696
1162/*****************************************************************************/ 1697/*****************************************************************************/
1163 1698
1164int inline_size 1699void
1165any_pending (EV_P) 1700ev_invoke (EV_P_ void *w, int revents)
1166{ 1701{
1167 int pri; 1702 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1703}
1175 1704
1176void inline_speed 1705void inline_speed
1177call_pending (EV_P) 1706call_pending (EV_P)
1178{ 1707{
1187 { 1716 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1718
1190 p->w->pending = 0; 1719 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1192 } 1722 }
1193 } 1723 }
1194} 1724}
1195 1725
1726#if EV_IDLE_ENABLE
1727void inline_size
1728idle_reify (EV_P)
1729{
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
1735 {
1736 if (pendingcnt [pri])
1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
1744 }
1745 }
1746}
1747#endif
1748
1196void inline_size 1749void inline_size
1197timers_reify (EV_P) 1750timers_reify (EV_P)
1198{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1755 {
1201 ev_timer *w = timers [0]; 1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1757
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1759
1205 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1206 if (w->repeat) 1761 if (w->repeat)
1207 { 1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1768
1210 ((WT)w)->at += w->repeat; 1769 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1770 downheap (timers, timercnt, HEAP0);
1215 } 1771 }
1216 else 1772 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1774
1775 EV_FREQUENT_CHECK;
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 } 1777 }
1221} 1778}
1222 1779
1223#if EV_PERIODIC_ENABLE 1780#if EV_PERIODIC_ENABLE
1224void inline_size 1781void inline_size
1225periodics_reify (EV_P) 1782periodics_reify (EV_P)
1226{ 1783{
1784 EV_FREQUENT_CHECK;
1785
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1787 {
1229 ev_periodic *w = periodics [0]; 1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1789
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1791
1233 /* first reschedule or stop timer */ 1792 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1793 if (w->reschedule_cb)
1235 { 1794 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1800 downheap (periodics, periodiccnt, HEAP0);
1239 } 1801 }
1240 else if (w->interval) 1802 else if (w->interval)
1241 { 1803 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1819 downheap (periodics, periodiccnt, HEAP0);
1245 } 1820 }
1246 else 1821 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1823
1824 EV_FREQUENT_CHECK;
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 } 1826 }
1251} 1827}
1252 1828
1253static void noinline 1829static void noinline
1254periodics_reschedule (EV_P) 1830periodics_reschedule (EV_P)
1255{ 1831{
1256 int i; 1832 int i;
1257 1833
1258 /* adjust periodics after time jump */ 1834 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1836 {
1261 ev_periodic *w = periodics [i]; 1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1838
1263 if (w->reschedule_cb) 1839 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1841 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848}
1849#endif
1850
1851void inline_speed
1852time_update (EV_P_ ev_tstamp max_block)
1853{
1854 int i;
1855
1856#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1267 } 1858 {
1859 ev_tstamp odiff = rtmn_diff;
1268 1860
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275int inline_size
1276time_update_monotonic (EV_P)
1277{
1278 mn_now = get_clock (); 1861 mn_now = get_clock ();
1279 1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1866 {
1282 ev_rt_now = rtmn_diff + mn_now; 1867 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1868 return;
1284 } 1869 }
1285 else 1870
1286 {
1287 now_floor = mn_now; 1871 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1872 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1873
1293void inline_size 1874 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1875 * on the choice of "4": one iteration isn't enough,
1295{ 1876 * in case we get preempted during the calls to
1296 int i; 1877 * ev_time and get_clock. a second call is almost guaranteed
1297 1878 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1879 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1880 * in the unlikely event of having been preempted here.
1300 { 1881 */
1301 if (time_update_monotonic (EV_A)) 1882 for (i = 4; --i; )
1302 { 1883 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1316 1885
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1887 return; /* all is well */
1319 1888
1320 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1890 mn_now = get_clock ();
1322 now_floor = mn_now; 1891 now_floor = mn_now;
1323 } 1892 }
1324 1893
1325# if EV_PERIODIC_ENABLE 1894# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1895 periodics_reschedule (EV_A);
1327# endif 1896# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1899 }
1332 else 1900 else
1333#endif 1901#endif
1334 { 1902 {
1335 ev_rt_now = ev_time (); 1903 ev_rt_now = ev_time ();
1336 1904
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1906 {
1339#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1341#endif 1909#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1346 } 1917 }
1347 1918
1348 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1349 } 1920 }
1350} 1921}
1359ev_unref (EV_P) 1930ev_unref (EV_P)
1360{ 1931{
1361 --activecnt; 1932 --activecnt;
1362} 1933}
1363 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1364static int loop_done; 1941static int loop_done;
1365 1942
1366void 1943void
1367ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1368{ 1945{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1947
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1949
1375 do 1950 do
1376 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1377#ifndef _WIN32 1956#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1380 { 1959 {
1381 curpid = getpid (); 1960 curpid = getpid ();
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1971 call_pending (EV_A);
1393 } 1972 }
1394#endif 1973#endif
1395 1974
1396 /* queue check watchers (and execute them) */ 1975 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1976 if (expect_false (preparecnt))
1398 { 1977 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1979 call_pending (EV_A);
1401 } 1980 }
1410 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1990 fd_reify (EV_A);
1412 1991
1413 /* calculate blocking time */ 1992 /* calculate blocking time */
1414 { 1993 {
1415 ev_tstamp block; 1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1416 1996
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1998 {
1421 /* update time to cancel out callback processing overhead */ 1999 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 2000 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 2001
1432 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1433 2003
1434 if (timercnt) 2004 if (timercnt)
1435 { 2005 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1438 } 2008 }
1439 2009
1440#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2011 if (periodiccnt)
1442 { 2012 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1445 } 2015 }
1446#endif 2016#endif
1447 2017
1448 if (expect_false (block < 0.)) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1449 } 2031 }
1450 2032
1451 ++loop_count; 2033 ++loop_count;
1452 backend_poll (EV_A_ block); 2034 backend_poll (EV_A_ waittime);
2035
2036 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime);
1453 } 2038 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2039
1458 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2042#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2043 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2044#endif
1463 2045
2046#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2047 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2048 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2049#endif
1467 2050
1468 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2054
1472 call_pending (EV_A); 2055 call_pending (EV_A);
1473
1474 } 2056 }
1475 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1476 2062
1477 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1479} 2065}
1480 2066
1507 head = &(*head)->next; 2093 head = &(*head)->next;
1508 } 2094 }
1509} 2095}
1510 2096
1511void inline_speed 2097void inline_speed
1512ev_clear_pending (EV_P_ W w) 2098clear_pending (EV_P_ W w)
1513{ 2099{
1514 if (w->pending) 2100 if (w->pending)
1515 { 2101 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 2103 w->pending = 0;
1518 } 2104 }
1519} 2105}
1520 2106
2107int
2108ev_clear_pending (EV_P_ void *w)
2109{
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122}
2123
2124void inline_size
2125pri_adjust (EV_P_ W w)
2126{
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131}
2132
1521void inline_speed 2133void inline_speed
1522ev_start (EV_P_ W w, int active) 2134ev_start (EV_P_ W w, int active)
1523{ 2135{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2136 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2137 w->active = active;
1528 ev_ref (EV_A); 2138 ev_ref (EV_A);
1529} 2139}
1530 2140
1531void inline_size 2141void inline_size
1535 w->active = 0; 2145 w->active = 0;
1536} 2146}
1537 2147
1538/*****************************************************************************/ 2148/*****************************************************************************/
1539 2149
1540void 2150void noinline
1541ev_io_start (EV_P_ ev_io *w) 2151ev_io_start (EV_P_ ev_io *w)
1542{ 2152{
1543 int fd = w->fd; 2153 int fd = w->fd;
1544 2154
1545 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1546 return; 2156 return;
1547 2157
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1549 2162
1550 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1553 2166
1554 fd_change (EV_A_ fd); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1555} 2168 w->events &= ~EV_IOFDSET;
1556 2169
1557void 2170 EV_FREQUENT_CHECK;
2171}
2172
2173void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1559{ 2175{
1560 ev_clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1562 return; 2178 return;
1563 2179
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2181
2182 EV_FREQUENT_CHECK;
2183
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1568 2186
1569 fd_change (EV_A_ w->fd); 2187 fd_change (EV_A_ w->fd, 1);
1570}
1571 2188
1572void 2189 EV_FREQUENT_CHECK;
2190}
2191
2192void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1574{ 2194{
1575 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1576 return; 2196 return;
1577 2197
1578 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1579 2199
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1586 2210
2211 EV_FREQUENT_CHECK;
2212
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2214}
1589 2215
1590void 2216void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2218{
1593 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1595 return; 2221 return;
1596 2222
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2223 EV_FREQUENT_CHECK;
1598 2224
1599 { 2225 {
1600 int active = ((W)w)->active; 2226 int active = ev_active (w);
1601 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1602 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1603 { 2233 {
1604 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1606 } 2236 }
1607 } 2237 }
1608 2238
1609 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1610 2242
1611 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1612} 2244}
1613 2245
1614void 2246void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1616{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1617 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1618 { 2252 {
1619 if (w->repeat) 2253 if (w->repeat)
1620 { 2254 {
1621 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1623 } 2258 }
1624 else 2259 else
1625 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1626 } 2261 }
1627 else if (w->repeat) 2262 else if (w->repeat)
1628 { 2263 {
1629 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1631 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1632} 2269}
1633 2270
1634#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1635void 2272void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2274{
1638 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1639 return; 2276 return;
1640 2277
1641 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2280 else if (w->interval)
1644 { 2281 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2285 }
2286 else
2287 ev_at (w) = w->offset;
1649 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1654 2297
2298 EV_FREQUENT_CHECK;
2299
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2301}
1657 2302
1658void 2303void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2305{
1661 ev_clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1663 return; 2308 return;
1664 2309
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2310 EV_FREQUENT_CHECK;
1666 2311
1667 { 2312 {
1668 int active = ((W)w)->active; 2313 int active = ev_active (w);
1669 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1670 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2320 {
1672 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1674 } 2323 }
1675 } 2324 }
1676 2325
2326 EV_FREQUENT_CHECK;
2327
1677 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1678} 2329}
1679 2330
1680void 2331void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2333{
1683 /* TODO: use adjustheap and recalculation */ 2334 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2335 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2336 ev_periodic_start (EV_A_ w);
1688 2339
1689#ifndef SA_RESTART 2340#ifndef SA_RESTART
1690# define SA_RESTART 0 2341# define SA_RESTART 0
1691#endif 2342#endif
1692 2343
1693void 2344void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2345ev_signal_start (EV_P_ ev_signal *w)
1695{ 2346{
1696#if EV_MULTIPLICITY 2347#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2349#endif
1699 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1700 return; 2351 return;
1701 2352
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360#ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368#ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370#endif
2371 }
2372
1704 ev_start (EV_A_ (W)w, 1); 2373 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2375
1708 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1709 { 2377 {
1710#if _WIN32 2378#if _WIN32
1711 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1712#else 2380#else
1713 struct sigaction sa; 2381 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1718#endif 2386#endif
1719 } 2387 }
1720}
1721 2388
1722void 2389 EV_FREQUENT_CHECK;
2390}
2391
2392void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2394{
1725 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1727 return; 2397 return;
1728 2398
2399 EV_FREQUENT_CHECK;
2400
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1731 2403
1732 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1734} 2408}
1735 2409
1736void 2410void
1737ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1738{ 2412{
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2415#endif
1742 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1743 return; 2417 return;
1744 2418
2419 EV_FREQUENT_CHECK;
2420
1745 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1747} 2425}
1748 2426
1749void 2427void
1750ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1751{ 2429{
1752 ev_clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1754 return; 2432 return;
1755 2433
2434 EV_FREQUENT_CHECK;
2435
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1758} 2440}
1759 2441
1760#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1761 2443
1762# ifdef _WIN32 2444# ifdef _WIN32
1763# undef lstat 2445# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1765# endif 2447# endif
1766 2448
1767#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1769 2452
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2454
1772#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1777{ 2460{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2462
1780 if (w->wd < 0) 2463 if (w->wd < 0)
1781 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2467
1784 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2472 {
1787 char path [4096]; 2473 char path [4096];
1788 strcpy (path, w->path); 2474 strcpy (path, w->path);
1789 2475
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 2480
1795 char *pend = strrchr (path, '/'); 2481 char *pend = strrchr (path, '/');
1796 2482
1797 if (!pend) 2483 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 2484 break;
1799 2485
1800 *pend = 0; 2486 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 2487 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 2488 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2490 }
1805 } 2491 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 2492
1809 if (w->wd >= 0) 2493 if (w->wd >= 0)
2494 {
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
1811} 2514}
1812 2515
1813static void noinline 2516static void noinline
1814infy_del (EV_P_ ev_stat *w) 2517infy_del (EV_P_ ev_stat *w)
1815{ 2518{
1829 2532
1830static void noinline 2533static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2535{
1833 if (slot < 0) 2536 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2537 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2539 infy_wd (EV_A_ slot, wd, ev);
1837 else 2540 else
1838 { 2541 {
1839 WL w_; 2542 WL w_;
1845 2548
1846 if (w->wd == wd || wd == -1) 2549 if (w->wd == wd || wd == -1)
1847 { 2550 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1850 w->wd = -1; 2554 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 2555 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 2556 }
1853 2557
1854 stat_timer_cb (EV_A_ &w->timer, 0); 2558 stat_timer_cb (EV_A_ &w->timer, 0);
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2574}
1871 2575
1872void inline_size 2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
1873infy_init (EV_P) 2600infy_init (EV_P)
1874{ 2601{
1875 if (fs_fd != -2) 2602 if (fs_fd != -2)
1876 return; 2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
1877 2608
1878 fs_fd = inotify_init (); 2609 fs_fd = inotify_init ();
1879 2610
1880 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1881 { 2612 {
1909 w->wd = -1; 2640 w->wd = -1;
1910 2641
1911 if (fs_fd >= 0) 2642 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2643 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 2644 else
1914 ev_timer_start (EV_A_ &w->timer); 2645 ev_timer_again (EV_A_ &w->timer);
1915 } 2646 }
1916
1917 } 2647 }
1918} 2648}
1919 2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 2656#endif
1921 2657
1922void 2658void
1923ev_stat_stat (EV_P_ ev_stat *w) 2659ev_stat_stat (EV_P_ ev_stat *w)
1924{ 2660{
1951 || w->prev.st_atime != w->attr.st_atime 2687 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 2688 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 2689 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 2690 ) {
1955 #if EV_USE_INOTIFY 2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
1956 infy_del (EV_A_ w); 2694 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 2695 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
1959 #endif 2698 #endif
1960 2699
1961 ev_feed_event (EV_A_ w, EV_STAT); 2700 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 2701 }
1963} 2702}
1966ev_stat_start (EV_P_ ev_stat *w) 2705ev_stat_start (EV_P_ ev_stat *w)
1967{ 2706{
1968 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1969 return; 2708 return;
1970 2709
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 2710 ev_stat_stat (EV_A_ w);
1976 2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 2713 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 2714
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 2716 ev_set_priority (&w->timer, ev_priority (w));
1982 2717
1983#if EV_USE_INOTIFY 2718#if EV_USE_INOTIFY
1984 infy_init (EV_A); 2719 infy_init (EV_A);
1985 2720
1986 if (fs_fd >= 0) 2721 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 2722 infy_add (EV_A_ w);
1988 else 2723 else
1989#endif 2724#endif
1990 ev_timer_start (EV_A_ &w->timer); 2725 ev_timer_again (EV_A_ &w->timer);
1991 2726
1992 ev_start (EV_A_ (W)w, 1); 2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
1993} 2730}
1994 2731
1995void 2732void
1996ev_stat_stop (EV_P_ ev_stat *w) 2733ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2734{
1998 ev_clear_pending (EV_A_ (W)w); 2735 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2736 if (expect_false (!ev_is_active (w)))
2000 return; 2737 return;
2001 2738
2739 EV_FREQUENT_CHECK;
2740
2002#if EV_USE_INOTIFY 2741#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2742 infy_del (EV_A_ w);
2004#endif 2743#endif
2005 ev_timer_stop (EV_A_ &w->timer); 2744 ev_timer_stop (EV_A_ &w->timer);
2006 2745
2007 ev_stop (EV_A_ (W)w); 2746 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 2747
2748 EV_FREQUENT_CHECK;
2749}
2750#endif
2751
2752#if EV_IDLE_ENABLE
2011void 2753void
2012ev_idle_start (EV_P_ ev_idle *w) 2754ev_idle_start (EV_P_ ev_idle *w)
2013{ 2755{
2014 if (expect_false (ev_is_active (w))) 2756 if (expect_false (ev_is_active (w)))
2015 return; 2757 return;
2016 2758
2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ++idlecnt [ABSPRI (w)];
2765
2766 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2767 ev_start (EV_A_ (W)w, active);
2768
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2770 idles [ABSPRI (w)][active - 1] = w;
2771 }
2772
2773 EV_FREQUENT_CHECK;
2020} 2774}
2021 2775
2022void 2776void
2023ev_idle_stop (EV_P_ ev_idle *w) 2777ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2778{
2025 ev_clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2027 return; 2781 return;
2028 2782
2783 EV_FREQUENT_CHECK;
2784
2029 { 2785 {
2030 int active = ((W)w)->active; 2786 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2787
2032 ((W)idles [active - 1])->active = active; 2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2790
2791 ev_stop (EV_A_ (W)w);
2792 --idleall;
2033 } 2793 }
2034 2794
2035 ev_stop (EV_A_ (W)w); 2795 EV_FREQUENT_CHECK;
2036} 2796}
2797#endif
2037 2798
2038void 2799void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2800ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2801{
2041 if (expect_false (ev_is_active (w))) 2802 if (expect_false (ev_is_active (w)))
2042 return; 2803 return;
2804
2805 EV_FREQUENT_CHECK;
2043 2806
2044 ev_start (EV_A_ (W)w, ++preparecnt); 2807 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2047} 2812}
2048 2813
2049void 2814void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2815ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2816{
2052 ev_clear_pending (EV_A_ (W)w); 2817 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2818 if (expect_false (!ev_is_active (w)))
2054 return; 2819 return;
2055 2820
2821 EV_FREQUENT_CHECK;
2822
2056 { 2823 {
2057 int active = ((W)w)->active; 2824 int active = ev_active (w);
2825
2058 prepares [active - 1] = prepares [--preparecnt]; 2826 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2827 ev_active (prepares [active - 1]) = active;
2060 } 2828 }
2061 2829
2062 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2063} 2833}
2064 2834
2065void 2835void
2066ev_check_start (EV_P_ ev_check *w) 2836ev_check_start (EV_P_ ev_check *w)
2067{ 2837{
2068 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2069 return; 2839 return;
2840
2841 EV_FREQUENT_CHECK;
2070 2842
2071 ev_start (EV_A_ (W)w, ++checkcnt); 2843 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
2074} 2848}
2075 2849
2076void 2850void
2077ev_check_stop (EV_P_ ev_check *w) 2851ev_check_stop (EV_P_ ev_check *w)
2078{ 2852{
2079 ev_clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2081 return; 2855 return;
2082 2856
2857 EV_FREQUENT_CHECK;
2858
2083 { 2859 {
2084 int active = ((W)w)->active; 2860 int active = ev_active (w);
2861
2085 checks [active - 1] = checks [--checkcnt]; 2862 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2863 ev_active (checks [active - 1]) = active;
2087 } 2864 }
2088 2865
2089 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2090} 2869}
2091 2870
2092#if EV_EMBED_ENABLE 2871#if EV_EMBED_ENABLE
2093void noinline 2872void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2873ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2874{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2875 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2876}
2098 2877
2099static void 2878static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2879embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2880{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2882
2104 if (ev_cb (w)) 2883 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2885 else
2107 ev_embed_sweep (loop, w); 2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2887}
2888
2889static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893
2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 {
2911 struct ev_loop *loop = w->other;
2912
2913 ev_loop_fork (EV_A);
2914 }
2915}
2916
2917#if 0
2918static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2920{
2921 ev_idle_stop (EV_A_ idle);
2922}
2923#endif
2109 2924
2110void 2925void
2111ev_embed_start (EV_P_ ev_embed *w) 2926ev_embed_start (EV_P_ ev_embed *w)
2112{ 2927{
2113 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2114 return; 2929 return;
2115 2930
2116 { 2931 {
2117 struct ev_loop *loop = w->loop; 2932 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2121 2938
2122 ev_set_priority (&w->io, ev_priority (w)); 2939 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2940 ev_io_start (EV_A_ &w->io);
2124 2941
2942 ev_prepare_init (&w->prepare, embed_prepare_cb);
2943 ev_set_priority (&w->prepare, EV_MINPRI);
2944 ev_prepare_start (EV_A_ &w->prepare);
2945
2946 ev_fork_init (&w->fork, embed_fork_cb);
2947 ev_fork_start (EV_A_ &w->fork);
2948
2949 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2950
2125 ev_start (EV_A_ (W)w, 1); 2951 ev_start (EV_A_ (W)w, 1);
2952
2953 EV_FREQUENT_CHECK;
2126} 2954}
2127 2955
2128void 2956void
2129ev_embed_stop (EV_P_ ev_embed *w) 2957ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2958{
2131 ev_clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2133 return; 2961 return;
2134 2962
2963 EV_FREQUENT_CHECK;
2964
2135 ev_io_stop (EV_A_ &w->io); 2965 ev_io_stop (EV_A_ &w->io);
2966 ev_prepare_stop (EV_A_ &w->prepare);
2967 ev_fork_stop (EV_A_ &w->fork);
2136 2968
2137 ev_stop (EV_A_ (W)w); 2969 EV_FREQUENT_CHECK;
2138} 2970}
2139#endif 2971#endif
2140 2972
2141#if EV_FORK_ENABLE 2973#if EV_FORK_ENABLE
2142void 2974void
2143ev_fork_start (EV_P_ ev_fork *w) 2975ev_fork_start (EV_P_ ev_fork *w)
2144{ 2976{
2145 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2146 return; 2978 return;
2979
2980 EV_FREQUENT_CHECK;
2147 2981
2148 ev_start (EV_A_ (W)w, ++forkcnt); 2982 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2983 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 2984 forks [forkcnt - 1] = w;
2985
2986 EV_FREQUENT_CHECK;
2151} 2987}
2152 2988
2153void 2989void
2154ev_fork_stop (EV_P_ ev_fork *w) 2990ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2991{
2156 ev_clear_pending (EV_A_ (W)w); 2992 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2993 if (expect_false (!ev_is_active (w)))
2158 return; 2994 return;
2159 2995
2996 EV_FREQUENT_CHECK;
2997
2160 { 2998 {
2161 int active = ((W)w)->active; 2999 int active = ev_active (w);
3000
2162 forks [active - 1] = forks [--forkcnt]; 3001 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3002 ev_active (forks [active - 1]) = active;
2164 } 3003 }
2165 3004
2166 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
3006
3007 EV_FREQUENT_CHECK;
3008}
3009#endif
3010
3011#if EV_ASYNC_ENABLE
3012void
3013ev_async_start (EV_P_ ev_async *w)
3014{
3015 if (expect_false (ev_is_active (w)))
3016 return;
3017
3018 evpipe_init (EV_A);
3019
3020 EV_FREQUENT_CHECK;
3021
3022 ev_start (EV_A_ (W)w, ++asynccnt);
3023 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3024 asyncs [asynccnt - 1] = w;
3025
3026 EV_FREQUENT_CHECK;
3027}
3028
3029void
3030ev_async_stop (EV_P_ ev_async *w)
3031{
3032 clear_pending (EV_A_ (W)w);
3033 if (expect_false (!ev_is_active (w)))
3034 return;
3035
3036 EV_FREQUENT_CHECK;
3037
3038 {
3039 int active = ev_active (w);
3040
3041 asyncs [active - 1] = asyncs [--asynccnt];
3042 ev_active (asyncs [active - 1]) = active;
3043 }
3044
3045 ev_stop (EV_A_ (W)w);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049
3050void
3051ev_async_send (EV_P_ ev_async *w)
3052{
3053 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync);
2167} 3055}
2168#endif 3056#endif
2169 3057
2170/*****************************************************************************/ 3058/*****************************************************************************/
2171 3059
2181once_cb (EV_P_ struct ev_once *once, int revents) 3069once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3070{
2183 void (*cb)(int revents, void *arg) = once->cb; 3071 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3072 void *arg = once->arg;
2185 3073
2186 ev_io_stop (EV_A_ &once->io); 3074 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3075 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3076 ev_free (once);
2189 3077
2190 cb (revents, arg); 3078 cb (revents, arg);
2191} 3079}
2192 3080
2193static void 3081static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3082once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3083{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3084 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3085
3086 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3087}
2198 3088
2199static void 3089static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3090once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3091{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3092 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3093
3094 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3095}
2204 3096
2205void 3097void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3098ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3099{
2229 ev_timer_set (&once->to, timeout, 0.); 3121 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3122 ev_timer_start (EV_A_ &once->to);
2231 } 3123 }
2232} 3124}
2233 3125
3126#if EV_MULTIPLICITY
3127 #include "ev_wrap.h"
3128#endif
3129
2234#ifdef __cplusplus 3130#ifdef __cplusplus
2235} 3131}
2236#endif 3132#endif
2237 3133

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines