ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.276 by root, Sun Dec 14 13:03:54 2008 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
128# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY 1
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
133# endif 143# endif
134# endif 144# endif
135 145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
176# endif 186# endif
177#endif 187#endif
178 188
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
180 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
181#ifndef EV_USE_CLOCK_SYSCALL 218#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 219# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 220# define EV_USE_CLOCK_SYSCALL 1
184# else 221# else
185# define EV_USE_CLOCK_SYSCALL 0 222# define EV_USE_CLOCK_SYSCALL 0
193# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
194# endif 231# endif
195#endif 232#endif
196 233
197#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 236#endif
200 237
201#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 239# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 240# define EV_USE_NANOSLEEP 1
264# else 301# else
265# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
266# endif 303# endif
267#endif 304#endif
268 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
269#if 0 /* debugging */ 314#if 0 /* debugging */
270# define EV_VERIFY 3 315# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 316# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 317# define EV_HEAP_CACHE_AT 1
273#endif 318#endif
280# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
281#endif 326#endif
282 327
283#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
285#endif 344#endif
286 345
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 347
289#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
320 379
321#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 381# include <winsock.h>
323#endif 382#endif
324 383
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
337# ifdef __cplusplus 397# ifdef __cplusplus
338extern "C" { 398extern "C" {
339# endif 399# endif
340int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 401# ifdef __cplusplus
342} 402}
343# endif 403# endif
344#endif 404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
345 434
346/**/ 435/**/
347 436
348#if EV_VERIFY >= 3 437#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
361 */ 450 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 452
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 455
368#if __GNUC__ >= 4 456#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
371#else 459#else
384# define inline_speed static noinline 472# define inline_speed static noinline
385#else 473#else
386# define inline_speed static inline 474# define inline_speed static inline
387#endif 475#endif
388 476
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
391 484
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
394 487
395typedef ev_watcher *W; 488typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
398 491
399#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
401 494
402#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 513#endif
407 514
408#ifdef _WIN32 515#ifdef _WIN32
409# include "ev_win32.c" 516# include "ev_win32.c"
410#endif 517#endif
474#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
476 583
477/*****************************************************************************/ 584/*****************************************************************************/
478 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
479typedef struct 590typedef struct
480{ 591{
481 WL head; 592 WL head;
482 unsigned char events; 593 unsigned char events; /* the events watched for */
483 unsigned char reify; 594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 596 unsigned char unused;
486#if EV_USE_EPOLL 597#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 598 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 599#endif
489#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 601 SOCKET handle;
491#endif 602#endif
492} ANFD; 603} ANFD;
493 604
605/* stores the pending event set for a given watcher */
494typedef struct 606typedef struct
495{ 607{
496 W w; 608 W w;
497 int events; 609 int events; /* the pending event set for the given watcher */
498} ANPENDING; 610} ANPENDING;
499 611
500#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
502typedef struct 614typedef struct
505} ANFS; 617} ANFS;
506#endif 618#endif
507 619
508/* Heap Entry */ 620/* Heap Entry */
509#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
510 typedef struct { 623 typedef struct {
511 ev_tstamp at; 624 ev_tstamp at;
512 WT w; 625 WT w;
513 } ANHE; 626 } ANHE;
514 627
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 631#else
632 /* a heap element */
519 typedef WT ANHE; 633 typedef WT ANHE;
520 634
521 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 637 #define ANHE_at_cache(he)
547 661
548 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
549 663
550#endif 664#endif
551 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
552/*****************************************************************************/ 678/*****************************************************************************/
553 679
680#ifndef EV_HAVE_EV_TIME
554ev_tstamp 681ev_tstamp
555ev_time (void) 682ev_time (void)
556{ 683{
557#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
558 struct timespec ts; 687 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 690 }
691#endif
692
562 struct timeval tv; 693 struct timeval tv;
563 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 696}
697#endif
567 698
568ev_tstamp inline_size 699inline_size ev_tstamp
569get_clock (void) 700get_clock (void)
570{ 701{
571#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
573 { 704 {
607 738
608 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 741
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 743 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 744 /* by older ones */
614 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
615#endif 746#endif
616 } 747 }
617} 748}
618 749
619/*****************************************************************************/ 750/*****************************************************************************/
620 751
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 753
623int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
624array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
625{ 758{
626 int ncur = cur + 1; 759 int ncur = cur + 1;
627 760
628 do 761 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 803 }
671#endif 804#endif
672 805
673#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 808
676/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
677 816
678void noinline 817void noinline
679ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
680{ 819{
681 W w_ = (W)w; 820 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
692 } 831 }
693} 832}
694 833
695void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 851{
698 int i; 852 int i;
699 853
700 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
702} 856}
703 857
704/*****************************************************************************/ 858/*****************************************************************************/
705 859
706void inline_speed 860inline_speed void
707fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
708{ 862{
709 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
710 ev_io *w; 864 ev_io *w;
711 865
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 870 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
718 } 872 }
719} 873}
720 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
721void 886void
722ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 888{
724 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
726} 891}
727 892
728void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
729fd_reify (EV_P) 896fd_reify (EV_P)
730{ 897{
731 int i; 898 int i;
732 899
733 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
743 910
744#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
745 if (events) 912 if (events)
746 { 913 {
747 unsigned long arg; 914 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 917 }
755#endif 918#endif
756 919
757 { 920 {
758 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
760 923
761 anfd->reify = 0; 924 anfd->reify = 0;
762 anfd->events = events; 925 anfd->events = events;
763 926
764 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
766 } 929 }
767 } 930 }
768 931
769 fdchangecnt = 0; 932 fdchangecnt = 0;
770} 933}
771 934
772void inline_size 935/* something about the given fd changed */
936inline_size void
773fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
774{ 938{
775 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
777 941
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
783 } 947 }
784} 948}
785 949
786void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
787fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
788{ 953{
789 ev_io *w; 954 ev_io *w;
790 955
791 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 960 }
796} 961}
797 962
798int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
799fd_valid (int fd) 965fd_valid (int fd)
800{ 966{
801#ifdef _WIN32 967#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
803#else 969#else
825 991
826 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 993 if (anfds [fd].events)
828 { 994 {
829 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
830 return; 996 break;
831 } 997 }
832} 998}
833 999
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1001static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1007 if (anfds [fd].events)
842 { 1008 {
843 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1010 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1012 }
847} 1013}
848 1014
849/*****************************************************************************/ 1015/*****************************************************************************/
850 1016
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1034#define UPHEAP_DONE(p,k) ((p) == (k))
869 1035
870/* away from the root */ 1036/* away from the root */
871void inline_speed 1037inline_speed void
872downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
873{ 1039{
874 ANHE he = heap [k]; 1040 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
876 1042
916#define HEAP0 1 1082#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1083#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1084#define UPHEAP_DONE(p,k) (!(p))
919 1085
920/* away from the root */ 1086/* away from the root */
921void inline_speed 1087inline_speed void
922downheap (ANHE *heap, int N, int k) 1088downheap (ANHE *heap, int N, int k)
923{ 1089{
924 ANHE he = heap [k]; 1090 ANHE he = heap [k];
925 1091
926 for (;;) 1092 for (;;)
927 { 1093 {
928 int c = k << 1; 1094 int c = k << 1;
929 1095
930 if (c > N + HEAP0 - 1) 1096 if (c >= N + HEAP0)
931 break; 1097 break;
932 1098
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1100 ? 1 : 0;
935 1101
946 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
947} 1113}
948#endif 1114#endif
949 1115
950/* towards the root */ 1116/* towards the root */
951void inline_speed 1117inline_speed void
952upheap (ANHE *heap, int k) 1118upheap (ANHE *heap, int k)
953{ 1119{
954 ANHE he = heap [k]; 1120 ANHE he = heap [k];
955 1121
956 for (;;) 1122 for (;;)
967 1133
968 heap [k] = he; 1134 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1135 ev_active (ANHE_w (he)) = k;
970} 1136}
971 1137
972void inline_size 1138/* move an element suitably so it is in a correct place */
1139inline_size void
973adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
974{ 1141{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 1143 upheap (heap, k);
977 else 1144 else
978 downheap (heap, N, k); 1145 downheap (heap, N, k);
979} 1146}
980 1147
981/* rebuild the heap: this function is used only once and executed rarely */ 1148/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1149inline_size void
983reheap (ANHE *heap, int N) 1150reheap (ANHE *heap, int N)
984{ 1151{
985 int i; 1152 int i;
986 1153
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1157 upheap (heap, i + HEAP0);
991} 1158}
992 1159
993/*****************************************************************************/ 1160/*****************************************************************************/
994 1161
1162/* associate signal watchers to a signal signal */
995typedef struct 1163typedef struct
996{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
997 WL head; 1169 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1170} ANSIG;
1000 1171
1001static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1173
1006/*****************************************************************************/ 1174/*****************************************************************************/
1007 1175
1008void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
1009fd_intern (int fd) 1179fd_intern (int fd)
1010{ 1180{
1011#ifdef _WIN32 1181#ifdef _WIN32
1012 unsigned long arg = 1; 1182 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1188}
1019 1189
1020static void noinline 1190static void noinline
1021evpipe_init (EV_P) 1191evpipe_init (EV_P)
1022{ 1192{
1023 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
1024 { 1194 {
1025#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1027 { 1201 {
1028 evpipe [0] = -1; 1202 evpipe [0] = -1;
1029 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1205 }
1032 else 1206 else
1033#endif 1207#endif
1034 { 1208 {
1035 while (pipe (evpipe)) 1209 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
1037 1211
1038 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1215 }
1042 1216
1043 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1219 }
1046} 1220}
1047 1221
1048void inline_size 1222inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1224{
1051 if (!*flag) 1225 if (!*flag)
1052 { 1226 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1066 1240
1067 errno = old_errno; 1241 errno = old_errno;
1068 } 1242 }
1069} 1243}
1070 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1071static void 1247static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1249{
1250 int i;
1251
1074#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1253 if (evfd >= 0)
1076 { 1254 {
1077 uint64_t counter; 1255 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1082 { 1260 {
1083 char dummy; 1261 char dummy;
1084 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1085 } 1263 }
1086 1264
1087 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1088 { 1266 {
1089 int signum; 1267 sig_pending = 0;
1090 gotsig = 0;
1091 1268
1092 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1272 }
1096 1273
1097#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1098 if (gotasync) 1275 if (async_pending)
1099 { 1276 {
1100 int i; 1277 async_pending = 0;
1101 gotasync = 0;
1102 1278
1103 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1105 { 1281 {
1106 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1114 1290
1115static void 1291static void
1116ev_sighandler (int signum) 1292ev_sighandler (int signum)
1117{ 1293{
1118#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1120#endif 1296#endif
1121 1297
1122#if _WIN32 1298#if _WIN32
1123 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1124#endif 1300#endif
1125 1301
1126 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1127 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1128} 1304}
1129 1305
1130void noinline 1306void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1132{ 1308{
1133 WL w; 1309 WL w;
1134 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1135#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1319
1139 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1321 return;
1322#endif
1143 1323
1144 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1145 1325
1146 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1328}
1149 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1150/*****************************************************************************/ 1350/*****************************************************************************/
1151 1351
1152static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1153 1353
1154#ifndef _WIN32 1354#ifndef _WIN32
1157 1357
1158#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1160#endif 1360#endif
1161 1361
1162void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1164{ 1365{
1165 ev_child *w; 1366 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1368
1180 1381
1181#ifndef WCONTINUED 1382#ifndef WCONTINUED
1182# define WCONTINUED 0 1383# define WCONTINUED 0
1183#endif 1384#endif
1184 1385
1386/* called on sigchld etc., calls waitpid */
1185static void 1387static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1389{
1188 int pid, status; 1390 int pid, status;
1189 1391
1270 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1475#endif
1274#ifdef __APPLE__ 1476#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_SELECT; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1480#endif
1278 1481
1279 return flags; 1482 return flags;
1280} 1483}
1281 1484
1295ev_backend (EV_P) 1498ev_backend (EV_P)
1296{ 1499{
1297 return backend; 1500 return backend;
1298} 1501}
1299 1502
1503#if EV_MINIMAL < 2
1300unsigned int 1504unsigned int
1301ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1302{ 1506{
1303 return loop_count; 1507 return loop_count;
1304} 1508}
1305 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1306void 1516void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1518{
1309 io_blocktime = interval; 1519 io_blocktime = interval;
1310} 1520}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1524{
1315 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1316} 1526}
1317 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1553static void noinline
1319loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1320{ 1555{
1321 if (!backend) 1556 if (!backend)
1322 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1323#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1324 { 1570 {
1325 struct timespec ts; 1571 struct timespec ts;
1572
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1574 have_monotonic = 1;
1328 } 1575 }
1329#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1330 1588
1331 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1590 mn_now = get_clock ();
1333 now_floor = mn_now; 1591 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1335 1596
1336 io_blocktime = 0.; 1597 io_blocktime = 0.;
1337 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1338 backend = 0; 1599 backend = 0;
1339 backend_fd = -1; 1600 backend_fd = -1;
1340 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1341#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1342 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1343#endif 1607#endif
1344 1608#if EV_USE_SIGNALFD
1345 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif 1610#endif
1350
1351 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1355 1611
1356 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1358 1614
1359#if EV_USE_PORT 1615#if EV_USE_PORT
1370#endif 1626#endif
1371#if EV_USE_SELECT 1627#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1629#endif
1374 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1375 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1377 } 1635 }
1378} 1636}
1379 1637
1638/* free up a loop structure */
1380static void noinline 1639static void noinline
1381loop_destroy (EV_P) 1640loop_destroy (EV_P)
1382{ 1641{
1383 int i; 1642 int i;
1384 1643
1385 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1386 { 1645 {
1387 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1388 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1389 1648
1390#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1650 if (evfd >= 0)
1392 close (evfd); 1651 close (evfd);
1393#endif 1652#endif
1394 1653
1395 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1396 { 1655 {
1397 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1398 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1399 } 1658 }
1400 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1401 1665
1402#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
1403 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
1404 close (fs_fd); 1668 close (fs_fd);
1405#endif 1669#endif
1429#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1430 array_free (idle, [i]); 1694 array_free (idle, [i]);
1431#endif 1695#endif
1432 } 1696 }
1433 1697
1434 ev_free (anfds); anfdmax = 0; 1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1435 1699
1436 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1441#endif 1706#endif
1450 1715
1451 backend = 0; 1716 backend = 0;
1452} 1717}
1453 1718
1454#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1456#endif 1721#endif
1457 1722
1458void inline_size 1723inline_size void
1459loop_fork (EV_P) 1724loop_fork (EV_P)
1460{ 1725{
1461#if EV_USE_PORT 1726#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1728#endif
1469#endif 1734#endif
1470#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1736 infy_fork (EV_A);
1472#endif 1737#endif
1473 1738
1474 if (ev_is_active (&pipeev)) 1739 if (ev_is_active (&pipe_w))
1475 { 1740 {
1476 /* this "locks" the handlers against writing to the pipe */ 1741 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1742 /* while we modify the fd vars */
1478 gotsig = 1; 1743 sig_pending = 1;
1479#if EV_ASYNC_ENABLE 1744#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1745 async_pending = 1;
1481#endif 1746#endif
1482 1747
1483 ev_ref (EV_A); 1748 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1749 ev_io_stop (EV_A_ &pipe_w);
1485 1750
1486#if EV_USE_EVENTFD 1751#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1752 if (evfd >= 0)
1488 close (evfd); 1753 close (evfd);
1489#endif 1754#endif
1490 1755
1491 if (evpipe [0] >= 0) 1756 if (evpipe [0] >= 0)
1492 { 1757 {
1493 close (evpipe [0]); 1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1494 close (evpipe [1]); 1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1495 } 1760 }
1496 1761
1497 evpipe_init (EV_A); 1762 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1763 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1764 pipecb (EV_A_ &pipe_w, EV_READ);
1500 } 1765 }
1501 1766
1502 postfork = 0; 1767 postfork = 0;
1503} 1768}
1504 1769
1505#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1506 1771
1507struct ev_loop * 1772struct ev_loop *
1508ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1509{ 1774{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511 1776
1512 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1515 1779
1516 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1517 return loop; 1781 return EV_A;
1518 1782
1519 return 0; 1783 return 0;
1520} 1784}
1521 1785
1522void 1786void
1529void 1793void
1530ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1531{ 1795{
1532 postfork = 1; /* must be in line with ev_default_fork */ 1796 postfork = 1; /* must be in line with ev_default_fork */
1533} 1797}
1798#endif /* multiplicity */
1534 1799
1535#if EV_VERIFY 1800#if EV_VERIFY
1536static void noinline 1801static void noinline
1537verify_watcher (EV_P_ W w) 1802verify_watcher (EV_P_ W w)
1538{ 1803{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1805
1541 if (w->pending) 1806 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1808}
1544 1809
1545static void noinline 1810static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1811verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1812{
1548 int i; 1813 int i;
1549 1814
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1815 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1816 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1820
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1822 }
1558} 1823}
1559 1824
1560static void noinline 1825static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1826array_verify (EV_P_ W *ws, int cnt)
1562{ 1827{
1563 while (cnt--) 1828 while (cnt--)
1564 { 1829 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1831 verify_watcher (EV_A_ ws [cnt]);
1567 } 1832 }
1568} 1833}
1569#endif 1834#endif
1570 1835
1836#if EV_MINIMAL < 2
1571void 1837void
1572ev_loop_verify (EV_P) 1838ev_loop_verify (EV_P)
1573{ 1839{
1574#if EV_VERIFY 1840#if EV_VERIFY
1575 int i; 1841 int i;
1577 1843
1578 assert (activecnt >= -1); 1844 assert (activecnt >= -1);
1579 1845
1580 assert (fdchangemax >= fdchangecnt); 1846 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1847 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1849
1584 assert (anfdmax >= 0); 1850 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1851 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1852 for (w = anfds [i].head; w; w = w->next)
1587 { 1853 {
1588 verify_watcher (EV_A_ (W)w); 1854 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1857 }
1592 1858
1593 assert (timermax >= timercnt); 1859 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1860 verify_heap (EV_A_ timers, timercnt);
1595 1861
1624 assert (checkmax >= checkcnt); 1890 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt); 1891 array_verify (EV_A_ (W *)checks, checkcnt);
1626 1892
1627# if 0 1893# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1630# endif
1631#endif 1896# endif
1897#endif
1632} 1898}
1633 1899#endif
1634#endif /* multiplicity */
1635 1900
1636#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1637struct ev_loop * 1902struct ev_loop *
1638ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
1639#else 1904#else
1642#endif 1907#endif
1643{ 1908{
1644 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1645 { 1910 {
1646#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1648#else 1913#else
1649 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1650#endif 1915#endif
1651 1916
1652 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1669 1934
1670void 1935void
1671ev_default_destroy (void) 1936ev_default_destroy (void)
1672{ 1937{
1673#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1675#endif 1940#endif
1676 1941
1677 ev_default_loop_ptr = 0; 1942 ev_default_loop_ptr = 0;
1678 1943
1679#ifndef _WIN32 1944#ifndef _WIN32
1686 1951
1687void 1952void
1688ev_default_fork (void) 1953ev_default_fork (void)
1689{ 1954{
1690#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1692#endif 1957#endif
1693 1958
1694 postfork = 1; /* must be in line with ev_loop_fork */ 1959 postfork = 1; /* must be in line with ev_loop_fork */
1695} 1960}
1696 1961
1700ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1701{ 1966{
1702 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1703} 1968}
1704 1969
1705void inline_speed 1970unsigned int
1706call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1707{ 1984{
1708 int pri; 1985 int pri;
1709 1986
1710 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1712 { 1989 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1991
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1718 1994
1719 p->w->pending = 0; 1995 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1997 EV_FREQUENT_CHECK;
1722 }
1723 } 1998 }
1724} 1999}
1725 2000
1726#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1727void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1728idle_reify (EV_P) 2005idle_reify (EV_P)
1729{ 2006{
1730 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1731 { 2008 {
1732 int pri; 2009 int pri;
1744 } 2021 }
1745 } 2022 }
1746} 2023}
1747#endif 2024#endif
1748 2025
1749void inline_size 2026/* make timers pending */
2027inline_size void
1750timers_reify (EV_P) 2028timers_reify (EV_P)
1751{ 2029{
1752 EV_FREQUENT_CHECK; 2030 EV_FREQUENT_CHECK;
1753 2031
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 2033 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2034 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
1763 ev_at (w) += w->repeat; 2043 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 2044 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 2045 ev_at (w) = mn_now;
1766 2046
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 2048
1769 ANHE_at_cache (timers [HEAP0]); 2049 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
1771 } 2057 }
1772 else 2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 2059
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 2061 }
1778} 2062}
1779 2063
1780#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1781void inline_size 2065/* make periodics pending */
2066inline_size void
1782periodics_reify (EV_P) 2067periodics_reify (EV_P)
1783{ 2068{
1784 EV_FREQUENT_CHECK; 2069 EV_FREQUENT_CHECK;
1785 2070
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 2072 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2073 int feed_count = 0;
1789 2074
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2075 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 2085
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 2087
1799 ANHE_at_cache (periodics [HEAP0]); 2088 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
1801 } 2115 }
1802 else if (w->interval) 2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 2117
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2118 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 2119 }
1827} 2120}
1828 2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1829static void noinline 2124static void noinline
1830periodics_reschedule (EV_P) 2125periodics_reschedule (EV_P)
1831{ 2126{
1832 int i; 2127 int i;
1833 2128
1846 2141
1847 reheap (periodics, periodiccnt); 2142 reheap (periodics, periodiccnt);
1848} 2143}
1849#endif 2144#endif
1850 2145
1851void inline_speed 2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 2163time_update (EV_P_ ev_tstamp max_block)
1853{ 2164{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 2165#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 2166 if (expect_true (have_monotonic))
1858 { 2167 {
2168 int i;
1859 ev_tstamp odiff = rtmn_diff; 2169 ev_tstamp odiff = rtmn_diff;
1860 2170
1861 mn_now = get_clock (); 2171 mn_now = get_clock ();
1862 2172
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1889 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2200 mn_now = get_clock ();
1891 now_floor = mn_now; 2201 now_floor = mn_now;
1892 } 2202 }
1893 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1896# endif 2208# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2209 }
1900 else 2210 else
1901#endif 2211#endif
1902 { 2212 {
1903 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1904 2214
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1909#endif 2221#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2222 }
1918 2223
1919 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1920 } 2225 }
1921} 2226}
1922 2227
1923void 2228void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1945{ 2230{
2231#if EV_MINIMAL < 2
2232 ++loop_depth;
2233#endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
1946 loop_done = EVUNLOOP_CANCEL; 2237 loop_done = EVUNLOOP_CANCEL;
1947 2238
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 2240
1950 do 2241 do
1951 { 2242 {
1952#if EV_VERIFY >= 2 2243#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 2244 ev_loop_verify (EV_A);
1966 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1968 if (forkcnt) 2259 if (forkcnt)
1969 { 2260 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1972 } 2263 }
1973#endif 2264#endif
1974 2265
1975 /* queue prepare watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1977 { 2268 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1980 } 2271 }
1981 2272
1982 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1983 break; 2274 break;
1984 2275
1985 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1987 loop_fork (EV_A); 2278 loop_fork (EV_A);
1994 ev_tstamp waittime = 0.; 2285 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2286 ev_tstamp sleeptime = 0.;
1996 2287
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1999 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2294 time_update (EV_A_ 1e100);
2001 2295
2002 waittime = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
2003 2297
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
2015 } 2309 }
2016#endif 2310#endif
2017 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2313 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2314 waittime = timeout_blocktime;
2020 2315
2021 sleeptime = waittime - backend_fudge; 2316 /* extra check because io_blocktime is commonly 0 */
2022
2023 if (expect_true (sleeptime > io_blocktime)) 2317 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
2028 ev_sleep (sleeptime); 2326 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2327 waittime -= sleeptime;
2328 }
2030 } 2329 }
2031 } 2330 }
2032 2331
2332#if EV_MINIMAL < 2
2033 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2035 2338
2036 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 2340 time_update (EV_A_ waittime + sleeptime);
2038 } 2341 }
2039 2342
2050 2353
2051 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2054 2357
2055 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
2056 } 2359 }
2057 while (expect_true ( 2360 while (expect_true (
2058 activecnt 2361 activecnt
2059 && !loop_done 2362 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 )); 2364 ));
2062 2365
2063 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
2065} 2372}
2066 2373
2067void 2374void
2068ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
2069{ 2376{
2070 loop_done = how; 2377 loop_done = how;
2071} 2378}
2072 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
2073/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
2074 2419
2075void inline_size 2420inline_size void
2076wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
2077{ 2422{
2078 elem->next = *head; 2423 elem->next = *head;
2079 *head = elem; 2424 *head = elem;
2080} 2425}
2081 2426
2082void inline_size 2427inline_size void
2083wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
2084{ 2429{
2085 while (*head) 2430 while (*head)
2086 { 2431 {
2087 if (*head == elem) 2432 if (expect_true (*head == elem))
2088 { 2433 {
2089 *head = elem->next; 2434 *head = elem->next;
2090 return; 2435 break;
2091 } 2436 }
2092 2437
2093 head = &(*head)->next; 2438 head = &(*head)->next;
2094 } 2439 }
2095} 2440}
2096 2441
2097void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
2098clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
2099{ 2445{
2100 if (w->pending) 2446 if (w->pending)
2101 { 2447 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2449 w->pending = 0;
2104 } 2450 }
2105} 2451}
2106 2452
2107int 2453int
2111 int pending = w_->pending; 2457 int pending = w_->pending;
2112 2458
2113 if (expect_true (pending)) 2459 if (expect_true (pending))
2114 { 2460 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2116 w_->pending = 0; 2463 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2464 return p->events;
2119 } 2465 }
2120 else 2466 else
2121 return 0; 2467 return 0;
2122} 2468}
2123 2469
2124void inline_size 2470inline_size void
2125pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
2126{ 2472{
2127 int pri = w->priority; 2473 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2476 ev_set_priority (w, pri);
2131} 2477}
2132 2478
2133void inline_speed 2479inline_speed void
2134ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
2135{ 2481{
2136 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
2137 w->active = active; 2483 w->active = active;
2138 ev_ref (EV_A); 2484 ev_ref (EV_A);
2139} 2485}
2140 2486
2141void inline_size 2487inline_size void
2142ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
2143{ 2489{
2144 ev_unref (EV_A); 2490 ev_unref (EV_A);
2145 w->active = 0; 2491 w->active = 0;
2146} 2492}
2153 int fd = w->fd; 2499 int fd = w->fd;
2154 2500
2155 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
2156 return; 2502 return;
2157 2503
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2506
2161 EV_FREQUENT_CHECK; 2507 EV_FREQUENT_CHECK;
2162 2508
2163 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
2166 2512
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 2514 w->events &= ~EV__IOFDSET;
2169 2515
2170 EV_FREQUENT_CHECK; 2516 EV_FREQUENT_CHECK;
2171} 2517}
2172 2518
2173void noinline 2519void noinline
2175{ 2521{
2176 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
2178 return; 2524 return;
2179 2525
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2527
2182 EV_FREQUENT_CHECK; 2528 EV_FREQUENT_CHECK;
2183 2529
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
2196 return; 2542 return;
2197 2543
2198 ev_at (w) += mn_now; 2544 ev_at (w) += mn_now;
2199 2545
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2547
2202 EV_FREQUENT_CHECK; 2548 EV_FREQUENT_CHECK;
2203 2549
2204 ++timercnt; 2550 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2554 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2555 upheap (timers, ev_active (w));
2210 2556
2211 EV_FREQUENT_CHECK; 2557 EV_FREQUENT_CHECK;
2212 2558
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2560}
2215 2561
2216void noinline 2562void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2564{
2223 EV_FREQUENT_CHECK; 2569 EV_FREQUENT_CHECK;
2224 2570
2225 { 2571 {
2226 int active = ev_active (w); 2572 int active = ev_active (w);
2227 2573
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2575
2230 --timercnt; 2576 --timercnt;
2231 2577
2232 if (expect_true (active < timercnt + HEAP0)) 2578 if (expect_true (active < timercnt + HEAP0))
2233 { 2579 {
2266 } 2612 }
2267 2613
2268 EV_FREQUENT_CHECK; 2614 EV_FREQUENT_CHECK;
2269} 2615}
2270 2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621}
2622
2271#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
2272void noinline 2624void noinline
2273ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
2274{ 2626{
2275 if (expect_false (ev_is_active (w))) 2627 if (expect_false (ev_is_active (w)))
2277 2629
2278 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2632 else if (w->interval)
2281 { 2633 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2637 }
2286 else 2638 else
2287 ev_at (w) = w->offset; 2639 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2648 upheap (periodics, ev_active (w));
2297 2649
2298 EV_FREQUENT_CHECK; 2650 EV_FREQUENT_CHECK;
2299 2651
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2653}
2302 2654
2303void noinline 2655void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2657{
2310 EV_FREQUENT_CHECK; 2662 EV_FREQUENT_CHECK;
2311 2663
2312 { 2664 {
2313 int active = ev_active (w); 2665 int active = ev_active (w);
2314 2666
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2668
2317 --periodiccnt; 2669 --periodiccnt;
2318 2670
2319 if (expect_true (active < periodiccnt + HEAP0)) 2671 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2672 {
2342#endif 2694#endif
2343 2695
2344void noinline 2696void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
2346{ 2698{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
2350 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2351 return; 2700 return;
2352 2701
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2354 2703
2355 evpipe_init (EV_A); 2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2356 2707
2357 EV_FREQUENT_CHECK; 2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2358 2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2359 { 2715 {
2360#ifndef _WIN32 2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2361 sigset_t full, prev; 2717 if (sigfd < 0 && errno == EINVAL)
2362 sigfillset (&full); 2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365 2719
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2367 2723
2368#ifndef _WIN32 2724 sigemptyset (&sigfd_set);
2369 sigprocmask (SIG_SETMASK, &prev, 0); 2725
2370#endif 2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2371 } 2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2372 2742
2373 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375 2745
2376 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2377 { 2750 {
2378#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2379 signal (w->signum, ev_sighandler); 2754 signal (w->signum, ev_sighandler);
2380#else 2755# else
2381 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2382 sa.sa_handler = ev_sighandler; 2760 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2386#endif 2768#endif
2387 } 2769 }
2388 2770
2389 EV_FREQUENT_CHECK; 2771 EV_FREQUENT_CHECK;
2390} 2772}
2391 2773
2392void noinline 2774void noinline
2400 2782
2401 wlist_del (&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
2403 2785
2404 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
2405 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2406 2804
2407 EV_FREQUENT_CHECK; 2805 EV_FREQUENT_CHECK;
2408} 2806}
2409 2807
2410void 2808void
2411ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
2412{ 2810{
2413#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2813#endif
2416 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
2417 return; 2815 return;
2418 2816
2419 EV_FREQUENT_CHECK; 2817 EV_FREQUENT_CHECK;
2458static void noinline 2856static void noinline
2459infy_add (EV_P_ ev_stat *w) 2857infy_add (EV_P_ ev_stat *w)
2460{ 2858{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462 2860
2463 if (w->wd < 0) 2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2464 { 2881 }
2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467 2886
2468 /* monitor some parent directory for speedup hints */ 2887 /* if path is not there, monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */ 2889 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 { 2891 {
2473 char path [4096]; 2892 char path [4096];
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 } 2909 }
2491 } 2910 }
2492 2911
2493 if (w->wd >= 0) 2912 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496 2914
2497 /* now local changes will be tracked by inotify, but remote changes won't */ 2915 /* now re-arm timer, if required */
2498 /* unless the filesystem it known to be local, we therefore still poll */ 2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer); 2917 ev_timer_again (EV_A_ &w->timer);
2513 } 2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2514} 2919}
2515 2920
2516static void noinline 2921static void noinline
2517infy_del (EV_P_ ev_stat *w) 2922infy_del (EV_P_ ev_stat *w)
2518{ 2923{
2571 2976
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2979}
2575 2980
2576void inline_size 2981inline_size void
2577check_2625 (EV_P) 2982check_2625 (EV_P)
2578{ 2983{
2579 /* kernels < 2.6.25 are borked 2984 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2986 */
2594 return; 2999 return;
2595 3000
2596 fs_2625 = 1; 3001 fs_2625 = 1;
2597} 3002}
2598 3003
2599void inline_size 3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
2600infy_init (EV_P) 3016infy_init (EV_P)
2601{ 3017{
2602 if (fs_fd != -2) 3018 if (fs_fd != -2)
2603 return; 3019 return;
2604 3020
2605 fs_fd = -1; 3021 fs_fd = -1;
2606 3022
2607 check_2625 (EV_A); 3023 check_2625 (EV_A);
2608 3024
2609 fs_fd = inotify_init (); 3025 fs_fd = infy_newfd ();
2610 3026
2611 if (fs_fd >= 0) 3027 if (fs_fd >= 0)
2612 { 3028 {
3029 fd_intern (fs_fd);
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI); 3031 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
2616 } 3034 }
2617} 3035}
2618 3036
2619void inline_size 3037inline_size void
2620infy_fork (EV_P) 3038infy_fork (EV_P)
2621{ 3039{
2622 int slot; 3040 int slot;
2623 3041
2624 if (fs_fd < 0) 3042 if (fs_fd < 0)
2625 return; 3043 return;
2626 3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
2627 close (fs_fd); 3047 close (fs_fd);
2628 fs_fd = inotify_init (); 3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
2629 3057
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2631 { 3059 {
2632 WL w_ = fs_hash [slot].head; 3060 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0; 3061 fs_hash [slot].head = 0;
2640 w->wd = -1; 3068 w->wd = -1;
2641 3069
2642 if (fs_fd >= 0) 3070 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */ 3071 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else 3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2645 ev_timer_again (EV_A_ &w->timer); 3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
2646 } 3079 }
2647 } 3080 }
2648} 3081}
2649 3082
2650#endif 3083#endif
2720 3153
2721 if (fs_fd >= 0) 3154 if (fs_fd >= 0)
2722 infy_add (EV_A_ w); 3155 infy_add (EV_A_ w);
2723 else 3156 else
2724#endif 3157#endif
3158 {
2725 ev_timer_again (EV_A_ &w->timer); 3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
2726 3162
2727 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
2728 3164
2729 EV_FREQUENT_CHECK; 3165 EV_FREQUENT_CHECK;
2730} 3166}
2739 EV_FREQUENT_CHECK; 3175 EV_FREQUENT_CHECK;
2740 3176
2741#if EV_USE_INOTIFY 3177#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w); 3178 infy_del (EV_A_ w);
2743#endif 3179#endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
2744 ev_timer_stop (EV_A_ &w->timer); 3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
2745 3186
2746 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
2747 3188
2748 EV_FREQUENT_CHECK; 3189 EV_FREQUENT_CHECK;
2749} 3190}
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{ 3332{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893 3334
2894 { 3335 {
2895 struct ev_loop *loop = w->other; 3336 EV_P = w->other;
2896 3337
2897 while (fdchangecnt) 3338 while (fdchangecnt)
2898 { 3339 {
2899 fd_reify (EV_A); 3340 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2905static void 3346static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{ 3348{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 3350
3351 ev_embed_stop (EV_A_ w);
3352
2910 { 3353 {
2911 struct ev_loop *loop = w->other; 3354 EV_P = w->other;
2912 3355
2913 ev_loop_fork (EV_A); 3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2914 } 3358 }
3359
3360 ev_embed_start (EV_A_ w);
2915} 3361}
2916 3362
2917#if 0 3363#if 0
2918static void 3364static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2927{ 3373{
2928 if (expect_false (ev_is_active (w))) 3374 if (expect_false (ev_is_active (w)))
2929 return; 3375 return;
2930 3376
2931 { 3377 {
2932 struct ev_loop *loop = w->other; 3378 EV_P = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 } 3381 }
2936 3382
2937 EV_FREQUENT_CHECK; 3383 EV_FREQUENT_CHECK;
2938 3384
3049 3495
3050void 3496void
3051ev_async_send (EV_P_ ev_async *w) 3497ev_async_send (EV_P_ ev_async *w)
3052{ 3498{
3053 w->sent = 1; 3499 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync); 3500 evpipe_write (EV_A_ &async_pending);
3055} 3501}
3056#endif 3502#endif
3057 3503
3058/*****************************************************************************/ 3504/*****************************************************************************/
3059 3505
3121 ev_timer_set (&once->to, timeout, 0.); 3567 ev_timer_set (&once->to, timeout, 0.);
3122 ev_timer_start (EV_A_ &once->to); 3568 ev_timer_start (EV_A_ &once->to);
3123 } 3569 }
3124} 3570}
3125 3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
3626
3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
3633
3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
3640
3641#if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645#endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649#if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651#endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675/* EV_STAT 0x00001000 /* stat data changed */
3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677}
3678#endif
3679
3126#if EV_MULTIPLICITY 3680#if EV_MULTIPLICITY
3127 #include "ev_wrap.h" 3681 #include "ev_wrap.h"
3128#endif 3682#endif
3129 3683
3130#ifdef __cplusplus 3684#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines