ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC vs.
Revision 1.309 by root, Sun Jul 26 04:24:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
176# endif 186# endif
177#endif 187#endif
178 188
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
180 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
181#ifndef EV_USE_CLOCK_SYSCALL 218#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 219# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 220# define EV_USE_CLOCK_SYSCALL 1
184# else 221# else
185# define EV_USE_CLOCK_SYSCALL 0 222# define EV_USE_CLOCK_SYSCALL 0
193# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
194# endif 231# endif
195#endif 232#endif
196 233
197#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 236#endif
200 237
201#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 239# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 240# define EV_USE_NANOSLEEP 1
264# else 301# else
265# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
266# endif 303# endif
267#endif 304#endif
268 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
269#if 0 /* debugging */ 314#if 0 /* debugging */
270# define EV_VERIFY 3 315# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 316# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 317# define EV_HEAP_CACHE_AT 1
273#endif 318#endif
280# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
281#endif 326#endif
282 327
283#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
285#endif 344#endif
286 345
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 347
289#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
320 379
321#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 381# include <winsock.h>
323#endif 382#endif
324 383
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
337# ifdef __cplusplus 393# ifdef __cplusplus
338extern "C" { 394extern "C" {
339# endif 395# endif
340int eventfd (unsigned int initval, int flags); 396int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 397# ifdef __cplusplus
342} 398}
343# endif 399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
344#endif 404#endif
345 405
346/**/ 406/**/
347 407
348#if EV_VERIFY >= 3 408#if EV_VERIFY >= 3
384# define inline_speed static noinline 444# define inline_speed static noinline
385#else 445#else
386# define inline_speed static inline 446# define inline_speed static inline
387#endif 447#endif
388 448
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
391 456
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
394 459
395typedef ev_watcher *W; 460typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
398 463
399#define ev_active(w) ((W)(w))->active 464#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 465#define ev_at(w) ((WT)(w))->at
401 466
402#if EV_USE_MONOTONIC 467#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 475#endif
407 476
408#ifdef _WIN32 477#ifdef _WIN32
409# include "ev_win32.c" 478# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
476 545
477/*****************************************************************************/ 546/*****************************************************************************/
478 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
479typedef struct 552typedef struct
480{ 553{
481 WL head; 554 WL head;
482 unsigned char events; 555 unsigned char events; /* the events watched for */
483 unsigned char reify; 556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 558 unsigned char unused;
486#if EV_USE_EPOLL 559#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 560 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 561#endif
489#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 563 SOCKET handle;
491#endif 564#endif
492} ANFD; 565} ANFD;
493 566
567/* stores the pending event set for a given watcher */
494typedef struct 568typedef struct
495{ 569{
496 W w; 570 W w;
497 int events; 571 int events; /* the pending event set for the given watcher */
498} ANPENDING; 572} ANPENDING;
499 573
500#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 575/* hash table entry per inotify-id */
502typedef struct 576typedef struct
505} ANFS; 579} ANFS;
506#endif 580#endif
507 581
508/* Heap Entry */ 582/* Heap Entry */
509#if EV_HEAP_CACHE_AT 583#if EV_HEAP_CACHE_AT
584 /* a heap element */
510 typedef struct { 585 typedef struct {
511 ev_tstamp at; 586 ev_tstamp at;
512 WT w; 587 WT w;
513 } ANHE; 588 } ANHE;
514 589
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 590 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 591 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 593#else
594 /* a heap element */
519 typedef WT ANHE; 595 typedef WT ANHE;
520 596
521 #define ANHE_w(he) (he) 597 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 598 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 599 #define ANHE_at_cache(he)
547 623
548 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
549 625
550#endif 626#endif
551 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
552/*****************************************************************************/ 640/*****************************************************************************/
553 641
642#ifndef EV_HAVE_EV_TIME
554ev_tstamp 643ev_tstamp
555ev_time (void) 644ev_time (void)
556{ 645{
557#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
558 struct timespec ts; 649 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 652 }
653#endif
654
562 struct timeval tv; 655 struct timeval tv;
563 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 658}
659#endif
567 660
568ev_tstamp inline_size 661inline_size ev_tstamp
569get_clock (void) 662get_clock (void)
570{ 663{
571#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
573 { 666 {
607 700
608 tv.tv_sec = (time_t)delay; 701 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 703
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 705 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 706 /* by older ones */
614 select (0, 0, 0, 0, &tv); 707 select (0, 0, 0, 0, &tv);
615#endif 708#endif
616 } 709 }
617} 710}
618 711
619/*****************************************************************************/ 712/*****************************************************************************/
620 713
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 715
623int inline_size 716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
624array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
625{ 720{
626 int ncur = cur + 1; 721 int ncur = cur + 1;
627 722
628 do 723 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 765 }
671#endif 766#endif
672 767
673#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 770
676/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
677 778
678void noinline 779void noinline
679ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
680{ 781{
681 W w_ = (W)w; 782 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
692 } 793 }
693} 794}
694 795
695void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 813{
698 int i; 814 int i;
699 815
700 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
702} 818}
703 819
704/*****************************************************************************/ 820/*****************************************************************************/
705 821
706void inline_speed 822inline_speed void
707fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
708{ 824{
709 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
710 ev_io *w; 826 ev_io *w;
711 827
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 832 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
718 } 834 }
719} 835}
720 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
721void 848void
722ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 850{
724 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
726} 853}
727 854
728void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
729fd_reify (EV_P) 858fd_reify (EV_P)
730{ 859{
731 int i; 860 int i;
732 861
733 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
748 #ifdef EV_FD_TO_WIN32_HANDLE 877 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else 879 #else
751 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
752 #endif 881 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 883 }
755#endif 884#endif
756 885
757 { 886 {
758 unsigned char o_events = anfd->events; 887 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 888 unsigned char o_reify = anfd->reify;
760 889
761 anfd->reify = 0; 890 anfd->reify = 0;
762 anfd->events = events; 891 anfd->events = events;
763 892
764 if (o_events != events || o_reify & EV_IOFDSET) 893 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 894 backend_modify (EV_A_ fd, o_events, events);
766 } 895 }
767 } 896 }
768 897
769 fdchangecnt = 0; 898 fdchangecnt = 0;
770} 899}
771 900
772void inline_size 901/* something about the given fd changed */
902inline_size void
773fd_change (EV_P_ int fd, int flags) 903fd_change (EV_P_ int fd, int flags)
774{ 904{
775 unsigned char reify = anfds [fd].reify; 905 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 906 anfds [fd].reify |= flags;
777 907
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
783 } 913 }
784} 914}
785 915
786void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
787fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
788{ 919{
789 ev_io *w; 920 ev_io *w;
790 921
791 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 926 }
796} 927}
797 928
798int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
799fd_valid (int fd) 931fd_valid (int fd)
800{ 932{
801#ifdef _WIN32 933#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
803#else 935#else
825 957
826 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 959 if (anfds [fd].events)
828 { 960 {
829 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
830 return; 962 break;
831 } 963 }
832} 964}
833 965
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 967static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 973 if (anfds [fd].events)
842 { 974 {
843 anfds [fd].events = 0; 975 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 976 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 978 }
847} 979}
848 980
849/*****************************************************************************/ 981/*****************************************************************************/
850 982
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1000#define UPHEAP_DONE(p,k) ((p) == (k))
869 1001
870/* away from the root */ 1002/* away from the root */
871void inline_speed 1003inline_speed void
872downheap (ANHE *heap, int N, int k) 1004downheap (ANHE *heap, int N, int k)
873{ 1005{
874 ANHE he = heap [k]; 1006 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1007 ANHE *E = heap + N + HEAP0;
876 1008
916#define HEAP0 1 1048#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1049#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1050#define UPHEAP_DONE(p,k) (!(p))
919 1051
920/* away from the root */ 1052/* away from the root */
921void inline_speed 1053inline_speed void
922downheap (ANHE *heap, int N, int k) 1054downheap (ANHE *heap, int N, int k)
923{ 1055{
924 ANHE he = heap [k]; 1056 ANHE he = heap [k];
925 1057
926 for (;;) 1058 for (;;)
927 { 1059 {
928 int c = k << 1; 1060 int c = k << 1;
929 1061
930 if (c > N + HEAP0 - 1) 1062 if (c >= N + HEAP0)
931 break; 1063 break;
932 1064
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1066 ? 1 : 0;
935 1067
946 ev_active (ANHE_w (he)) = k; 1078 ev_active (ANHE_w (he)) = k;
947} 1079}
948#endif 1080#endif
949 1081
950/* towards the root */ 1082/* towards the root */
951void inline_speed 1083inline_speed void
952upheap (ANHE *heap, int k) 1084upheap (ANHE *heap, int k)
953{ 1085{
954 ANHE he = heap [k]; 1086 ANHE he = heap [k];
955 1087
956 for (;;) 1088 for (;;)
967 1099
968 heap [k] = he; 1100 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1101 ev_active (ANHE_w (he)) = k;
970} 1102}
971 1103
972void inline_size 1104/* move an element suitably so it is in a correct place */
1105inline_size void
973adjustheap (ANHE *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
974{ 1107{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1108 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1109 upheap (heap, k);
977 else 1110 else
978 downheap (heap, N, k); 1111 downheap (heap, N, k);
979} 1112}
980 1113
981/* rebuild the heap: this function is used only once and executed rarely */ 1114/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1115inline_size void
983reheap (ANHE *heap, int N) 1116reheap (ANHE *heap, int N)
984{ 1117{
985 int i; 1118 int i;
986 1119
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1123 upheap (heap, i + HEAP0);
991} 1124}
992 1125
993/*****************************************************************************/ 1126/*****************************************************************************/
994 1127
1128/* associate signal watchers to a signal signal */
995typedef struct 1129typedef struct
996{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
997 WL head; 1135 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1136} ANSIG;
1000 1137
1001static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1139
1006/*****************************************************************************/ 1140/*****************************************************************************/
1007 1141
1008void inline_speed 1142/* used to prepare libev internal fd's */
1143/* this is not fork-safe */
1144inline_speed void
1009fd_intern (int fd) 1145fd_intern (int fd)
1010{ 1146{
1011#ifdef _WIN32 1147#ifdef _WIN32
1012 unsigned long arg = 1; 1148 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1154}
1019 1155
1020static void noinline 1156static void noinline
1021evpipe_init (EV_P) 1157evpipe_init (EV_P)
1022{ 1158{
1023 if (!ev_is_active (&pipeev)) 1159 if (!ev_is_active (&pipe_w))
1024 { 1160 {
1025#if EV_USE_EVENTFD 1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1027 { 1167 {
1028 evpipe [0] = -1; 1168 evpipe [0] = -1;
1029 fd_intern (evfd); 1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1170 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1171 }
1032 else 1172 else
1033#endif 1173#endif
1034 { 1174 {
1035 while (pipe (evpipe)) 1175 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1176 ev_syserr ("(libev) error creating signal/async pipe");
1037 1177
1038 fd_intern (evpipe [0]); 1178 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1179 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1181 }
1042 1182
1043 ev_io_start (EV_A_ &pipeev); 1183 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1185 }
1046} 1186}
1047 1187
1048void inline_size 1188inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1190{
1051 if (!*flag) 1191 if (!*flag)
1052 { 1192 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1193 int old_errno = errno; /* save errno because write might clobber it */
1066 1206
1067 errno = old_errno; 1207 errno = old_errno;
1068 } 1208 }
1069} 1209}
1070 1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
1071static void 1213static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1214pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1215{
1216 int i;
1217
1074#if EV_USE_EVENTFD 1218#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1219 if (evfd >= 0)
1076 { 1220 {
1077 uint64_t counter; 1221 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1222 read (evfd, &counter, sizeof (uint64_t));
1082 { 1226 {
1083 char dummy; 1227 char dummy;
1084 read (evpipe [0], &dummy, 1); 1228 read (evpipe [0], &dummy, 1);
1085 } 1229 }
1086 1230
1087 if (gotsig && ev_is_default_loop (EV_A)) 1231 if (sig_pending)
1088 { 1232 {
1089 int signum; 1233 sig_pending = 0;
1090 gotsig = 0;
1091 1234
1092 for (signum = signalmax; signum--; ) 1235 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1236 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1237 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1238 }
1096 1239
1097#if EV_ASYNC_ENABLE 1240#if EV_ASYNC_ENABLE
1098 if (gotasync) 1241 if (async_pending)
1099 { 1242 {
1100 int i; 1243 async_pending = 0;
1101 gotasync = 0;
1102 1244
1103 for (i = asynccnt; i--; ) 1245 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1246 if (asyncs [i]->sent)
1105 { 1247 {
1106 asyncs [i]->sent = 0; 1248 asyncs [i]->sent = 0;
1114 1256
1115static void 1257static void
1116ev_sighandler (int signum) 1258ev_sighandler (int signum)
1117{ 1259{
1118#if EV_MULTIPLICITY 1260#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 1261 EV_P = signals [signum - 1].loop;
1120#endif 1262#endif
1121 1263
1122#if _WIN32 1264#if _WIN32
1123 signal (signum, ev_sighandler); 1265 signal (signum, ev_sighandler);
1124#endif 1266#endif
1125 1267
1126 signals [signum - 1].gotsig = 1; 1268 signals [signum - 1].pending = 1;
1127 evpipe_write (EV_A_ &gotsig); 1269 evpipe_write (EV_A_ &sig_pending);
1128} 1270}
1129 1271
1130void noinline 1272void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1273ev_feed_signal_event (EV_P_ int signum)
1132{ 1274{
1133 WL w; 1275 WL w;
1134 1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1135#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1283 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1285
1139 --signum; 1286 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1287 return;
1288#endif
1143 1289
1144 signals [signum].gotsig = 0; 1290 signals [signum].pending = 0;
1145 1291
1146 for (w = signals [signum].head; w; w = w->next) 1292 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1294}
1149 1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1150/*****************************************************************************/ 1316/*****************************************************************************/
1151 1317
1152static WL childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
1153 1319
1154#ifndef _WIN32 1320#ifndef _WIN32
1157 1323
1158#ifndef WIFCONTINUED 1324#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1325# define WIFCONTINUED(status) 0
1160#endif 1326#endif
1161 1327
1162void inline_speed 1328/* handle a single child status event */
1329inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
1164{ 1331{
1165 ev_child *w; 1332 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1334
1180 1347
1181#ifndef WCONTINUED 1348#ifndef WCONTINUED
1182# define WCONTINUED 0 1349# define WCONTINUED 0
1183#endif 1350#endif
1184 1351
1352/* called on sigchld etc., calls waitpid */
1185static void 1353static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1355{
1188 int pid, status; 1356 int pid, status;
1189 1357
1270 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1441#endif
1274#ifdef __APPLE__ 1442#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1446#endif
1278 1447
1279 return flags; 1448 return flags;
1280} 1449}
1281 1450
1295ev_backend (EV_P) 1464ev_backend (EV_P)
1296{ 1465{
1297 return backend; 1466 return backend;
1298} 1467}
1299 1468
1469#if EV_MINIMAL < 2
1300unsigned int 1470unsigned int
1301ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
1302{ 1472{
1303 return loop_count; 1473 return loop_count;
1304} 1474}
1305 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1306void 1482void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1484{
1309 io_blocktime = interval; 1485 io_blocktime = interval;
1310} 1486}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1490{
1315 timeout_blocktime = interval; 1491 timeout_blocktime = interval;
1316} 1492}
1317 1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1519static void noinline
1319loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
1320{ 1521{
1321 if (!backend) 1522 if (!backend)
1322 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
1323#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
1324 { 1536 {
1325 struct timespec ts; 1537 struct timespec ts;
1538
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1540 have_monotonic = 1;
1328 } 1541 }
1329#endif 1542#endif
1543
1544 /* pid check not overridable via env */
1545#ifndef _WIN32
1546 if (flags & EVFLAG_FORKCHECK)
1547 curpid = getpid ();
1548#endif
1549
1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1330 1554
1331 ev_rt_now = ev_time (); 1555 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1556 mn_now = get_clock ();
1333 now_floor = mn_now; 1557 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now; 1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1335 1562
1336 io_blocktime = 0.; 1563 io_blocktime = 0.;
1337 timeout_blocktime = 0.; 1564 timeout_blocktime = 0.;
1338 backend = 0; 1565 backend = 0;
1339 backend_fd = -1; 1566 backend_fd = -1;
1340 gotasync = 0; 1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1341#if EV_USE_INOTIFY 1571#if EV_USE_INOTIFY
1342 fs_fd = -2; 1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1343#endif 1573#endif
1344 1574#if EV_USE_SIGNALFD
1345 /* pid check not overridable via env */ 1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif 1576#endif
1350
1351 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1355 1577
1356 if (!(flags & 0x0000ffffU)) 1578 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1358 1580
1359#if EV_USE_PORT 1581#if EV_USE_PORT
1370#endif 1592#endif
1371#if EV_USE_SELECT 1593#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1595#endif
1374 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1375 ev_init (&pipeev, pipecb); 1599 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1377 } 1601 }
1378} 1602}
1379 1603
1604/* free up a loop structure */
1380static void noinline 1605static void noinline
1381loop_destroy (EV_P) 1606loop_destroy (EV_P)
1382{ 1607{
1383 int i; 1608 int i;
1384 1609
1385 if (ev_is_active (&pipeev)) 1610 if (ev_is_active (&pipe_w))
1386 { 1611 {
1387 ev_ref (EV_A); /* signal watcher */ 1612 /*ev_ref (EV_A);*/
1388 ev_io_stop (EV_A_ &pipeev); 1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1389 1614
1390#if EV_USE_EVENTFD 1615#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1616 if (evfd >= 0)
1392 close (evfd); 1617 close (evfd);
1393#endif 1618#endif
1397 close (evpipe [0]); 1622 close (evpipe [0]);
1398 close (evpipe [1]); 1623 close (evpipe [1]);
1399 } 1624 }
1400 } 1625 }
1401 1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1402#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1403 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1404 close (fs_fd); 1639 close (fs_fd);
1405#endif 1640#endif
1406 1641
1429#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1430 array_free (idle, [i]); 1665 array_free (idle, [i]);
1431#endif 1666#endif
1432 } 1667 }
1433 1668
1434 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1435 1670
1436 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1441#endif 1677#endif
1450 1686
1451 backend = 0; 1687 backend = 0;
1452} 1688}
1453 1689
1454#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1456#endif 1692#endif
1457 1693
1458void inline_size 1694inline_size void
1459loop_fork (EV_P) 1695loop_fork (EV_P)
1460{ 1696{
1461#if EV_USE_PORT 1697#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1699#endif
1469#endif 1705#endif
1470#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1707 infy_fork (EV_A);
1472#endif 1708#endif
1473 1709
1474 if (ev_is_active (&pipeev)) 1710 if (ev_is_active (&pipe_w))
1475 { 1711 {
1476 /* this "locks" the handlers against writing to the pipe */ 1712 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1713 /* while we modify the fd vars */
1478 gotsig = 1; 1714 sig_pending = 1;
1479#if EV_ASYNC_ENABLE 1715#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1716 async_pending = 1;
1481#endif 1717#endif
1482 1718
1483 ev_ref (EV_A); 1719 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1720 ev_io_stop (EV_A_ &pipe_w);
1485 1721
1486#if EV_USE_EVENTFD 1722#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1723 if (evfd >= 0)
1488 close (evfd); 1724 close (evfd);
1489#endif 1725#endif
1494 close (evpipe [1]); 1730 close (evpipe [1]);
1495 } 1731 }
1496 1732
1497 evpipe_init (EV_A); 1733 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1734 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1500 } 1736 }
1501 1737
1502 postfork = 0; 1738 postfork = 0;
1503} 1739}
1504 1740
1505#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1506 1742
1507struct ev_loop * 1743struct ev_loop *
1508ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1509{ 1745{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511 1747
1512 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1515 1750
1516 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1517 return loop; 1752 return EV_A;
1518 1753
1519 return 0; 1754 return 0;
1520} 1755}
1521 1756
1522void 1757void
1529void 1764void
1530ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1531{ 1766{
1532 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1533} 1768}
1769#endif /* multiplicity */
1534 1770
1535#if EV_VERIFY 1771#if EV_VERIFY
1536static void noinline 1772static void noinline
1537verify_watcher (EV_P_ W w) 1773verify_watcher (EV_P_ W w)
1538{ 1774{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1776
1541 if (w->pending) 1777 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1779}
1544 1780
1545static void noinline 1781static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1782verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1783{
1548 int i; 1784 int i;
1549 1785
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1786 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1787 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1791
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1793 }
1558} 1794}
1559 1795
1560static void noinline 1796static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1797array_verify (EV_P_ W *ws, int cnt)
1562{ 1798{
1563 while (cnt--) 1799 while (cnt--)
1564 { 1800 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1802 verify_watcher (EV_A_ ws [cnt]);
1567 } 1803 }
1568} 1804}
1569#endif 1805#endif
1570 1806
1807#if EV_MINIMAL < 2
1571void 1808void
1572ev_loop_verify (EV_P) 1809ev_loop_verify (EV_P)
1573{ 1810{
1574#if EV_VERIFY 1811#if EV_VERIFY
1575 int i; 1812 int i;
1577 1814
1578 assert (activecnt >= -1); 1815 assert (activecnt >= -1);
1579 1816
1580 assert (fdchangemax >= fdchangecnt); 1817 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1818 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1820
1584 assert (anfdmax >= 0); 1821 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1822 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1823 for (w = anfds [i].head; w; w = w->next)
1587 { 1824 {
1588 verify_watcher (EV_A_ (W)w); 1825 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1828 }
1592 1829
1593 assert (timermax >= timercnt); 1830 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1831 verify_heap (EV_A_ timers, timercnt);
1595 1832
1624 assert (checkmax >= checkcnt); 1861 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt); 1862 array_verify (EV_A_ (W *)checks, checkcnt);
1626 1863
1627# if 0 1864# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1630# endif 1867# endif
1631#endif 1868#endif
1632} 1869}
1633 1870#endif
1634#endif /* multiplicity */
1635 1871
1636#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1637struct ev_loop * 1873struct ev_loop *
1638ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1639#else 1875#else
1642#endif 1878#endif
1643{ 1879{
1644 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1645 { 1881 {
1646#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1648#else 1884#else
1649 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1650#endif 1886#endif
1651 1887
1652 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1669 1905
1670void 1906void
1671ev_default_destroy (void) 1907ev_default_destroy (void)
1672{ 1908{
1673#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1675#endif 1911#endif
1676 1912
1677 ev_default_loop_ptr = 0; 1913 ev_default_loop_ptr = 0;
1678 1914
1679#ifndef _WIN32 1915#ifndef _WIN32
1686 1922
1687void 1923void
1688ev_default_fork (void) 1924ev_default_fork (void)
1689{ 1925{
1690#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1692#endif 1928#endif
1693 1929
1694 postfork = 1; /* must be in line with ev_loop_fork */ 1930 postfork = 1; /* must be in line with ev_loop_fork */
1695} 1931}
1696 1932
1700ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1701{ 1937{
1702 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1703} 1939}
1704 1940
1705void inline_speed 1941unsigned int
1706call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1707{ 1955{
1708 int pri; 1956 int pri;
1709 1957
1710 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1712 { 1960 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1962
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1718 1965
1719 p->w->pending = 0; 1966 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1968 EV_FREQUENT_CHECK;
1722 }
1723 } 1969 }
1724} 1970}
1725 1971
1726#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1727void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1728idle_reify (EV_P) 1976idle_reify (EV_P)
1729{ 1977{
1730 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1731 { 1979 {
1732 int pri; 1980 int pri;
1744 } 1992 }
1745 } 1993 }
1746} 1994}
1747#endif 1995#endif
1748 1996
1749void inline_size 1997/* make timers pending */
1998inline_size void
1750timers_reify (EV_P) 1999timers_reify (EV_P)
1751{ 2000{
1752 EV_FREQUENT_CHECK; 2001 EV_FREQUENT_CHECK;
1753 2002
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 2004 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2005 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
1763 ev_at (w) += w->repeat; 2014 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 2015 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 2016 ev_at (w) = mn_now;
1766 2017
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 2019
1769 ANHE_at_cache (timers [HEAP0]); 2020 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1771 } 2028 }
1772 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 2030
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 2032 }
1778} 2033}
1779 2034
1780#if EV_PERIODIC_ENABLE 2035#if EV_PERIODIC_ENABLE
1781void inline_size 2036/* make periodics pending */
2037inline_size void
1782periodics_reify (EV_P) 2038periodics_reify (EV_P)
1783{ 2039{
1784 EV_FREQUENT_CHECK; 2040 EV_FREQUENT_CHECK;
1785 2041
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 2043 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2044 int feed_count = 0;
1789 2045
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2046 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 2056
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 2058
1799 ANHE_at_cache (periodics [HEAP0]); 2059 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1801 } 2086 }
1802 else if (w->interval) 2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 2088
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2089 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 2090 }
1827} 2091}
1828 2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1829static void noinline 2095static void noinline
1830periodics_reschedule (EV_P) 2096periodics_reschedule (EV_P)
1831{ 2097{
1832 int i; 2098 int i;
1833 2099
1846 2112
1847 reheap (periodics, periodiccnt); 2113 reheap (periodics, periodiccnt);
1848} 2114}
1849#endif 2115#endif
1850 2116
1851void inline_speed 2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1853{ 2135{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1858 { 2138 {
2139 int i;
1859 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1860 2141
1861 mn_now = get_clock (); 2142 mn_now = get_clock ();
1862 2143
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1889 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2171 mn_now = get_clock ();
1891 now_floor = mn_now; 2172 now_floor = mn_now;
1892 } 2173 }
1893 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1896# endif 2179# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2180 }
1900 else 2181 else
1901#endif 2182#endif
1902 { 2183 {
1903 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1904 2185
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1909#endif 2192#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2193 }
1918 2194
1919 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1920 } 2196 }
1921} 2197}
1922 2198
1923void 2199void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1945{ 2201{
2202#if EV_MINIMAL < 2
2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
1946 loop_done = EVUNLOOP_CANCEL; 2208 loop_done = EVUNLOOP_CANCEL;
1947 2209
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 2211
1950 do 2212 do
1951 { 2213 {
1952#if EV_VERIFY >= 2 2214#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 2215 ev_loop_verify (EV_A);
1966 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1968 if (forkcnt) 2230 if (forkcnt)
1969 { 2231 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1972 } 2234 }
1973#endif 2235#endif
1974 2236
1975 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1977 { 2239 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1980 } 2242 }
1981 2243
1982 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1983 break; 2245 break;
1984 2246
1985 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1987 loop_fork (EV_A); 2249 loop_fork (EV_A);
1994 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1996 2258
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1999 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
2001 2266
2002 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
2003 2268
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
2015 } 2280 }
2016#endif 2281#endif
2017 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
2020 2286
2021 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
2022
2023 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2028 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
2030 } 2300 }
2031 } 2301 }
2032 2302
2303#if EV_MINIMAL < 2
2033 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2035 2309
2036 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
2038 } 2312 }
2039 2313
2050 2324
2051 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2054 2328
2055 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
2056 } 2330 }
2057 while (expect_true ( 2331 while (expect_true (
2058 activecnt 2332 activecnt
2059 && !loop_done 2333 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 )); 2335 ));
2062 2336
2063 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
2065} 2343}
2066 2344
2067void 2345void
2068ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
2069{ 2347{
2070 loop_done = how; 2348 loop_done = how;
2071} 2349}
2072 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
2073/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
2074 2390
2075void inline_size 2391inline_size void
2076wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
2077{ 2393{
2078 elem->next = *head; 2394 elem->next = *head;
2079 *head = elem; 2395 *head = elem;
2080} 2396}
2081 2397
2082void inline_size 2398inline_size void
2083wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
2084{ 2400{
2085 while (*head) 2401 while (*head)
2086 { 2402 {
2087 if (*head == elem) 2403 if (expect_true (*head == elem))
2088 { 2404 {
2089 *head = elem->next; 2405 *head = elem->next;
2090 return; 2406 break;
2091 } 2407 }
2092 2408
2093 head = &(*head)->next; 2409 head = &(*head)->next;
2094 } 2410 }
2095} 2411}
2096 2412
2097void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
2098clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
2099{ 2416{
2100 if (w->pending) 2417 if (w->pending)
2101 { 2418 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2420 w->pending = 0;
2104 } 2421 }
2105} 2422}
2106 2423
2107int 2424int
2111 int pending = w_->pending; 2428 int pending = w_->pending;
2112 2429
2113 if (expect_true (pending)) 2430 if (expect_true (pending))
2114 { 2431 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2116 w_->pending = 0; 2434 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2435 return p->events;
2119 } 2436 }
2120 else 2437 else
2121 return 0; 2438 return 0;
2122} 2439}
2123 2440
2124void inline_size 2441inline_size void
2125pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
2126{ 2443{
2127 int pri = w->priority; 2444 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2447 ev_set_priority (w, pri);
2131} 2448}
2132 2449
2133void inline_speed 2450inline_speed void
2134ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
2135{ 2452{
2136 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
2137 w->active = active; 2454 w->active = active;
2138 ev_ref (EV_A); 2455 ev_ref (EV_A);
2139} 2456}
2140 2457
2141void inline_size 2458inline_size void
2142ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
2143{ 2460{
2144 ev_unref (EV_A); 2461 ev_unref (EV_A);
2145 w->active = 0; 2462 w->active = 0;
2146} 2463}
2153 int fd = w->fd; 2470 int fd = w->fd;
2154 2471
2155 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
2156 return; 2473 return;
2157 2474
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2477
2161 EV_FREQUENT_CHECK; 2478 EV_FREQUENT_CHECK;
2162 2479
2163 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
2166 2483
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2169 2486
2170 EV_FREQUENT_CHECK; 2487 EV_FREQUENT_CHECK;
2171} 2488}
2172 2489
2173void noinline 2490void noinline
2175{ 2492{
2176 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
2178 return; 2495 return;
2179 2496
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2498
2182 EV_FREQUENT_CHECK; 2499 EV_FREQUENT_CHECK;
2183 2500
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
2196 return; 2513 return;
2197 2514
2198 ev_at (w) += mn_now; 2515 ev_at (w) += mn_now;
2199 2516
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2518
2202 EV_FREQUENT_CHECK; 2519 EV_FREQUENT_CHECK;
2203 2520
2204 ++timercnt; 2521 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2525 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2526 upheap (timers, ev_active (w));
2210 2527
2211 EV_FREQUENT_CHECK; 2528 EV_FREQUENT_CHECK;
2212 2529
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2531}
2215 2532
2216void noinline 2533void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2535{
2223 EV_FREQUENT_CHECK; 2540 EV_FREQUENT_CHECK;
2224 2541
2225 { 2542 {
2226 int active = ev_active (w); 2543 int active = ev_active (w);
2227 2544
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2546
2230 --timercnt; 2547 --timercnt;
2231 2548
2232 if (expect_true (active < timercnt + HEAP0)) 2549 if (expect_true (active < timercnt + HEAP0))
2233 { 2550 {
2266 } 2583 }
2267 2584
2268 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2269} 2586}
2270 2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2271#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
2272void noinline 2595void noinline
2273ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
2274{ 2597{
2275 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
2277 2600
2278 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2603 else if (w->interval)
2281 { 2604 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2608 }
2286 else 2609 else
2287 ev_at (w) = w->offset; 2610 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2619 upheap (periodics, ev_active (w));
2297 2620
2298 EV_FREQUENT_CHECK; 2621 EV_FREQUENT_CHECK;
2299 2622
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2624}
2302 2625
2303void noinline 2626void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2628{
2310 EV_FREQUENT_CHECK; 2633 EV_FREQUENT_CHECK;
2311 2634
2312 { 2635 {
2313 int active = ev_active (w); 2636 int active = ev_active (w);
2314 2637
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2639
2317 --periodiccnt; 2640 --periodiccnt;
2318 2641
2319 if (expect_true (active < periodiccnt + HEAP0)) 2642 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2643 {
2342#endif 2665#endif
2343 2666
2344void noinline 2667void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
2346{ 2669{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
2350 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
2351 return; 2671 return;
2352 2672
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2354 2674
2355 evpipe_init (EV_A); 2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2356 2678
2357 EV_FREQUENT_CHECK; 2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2358 2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2359 { 2686 {
2360#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2361 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
2362 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365 2690
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
2367 2694
2368#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
2369 sigprocmask (SIG_SETMASK, &prev, 0); 2696
2370#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2371 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
2372 2713
2373 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375 2716
2376 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
2377 { 2721 {
2378#if _WIN32 2722# if _WIN32
2379 signal (w->signum, ev_sighandler); 2723 signal (w->signum, ev_sighandler);
2380#else 2724# else
2381 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
2382 sa.sa_handler = ev_sighandler; 2729 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2386#endif 2737#endif
2387 } 2738 }
2388 2739
2389 EV_FREQUENT_CHECK; 2740 EV_FREQUENT_CHECK;
2390} 2741}
2391 2742
2392void noinline 2743void noinline
2400 2751
2401 wlist_del (&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2403 2754
2404 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
2405 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2406 2773
2407 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
2408} 2775}
2409 2776
2410void 2777void
2411ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
2412{ 2779{
2413#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2782#endif
2416 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
2417 return; 2784 return;
2418 2785
2419 EV_FREQUENT_CHECK; 2786 EV_FREQUENT_CHECK;
2571 2938
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2941}
2575 2942
2576void inline_size 2943inline_size void
2577check_2625 (EV_P) 2944check_2625 (EV_P)
2578{ 2945{
2579 /* kernels < 2.6.25 are borked 2946 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2948 */
2594 return; 2961 return;
2595 2962
2596 fs_2625 = 1; 2963 fs_2625 = 1;
2597} 2964}
2598 2965
2599void inline_size 2966inline_size void
2600infy_init (EV_P) 2967infy_init (EV_P)
2601{ 2968{
2602 if (fs_fd != -2) 2969 if (fs_fd != -2)
2603 return; 2970 return;
2604 2971
2614 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
2616 } 2983 }
2617} 2984}
2618 2985
2619void inline_size 2986inline_size void
2620infy_fork (EV_P) 2987infy_fork (EV_P)
2621{ 2988{
2622 int slot; 2989 int slot;
2623 2990
2624 if (fs_fd < 0) 2991 if (fs_fd < 0)
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{ 3258{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893 3260
2894 { 3261 {
2895 struct ev_loop *loop = w->other; 3262 EV_P = w->other;
2896 3263
2897 while (fdchangecnt) 3264 while (fdchangecnt)
2898 { 3265 {
2899 fd_reify (EV_A); 3266 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2905static void 3272static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{ 3274{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 3276
3277 ev_embed_stop (EV_A_ w);
3278
2910 { 3279 {
2911 struct ev_loop *loop = w->other; 3280 EV_P = w->other;
2912 3281
2913 ev_loop_fork (EV_A); 3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2914 } 3284 }
3285
3286 ev_embed_start (EV_A_ w);
2915} 3287}
2916 3288
2917#if 0 3289#if 0
2918static void 3290static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2927{ 3299{
2928 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2929 return; 3301 return;
2930 3302
2931 { 3303 {
2932 struct ev_loop *loop = w->other; 3304 EV_P = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 } 3307 }
2936 3308
2937 EV_FREQUENT_CHECK; 3309 EV_FREQUENT_CHECK;
2938 3310
3049 3421
3050void 3422void
3051ev_async_send (EV_P_ ev_async *w) 3423ev_async_send (EV_P_ ev_async *w)
3052{ 3424{
3053 w->sent = 1; 3425 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync); 3426 evpipe_write (EV_A_ &async_pending);
3055} 3427}
3056#endif 3428#endif
3057 3429
3058/*****************************************************************************/ 3430/*****************************************************************************/
3059 3431
3121 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
3122 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
3123 } 3495 }
3124} 3496}
3125 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
3126#if EV_MULTIPLICITY 3606#if EV_MULTIPLICITY
3127 #include "ev_wrap.h" 3607 #include "ev_wrap.h"
3128#endif 3608#endif
3129 3609
3130#ifdef __cplusplus 3610#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines