ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.277 by root, Sun Dec 14 21:58:08 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
288 407
289#ifdef _WIN32 408#ifdef _WIN32
290# include "ev_win32.c" 409# include "ev_win32.c"
291#endif 410#endif
292 411
299{ 418{
300 syserr_cb = cb; 419 syserr_cb = cb;
301} 420}
302 421
303static void noinline 422static void noinline
304syserr (const char *msg) 423ev_syserr (const char *msg)
305{ 424{
306 if (!msg) 425 if (!msg)
307 msg = "(libev) system error"; 426 msg = "(libev) system error";
308 427
309 if (syserr_cb) 428 if (syserr_cb)
313 perror (msg); 432 perror (msg);
314 abort (); 433 abort ();
315 } 434 }
316} 435}
317 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
318static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 453
320void 454void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 456{
323 alloc = cb; 457 alloc = cb;
324} 458}
325 459
326inline_speed void * 460inline_speed void *
327ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
328{ 462{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
330 464
331 if (!ptr && size) 465 if (!ptr && size)
332 { 466 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 468 abort ();
345typedef struct 479typedef struct
346{ 480{
347 WL head; 481 WL head;
348 unsigned char events; 482 unsigned char events;
349 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
350#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 490 SOCKET handle;
352#endif 491#endif
353} ANFD; 492} ANFD;
354 493
357 W w; 496 W w;
358 int events; 497 int events;
359} ANPENDING; 498} ANPENDING;
360 499
361#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
362typedef struct 502typedef struct
363{ 503{
364 WL head; 504 WL head;
365} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
366#endif 524#endif
367 525
368#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
369 527
370 struct ev_loop 528 struct ev_loop
441 ts.tv_sec = (time_t)delay; 599 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 601
444 nanosleep (&ts, 0); 602 nanosleep (&ts, 0);
445#elif defined(_WIN32) 603#elif defined(_WIN32)
446 Sleep (delay * 1e3); 604 Sleep ((unsigned long)(delay * 1e3));
447#else 605#else
448 struct timeval tv; 606 struct timeval tv;
449 607
450 tv.tv_sec = (time_t)delay; 608 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
453 select (0, 0, 0, 0, &tv); 614 select (0, 0, 0, 0, &tv);
454#endif 615#endif
455 } 616 }
456} 617}
457 618
458/*****************************************************************************/ 619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 622
460int inline_size 623int inline_size
461array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
462{ 625{
463 int ncur = cur + 1; 626 int ncur = cur + 1;
464 627
465 do 628 do
466 ncur <<= 1; 629 ncur <<= 1;
467 while (cnt > ncur); 630 while (cnt > ncur);
468 631
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 634 {
472 ncur *= elem; 635 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 638 ncur /= elem;
476 } 639 }
477 640
478 return ncur; 641 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
483{ 646{
484 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
486} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 653
488#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
490 { \ 656 { \
491 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
535 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
536} 702}
537 703
538/*****************************************************************************/ 704/*****************************************************************************/
539 705
540void inline_size
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed 706void inline_speed
554fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
555{ 708{
556 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
557 ev_io *w; 710 ev_io *w;
589 events |= (unsigned char)w->events; 742 events |= (unsigned char)w->events;
590 743
591#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
592 if (events) 745 if (events)
593 { 746 {
594 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
595 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 754 }
598#endif 755#endif
599 756
600 { 757 {
601 unsigned char o_events = anfd->events; 758 unsigned char o_events = anfd->events;
654{ 811{
655 int fd; 812 int fd;
656 813
657 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 815 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
661} 818}
662 819
663/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 821static void noinline
682 839
683 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 841 if (anfds [fd].events)
685 { 842 {
686 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
688 } 846 }
689} 847}
690 848
691/*****************************************************************************/ 849/*****************************************************************************/
692 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
693void inline_speed 871void inline_speed
694upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
695{ 873{
696 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
697 876
698 while (k) 877 for (;;)
699 { 878 {
700 int p = (k - 1) >> 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 882
702 if (heap [p]->at <= w->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
703 break; 899 break;
704 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
705 heap [k] = heap [p]; 963 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 964 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 965 k = p;
708 } 966 }
709 967
710 heap [k] = w; 968 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 969 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 970}
741 971
742void inline_size 972void inline_size
743adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
744{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 976 upheap (heap, k);
977 else
746 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
747} 991}
748 992
749/*****************************************************************************/ 993/*****************************************************************************/
750 994
751typedef struct 995typedef struct
752{ 996{
753 WL head; 997 WL head;
754 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
755} ANSIG; 999} ANSIG;
756 1000
757static ANSIG *signals; 1001static ANSIG *signals;
758static int signalmax; 1002static int signalmax;
759 1003
760static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1005
764void inline_size 1006/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 1007
827void inline_speed 1008void inline_speed
828fd_intern (int fd) 1009fd_intern (int fd)
829{ 1010{
830#ifdef _WIN32 1011#ifdef _WIN32
831 int arg = 1; 1012 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1014#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1017#endif
837} 1018}
838 1019
839static void noinline 1020static void noinline
840siginit (EV_P) 1021evpipe_init (EV_P)
841{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
842 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
844 1042
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
848} 1111}
849 1112
850/*****************************************************************************/ 1113/*****************************************************************************/
851 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
852static WL childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
853 1153
854#ifndef _WIN32 1154#ifndef _WIN32
855 1155
856static ev_signal childev; 1156static ev_signal childev;
857 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
858void inline_speed 1162void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
860{ 1164{
861 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1167
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
864 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
865 { 1172 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1174 w->rpid = pid;
868 w->rstatus = status; 1175 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1177 }
1178 }
871} 1179}
872 1180
873#ifndef WCONTINUED 1181#ifndef WCONTINUED
874# define WCONTINUED 0 1182# define WCONTINUED 0
875#endif 1183#endif
884 if (!WCONTINUED 1192 if (!WCONTINUED
885 || errno != EINVAL 1193 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1195 return;
888 1196
889 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1200
893 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1204}
897 1205
898#endif 1206#endif
899 1207
900/*****************************************************************************/ 1208/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1270 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1271 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1272 flags &= ~EVBACKEND_KQUEUE;
965#endif 1273#endif
966#ifdef __APPLE__ 1274#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation
968 flags &= ~EVBACKEND_POLL; 1276 flags &= ~EVBACKEND_SELECT;
969#endif 1277#endif
970 1278
971 return flags; 1279 return flags;
972} 1280}
973 1281
974unsigned int 1282unsigned int
975ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
976{ 1284{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1288 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
980} 1292}
981 1293
982unsigned int 1294unsigned int
983ev_backend (EV_P) 1295ev_backend (EV_P)
984{ 1296{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1327 have_monotonic = 1;
1016 } 1328 }
1017#endif 1329#endif
1018 1330
1019 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1332 mn_now = get_clock ();
1021 now_floor = mn_now; 1333 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1023 1335
1024 io_blocktime = 0.; 1336 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1026 1344
1027 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
1028#ifndef _WIN32 1346#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1348 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1352 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1355
1038 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1358
1047#if EV_USE_PORT 1359#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1361#endif
1050#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
1058#endif 1370#endif
1059#if EV_USE_SELECT 1371#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1373#endif
1062 1374
1063 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1377 }
1066} 1378}
1067 1379
1068static void noinline 1380static void noinline
1069loop_destroy (EV_P) 1381loop_destroy (EV_P)
1070{ 1382{
1071 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1072 1401
1073#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
1075 close (fs_fd); 1404 close (fs_fd);
1076#endif 1405#endif
1113#if EV_FORK_ENABLE 1442#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1443 array_free (fork, EMPTY);
1115#endif 1444#endif
1116 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1118 1450
1119 backend = 0; 1451 backend = 0;
1120} 1452}
1121 1453
1454#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1123 1457
1124void inline_size 1458void inline_size
1125loop_fork (EV_P) 1459loop_fork (EV_P)
1126{ 1460{
1127#if EV_USE_PORT 1461#if EV_USE_PORT
1135#endif 1469#endif
1136#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1471 infy_fork (EV_A);
1138#endif 1472#endif
1139 1473
1140 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1141 { 1475 {
1142 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1143 1482
1144 ev_ref (EV_A); 1483 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1146 close (sigpipe [0]); 1493 close (evpipe [0]);
1147 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1148 1496
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1500 }
1154 1501
1155 postfork = 0; 1502 postfork = 0;
1156} 1503}
1157 1504
1158#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1159struct ev_loop * 1507struct ev_loop *
1160ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1161{ 1509{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1511
1179} 1527}
1180 1528
1181void 1529void
1182ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1183{ 1531{
1184 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1185} 1533}
1186 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1187#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1188 1635
1189#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1190struct ev_loop * 1637struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1192#else 1639#else
1193int 1640int
1194ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1195#endif 1642#endif
1196{ 1643{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1202 { 1645 {
1203#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1648#else
1208 1651
1209 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1210 1653
1211 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1212 { 1655 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1656#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1231{ 1672{
1232#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1233 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1234#endif 1675#endif
1235 1676
1677 ev_default_loop_ptr = 0;
1678
1236#ifndef _WIN32 1679#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1239#endif 1682#endif
1240 1683
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1248} 1685}
1249 1686
1250void 1687void
1251ev_default_fork (void) 1688ev_default_fork (void)
1252{ 1689{
1253#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1692#endif
1256 1693
1257 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1258 postfork = 1;
1259} 1695}
1260 1696
1261/*****************************************************************************/ 1697/*****************************************************************************/
1262 1698
1263void 1699void
1280 { 1716 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282 1718
1283 p->w->pending = 0; 1719 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1285 } 1722 }
1286 } 1723 }
1287} 1724}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1725
1369#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1370void inline_size 1727void inline_size
1371idle_reify (EV_P) 1728idle_reify (EV_P)
1372{ 1729{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1742 break;
1386 } 1743 }
1387 } 1744 }
1388 } 1745 }
1746}
1747#endif
1748
1749void inline_size
1750timers_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
1782periodics_reify (EV_P)
1783{
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827}
1828
1829static void noinline
1830periodics_reschedule (EV_P)
1831{
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1389} 1848}
1390#endif 1849#endif
1391 1850
1392void inline_speed 1851void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1852time_update (EV_P_ ev_tstamp max_block)
1422 */ 1881 */
1423 for (i = 4; --i; ) 1882 for (i = 4; --i; )
1424 { 1883 {
1425 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1426 1885
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1887 return; /* all is well */
1429 1888
1430 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1890 mn_now = get_clock ();
1432 now_floor = mn_now; 1891 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1450#endif 1909#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1454 } 1917 }
1455 1918
1456 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1457 } 1920 }
1458} 1921}
1467ev_unref (EV_P) 1930ev_unref (EV_P)
1468{ 1931{
1469 --activecnt; 1932 --activecnt;
1470} 1933}
1471 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1472static int loop_done; 1941static int loop_done;
1473 1942
1474void 1943void
1475ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1476{ 1945{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1947
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1949
1483 do 1950 do
1484 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1485#ifndef _WIN32 1956#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1488 { 1959 {
1489 curpid = getpid (); 1960 curpid = getpid ();
1530 2001
1531 waittime = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1532 2003
1533 if (timercnt) 2004 if (timercnt)
1534 { 2005 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 2007 if (waittime > to) waittime = to;
1537 } 2008 }
1538 2009
1539#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 2011 if (periodiccnt)
1541 { 2012 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 2014 if (waittime > to) waittime = to;
1544 } 2015 }
1545#endif 2016#endif
1546 2017
1547 if (expect_false (waittime < timeout_blocktime)) 2018 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2054
1584 call_pending (EV_A); 2055 call_pending (EV_A);
1585
1586 } 2056 }
1587 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1588 2062
1589 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1591} 2065}
1592 2066
1680 2154
1681 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1682 return; 2156 return;
1683 2157
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1685 2162
1686 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1689 2166
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET; 2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
1692} 2171}
1693 2172
1694void noinline 2173void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1696{ 2175{
1697 clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1699 return; 2178 return;
1700 2179
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
1702 2183
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1705 2186
1706 fd_change (EV_A_ w->fd, 1); 2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
1707} 2190}
1708 2191
1709void noinline 2192void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1711{ 2194{
1712 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1713 return; 2196 return;
1714 2197
1715 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1716 2199
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1723 2210
2211 EV_FREQUENT_CHECK;
2212
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2214}
1726 2215
1727void noinline 2216void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2218{
1730 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1732 return; 2221 return;
1733 2222
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2223 EV_FREQUENT_CHECK;
1735 2224
1736 { 2225 {
1737 int active = ((W)w)->active; 2226 int active = ev_active (w);
1738 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1739 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1740 { 2233 {
1741 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1743 } 2236 }
1744 } 2237 }
1745 2238
1746 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1747 2242
1748 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1749} 2244}
1750 2245
1751void noinline 2246void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1753{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1754 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1755 { 2252 {
1756 if (w->repeat) 2253 if (w->repeat)
1757 { 2254 {
1758 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1760 } 2258 }
1761 else 2259 else
1762 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1763 } 2261 }
1764 else if (w->repeat) 2262 else if (w->repeat)
1765 { 2263 {
1766 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1768 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1769} 2269}
1770 2270
1771#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1772void noinline 2272void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2274{
1775 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1776 return; 2276 return;
1777 2277
1778 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2280 else if (w->interval)
1781 { 2281 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2285 }
1786 else 2286 else
1787 ((WT)w)->at = w->offset; 2287 ev_at (w) = w->offset;
1788 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1793 2297
2298 EV_FREQUENT_CHECK;
2299
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2301}
1796 2302
1797void noinline 2303void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2305{
1800 clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1802 return; 2308 return;
1803 2309
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2310 EV_FREQUENT_CHECK;
1805 2311
1806 { 2312 {
1807 int active = ((W)w)->active; 2313 int active = ev_active (w);
1808 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1809 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2320 {
1811 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1813 } 2323 }
1814 } 2324 }
1815 2325
2326 EV_FREQUENT_CHECK;
2327
1816 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1817} 2329}
1818 2330
1819void noinline 2331void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1837#endif 2349#endif
1838 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1839 return; 2351 return;
1840 2352
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
1842 2358
1843 { 2359 {
1844#ifndef _WIN32 2360#ifndef _WIN32
1845 sigset_t full, prev; 2361 sigset_t full, prev;
1846 sigfillset (&full); 2362 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev); 2363 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif 2364#endif
1849 2365
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1851 2367
1852#ifndef _WIN32 2368#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0); 2369 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif 2370#endif
1855 } 2371 }
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2375
1860 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1861 { 2377 {
1862#if _WIN32 2378#if _WIN32
1863 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1864#else 2380#else
1865 struct sigaction sa; 2381 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1870#endif 2386#endif
1871 } 2387 }
2388
2389 EV_FREQUENT_CHECK;
1872} 2390}
1873 2391
1874void noinline 2392void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2394{
1877 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1879 return; 2397 return;
1880 2398
2399 EV_FREQUENT_CHECK;
2400
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1883 2403
1884 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1885 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1886} 2408}
1887 2409
1888void 2410void
1889ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1890{ 2412{
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2415#endif
1894 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1895 return; 2417 return;
1896 2418
2419 EV_FREQUENT_CHECK;
2420
1897 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1899} 2425}
1900 2426
1901void 2427void
1902ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1903{ 2429{
1904 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1906 return; 2432 return;
1907 2433
2434 EV_FREQUENT_CHECK;
2435
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1910} 2440}
1911 2441
1912#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1913 2443
1914# ifdef _WIN32 2444# ifdef _WIN32
1915# undef lstat 2445# undef lstat
1916# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1917# endif 2447# endif
1918 2448
1919#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1920#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1921 2452
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923 2454
1924#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1929{ 2460{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931 2462
1932 if (w->wd < 0) 2463 if (w->wd < 0)
1933 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2467
1936 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2472 {
1939 char path [4096]; 2473 char path [4096];
1940 strcpy (path, w->path); 2474 strcpy (path, w->path);
1941 2475
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946 2480
1947 char *pend = strrchr (path, '/'); 2481 char *pend = strrchr (path, '/');
1948 2482
1949 if (!pend) 2483 if (!pend || pend == path)
1950 break; /* whoops, no '/', complain to your admin */ 2484 break;
1951 2485
1952 *pend = 0; 2486 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask); 2487 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 } 2488 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 2490 }
1957 } 2491 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 2492
1961 if (w->wd >= 0) 2493 if (w->wd >= 0)
2494 {
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
1963} 2514}
1964 2515
1965static void noinline 2516static void noinline
1966infy_del (EV_P_ ev_stat *w) 2517infy_del (EV_P_ ev_stat *w)
1967{ 2518{
1981 2532
1982static void noinline 2533static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 2535{
1985 if (slot < 0) 2536 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 2537 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 2539 infy_wd (EV_A_ slot, wd, ev);
1989 else 2540 else
1990 { 2541 {
1991 WL w_; 2542 WL w_;
1997 2548
1998 if (w->wd == wd || wd == -1) 2549 if (w->wd == wd || wd == -1)
1999 { 2550 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 { 2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2002 w->wd = -1; 2554 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */ 2555 infy_add (EV_A_ w); /* re-add, no matter what */
2004 } 2556 }
2005 2557
2006 stat_timer_cb (EV_A_ &w->timer, 0); 2558 stat_timer_cb (EV_A_ &w->timer, 0);
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2022} 2574}
2023 2575
2024void inline_size 2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
2025infy_init (EV_P) 2600infy_init (EV_P)
2026{ 2601{
2027 if (fs_fd != -2) 2602 if (fs_fd != -2)
2028 return; 2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
2029 2608
2030 fs_fd = inotify_init (); 2609 fs_fd = inotify_init ();
2031 2610
2032 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
2033 { 2612 {
2061 w->wd = -1; 2640 w->wd = -1;
2062 2641
2063 if (fs_fd >= 0) 2642 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 2643 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 2644 else
2066 ev_timer_start (EV_A_ &w->timer); 2645 ev_timer_again (EV_A_ &w->timer);
2067 } 2646 }
2068
2069 } 2647 }
2070} 2648}
2071 2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 2656#endif
2073 2657
2074void 2658void
2075ev_stat_stat (EV_P_ ev_stat *w) 2659ev_stat_stat (EV_P_ ev_stat *w)
2076{ 2660{
2103 || w->prev.st_atime != w->attr.st_atime 2687 || w->prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 2688 || w->prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 2689 || w->prev.st_ctime != w->attr.st_ctime
2106 ) { 2690 ) {
2107 #if EV_USE_INOTIFY 2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
2108 infy_del (EV_A_ w); 2694 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 2695 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
2111 #endif 2698 #endif
2112 2699
2113 ev_feed_event (EV_A_ w, EV_STAT); 2700 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 2701 }
2115} 2702}
2118ev_stat_start (EV_P_ ev_stat *w) 2705ev_stat_start (EV_P_ ev_stat *w)
2119{ 2706{
2120 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
2121 return; 2708 return;
2122 2709
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w); 2710 ev_stat_stat (EV_A_ w);
2128 2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2129 if (w->interval < MIN_STAT_INTERVAL) 2713 w->interval = MIN_STAT_INTERVAL;
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131 2714
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2133 ev_set_priority (&w->timer, ev_priority (w)); 2716 ev_set_priority (&w->timer, ev_priority (w));
2134 2717
2135#if EV_USE_INOTIFY 2718#if EV_USE_INOTIFY
2136 infy_init (EV_A); 2719 infy_init (EV_A);
2137 2720
2138 if (fs_fd >= 0) 2721 if (fs_fd >= 0)
2139 infy_add (EV_A_ w); 2722 infy_add (EV_A_ w);
2140 else 2723 else
2141#endif 2724#endif
2142 ev_timer_start (EV_A_ &w->timer); 2725 ev_timer_again (EV_A_ &w->timer);
2143 2726
2144 ev_start (EV_A_ (W)w, 1); 2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
2145} 2730}
2146 2731
2147void 2732void
2148ev_stat_stop (EV_P_ ev_stat *w) 2733ev_stat_stop (EV_P_ ev_stat *w)
2149{ 2734{
2150 clear_pending (EV_A_ (W)w); 2735 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 2736 if (expect_false (!ev_is_active (w)))
2152 return; 2737 return;
2153 2738
2739 EV_FREQUENT_CHECK;
2740
2154#if EV_USE_INOTIFY 2741#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 2742 infy_del (EV_A_ w);
2156#endif 2743#endif
2157 ev_timer_stop (EV_A_ &w->timer); 2744 ev_timer_stop (EV_A_ &w->timer);
2158 2745
2159 ev_stop (EV_A_ (W)w); 2746 ev_stop (EV_A_ (W)w);
2747
2748 EV_FREQUENT_CHECK;
2160} 2749}
2161#endif 2750#endif
2162 2751
2163#if EV_IDLE_ENABLE 2752#if EV_IDLE_ENABLE
2164void 2753void
2166{ 2755{
2167 if (expect_false (ev_is_active (w))) 2756 if (expect_false (ev_is_active (w)))
2168 return; 2757 return;
2169 2758
2170 pri_adjust (EV_A_ (W)w); 2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2171 2762
2172 { 2763 {
2173 int active = ++idlecnt [ABSPRI (w)]; 2764 int active = ++idlecnt [ABSPRI (w)];
2174 2765
2175 ++idleall; 2766 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 2767 ev_start (EV_A_ (W)w, active);
2177 2768
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 2770 idles [ABSPRI (w)][active - 1] = w;
2180 } 2771 }
2772
2773 EV_FREQUENT_CHECK;
2181} 2774}
2182 2775
2183void 2776void
2184ev_idle_stop (EV_P_ ev_idle *w) 2777ev_idle_stop (EV_P_ ev_idle *w)
2185{ 2778{
2186 clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2188 return; 2781 return;
2189 2782
2783 EV_FREQUENT_CHECK;
2784
2190 { 2785 {
2191 int active = ((W)w)->active; 2786 int active = ev_active (w);
2192 2787
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2790
2196 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2197 --idleall; 2792 --idleall;
2198 } 2793 }
2794
2795 EV_FREQUENT_CHECK;
2199} 2796}
2200#endif 2797#endif
2201 2798
2202void 2799void
2203ev_prepare_start (EV_P_ ev_prepare *w) 2800ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 2801{
2205 if (expect_false (ev_is_active (w))) 2802 if (expect_false (ev_is_active (w)))
2206 return; 2803 return;
2804
2805 EV_FREQUENT_CHECK;
2207 2806
2208 ev_start (EV_A_ (W)w, ++preparecnt); 2807 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2211} 2812}
2212 2813
2213void 2814void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 2815ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 2816{
2216 clear_pending (EV_A_ (W)w); 2817 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2818 if (expect_false (!ev_is_active (w)))
2218 return; 2819 return;
2219 2820
2821 EV_FREQUENT_CHECK;
2822
2220 { 2823 {
2221 int active = ((W)w)->active; 2824 int active = ev_active (w);
2825
2222 prepares [active - 1] = prepares [--preparecnt]; 2826 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2827 ev_active (prepares [active - 1]) = active;
2224 } 2828 }
2225 2829
2226 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2227} 2833}
2228 2834
2229void 2835void
2230ev_check_start (EV_P_ ev_check *w) 2836ev_check_start (EV_P_ ev_check *w)
2231{ 2837{
2232 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2233 return; 2839 return;
2840
2841 EV_FREQUENT_CHECK;
2234 2842
2235 ev_start (EV_A_ (W)w, ++checkcnt); 2843 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
2238} 2848}
2239 2849
2240void 2850void
2241ev_check_stop (EV_P_ ev_check *w) 2851ev_check_stop (EV_P_ ev_check *w)
2242{ 2852{
2243 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2245 return; 2855 return;
2246 2856
2857 EV_FREQUENT_CHECK;
2858
2247 { 2859 {
2248 int active = ((W)w)->active; 2860 int active = ev_active (w);
2861
2249 checks [active - 1] = checks [--checkcnt]; 2862 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2863 ev_active (checks [active - 1]) = active;
2251 } 2864 }
2252 2865
2253 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2254} 2869}
2255 2870
2256#if EV_EMBED_ENABLE 2871#if EV_EMBED_ENABLE
2257void noinline 2872void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 2873ev_embed_sweep (EV_P_ ev_embed *w)
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2286 } 2901 }
2287 } 2902 }
2288} 2903}
2289 2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 ev_embed_stop (EV_A_ w);
2911
2912 {
2913 struct ev_loop *loop = w->other;
2914
2915 ev_loop_fork (EV_A);
2916 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2917 }
2918
2919 ev_embed_start (EV_A_ w);
2920}
2921
2290#if 0 2922#if 0
2291static void 2923static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2924embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2293{ 2925{
2294 ev_idle_stop (EV_A_ idle); 2926 ev_idle_stop (EV_A_ idle);
2305 struct ev_loop *loop = w->other; 2937 struct ev_loop *loop = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2938 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2939 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 2940 }
2309 2941
2942 EV_FREQUENT_CHECK;
2943
2310 ev_set_priority (&w->io, ev_priority (w)); 2944 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 2945 ev_io_start (EV_A_ &w->io);
2312 2946
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 2947 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 2948 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 2949 ev_prepare_start (EV_A_ &w->prepare);
2316 2950
2951 ev_fork_init (&w->fork, embed_fork_cb);
2952 ev_fork_start (EV_A_ &w->fork);
2953
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2954 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 2955
2319 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
2957
2958 EV_FREQUENT_CHECK;
2320} 2959}
2321 2960
2322void 2961void
2323ev_embed_stop (EV_P_ ev_embed *w) 2962ev_embed_stop (EV_P_ ev_embed *w)
2324{ 2963{
2325 clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
2327 return; 2966 return;
2328 2967
2968 EV_FREQUENT_CHECK;
2969
2329 ev_io_stop (EV_A_ &w->io); 2970 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 2971 ev_prepare_stop (EV_A_ &w->prepare);
2972 ev_fork_stop (EV_A_ &w->fork);
2331 2973
2332 ev_stop (EV_A_ (W)w); 2974 EV_FREQUENT_CHECK;
2333} 2975}
2334#endif 2976#endif
2335 2977
2336#if EV_FORK_ENABLE 2978#if EV_FORK_ENABLE
2337void 2979void
2338ev_fork_start (EV_P_ ev_fork *w) 2980ev_fork_start (EV_P_ ev_fork *w)
2339{ 2981{
2340 if (expect_false (ev_is_active (w))) 2982 if (expect_false (ev_is_active (w)))
2341 return; 2983 return;
2984
2985 EV_FREQUENT_CHECK;
2342 2986
2343 ev_start (EV_A_ (W)w, ++forkcnt); 2987 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2988 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 2989 forks [forkcnt - 1] = w;
2990
2991 EV_FREQUENT_CHECK;
2346} 2992}
2347 2993
2348void 2994void
2349ev_fork_stop (EV_P_ ev_fork *w) 2995ev_fork_stop (EV_P_ ev_fork *w)
2350{ 2996{
2351 clear_pending (EV_A_ (W)w); 2997 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 2998 if (expect_false (!ev_is_active (w)))
2353 return; 2999 return;
2354 3000
3001 EV_FREQUENT_CHECK;
3002
2355 { 3003 {
2356 int active = ((W)w)->active; 3004 int active = ev_active (w);
3005
2357 forks [active - 1] = forks [--forkcnt]; 3006 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 3007 ev_active (forks [active - 1]) = active;
2359 } 3008 }
2360 3009
2361 ev_stop (EV_A_ (W)w); 3010 ev_stop (EV_A_ (W)w);
3011
3012 EV_FREQUENT_CHECK;
3013}
3014#endif
3015
3016#if EV_ASYNC_ENABLE
3017void
3018ev_async_start (EV_P_ ev_async *w)
3019{
3020 if (expect_false (ev_is_active (w)))
3021 return;
3022
3023 evpipe_init (EV_A);
3024
3025 EV_FREQUENT_CHECK;
3026
3027 ev_start (EV_A_ (W)w, ++asynccnt);
3028 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3029 asyncs [asynccnt - 1] = w;
3030
3031 EV_FREQUENT_CHECK;
3032}
3033
3034void
3035ev_async_stop (EV_P_ ev_async *w)
3036{
3037 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w)))
3039 return;
3040
3041 EV_FREQUENT_CHECK;
3042
3043 {
3044 int active = ev_active (w);
3045
3046 asyncs [active - 1] = asyncs [--asynccnt];
3047 ev_active (asyncs [active - 1]) = active;
3048 }
3049
3050 ev_stop (EV_A_ (W)w);
3051
3052 EV_FREQUENT_CHECK;
3053}
3054
3055void
3056ev_async_send (EV_P_ ev_async *w)
3057{
3058 w->sent = 1;
3059 evpipe_write (EV_A_ &gotasync);
2362} 3060}
2363#endif 3061#endif
2364 3062
2365/*****************************************************************************/ 3063/*****************************************************************************/
2366 3064
2376once_cb (EV_P_ struct ev_once *once, int revents) 3074once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 3075{
2378 void (*cb)(int revents, void *arg) = once->cb; 3076 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 3077 void *arg = once->arg;
2380 3078
2381 ev_io_stop (EV_A_ &once->io); 3079 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 3080 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 3081 ev_free (once);
2384 3082
2385 cb (revents, arg); 3083 cb (revents, arg);
2386} 3084}
2387 3085
2388static void 3086static void
2389once_cb_io (EV_P_ ev_io *w, int revents) 3087once_cb_io (EV_P_ ev_io *w, int revents)
2390{ 3088{
2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3089 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3090
3091 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2392} 3092}
2393 3093
2394static void 3094static void
2395once_cb_to (EV_P_ ev_timer *w, int revents) 3095once_cb_to (EV_P_ ev_timer *w, int revents)
2396{ 3096{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3097 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3098
3099 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2398} 3100}
2399 3101
2400void 3102void
2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3103ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2402{ 3104{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines