ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.152 by root, Wed Nov 28 11:15:55 2007 UTC vs.
Revision 1.276 by root, Sun Dec 14 13:03:54 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
256 407
257#ifdef _WIN32 408#ifdef _WIN32
258# include "ev_win32.c" 409# include "ev_win32.c"
259#endif 410#endif
260 411
267{ 418{
268 syserr_cb = cb; 419 syserr_cb = cb;
269} 420}
270 421
271static void noinline 422static void noinline
272syserr (const char *msg) 423ev_syserr (const char *msg)
273{ 424{
274 if (!msg) 425 if (!msg)
275 msg = "(libev) system error"; 426 msg = "(libev) system error";
276 427
277 if (syserr_cb) 428 if (syserr_cb)
281 perror (msg); 432 perror (msg);
282 abort (); 433 abort ();
283 } 434 }
284} 435}
285 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
286static void *(*alloc)(void *ptr, size_t size) = realloc; 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 453
288void 454void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 456{
291 alloc = cb; 457 alloc = cb;
292} 458}
293 459
294inline_speed void * 460inline_speed void *
295ev_realloc (void *ptr, size_t size) 461ev_realloc (void *ptr, long size)
296{ 462{
297 ptr = alloc (ptr, size); 463 ptr = alloc (ptr, size);
298 464
299 if (!ptr && size) 465 if (!ptr && size)
300 { 466 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 468 abort ();
303 } 469 }
304 470
305 return ptr; 471 return ptr;
306} 472}
313typedef struct 479typedef struct
314{ 480{
315 WL head; 481 WL head;
316 unsigned char events; 482 unsigned char events;
317 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
318#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 490 SOCKET handle;
320#endif 491#endif
321} ANFD; 492} ANFD;
322 493
324{ 495{
325 W w; 496 W w;
326 int events; 497 int events;
327} ANPENDING; 498} ANPENDING;
328 499
500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
329typedef struct 502typedef struct
330{ 503{
331#if EV_USE_INOTIFY
332 WL head; 504 WL head;
333#endif
334} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524#endif
335 525
336#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
337 527
338 struct ev_loop 528 struct ev_loop
339 { 529 {
396{ 586{
397 return ev_rt_now; 587 return ev_rt_now;
398} 588}
399#endif 589#endif
400 590
401#define array_roundsize(type,n) (((n) | 4) & ~3) 591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623int inline_size
624array_nextsize (int elem, int cur, int cnt)
625{
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642}
643
644static noinline void *
645array_realloc (int elem, void *base, int *cur, int cnt)
646{
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 653
403#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 655 if (expect_false ((cnt) > (cur))) \
405 { \ 656 { \
406 int newcnt = cur; \ 657 int ocur_ = (cur); \
407 do \ 658 (base) = (type *)array_realloc \
408 { \ 659 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 660 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 661 }
417 662
663#if 0
418#define array_slim(type,stem) \ 664#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 666 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 667 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 670 }
671#endif
425 672
426#define array_free(stem, idx) \ 673#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 675
429/*****************************************************************************/ 676/*****************************************************************************/
430 677
431void noinline 678void noinline
432ev_feed_event (EV_P_ void *w, int revents) 679ev_feed_event (EV_P_ void *w, int revents)
433{ 680{
434 W w_ = (W)w; 681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
435 683
436 if (expect_false (w_->pending)) 684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
437 { 687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 691 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 692 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 693}
447 694
448void inline_size 695void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 696queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 697{
451 int i; 698 int i;
452 699
453 for (i = 0; i < eventcnt; ++i) 700 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
455} 702}
456 703
457/*****************************************************************************/ 704/*****************************************************************************/
458 705
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed 706void inline_speed
473fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
474{ 708{
475 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
476 ev_io *w; 710 ev_io *w;
485} 719}
486 720
487void 721void
488ev_feed_fd_event (EV_P_ int fd, int revents) 722ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 723{
724 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 725 fd_event (EV_A_ fd, revents);
491} 726}
492 727
493void inline_size 728void inline_size
494fd_reify (EV_P) 729fd_reify (EV_P)
495{ 730{
499 { 734 {
500 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
502 ev_io *w; 737 ev_io *w;
503 738
504 int events = 0; 739 unsigned char events = 0;
505 740
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 742 events |= (unsigned char)w->events;
508 743
509#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
510 if (events) 745 if (events)
511 { 746 {
512 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
513 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 754 }
516#endif 755#endif
517 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
518 anfd->reify = 0; 761 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
522 } 767 }
523 768
524 fdchangecnt = 0; 769 fdchangecnt = 0;
525} 770}
526 771
527void inline_size 772void inline_size
528fd_change (EV_P_ int fd) 773fd_change (EV_P_ int fd, int flags)
529{ 774{
530 if (expect_false (anfds [fd].reify)) 775 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 776 anfds [fd].reify |= flags;
534 777
778 if (expect_true (!reify))
779 {
535 ++fdchangecnt; 780 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 782 fdchanges [fdchangecnt - 1] = fd;
783 }
538} 784}
539 785
540void inline_speed 786void inline_speed
541fd_kill (EV_P_ int fd) 787fd_kill (EV_P_ int fd)
542{ 788{
565{ 811{
566 int fd; 812 int fd;
567 813
568 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 815 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
572} 818}
573 819
574/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 821static void noinline
589static void noinline 835static void noinline
590fd_rearm_all (EV_P) 836fd_rearm_all (EV_P)
591{ 837{
592 int fd; 838 int fd;
593 839
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 841 if (anfds [fd].events)
597 { 842 {
598 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
599 fd_change (EV_A_ fd); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 846 }
601} 847}
602 848
603/*****************************************************************************/ 849/*****************************************************************************/
604 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
605void inline_speed 871void inline_speed
606upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
607{ 873{
608 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
609 876
610 while (k && heap [k >> 1]->at > w->at) 877 for (;;)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 } 878 {
879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
616 882
883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
899 break;
900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
617 heap [k] = w; 910 heap [k] = he;
618 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
619
620} 912}
621 913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
622void inline_speed 921void inline_speed
623downheap (WT *heap, int N, int k) 922downheap (ANHE *heap, int N, int k)
624{ 923{
625 WT w = heap [k]; 924 ANHE he = heap [k];
626 925
627 while (k < (N >> 1)) 926 for (;;)
628 { 927 {
629 int j = k << 1; 928 int c = k << 1;
630 929
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 930 if (c > N + HEAP0 - 1)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 931 break;
636 932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
637 heap [k] = heap [j]; 939 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (heap [k])) = k;
941
639 k = j; 942 k = c;
640 } 943 }
641 944
642 heap [k] = w; 945 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
644} 970}
645 971
646void inline_size 972void inline_size
647adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
648{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 976 upheap (heap, k);
977 else
650 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
651} 991}
652 992
653/*****************************************************************************/ 993/*****************************************************************************/
654 994
655typedef struct 995typedef struct
656{ 996{
657 WL head; 997 WL head;
658 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
659} ANSIG; 999} ANSIG;
660 1000
661static ANSIG *signals; 1001static ANSIG *signals;
662static int signalmax; 1002static int signalmax;
663 1003
664static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1005
1006/*****************************************************************************/
1007
668void inline_size 1008void inline_speed
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1009fd_intern (int fd)
733{ 1010{
734#ifdef _WIN32 1011#ifdef _WIN32
735 int arg = 1; 1012 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1014#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1017#endif
741} 1018}
742 1019
743static void noinline 1020static void noinline
744siginit (EV_P) 1021evpipe_init (EV_P)
745{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
746 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
748 1042
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
752} 1111}
753 1112
754/*****************************************************************************/ 1113/*****************************************************************************/
755 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
756static ev_child *childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
757 1153
758#ifndef _WIN32 1154#ifndef _WIN32
759 1155
760static ev_signal childev; 1156static ev_signal childev;
761 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
762void inline_speed 1162void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
764{ 1164{
765 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1167
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
768 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
769 { 1172 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1174 w->rpid = pid;
772 w->rstatus = status; 1175 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1177 }
1178 }
775} 1179}
776 1180
777#ifndef WCONTINUED 1181#ifndef WCONTINUED
778# define WCONTINUED 0 1182# define WCONTINUED 0
779#endif 1183#endif
788 if (!WCONTINUED 1192 if (!WCONTINUED
789 || errno != EINVAL 1193 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1195 return;
792 1196
793 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1200
797 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1204}
801 1205
802#endif 1206#endif
803 1207
804/*****************************************************************************/ 1208/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1270 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1271 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1272 flags &= ~EVBACKEND_KQUEUE;
869#endif 1273#endif
870#ifdef __APPLE__ 1274#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation
872 flags &= ~EVBACKEND_POLL; 1276 flags &= ~EVBACKEND_SELECT;
873#endif 1277#endif
874 1278
875 return flags; 1279 return flags;
876} 1280}
877 1281
878unsigned int 1282unsigned int
879ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
880{ 1284{
881 return EVBACKEND_EPOLL 1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1286
883 | EVBACKEND_PORT; 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
884} 1292}
885 1293
886unsigned int 1294unsigned int
887ev_backend (EV_P) 1295ev_backend (EV_P)
888{ 1296{
889 return backend; 1297 return backend;
1298}
1299
1300unsigned int
1301ev_loop_count (EV_P)
1302{
1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
890} 1316}
891 1317
892static void noinline 1318static void noinline
893loop_init (EV_P_ unsigned int flags) 1319loop_init (EV_P_ unsigned int flags)
894{ 1320{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1327 have_monotonic = 1;
902 } 1328 }
903#endif 1329#endif
904 1330
905 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1332 mn_now = get_clock ();
907 now_floor = mn_now; 1333 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1344
1345 /* pid check not overridable via env */
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif
909 1350
910 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1352 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1355
915 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1358
924#if EV_USE_PORT 1359#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1361#endif
927#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
935#endif 1370#endif
936#if EV_USE_SELECT 1371#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1373#endif
939 1374
940 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1377 }
943} 1378}
944 1379
945static void noinline 1380static void noinline
946loop_destroy (EV_P) 1381loop_destroy (EV_P)
947{ 1382{
948 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
949 1401
950#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
952 close (fs_fd); 1404 close (fs_fd);
953#endif 1405#endif
970#if EV_USE_SELECT 1422#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1424#endif
973 1425
974 for (i = NUMPRI; i--; ) 1426 for (i = NUMPRI; i--; )
1427 {
975 array_free (pending, [i]); 1428 array_free (pending, [i]);
1429#if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431#endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
976 1435
977 /* have to use the microsoft-never-gets-it-right macro */ 1436 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1437 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1438 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1439#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1440 array_free (periodic, EMPTY);
982#endif 1441#endif
1442#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1443 array_free (fork, EMPTY);
1444#endif
984 array_free (prepare, EMPTY0); 1445 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
986 1450
987 backend = 0; 1451 backend = 0;
988} 1452}
1453
1454#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P);
1456#endif
989 1457
990void inline_size 1458void inline_size
991loop_fork (EV_P) 1459loop_fork (EV_P)
992{ 1460{
993#if EV_USE_PORT 1461#if EV_USE_PORT
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1465 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1466#endif
999#if EV_USE_EPOLL 1467#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1468 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1001#endif 1469#endif
1470#if EV_USE_INOTIFY
1471 infy_fork (EV_A);
1472#endif
1002 1473
1003 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1004 { 1475 {
1005 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1006 1482
1007 ev_ref (EV_A); 1483 ev_ref (EV_A);
1008 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1009 close (sigpipe [0]); 1493 close (evpipe [0]);
1010 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1011 1496
1012 while (pipe (sigpipe))
1013 syserr ("(libev) error creating pipe");
1014
1015 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1016 } 1500 }
1017 1501
1018 postfork = 0; 1502 postfork = 0;
1019} 1503}
1020 1504
1021#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1022struct ev_loop * 1507struct ev_loop *
1023ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1024{ 1509{
1025 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1026 1511
1042} 1527}
1043 1528
1044void 1529void
1045ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1046{ 1531{
1047 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1048} 1533}
1049 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1050#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1051 1635
1052#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1053struct ev_loop * 1637struct ev_loop *
1054ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1055#else 1639#else
1056int 1640int
1057ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1058#endif 1642#endif
1059{ 1643{
1060 if (sigpipe [0] == sigpipe [1])
1061 if (pipe (sigpipe))
1062 return 0;
1063
1064 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1065 { 1645 {
1066#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1067 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1068#else 1648#else
1071 1651
1072 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1073 1653
1074 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1075 { 1655 {
1076 siginit (EV_A);
1077
1078#ifndef _WIN32 1656#ifndef _WIN32
1079 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1080 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1081 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1082 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1094{ 1672{
1095#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1096 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1097#endif 1675#endif
1098 1676
1677 ev_default_loop_ptr = 0;
1678
1099#ifndef _WIN32 1679#ifndef _WIN32
1100 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1101 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1102#endif 1682#endif
1103 1683
1104 ev_ref (EV_A); /* signal watcher */
1105 ev_io_stop (EV_A_ &sigev);
1106
1107 close (sigpipe [0]); sigpipe [0] = 0;
1108 close (sigpipe [1]); sigpipe [1] = 0;
1109
1110 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1111} 1685}
1112 1686
1113void 1687void
1114ev_default_fork (void) 1688ev_default_fork (void)
1115{ 1689{
1116#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1117 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1118#endif 1692#endif
1119 1693
1120 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1121 postfork = 1;
1122} 1695}
1123 1696
1124/*****************************************************************************/ 1697/*****************************************************************************/
1125 1698
1126int inline_size 1699void
1127any_pending (EV_P) 1700ev_invoke (EV_P_ void *w, int revents)
1128{ 1701{
1129 int pri; 1702 EV_CB_INVOKE ((W)w, revents);
1130
1131 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri])
1133 return 1;
1134
1135 return 0;
1136} 1703}
1137 1704
1138void inline_speed 1705void inline_speed
1139call_pending (EV_P) 1706call_pending (EV_P)
1140{ 1707{
1149 { 1716 {
1150 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1151 1718
1152 p->w->pending = 0; 1719 p->w->pending = 0;
1153 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1154 } 1722 }
1155 } 1723 }
1156} 1724}
1157 1725
1726#if EV_IDLE_ENABLE
1727void inline_size
1728idle_reify (EV_P)
1729{
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
1735 {
1736 if (pendingcnt [pri])
1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
1744 }
1745 }
1746}
1747#endif
1748
1158void inline_size 1749void inline_size
1159timers_reify (EV_P) 1750timers_reify (EV_P)
1160{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1161 while (timercnt && ((WT)timers [0])->at <= mn_now) 1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1162 { 1755 {
1163 ev_timer *w = timers [0]; 1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1164 1757
1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1166 1759
1167 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1168 if (w->repeat) 1761 if (w->repeat)
1169 { 1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1170 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1171 1768
1172 ((WT)w)->at += w->repeat; 1769 ANHE_at_cache (timers [HEAP0]);
1173 if (((WT)w)->at < mn_now)
1174 ((WT)w)->at = mn_now;
1175
1176 downheap ((WT *)timers, timercnt, 0); 1770 downheap (timers, timercnt, HEAP0);
1177 } 1771 }
1178 else 1772 else
1179 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1180 1774
1775 EV_FREQUENT_CHECK;
1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1182 } 1777 }
1183} 1778}
1184 1779
1185#if EV_PERIODIC_ENABLE 1780#if EV_PERIODIC_ENABLE
1186void inline_size 1781void inline_size
1187periodics_reify (EV_P) 1782periodics_reify (EV_P)
1188{ 1783{
1784 EV_FREQUENT_CHECK;
1785
1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1190 { 1787 {
1191 ev_periodic *w = periodics [0]; 1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1192 1789
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1194 1791
1195 /* first reschedule or stop timer */ 1792 /* first reschedule or stop timer */
1196 if (w->reschedule_cb) 1793 if (w->reschedule_cb)
1197 { 1794 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1200 downheap ((WT *)periodics, periodiccnt, 0); 1800 downheap (periodics, periodiccnt, HEAP0);
1201 } 1801 }
1202 else if (w->interval) 1802 else if (w->interval)
1203 { 1803 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1206 downheap ((WT *)periodics, periodiccnt, 0); 1819 downheap (periodics, periodiccnt, HEAP0);
1207 } 1820 }
1208 else 1821 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1823
1824 EV_FREQUENT_CHECK;
1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1212 } 1826 }
1213} 1827}
1214 1828
1215static void noinline 1829static void noinline
1216periodics_reschedule (EV_P) 1830periodics_reschedule (EV_P)
1217{ 1831{
1218 int i; 1832 int i;
1219 1833
1220 /* adjust periodics after time jump */ 1834 /* adjust periodics after time jump */
1221 for (i = 0; i < periodiccnt; ++i) 1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1222 { 1836 {
1223 ev_periodic *w = periodics [i]; 1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1224 1838
1225 if (w->reschedule_cb) 1839 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 1841 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848}
1849#endif
1850
1851void inline_speed
1852time_update (EV_P_ ev_tstamp max_block)
1853{
1854 int i;
1855
1856#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1229 } 1858 {
1859 ev_tstamp odiff = rtmn_diff;
1230 1860
1231 /* now rebuild the heap */
1232 for (i = periodiccnt >> 1; i--; )
1233 downheap ((WT *)periodics, periodiccnt, i);
1234}
1235#endif
1236
1237int inline_size
1238time_update_monotonic (EV_P)
1239{
1240 mn_now = get_clock (); 1861 mn_now = get_clock ();
1241 1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1243 { 1866 {
1244 ev_rt_now = rtmn_diff + mn_now; 1867 ev_rt_now = rtmn_diff + mn_now;
1245 return 0; 1868 return;
1246 } 1869 }
1247 else 1870
1248 {
1249 now_floor = mn_now; 1871 now_floor = mn_now;
1250 ev_rt_now = ev_time (); 1872 ev_rt_now = ev_time ();
1251 return 1;
1252 }
1253}
1254 1873
1255void inline_size 1874 /* loop a few times, before making important decisions.
1256time_update (EV_P) 1875 * on the choice of "4": one iteration isn't enough,
1257{ 1876 * in case we get preempted during the calls to
1258 int i; 1877 * ev_time and get_clock. a second call is almost guaranteed
1259 1878 * to succeed in that case, though. and looping a few more times
1260#if EV_USE_MONOTONIC 1879 * doesn't hurt either as we only do this on time-jumps or
1261 if (expect_true (have_monotonic)) 1880 * in the unlikely event of having been preempted here.
1262 { 1881 */
1263 if (time_update_monotonic (EV_A)) 1882 for (i = 4; --i; )
1264 { 1883 {
1265 ev_tstamp odiff = rtmn_diff;
1266
1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1276 {
1277 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1278 1885
1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1280 return; /* all is well */ 1887 return; /* all is well */
1281 1888
1282 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1890 mn_now = get_clock ();
1284 now_floor = mn_now; 1891 now_floor = mn_now;
1285 } 1892 }
1286 1893
1287# if EV_PERIODIC_ENABLE 1894# if EV_PERIODIC_ENABLE
1288 periodics_reschedule (EV_A); 1895 periodics_reschedule (EV_A);
1289# endif 1896# endif
1290 /* no timer adjustment, as the monotonic clock doesn't jump */ 1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292 }
1293 } 1899 }
1294 else 1900 else
1295#endif 1901#endif
1296 { 1902 {
1297 ev_rt_now = ev_time (); 1903 ev_rt_now = ev_time ();
1298 1904
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1300 { 1906 {
1301#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1303#endif 1909#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1306 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1307 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1308 } 1917 }
1309 1918
1310 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1311 } 1920 }
1312} 1921}
1321ev_unref (EV_P) 1930ev_unref (EV_P)
1322{ 1931{
1323 --activecnt; 1932 --activecnt;
1324} 1933}
1325 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1326static int loop_done; 1941static int loop_done;
1327 1942
1328void 1943void
1329ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1330{ 1945{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1332 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL;
1334 1947
1335 while (activecnt) 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1949
1950 do
1336 { 1951 {
1337 /* we might have forked, so reify kernel state if necessary */ 1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1956#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid))
1959 {
1960 curpid = getpid ();
1961 postfork = 1;
1962 }
1963#endif
1964
1338 #if EV_FORK_ENABLE 1965#if EV_FORK_ENABLE
1966 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 1967 if (expect_false (postfork))
1340 if (forkcnt) 1968 if (forkcnt)
1341 { 1969 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 1971 call_pending (EV_A);
1344 } 1972 }
1345 #endif 1973#endif
1346 1974
1347 /* queue check watchers (and execute them) */ 1975 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 1976 if (expect_false (preparecnt))
1349 { 1977 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 1979 call_pending (EV_A);
1352 } 1980 }
1353 1981
1982 if (expect_false (!activecnt))
1983 break;
1984
1354 /* we might have forked, so reify kernel state if necessary */ 1985 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 1986 if (expect_false (postfork))
1356 loop_fork (EV_A); 1987 loop_fork (EV_A);
1357 1988
1358 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 1990 fd_reify (EV_A);
1360 1991
1361 /* calculate blocking time */ 1992 /* calculate blocking time */
1362 { 1993 {
1363 double block; 1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1364 1996
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1366 block = 0.; /* do not block at all */
1367 else
1368 { 1998 {
1369 /* update time to cancel out callback processing overhead */ 1999 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC
1371 if (expect_true (have_monotonic))
1372 time_update_monotonic (EV_A); 2000 time_update (EV_A_ 1e100);
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377 mn_now = ev_rt_now;
1378 }
1379 2001
1380 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1381 2003
1382 if (timercnt) 2004 if (timercnt)
1383 { 2005 {
1384 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1385 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1386 } 2008 }
1387 2009
1388#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1389 if (periodiccnt) 2011 if (periodiccnt)
1390 { 2012 {
1391 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1392 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1393 } 2015 }
1394#endif 2016#endif
1395 2017
1396 if (expect_false (block < 0.)) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1397 } 2031 }
1398 2032
2033 ++loop_count;
1399 backend_poll (EV_A_ block); 2034 backend_poll (EV_A_ waittime);
2035
2036 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime);
1400 } 2038 }
1401
1402 /* update ev_rt_now, do magic */
1403 time_update (EV_A);
1404 2039
1405 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1406 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 2042#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 2043 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 2044#endif
1410 2045
2046#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 2047 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 2048 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2049#endif
1414 2050
1415 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1418 2054
1419 call_pending (EV_A); 2055 call_pending (EV_A);
1420
1421 if (expect_false (loop_done))
1422 break;
1423 } 2056 }
2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1424 2062
1425 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1427} 2065}
1428 2066
1455 head = &(*head)->next; 2093 head = &(*head)->next;
1456 } 2094 }
1457} 2095}
1458 2096
1459void inline_speed 2097void inline_speed
1460ev_clear_pending (EV_P_ W w) 2098clear_pending (EV_P_ W w)
1461{ 2099{
1462 if (w->pending) 2100 if (w->pending)
1463 { 2101 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1465 w->pending = 0; 2103 w->pending = 0;
1466 } 2104 }
1467} 2105}
1468 2106
2107int
2108ev_clear_pending (EV_P_ void *w)
2109{
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122}
2123
2124void inline_size
2125pri_adjust (EV_P_ W w)
2126{
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131}
2132
1469void inline_speed 2133void inline_speed
1470ev_start (EV_P_ W w, int active) 2134ev_start (EV_P_ W w, int active)
1471{ 2135{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2136 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 2137 w->active = active;
1476 ev_ref (EV_A); 2138 ev_ref (EV_A);
1477} 2139}
1478 2140
1479void inline_size 2141void inline_size
1483 w->active = 0; 2145 w->active = 0;
1484} 2146}
1485 2147
1486/*****************************************************************************/ 2148/*****************************************************************************/
1487 2149
1488void 2150void noinline
1489ev_io_start (EV_P_ ev_io *w) 2151ev_io_start (EV_P_ ev_io *w)
1490{ 2152{
1491 int fd = w->fd; 2153 int fd = w->fd;
1492 2154
1493 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1494 return; 2156 return;
1495 2157
1496 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1497 2162
1498 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1499 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1501 2166
1502 fd_change (EV_A_ fd); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1503} 2168 w->events &= ~EV_IOFDSET;
1504 2169
1505void 2170 EV_FREQUENT_CHECK;
2171}
2172
2173void noinline
1506ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1507{ 2175{
1508 ev_clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1510 return; 2178 return;
1511 2179
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 2181
2182 EV_FREQUENT_CHECK;
2183
1514 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1515 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1516 2186
1517 fd_change (EV_A_ w->fd); 2187 fd_change (EV_A_ w->fd, 1);
1518}
1519 2188
1520void 2189 EV_FREQUENT_CHECK;
2190}
2191
2192void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1522{ 2194{
1523 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1524 return; 2196 return;
1525 2197
1526 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1527 2199
1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1529 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1530 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1532 timers [timercnt - 1] = w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1533 upheap ((WT *)timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1534 2210
2211 EV_FREQUENT_CHECK;
2212
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1536} 2214}
1537 2215
1538void 2216void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1540{ 2218{
1541 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1543 return; 2221 return;
1544 2222
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2223 EV_FREQUENT_CHECK;
1546 2224
1547 { 2225 {
1548 int active = ((W)w)->active; 2226 int active = ev_active (w);
1549 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1550 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1551 { 2233 {
1552 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1553 adjustheap ((WT *)timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1554 } 2236 }
1555 } 2237 }
1556 2238
1557 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1558 2242
1559 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1560} 2244}
1561 2245
1562void 2246void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1564{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1565 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1566 { 2252 {
1567 if (w->repeat) 2253 if (w->repeat)
1568 { 2254 {
1569 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1570 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1571 } 2258 }
1572 else 2259 else
1573 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1574 } 2261 }
1575 else if (w->repeat) 2262 else if (w->repeat)
1576 { 2263 {
1577 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1578 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1579 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1580} 2269}
1581 2270
1582#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1583void 2272void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 2274{
1586 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1587 return; 2276 return;
1588 2277
1589 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 2280 else if (w->interval)
1592 { 2281 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1596 } 2285 }
2286 else
2287 ev_at (w) = w->offset;
1597 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1602 2297
2298 EV_FREQUENT_CHECK;
2299
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1604} 2301}
1605 2302
1606void 2303void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 2305{
1609 ev_clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1611 return; 2308 return;
1612 2309
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2310 EV_FREQUENT_CHECK;
1614 2311
1615 { 2312 {
1616 int active = ((W)w)->active; 2313 int active = ev_active (w);
1617 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1618 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1619 { 2320 {
1620 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1621 adjustheap ((WT *)periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1622 } 2323 }
1623 } 2324 }
1624 2325
2326 EV_FREQUENT_CHECK;
2327
1625 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1626} 2329}
1627 2330
1628void 2331void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 2333{
1631 /* TODO: use adjustheap and recalculation */ 2334 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 2335 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 2336 ev_periodic_start (EV_A_ w);
1636 2339
1637#ifndef SA_RESTART 2340#ifndef SA_RESTART
1638# define SA_RESTART 0 2341# define SA_RESTART 0
1639#endif 2342#endif
1640 2343
1641void 2344void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 2345ev_signal_start (EV_P_ ev_signal *w)
1643{ 2346{
1644#if EV_MULTIPLICITY 2347#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif 2349#endif
1647 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1648 return; 2351 return;
1649 2352
1650 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1651 2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360#ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368#ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370#endif
2371 }
2372
1652 ev_start (EV_A_ (W)w, 1); 2373 ev_start (EV_A_ (W)w, 1);
1653 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1654 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1655 2375
1656 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1657 { 2377 {
1658#if _WIN32 2378#if _WIN32
1659 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1660#else 2380#else
1661 struct sigaction sa; 2381 struct sigaction sa;
1662 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1663 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1664 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1665 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1666#endif 2386#endif
1667 } 2387 }
1668}
1669 2388
1670void 2389 EV_FREQUENT_CHECK;
2390}
2391
2392void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1672{ 2394{
1673 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1675 return; 2397 return;
1676 2398
2399 EV_FREQUENT_CHECK;
2400
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1679 2403
1680 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1681 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1682} 2408}
1683 2409
1684void 2410void
1685ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1686{ 2412{
1688 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1689#endif 2415#endif
1690 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1691 return; 2417 return;
1692 2418
2419 EV_FREQUENT_CHECK;
2420
1693 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1695} 2425}
1696 2426
1697void 2427void
1698ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1699{ 2429{
1700 ev_clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1702 return; 2432 return;
1703 2433
2434 EV_FREQUENT_CHECK;
2435
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1706} 2440}
1707 2441
1708#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1709 2443
1710# ifdef _WIN32 2444# ifdef _WIN32
1711# undef lstat 2445# undef lstat
1712# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1713# endif 2447# endif
1714 2448
1715#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1716#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1717 2452
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 2454
1720#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE ((PATH_MAX + sizeof (struct inotify_event)) + 2048) 2456# define EV_INOTIFY_BUFSIZE 8192
1722 2457
1723static void noinline 2458static void noinline
1724infy_add (EV_P_ ev_stat *w) 2459infy_add (EV_P_ ev_stat *w)
1725{ 2460{
1726 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1727 2462
1728 if (w->wd < 0) 2463 if (w->wd < 0)
1729 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1730 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1731 2467
1732 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1733 if (errno == ENOENT || errno == EACCES) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1734 { 2472 {
1735 char path [PATH_MAX]; 2473 char path [4096];
1736 strcpy (path, w->path); 2474 strcpy (path, w->path);
1737 2475
1738 do 2476 do
1739 { 2477 {
1740 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1741 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1742 2480
1743 char *pend = strrchr (path, '/'); 2481 char *pend = strrchr (path, '/');
1744 2482
1745 if (!pend) 2483 if (!pend || pend == path)
1746 break; /* whoops, no '/', complain to your admin */ 2484 break;
1747 2485
1748 *pend = 0; 2486 *pend = 0;
1749 w->wd = inotify_add_watch (fs_fd, path, IN_DELETE_SELF | IN_CREATE | IN_MOVED_TO | IN_MASK_ADD); 2487 w->wd = inotify_add_watch (fs_fd, path, mask);
1750 } 2488 }
1751 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1752 } 2490 }
1753 } 2491 }
1754 else
1755 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1756 2492
1757 if (w->wd >= 0) 2493 if (w->wd >= 0)
2494 {
1758 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
1759} 2514}
1760 2515
1761static void noinline 2516static void noinline
1762infy_del (EV_P_ ev_stat *w) 2517infy_del (EV_P_ ev_stat *w)
1763{ 2518{
1764 WL w_;
1765 int slot; 2519 int slot;
1766 int wd = w->wd; 2520 int wd = w->wd;
1767 2521
1768 if (wd < 0) 2522 if (wd < 0)
1769 return; 2523 return;
1778 2532
1779static void noinline 2533static void noinline
1780infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1781{ 2535{
1782 if (slot < 0) 2536 if (slot < 0)
1783 /* overflow, need to check for all hahs slots */ 2537 /* overflow, need to check for all hash slots */
1784 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1785 infy_wd (EV_A_ slot, wd, ev); 2539 infy_wd (EV_A_ slot, wd, ev);
1786 else 2540 else
1787 { 2541 {
1788 WL w_; 2542 WL w_;
1794 2548
1795 if (w->wd == wd || wd == -1) 2549 if (w->wd == wd || wd == -1)
1796 { 2550 {
1797 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1798 { 2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1799 w->wd = -1; 2554 w->wd = -1;
1800 infy_add (EV_A_ w); /* re-add, no matter what */ 2555 infy_add (EV_A_ w); /* re-add, no matter what */
1801 } 2556 }
1802 2557
1803 stat_timer_cb (EV_P_ &w->timer, 0); 2558 stat_timer_cb (EV_A_ &w->timer, 0);
1804 } 2559 }
1805 } 2560 }
1806 } 2561 }
1807} 2562}
1808 2563
1817 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1818 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1819} 2574}
1820 2575
1821void inline_size 2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
1822infy_init (EV_P) 2600infy_init (EV_P)
1823{ 2601{
1824 if (fs_fd != -2) 2602 if (fs_fd != -2)
1825 return; 2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
1826 2608
1827 fs_fd = inotify_init (); 2609 fs_fd = inotify_init ();
1828 2610
1829 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1830 { 2612 {
1832 ev_set_priority (&fs_w, EV_MAXPRI); 2614 ev_set_priority (&fs_w, EV_MAXPRI);
1833 ev_io_start (EV_A_ &fs_w); 2615 ev_io_start (EV_A_ &fs_w);
1834 } 2616 }
1835} 2617}
1836 2618
2619void inline_size
2620infy_fork (EV_P)
2621{
2622 int slot;
2623
2624 if (fs_fd < 0)
2625 return;
2626
2627 close (fs_fd);
2628 fs_fd = inotify_init ();
2629
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2631 {
2632 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0;
2634
2635 while (w_)
2636 {
2637 ev_stat *w = (ev_stat *)w_;
2638 w_ = w_->next; /* lets us add this watcher */
2639
2640 w->wd = -1;
2641
2642 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else
2645 ev_timer_again (EV_A_ &w->timer);
2646 }
2647 }
2648}
2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
1837#endif 2656#endif
1838 2657
1839void 2658void
1840ev_stat_stat (EV_P_ ev_stat *w) 2659ev_stat_stat (EV_P_ ev_stat *w)
1841{ 2660{
1843 w->attr.st_nlink = 0; 2662 w->attr.st_nlink = 0;
1844 else if (!w->attr.st_nlink) 2663 else if (!w->attr.st_nlink)
1845 w->attr.st_nlink = 1; 2664 w->attr.st_nlink = 1;
1846} 2665}
1847 2666
1848void noinline 2667static void noinline
1849stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2668stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1850{ 2669{
1851 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1852 2671
1853 /* we copy this here each the time so that */ 2672 /* we copy this here each the time so that */
1854 /* prev has the old value when the callback gets invoked */ 2673 /* prev has the old value when the callback gets invoked */
1855 w->prev = w->attr; 2674 w->prev = w->attr;
1856 ev_stat_stat (EV_A_ w); 2675 ev_stat_stat (EV_A_ w);
1857 2676
1858 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if (
2679 w->prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime
1859 { 2690 ) {
1860 #if EV_USE_INOTIFY 2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
1861 infy_del (EV_A_ w); 2694 infy_del (EV_A_ w);
1862 infy_add (EV_A_ w); 2695 infy_add (EV_A_ w);
1863 ev_stat_stat (EV_A_ w); /* avoid race... */ 2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
1864 #endif 2698 #endif
1865 2699
1866 ev_feed_event (EV_A_ w, EV_STAT); 2700 ev_feed_event (EV_A_ w, EV_STAT);
1867 } 2701 }
1868} 2702}
1871ev_stat_start (EV_P_ ev_stat *w) 2705ev_stat_start (EV_P_ ev_stat *w)
1872{ 2706{
1873 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1874 return; 2708 return;
1875 2709
1876 /* since we use memcmp, we need to clear any padding data etc. */
1877 memset (&w->prev, 0, sizeof (ev_statdata));
1878 memset (&w->attr, 0, sizeof (ev_statdata));
1879
1880 ev_stat_stat (EV_A_ w); 2710 ev_stat_stat (EV_A_ w);
1881 2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1882 if (w->interval < MIN_STAT_INTERVAL) 2713 w->interval = MIN_STAT_INTERVAL;
1883 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1884 2714
1885 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1886 ev_set_priority (&w->timer, ev_priority (w)); 2716 ev_set_priority (&w->timer, ev_priority (w));
1887 2717
1888#if EV_USE_INOTIFY 2718#if EV_USE_INOTIFY
1889 infy_init (EV_A); 2719 infy_init (EV_A);
1890 2720
1891 if (fs_fd >= 0) 2721 if (fs_fd >= 0)
1892 infy_add (EV_A_ w); 2722 infy_add (EV_A_ w);
1893 else 2723 else
1894#endif 2724#endif
1895 ev_timer_start (EV_A_ &w->timer); 2725 ev_timer_again (EV_A_ &w->timer);
1896 2726
1897 ev_start (EV_A_ (W)w, 1); 2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
1898} 2730}
1899 2731
1900void 2732void
1901ev_stat_stop (EV_P_ ev_stat *w) 2733ev_stat_stop (EV_P_ ev_stat *w)
1902{ 2734{
1903 ev_clear_pending (EV_A_ (W)w); 2735 clear_pending (EV_A_ (W)w);
1904 if (expect_false (!ev_is_active (w))) 2736 if (expect_false (!ev_is_active (w)))
1905 return; 2737 return;
1906 2738
2739 EV_FREQUENT_CHECK;
2740
1907#if EV_USE_INOTIFY 2741#if EV_USE_INOTIFY
1908 infy_del (EV_A_ w); 2742 infy_del (EV_A_ w);
1909#endif 2743#endif
1910 ev_timer_stop (EV_A_ &w->timer); 2744 ev_timer_stop (EV_A_ &w->timer);
1911 2745
1912 ev_stop (EV_A_ (W)w); 2746 ev_stop (EV_A_ (W)w);
1913}
1914#endif
1915 2747
2748 EV_FREQUENT_CHECK;
2749}
2750#endif
2751
2752#if EV_IDLE_ENABLE
1916void 2753void
1917ev_idle_start (EV_P_ ev_idle *w) 2754ev_idle_start (EV_P_ ev_idle *w)
1918{ 2755{
1919 if (expect_false (ev_is_active (w))) 2756 if (expect_false (ev_is_active (w)))
1920 return; 2757 return;
1921 2758
2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ++idlecnt [ABSPRI (w)];
2765
2766 ++idleall;
1922 ev_start (EV_A_ (W)w, ++idlecnt); 2767 ev_start (EV_A_ (W)w, active);
2768
1923 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1924 idles [idlecnt - 1] = w; 2770 idles [ABSPRI (w)][active - 1] = w;
2771 }
2772
2773 EV_FREQUENT_CHECK;
1925} 2774}
1926 2775
1927void 2776void
1928ev_idle_stop (EV_P_ ev_idle *w) 2777ev_idle_stop (EV_P_ ev_idle *w)
1929{ 2778{
1930 ev_clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
1931 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
1932 return; 2781 return;
1933 2782
2783 EV_FREQUENT_CHECK;
2784
1934 { 2785 {
1935 int active = ((W)w)->active; 2786 int active = ev_active (w);
1936 idles [active - 1] = idles [--idlecnt]; 2787
1937 ((W)idles [active - 1])->active = active; 2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2790
2791 ev_stop (EV_A_ (W)w);
2792 --idleall;
1938 } 2793 }
1939 2794
1940 ev_stop (EV_A_ (W)w); 2795 EV_FREQUENT_CHECK;
1941} 2796}
2797#endif
1942 2798
1943void 2799void
1944ev_prepare_start (EV_P_ ev_prepare *w) 2800ev_prepare_start (EV_P_ ev_prepare *w)
1945{ 2801{
1946 if (expect_false (ev_is_active (w))) 2802 if (expect_false (ev_is_active (w)))
1947 return; 2803 return;
2804
2805 EV_FREQUENT_CHECK;
1948 2806
1949 ev_start (EV_A_ (W)w, ++preparecnt); 2807 ev_start (EV_A_ (W)w, ++preparecnt);
1950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1951 prepares [preparecnt - 1] = w; 2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
1952} 2812}
1953 2813
1954void 2814void
1955ev_prepare_stop (EV_P_ ev_prepare *w) 2815ev_prepare_stop (EV_P_ ev_prepare *w)
1956{ 2816{
1957 ev_clear_pending (EV_A_ (W)w); 2817 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2818 if (expect_false (!ev_is_active (w)))
1959 return; 2819 return;
1960 2820
2821 EV_FREQUENT_CHECK;
2822
1961 { 2823 {
1962 int active = ((W)w)->active; 2824 int active = ev_active (w);
2825
1963 prepares [active - 1] = prepares [--preparecnt]; 2826 prepares [active - 1] = prepares [--preparecnt];
1964 ((W)prepares [active - 1])->active = active; 2827 ev_active (prepares [active - 1]) = active;
1965 } 2828 }
1966 2829
1967 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
1968} 2833}
1969 2834
1970void 2835void
1971ev_check_start (EV_P_ ev_check *w) 2836ev_check_start (EV_P_ ev_check *w)
1972{ 2837{
1973 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
1974 return; 2839 return;
2840
2841 EV_FREQUENT_CHECK;
1975 2842
1976 ev_start (EV_A_ (W)w, ++checkcnt); 2843 ev_start (EV_A_ (W)w, ++checkcnt);
1977 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1978 checks [checkcnt - 1] = w; 2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
1979} 2848}
1980 2849
1981void 2850void
1982ev_check_stop (EV_P_ ev_check *w) 2851ev_check_stop (EV_P_ ev_check *w)
1983{ 2852{
1984 ev_clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
1985 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
1986 return; 2855 return;
1987 2856
2857 EV_FREQUENT_CHECK;
2858
1988 { 2859 {
1989 int active = ((W)w)->active; 2860 int active = ev_active (w);
2861
1990 checks [active - 1] = checks [--checkcnt]; 2862 checks [active - 1] = checks [--checkcnt];
1991 ((W)checks [active - 1])->active = active; 2863 ev_active (checks [active - 1]) = active;
1992 } 2864 }
1993 2865
1994 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
1995} 2869}
1996 2870
1997#if EV_EMBED_ENABLE 2871#if EV_EMBED_ENABLE
1998void noinline 2872void noinline
1999ev_embed_sweep (EV_P_ ev_embed *w) 2873ev_embed_sweep (EV_P_ ev_embed *w)
2000{ 2874{
2001 ev_loop (w->loop, EVLOOP_NONBLOCK); 2875 ev_loop (w->other, EVLOOP_NONBLOCK);
2002} 2876}
2003 2877
2004static void 2878static void
2005embed_cb (EV_P_ ev_io *io, int revents) 2879embed_io_cb (EV_P_ ev_io *io, int revents)
2006{ 2880{
2007 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2008 2882
2009 if (ev_cb (w)) 2883 if (ev_cb (w))
2010 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2011 else 2885 else
2012 ev_embed_sweep (loop, w); 2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2013} 2887}
2888
2889static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893
2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 {
2911 struct ev_loop *loop = w->other;
2912
2913 ev_loop_fork (EV_A);
2914 }
2915}
2916
2917#if 0
2918static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2920{
2921 ev_idle_stop (EV_A_ idle);
2922}
2923#endif
2014 2924
2015void 2925void
2016ev_embed_start (EV_P_ ev_embed *w) 2926ev_embed_start (EV_P_ ev_embed *w)
2017{ 2927{
2018 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2019 return; 2929 return;
2020 2930
2021 { 2931 {
2022 struct ev_loop *loop = w->loop; 2932 struct ev_loop *loop = w->other;
2023 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2024 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2025 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2026 2938
2027 ev_set_priority (&w->io, ev_priority (w)); 2939 ev_set_priority (&w->io, ev_priority (w));
2028 ev_io_start (EV_A_ &w->io); 2940 ev_io_start (EV_A_ &w->io);
2029 2941
2942 ev_prepare_init (&w->prepare, embed_prepare_cb);
2943 ev_set_priority (&w->prepare, EV_MINPRI);
2944 ev_prepare_start (EV_A_ &w->prepare);
2945
2946 ev_fork_init (&w->fork, embed_fork_cb);
2947 ev_fork_start (EV_A_ &w->fork);
2948
2949 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2950
2030 ev_start (EV_A_ (W)w, 1); 2951 ev_start (EV_A_ (W)w, 1);
2952
2953 EV_FREQUENT_CHECK;
2031} 2954}
2032 2955
2033void 2956void
2034ev_embed_stop (EV_P_ ev_embed *w) 2957ev_embed_stop (EV_P_ ev_embed *w)
2035{ 2958{
2036 ev_clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2037 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2038 return; 2961 return;
2039 2962
2963 EV_FREQUENT_CHECK;
2964
2040 ev_io_stop (EV_A_ &w->io); 2965 ev_io_stop (EV_A_ &w->io);
2966 ev_prepare_stop (EV_A_ &w->prepare);
2967 ev_fork_stop (EV_A_ &w->fork);
2041 2968
2042 ev_stop (EV_A_ (W)w); 2969 EV_FREQUENT_CHECK;
2043} 2970}
2044#endif 2971#endif
2045 2972
2046#if EV_FORK_ENABLE 2973#if EV_FORK_ENABLE
2047void 2974void
2048ev_fork_start (EV_P_ ev_fork *w) 2975ev_fork_start (EV_P_ ev_fork *w)
2049{ 2976{
2050 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2051 return; 2978 return;
2979
2980 EV_FREQUENT_CHECK;
2052 2981
2053 ev_start (EV_A_ (W)w, ++forkcnt); 2982 ev_start (EV_A_ (W)w, ++forkcnt);
2054 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2983 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2055 forks [forkcnt - 1] = w; 2984 forks [forkcnt - 1] = w;
2985
2986 EV_FREQUENT_CHECK;
2056} 2987}
2057 2988
2058void 2989void
2059ev_fork_stop (EV_P_ ev_fork *w) 2990ev_fork_stop (EV_P_ ev_fork *w)
2060{ 2991{
2061 ev_clear_pending (EV_A_ (W)w); 2992 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2993 if (expect_false (!ev_is_active (w)))
2063 return; 2994 return;
2064 2995
2996 EV_FREQUENT_CHECK;
2997
2065 { 2998 {
2066 int active = ((W)w)->active; 2999 int active = ev_active (w);
3000
2067 forks [active - 1] = forks [--forkcnt]; 3001 forks [active - 1] = forks [--forkcnt];
2068 ((W)forks [active - 1])->active = active; 3002 ev_active (forks [active - 1]) = active;
2069 } 3003 }
2070 3004
2071 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
3006
3007 EV_FREQUENT_CHECK;
3008}
3009#endif
3010
3011#if EV_ASYNC_ENABLE
3012void
3013ev_async_start (EV_P_ ev_async *w)
3014{
3015 if (expect_false (ev_is_active (w)))
3016 return;
3017
3018 evpipe_init (EV_A);
3019
3020 EV_FREQUENT_CHECK;
3021
3022 ev_start (EV_A_ (W)w, ++asynccnt);
3023 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3024 asyncs [asynccnt - 1] = w;
3025
3026 EV_FREQUENT_CHECK;
3027}
3028
3029void
3030ev_async_stop (EV_P_ ev_async *w)
3031{
3032 clear_pending (EV_A_ (W)w);
3033 if (expect_false (!ev_is_active (w)))
3034 return;
3035
3036 EV_FREQUENT_CHECK;
3037
3038 {
3039 int active = ev_active (w);
3040
3041 asyncs [active - 1] = asyncs [--asynccnt];
3042 ev_active (asyncs [active - 1]) = active;
3043 }
3044
3045 ev_stop (EV_A_ (W)w);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049
3050void
3051ev_async_send (EV_P_ ev_async *w)
3052{
3053 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync);
2072} 3055}
2073#endif 3056#endif
2074 3057
2075/*****************************************************************************/ 3058/*****************************************************************************/
2076 3059
2086once_cb (EV_P_ struct ev_once *once, int revents) 3069once_cb (EV_P_ struct ev_once *once, int revents)
2087{ 3070{
2088 void (*cb)(int revents, void *arg) = once->cb; 3071 void (*cb)(int revents, void *arg) = once->cb;
2089 void *arg = once->arg; 3072 void *arg = once->arg;
2090 3073
2091 ev_io_stop (EV_A_ &once->io); 3074 ev_io_stop (EV_A_ &once->io);
2092 ev_timer_stop (EV_A_ &once->to); 3075 ev_timer_stop (EV_A_ &once->to);
2093 ev_free (once); 3076 ev_free (once);
2094 3077
2095 cb (revents, arg); 3078 cb (revents, arg);
2096} 3079}
2097 3080
2098static void 3081static void
2099once_cb_io (EV_P_ ev_io *w, int revents) 3082once_cb_io (EV_P_ ev_io *w, int revents)
2100{ 3083{
2101 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3084 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3085
3086 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2102} 3087}
2103 3088
2104static void 3089static void
2105once_cb_to (EV_P_ ev_timer *w, int revents) 3090once_cb_to (EV_P_ ev_timer *w, int revents)
2106{ 3091{
2107 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3092 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3093
3094 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2108} 3095}
2109 3096
2110void 3097void
2111ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3098ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2112{ 3099{
2134 ev_timer_set (&once->to, timeout, 0.); 3121 ev_timer_set (&once->to, timeout, 0.);
2135 ev_timer_start (EV_A_ &once->to); 3122 ev_timer_start (EV_A_ &once->to);
2136 } 3123 }
2137} 3124}
2138 3125
3126#if EV_MULTIPLICITY
3127 #include "ev_wrap.h"
3128#endif
3129
2139#ifdef __cplusplus 3130#ifdef __cplusplus
2140} 3131}
2141#endif 3132#endif
2142 3133

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines