ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 1
45# endif 70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
63 111
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
66# endif 118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
67 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
68#endif 144#endif
69 145
70#include <math.h> 146#include <math.h>
71#include <stdlib.h> 147#include <stdlib.h>
72#include <fcntl.h> 148#include <fcntl.h>
79#include <sys/types.h> 155#include <sys/types.h>
80#include <time.h> 156#include <time.h>
81 157
82#include <signal.h> 158#include <signal.h>
83 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
84#ifndef _WIN32 166#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 167# include <sys/time.h>
87# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
88#else 170#else
171# include <io.h>
89# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 173# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
93# endif 176# endif
94#endif 177#endif
95 178
96/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
97 188
98#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
99# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
100#endif 195#endif
101 196
102#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
104#endif 207#endif
105 208
106#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
108#endif 211#endif
114# define EV_USE_POLL 1 217# define EV_USE_POLL 1
115# endif 218# endif
116#endif 219#endif
117 220
118#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
119# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
120#endif 227#endif
121 228
122#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
124#endif 231#endif
125 232
126#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 234# define EV_USE_PORT 0
128#endif 235#endif
129 236
130/**/ 237#ifndef EV_USE_INOTIFY
131 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 239# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 240# else
134# undef EV_USE_POLL 241# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 288
138#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
141#endif 292#endif
143#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
146#endif 297#endif
147 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
148#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 322# include <winsock.h>
150#endif 323#endif
151 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
152/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 363
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 367
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 368#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 370# define noinline __attribute__ ((noinline))
168#else 371#else
169# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
170# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
171#endif 377#endif
172 378
173#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
175 388
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 391
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
181 394
182typedef struct ev_watcher *W; 395typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
185 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
187 407
188#ifdef _WIN32 408#ifdef _WIN32
189# include "ev_win32.c" 409# include "ev_win32.c"
190#endif 410#endif
191 411
192/*****************************************************************************/ 412/*****************************************************************************/
193 413
194static void (*syserr_cb)(const char *msg); 414static void (*syserr_cb)(const char *msg);
195 415
416void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 417ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 418{
198 syserr_cb = cb; 419 syserr_cb = cb;
199} 420}
200 421
201static void 422static void noinline
202syserr (const char *msg) 423ev_syserr (const char *msg)
203{ 424{
204 if (!msg) 425 if (!msg)
205 msg = "(libev) system error"; 426 msg = "(libev) system error";
206 427
207 if (syserr_cb) 428 if (syserr_cb)
211 perror (msg); 432 perror (msg);
212 abort (); 433 abort ();
213 } 434 }
214} 435}
215 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
216static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 453
454void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 456{
220 alloc = cb; 457 alloc = cb;
221} 458}
222 459
223static void * 460inline_speed void *
224ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
225{ 462{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
227 464
228 if (!ptr && size) 465 if (!ptr && size)
229 { 466 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 468 abort ();
242typedef struct 479typedef struct
243{ 480{
244 WL head; 481 WL head;
245 unsigned char events; 482 unsigned char events;
246 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
247#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 490 SOCKET handle;
249#endif 491#endif
250} ANFD; 492} ANFD;
251 493
252typedef struct 494typedef struct
253{ 495{
254 W w; 496 W w;
255 int events; 497 int events;
256} ANPENDING; 498} ANPENDING;
499
500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
502typedef struct
503{
504 WL head;
505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524#endif
257 525
258#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
259 527
260 struct ev_loop 528 struct ev_loop
261 { 529 {
295 gettimeofday (&tv, 0); 563 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 564 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 565#endif
298} 566}
299 567
300inline ev_tstamp 568ev_tstamp inline_size
301get_clock (void) 569get_clock (void)
302{ 570{
303#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 572 if (expect_true (have_monotonic))
305 { 573 {
318{ 586{
319 return ev_rt_now; 587 return ev_rt_now;
320} 588}
321#endif 589#endif
322 590
323#define array_roundsize(type,n) (((n) | 4) & ~3) 591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623int inline_size
624array_nextsize (int elem, int cur, int cnt)
625{
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642}
643
644static noinline void *
645array_realloc (int elem, void *base, int *cur, int cnt)
646{
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 653
325#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 655 if (expect_false ((cnt) > (cur))) \
327 { \ 656 { \
328 int newcnt = cur; \ 657 int ocur_ = (cur); \
329 do \ 658 (base) = (type *)array_realloc \
330 { \ 659 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 660 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 661 }
339 662
663#if 0
340#define array_slim(type,stem) \ 664#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 666 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 667 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 670 }
671#endif
347 672
348#define array_free(stem, idx) \ 673#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 675
351/*****************************************************************************/ 676/*****************************************************************************/
352 677
353static void 678void noinline
354anfds_init (ANFD *base, int count)
355{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364}
365
366void
367ev_feed_event (EV_P_ void *w, int revents) 679ev_feed_event (EV_P_ void *w, int revents)
368{ 680{
369 W w_ = (W)w; 681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
370 683
371 if (expect_false (w_->pending)) 684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
372 { 687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 691 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 692 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 693}
382 694
383static void 695void inline_speed
384queue_events (EV_P_ W *events, int eventcnt, int type) 696queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 697{
386 int i; 698 int i;
387 699
388 for (i = 0; i < eventcnt; ++i) 700 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
390} 702}
391 703
392inline void 704/*****************************************************************************/
705
706void inline_speed
393fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
394{ 708{
395 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 710 ev_io *w;
397 711
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 713 {
400 int ev = w->events & revents; 714 int ev = w->events & revents;
401 715
402 if (ev) 716 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 717 ev_feed_event (EV_A_ (W)w, ev);
405} 719}
406 720
407void 721void
408ev_feed_fd_event (EV_P_ int fd, int revents) 722ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 723{
724 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 725 fd_event (EV_A_ fd, revents);
411} 726}
412 727
413/*****************************************************************************/ 728void inline_size
414
415inline void
416fd_reify (EV_P) 729fd_reify (EV_P)
417{ 730{
418 int i; 731 int i;
419 732
420 for (i = 0; i < fdchangecnt; ++i) 733 for (i = 0; i < fdchangecnt; ++i)
421 { 734 {
422 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 737 ev_io *w;
425 738
426 int events = 0; 739 unsigned char events = 0;
427 740
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 742 events |= (unsigned char)w->events;
430 743
431#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
432 if (events) 745 if (events)
433 { 746 {
434 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
435 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 754 }
438#endif 755#endif
439 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
440 anfd->reify = 0; 761 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
444 } 767 }
445 768
446 fdchangecnt = 0; 769 fdchangecnt = 0;
447} 770}
448 771
449static void 772void inline_size
450fd_change (EV_P_ int fd) 773fd_change (EV_P_ int fd, int flags)
451{ 774{
452 if (expect_false (anfds [fd].reify)) 775 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 776 anfds [fd].reify |= flags;
456 777
778 if (expect_true (!reify))
779 {
457 ++fdchangecnt; 780 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 782 fdchanges [fdchangecnt - 1] = fd;
783 }
460} 784}
461 785
462static void 786void inline_speed
463fd_kill (EV_P_ int fd) 787fd_kill (EV_P_ int fd)
464{ 788{
465 struct ev_io *w; 789 ev_io *w;
466 790
467 while ((w = (struct ev_io *)anfds [fd].head)) 791 while ((w = (ev_io *)anfds [fd].head))
468 { 792 {
469 ev_io_stop (EV_A_ w); 793 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 795 }
472} 796}
473 797
474inline int 798int inline_size
475fd_valid (int fd) 799fd_valid (int fd)
476{ 800{
477#ifdef _WIN32 801#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 802 return _get_osfhandle (fd) != -1;
479#else 803#else
480 return fcntl (fd, F_GETFD) != -1; 804 return fcntl (fd, F_GETFD) != -1;
481#endif 805#endif
482} 806}
483 807
484/* called on EBADF to verify fds */ 808/* called on EBADF to verify fds */
485static void 809static void noinline
486fd_ebadf (EV_P) 810fd_ebadf (EV_P)
487{ 811{
488 int fd; 812 int fd;
489 813
490 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 815 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
494} 818}
495 819
496/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 821static void noinline
498fd_enomem (EV_P) 822fd_enomem (EV_P)
499{ 823{
500 int fd; 824 int fd;
501 825
502 for (fd = anfdmax; fd--; ) 826 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 829 fd_kill (EV_A_ fd);
506 return; 830 return;
507 } 831 }
508} 832}
509 833
510/* usually called after fork if method needs to re-arm all fds from scratch */ 834/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 835static void noinline
512fd_rearm_all (EV_P) 836fd_rearm_all (EV_P)
513{ 837{
514 int fd; 838 int fd;
515 839
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 841 if (anfds [fd].events)
519 { 842 {
520 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
521 fd_change (EV_A_ fd); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 846 }
523} 847}
524 848
525/*****************************************************************************/ 849/*****************************************************************************/
526 850
527static void 851/*
528upheap (WT *heap, int k) 852 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 854 * the branching factor of the d-tree.
855 */
531 856
532 while (k && heap [k >> 1]->at > w->at) 857/*
533 { 858 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 860 * which is more cache-efficient.
536 k >>= 1; 861 * the difference is about 5% with 50000+ watchers.
537 } 862 */
863#if EV_USE_4HEAP
538 864
539 heap [k] = w; 865#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
541 869
542} 870/* away from the root */
543 871void inline_speed
544static void
545downheap (WT *heap, int N, int k) 872downheap (ANHE *heap, int N, int k)
546{ 873{
547 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
548 876
549 while (k < (N >> 1)) 877 for (;;)
550 { 878 {
551 int j = k << 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 882
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 885 {
555 886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
557 break; 899 break;
558 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
559 heap [k] = heap [j]; 939 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (heap [k])) = k;
941
561 k = j; 942 k = c;
562 } 943 }
563 944
564 heap [k] = w; 945 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 946 ev_active (ANHE_w (he)) = k;
566} 947}
948#endif
567 949
568inline void 950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
970}
971
972void inline_size
569adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
570{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 976 upheap (heap, k);
977 else
572 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
573} 991}
574 992
575/*****************************************************************************/ 993/*****************************************************************************/
576 994
577typedef struct 995typedef struct
578{ 996{
579 WL head; 997 WL head;
580 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
581} ANSIG; 999} ANSIG;
582 1000
583static ANSIG *signals; 1001static ANSIG *signals;
584static int signalmax; 1002static int signalmax;
585 1003
586static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 1005
590static void 1006/*****************************************************************************/
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597 1007
598 ++base; 1008void inline_speed
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1009fd_intern (int fd)
655{ 1010{
656#ifdef _WIN32 1011#ifdef _WIN32
657 int arg = 1; 1012 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 1014#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1017#endif
663} 1018}
664 1019
1020static void noinline
1021evpipe_init (EV_P)
1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
1038 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
1042
1043 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
665static void 1071static void
666siginit (EV_P) 1072pipecb (EV_P_ ev_io *iow, int revents)
667{ 1073{
668 fd_intern (sigpipe [0]); 1074#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
670 1086
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1087 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1088 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
674} 1111}
675 1112
676/*****************************************************************************/ 1113/*****************************************************************************/
677 1114
678static struct ev_child *childs [PID_HASHSIZE]; 1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
1152static WL childs [EV_PID_HASHSIZE];
679 1153
680#ifndef _WIN32 1154#ifndef _WIN32
681 1155
682static struct ev_signal childev; 1156static ev_signal childev;
1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
1162void inline_speed
1163child_reap (EV_P_ int chain, int pid, int status)
1164{
1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
1172 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1174 w->rpid = pid;
1175 w->rstatus = status;
1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1177 }
1178 }
1179}
683 1180
684#ifndef WCONTINUED 1181#ifndef WCONTINUED
685# define WCONTINUED 0 1182# define WCONTINUED 0
686#endif 1183#endif
687 1184
688static void 1185static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1186childcb (EV_P_ ev_signal *sw, int revents)
705{ 1187{
706 int pid, status; 1188 int pid, status;
707 1189
1190 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1191 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1192 if (!WCONTINUED
1193 || errno != EINVAL
1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1195 return;
1196
710 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1200
713 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1204}
717 1205
718#endif 1206#endif
719 1207
720/*****************************************************************************/ 1208/*****************************************************************************/
746{ 1234{
747 return EV_VERSION_MINOR; 1235 return EV_VERSION_MINOR;
748} 1236}
749 1237
750/* return true if we are running with elevated privileges and should ignore env variables */ 1238/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1239int inline_size
752enable_secure (void) 1240enable_secure (void)
753{ 1241{
754#ifdef _WIN32 1242#ifdef _WIN32
755 return 0; 1243 return 0;
756#else 1244#else
758 || getgid () != getegid (); 1246 || getgid () != getegid ();
759#endif 1247#endif
760} 1248}
761 1249
762unsigned int 1250unsigned int
763ev_method (EV_P) 1251ev_supported_backends (void)
764{ 1252{
765 return method; 1253 unsigned int flags = 0;
766}
767 1254
768static void 1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1257 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1258 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_recommended_backends (void)
1266{
1267 unsigned int flags = ev_supported_backends ();
1268
1269#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE;
1273#endif
1274#ifdef __APPLE__
1275 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1277 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1278#endif
1279
1280 return flags;
1281}
1282
1283unsigned int
1284ev_embeddable_backends (void)
1285{
1286 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1287
1288 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1289 /* please fix it and tell me how to detect the fix */
1290 flags &= ~EVBACKEND_EPOLL;
1291
1292 return flags;
1293}
1294
1295unsigned int
1296ev_backend (EV_P)
1297{
1298 return backend;
1299}
1300
1301unsigned int
1302ev_loop_count (EV_P)
1303{
1304 return loop_count;
1305}
1306
1307void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{
1310 io_blocktime = interval;
1311}
1312
1313void
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{
1316 timeout_blocktime = interval;
1317}
1318
1319static void noinline
769loop_init (EV_P_ unsigned int flags) 1320loop_init (EV_P_ unsigned int flags)
770{ 1321{
771 if (!method) 1322 if (!backend)
772 { 1323 {
773#if EV_USE_MONOTONIC 1324#if EV_USE_MONOTONIC
774 { 1325 {
775 struct timespec ts; 1326 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1328 have_monotonic = 1;
778 } 1329 }
779#endif 1330#endif
780 1331
781 ev_rt_now = ev_time (); 1332 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1333 mn_now = get_clock ();
783 now_floor = mn_now; 1334 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1335 rtmn_diff = ev_rt_now - mn_now;
785 1336
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1337 io_blocktime = 0.;
1338 timeout_blocktime = 0.;
1339 backend = 0;
1340 backend_fd = -1;
1341 gotasync = 0;
1342#if EV_USE_INOTIFY
1343 fs_fd = -2;
1344#endif
1345
1346 /* pid check not overridable via env */
1347#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid ();
1350#endif
1351
1352 if (!(flags & EVFLAG_NOENV)
1353 && !enable_secure ()
1354 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1355 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1356
789 if (!(flags & 0x0000ffff)) 1357 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1358 flags |= ev_recommended_backends ();
791 1359
792 method = 0;
793#if EV_USE_PORT 1360#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1361 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1362#endif
796#if EV_USE_KQUEUE 1363#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1364 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1365#endif
799#if EV_USE_EPOLL 1366#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1367 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1368#endif
802#if EV_USE_POLL 1369#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1370 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1371#endif
805#if EV_USE_SELECT 1372#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1374#endif
808 1375
809 ev_init (&sigev, sigcb); 1376 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1377 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1378 }
812} 1379}
813 1380
814static void 1381static void noinline
815loop_destroy (EV_P) 1382loop_destroy (EV_P)
816{ 1383{
817 int i; 1384 int i;
818 1385
1386 if (ev_is_active (&pipeev))
1387 {
1388 ev_ref (EV_A); /* signal watcher */
1389 ev_io_stop (EV_A_ &pipeev);
1390
1391#if EV_USE_EVENTFD
1392 if (evfd >= 0)
1393 close (evfd);
1394#endif
1395
1396 if (evpipe [0] >= 0)
1397 {
1398 close (evpipe [0]);
1399 close (evpipe [1]);
1400 }
1401 }
1402
1403#if EV_USE_INOTIFY
1404 if (fs_fd >= 0)
1405 close (fs_fd);
1406#endif
1407
1408 if (backend_fd >= 0)
1409 close (backend_fd);
1410
819#if EV_USE_PORT 1411#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1412 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1413#endif
822#if EV_USE_KQUEUE 1414#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1415 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1416#endif
825#if EV_USE_EPOLL 1417#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1418 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1419#endif
828#if EV_USE_POLL 1420#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1421 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1422#endif
831#if EV_USE_SELECT 1423#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1424 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1425#endif
834 1426
835 for (i = NUMPRI; i--; ) 1427 for (i = NUMPRI; i--; )
1428 {
836 array_free (pending, [i]); 1429 array_free (pending, [i]);
1430#if EV_IDLE_ENABLE
1431 array_free (idle, [i]);
1432#endif
1433 }
1434
1435 ev_free (anfds); anfdmax = 0;
837 1436
838 /* have to use the microsoft-never-gets-it-right macro */ 1437 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1438 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1439 array_free (timer, EMPTY);
841#if EV_PERIODICS 1440#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1441 array_free (periodic, EMPTY);
843#endif 1442#endif
1443#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1444 array_free (fork, EMPTY);
1445#endif
845 array_free (prepare, EMPTY0); 1446 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1447 array_free (check, EMPTY);
1448#if EV_ASYNC_ENABLE
1449 array_free (async, EMPTY);
1450#endif
847 1451
848 method = 0; 1452 backend = 0;
849} 1453}
850 1454
851static void 1455#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P);
1457#endif
1458
1459void inline_size
852loop_fork (EV_P) 1460loop_fork (EV_P)
853{ 1461{
854#if EV_USE_PORT 1462#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1464#endif
857#if EV_USE_KQUEUE 1465#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1466 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1467#endif
860#if EV_USE_EPOLL 1468#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1469 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1470#endif
1471#if EV_USE_INOTIFY
1472 infy_fork (EV_A);
1473#endif
863 1474
864 if (ev_is_active (&sigev)) 1475 if (ev_is_active (&pipeev))
865 { 1476 {
866 /* default loop */ 1477 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */
1479 gotsig = 1;
1480#if EV_ASYNC_ENABLE
1481 gotasync = 1;
1482#endif
867 1483
868 ev_ref (EV_A); 1484 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1485 ev_io_stop (EV_A_ &pipeev);
1486
1487#if EV_USE_EVENTFD
1488 if (evfd >= 0)
1489 close (evfd);
1490#endif
1491
1492 if (evpipe [0] >= 0)
1493 {
870 close (sigpipe [0]); 1494 close (evpipe [0]);
871 close (sigpipe [1]); 1495 close (evpipe [1]);
1496 }
872 1497
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1498 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1501 }
878 1502
879 postfork = 0; 1503 postfork = 0;
880} 1504}
1505
1506#if EV_MULTIPLICITY
1507
1508struct ev_loop *
1509ev_loop_new (unsigned int flags)
1510{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512
1513 memset (loop, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags);
1516
1517 if (ev_backend (EV_A))
1518 return loop;
1519
1520 return 0;
1521}
1522
1523void
1524ev_loop_destroy (EV_P)
1525{
1526 loop_destroy (EV_A);
1527 ev_free (loop);
1528}
1529
1530void
1531ev_loop_fork (EV_P)
1532{
1533 postfork = 1; /* must be in line with ev_default_fork */
1534}
1535
1536#if EV_VERIFY
1537static void noinline
1538verify_watcher (EV_P_ W w)
1539{
1540 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1541
1542 if (w->pending)
1543 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1544}
1545
1546static void noinline
1547verify_heap (EV_P_ ANHE *heap, int N)
1548{
1549 int i;
1550
1551 for (i = HEAP0; i < N + HEAP0; ++i)
1552 {
1553 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1554 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1555 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1556
1557 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1558 }
1559}
1560
1561static void noinline
1562array_verify (EV_P_ W *ws, int cnt)
1563{
1564 while (cnt--)
1565 {
1566 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1567 verify_watcher (EV_A_ ws [cnt]);
1568 }
1569}
1570#endif
1571
1572void
1573ev_loop_verify (EV_P)
1574{
1575#if EV_VERIFY
1576 int i;
1577 WL w;
1578
1579 assert (activecnt >= -1);
1580
1581 assert (fdchangemax >= fdchangecnt);
1582 for (i = 0; i < fdchangecnt; ++i)
1583 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1584
1585 assert (anfdmax >= 0);
1586 for (i = 0; i < anfdmax; ++i)
1587 for (w = anfds [i].head; w; w = w->next)
1588 {
1589 verify_watcher (EV_A_ (W)w);
1590 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1591 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1592 }
1593
1594 assert (timermax >= timercnt);
1595 verify_heap (EV_A_ timers, timercnt);
1596
1597#if EV_PERIODIC_ENABLE
1598 assert (periodicmax >= periodiccnt);
1599 verify_heap (EV_A_ periodics, periodiccnt);
1600#endif
1601
1602 for (i = NUMPRI; i--; )
1603 {
1604 assert (pendingmax [i] >= pendingcnt [i]);
1605#if EV_IDLE_ENABLE
1606 assert (idleall >= 0);
1607 assert (idlemax [i] >= idlecnt [i]);
1608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1609#endif
1610 }
1611
1612#if EV_FORK_ENABLE
1613 assert (forkmax >= forkcnt);
1614 array_verify (EV_A_ (W *)forks, forkcnt);
1615#endif
1616
1617#if EV_ASYNC_ENABLE
1618 assert (asyncmax >= asynccnt);
1619 array_verify (EV_A_ (W *)asyncs, asynccnt);
1620#endif
1621
1622 assert (preparemax >= preparecnt);
1623 array_verify (EV_A_ (W *)prepares, preparecnt);
1624
1625 assert (checkmax >= checkcnt);
1626 array_verify (EV_A_ (W *)checks, checkcnt);
1627
1628# if 0
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1631# endif
1632#endif
1633}
1634
1635#endif /* multiplicity */
881 1636
882#if EV_MULTIPLICITY 1637#if EV_MULTIPLICITY
883struct ev_loop * 1638struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1639ev_default_loop_init (unsigned int flags)
916#else 1640#else
917int 1641int
918ev_default_loop (unsigned int flags) 1642ev_default_loop (unsigned int flags)
919#endif 1643#endif
920{ 1644{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1645 if (!ev_default_loop_ptr)
926 { 1646 {
927#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1648 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1649#else
930 ev_default_loop_ptr = 1; 1650 ev_default_loop_ptr = 1;
931#endif 1651#endif
932 1652
933 loop_init (EV_A_ flags); 1653 loop_init (EV_A_ flags);
934 1654
935 if (ev_method (EV_A)) 1655 if (ev_backend (EV_A))
936 { 1656 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1657#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1658 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1659 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1660 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1661 ev_unref (EV_A); /* child watcher should not keep loop alive */
955{ 1673{
956#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1676#endif
959 1677
1678 ev_default_loop_ptr = 0;
1679
960#ifndef _WIN32 1680#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1681 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1682 ev_signal_stop (EV_A_ &childev);
963#endif 1683#endif
964 1684
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1685 loop_destroy (EV_A);
972} 1686}
973 1687
974void 1688void
975ev_default_fork (void) 1689ev_default_fork (void)
976{ 1690{
977#if EV_MULTIPLICITY 1691#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1692 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1693#endif
980 1694
981 if (method) 1695 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 1696}
984 1697
985/*****************************************************************************/ 1698/*****************************************************************************/
986 1699
987static int 1700void
988any_pending (EV_P) 1701ev_invoke (EV_P_ void *w, int revents)
989{ 1702{
990 int pri; 1703 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1704}
998 1705
999inline void 1706void inline_speed
1000call_pending (EV_P) 1707call_pending (EV_P)
1001{ 1708{
1002 int pri; 1709 int pri;
1003 1710
1004 for (pri = NUMPRI; pri--; ) 1711 for (pri = NUMPRI; pri--; )
1006 { 1713 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1715
1009 if (expect_true (p->w)) 1716 if (expect_true (p->w))
1010 { 1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1719
1011 p->w->pending = 0; 1720 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1721 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK;
1013 } 1723 }
1014 } 1724 }
1015} 1725}
1016 1726
1017inline void 1727#if EV_IDLE_ENABLE
1728void inline_size
1729idle_reify (EV_P)
1730{
1731 if (expect_false (idleall))
1732 {
1733 int pri;
1734
1735 for (pri = NUMPRI; pri--; )
1736 {
1737 if (pendingcnt [pri])
1738 break;
1739
1740 if (idlecnt [pri])
1741 {
1742 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1743 break;
1744 }
1745 }
1746 }
1747}
1748#endif
1749
1750void inline_size
1018timers_reify (EV_P) 1751timers_reify (EV_P)
1019{ 1752{
1753 EV_FREQUENT_CHECK;
1754
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1756 {
1022 struct ev_timer *w = timers [0]; 1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1758
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1760
1026 /* first reschedule or stop timer */ 1761 /* first reschedule or stop timer */
1027 if (w->repeat) 1762 if (w->repeat)
1028 { 1763 {
1764 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now;
1767
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1769
1031 ((WT)w)->at += w->repeat; 1770 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1771 downheap (timers, timercnt, HEAP0);
1036 } 1772 }
1037 else 1773 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1775
1776 EV_FREQUENT_CHECK;
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1778 }
1042} 1779}
1043 1780
1044#if EV_PERIODICS 1781#if EV_PERIODIC_ENABLE
1045inline void 1782void inline_size
1046periodics_reify (EV_P) 1783periodics_reify (EV_P)
1047{ 1784{
1785 EV_FREQUENT_CHECK;
1786
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1788 {
1050 struct ev_periodic *w = periodics [0]; 1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1790
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1792
1054 /* first reschedule or stop timer */ 1793 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1794 if (w->reschedule_cb)
1056 { 1795 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799
1800 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1801 downheap (periodics, periodiccnt, HEAP0);
1060 } 1802 }
1061 else if (w->interval) 1803 else if (w->interval)
1062 { 1804 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1066 } 1821 }
1067 else 1822 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1824
1825 EV_FREQUENT_CHECK;
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1827 }
1072} 1828}
1073 1829
1074static void 1830static void noinline
1075periodics_reschedule (EV_P) 1831periodics_reschedule (EV_P)
1076{ 1832{
1077 int i; 1833 int i;
1078 1834
1079 /* adjust periodics after time jump */ 1835 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1836 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1837 {
1082 struct ev_periodic *w = periodics [i]; 1838 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1839
1084 if (w->reschedule_cb) 1840 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1842 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1843 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1844
1845 ANHE_at_cache (periodics [i]);
1846 }
1847
1848 reheap (periodics, periodiccnt);
1849}
1850#endif
1851
1852void inline_speed
1853time_update (EV_P_ ev_tstamp max_block)
1854{
1855 int i;
1856
1857#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic))
1088 } 1859 {
1860 ev_tstamp odiff = rtmn_diff;
1089 1861
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1862 mn_now = get_clock ();
1100 1863
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1865 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1866 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1867 {
1103 ev_rt_now = rtmn_diff + mn_now; 1868 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1869 return;
1105 } 1870 }
1106 else 1871
1107 {
1108 now_floor = mn_now; 1872 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1874
1114inline void 1875 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1876 * on the choice of "4": one iteration isn't enough,
1116{ 1877 * in case we get preempted during the calls to
1117 int i; 1878 * ev_time and get_clock. a second call is almost guaranteed
1118 1879 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1880 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1881 * in the unlikely event of having been preempted here.
1121 { 1882 */
1122 if (time_update_monotonic (EV_A)) 1883 for (i = 4; --i; )
1123 { 1884 {
1124 ev_tstamp odiff = rtmn_diff; 1885 rtmn_diff = ev_rt_now - mn_now;
1125 1886
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1887 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1888 return; /* all is well */
1889
1890 ev_rt_now = ev_time ();
1891 mn_now = get_clock ();
1892 now_floor = mn_now;
1893 }
1894
1895# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A);
1897# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 }
1901 else
1902#endif
1903 {
1904 ev_rt_now = ev_time ();
1905
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 {
1908#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A);
1910#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1127 { 1913 {
1128 rtmn_diff = ev_rt_now - mn_now; 1914 ANHE *he = timers + i + HEAP0;
1129 1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1916 ANHE_at_cache (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1917 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1918 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1919
1161 mn_now = ev_rt_now; 1920 mn_now = ev_rt_now;
1162 } 1921 }
1163} 1922}
1164 1923
1172ev_unref (EV_P) 1931ev_unref (EV_P)
1173{ 1932{
1174 --activecnt; 1933 --activecnt;
1175} 1934}
1176 1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1177static int loop_done; 1942static int loop_done;
1178 1943
1179void 1944void
1180ev_loop (EV_P_ int flags) 1945ev_loop (EV_P_ int flags)
1181{ 1946{
1182 double block; 1947 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1948
1185 while (activecnt) 1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1950
1951 do
1186 { 1952 {
1953#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A);
1955#endif
1956
1957#ifndef _WIN32
1958 if (expect_false (curpid)) /* penalise the forking check even more */
1959 if (expect_false (getpid () != curpid))
1960 {
1961 curpid = getpid ();
1962 postfork = 1;
1963 }
1964#endif
1965
1966#if EV_FORK_ENABLE
1967 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork))
1969 if (forkcnt)
1970 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A);
1973 }
1974#endif
1975
1187 /* queue check watchers (and execute them) */ 1976 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1977 if (expect_false (preparecnt))
1189 { 1978 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1980 call_pending (EV_A);
1192 } 1981 }
1193 1982
1983 if (expect_false (!activecnt))
1984 break;
1985
1194 /* we might have forked, so reify kernel state if necessary */ 1986 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1987 if (expect_false (postfork))
1196 loop_fork (EV_A); 1988 loop_fork (EV_A);
1197 1989
1198 /* update fd-related kernel structures */ 1990 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1991 fd_reify (EV_A);
1200 1992
1201 /* calculate blocking time */ 1993 /* calculate blocking time */
1994 {
1995 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.;
1202 1997
1203 /* we only need this for !monotonic clock or timers, but as we basically 1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1999 {
1211 ev_rt_now = ev_time (); 2000 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 2001 time_update (EV_A_ 1e100);
1213 }
1214 2002
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2003 waittime = MAX_BLOCKTIME;
1220 2004
1221 if (timercnt) 2005 if (timercnt)
1222 { 2006 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2007 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2008 if (waittime > to) waittime = to;
1225 } 2009 }
1226 2010
1227#if EV_PERIODICS 2011#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2012 if (periodiccnt)
1229 { 2013 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2015 if (waittime > to) waittime = to;
1232 } 2016 }
1233#endif 2017#endif
1234 2018
1235 if (expect_false (block < 0.)) block = 0.; 2019 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime;
2021
2022 sleeptime = waittime - backend_fudge;
2023
2024 if (expect_true (sleeptime > io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 {
2029 ev_sleep (sleeptime);
2030 waittime -= sleeptime;
2031 }
1236 } 2032 }
1237 2033
1238 method_poll (EV_A_ block); 2034 ++loop_count;
2035 backend_poll (EV_A_ waittime);
1239 2036
1240 /* update ev_rt_now, do magic */ 2037 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2038 time_update (EV_A_ waittime + sleeptime);
2039 }
1242 2040
1243 /* queue pending timers and reschedule them */ 2041 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2042 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2043#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2044 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2045#endif
1248 2046
2047#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2048 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2049 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2050#endif
1252 2051
1253 /* queue check watchers, to be executed first */ 2052 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2053 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2055
1257 call_pending (EV_A); 2056 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2057 }
2058 while (expect_true (
2059 activecnt
2060 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 ));
1262 2063
1263 if (loop_done != 2) 2064 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2065 loop_done = EVUNLOOP_CANCEL;
1265} 2066}
1266 2067
1267void 2068void
1268ev_unloop (EV_P_ int how) 2069ev_unloop (EV_P_ int how)
1269{ 2070{
1270 loop_done = how; 2071 loop_done = how;
1271} 2072}
1272 2073
1273/*****************************************************************************/ 2074/*****************************************************************************/
1274 2075
1275inline void 2076void inline_size
1276wlist_add (WL *head, WL elem) 2077wlist_add (WL *head, WL elem)
1277{ 2078{
1278 elem->next = *head; 2079 elem->next = *head;
1279 *head = elem; 2080 *head = elem;
1280} 2081}
1281 2082
1282inline void 2083void inline_size
1283wlist_del (WL *head, WL elem) 2084wlist_del (WL *head, WL elem)
1284{ 2085{
1285 while (*head) 2086 while (*head)
1286 { 2087 {
1287 if (*head == elem) 2088 if (*head == elem)
1292 2093
1293 head = &(*head)->next; 2094 head = &(*head)->next;
1294 } 2095 }
1295} 2096}
1296 2097
1297inline void 2098void inline_speed
1298ev_clear_pending (EV_P_ W w) 2099clear_pending (EV_P_ W w)
1299{ 2100{
1300 if (w->pending) 2101 if (w->pending)
1301 { 2102 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2103 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 2104 w->pending = 0;
1304 } 2105 }
1305} 2106}
1306 2107
1307inline void 2108int
2109ev_clear_pending (EV_P_ void *w)
2110{
2111 W w_ = (W)w;
2112 int pending = w_->pending;
2113
2114 if (expect_true (pending))
2115 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2117 w_->pending = 0;
2118 p->w = 0;
2119 return p->events;
2120 }
2121 else
2122 return 0;
2123}
2124
2125void inline_size
2126pri_adjust (EV_P_ W w)
2127{
2128 int pri = w->priority;
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri;
2132}
2133
2134void inline_speed
1308ev_start (EV_P_ W w, int active) 2135ev_start (EV_P_ W w, int active)
1309{ 2136{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2137 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2138 w->active = active;
1314 ev_ref (EV_A); 2139 ev_ref (EV_A);
1315} 2140}
1316 2141
1317inline void 2142void inline_size
1318ev_stop (EV_P_ W w) 2143ev_stop (EV_P_ W w)
1319{ 2144{
1320 ev_unref (EV_A); 2145 ev_unref (EV_A);
1321 w->active = 0; 2146 w->active = 0;
1322} 2147}
1323 2148
1324/*****************************************************************************/ 2149/*****************************************************************************/
1325 2150
1326void 2151void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2152ev_io_start (EV_P_ ev_io *w)
1328{ 2153{
1329 int fd = w->fd; 2154 int fd = w->fd;
1330 2155
1331 if (expect_false (ev_is_active (w))) 2156 if (expect_false (ev_is_active (w)))
1332 return; 2157 return;
1333 2158
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2159 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2161
2162 EV_FREQUENT_CHECK;
1335 2163
1336 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2166 wlist_add (&anfds[fd].head, (WL)w);
1339 2167
1340 fd_change (EV_A_ fd); 2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1341} 2169 w->events &= ~EV_IOFDSET;
1342 2170
1343void 2171 EV_FREQUENT_CHECK;
2172}
2173
2174void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2175ev_io_stop (EV_P_ ev_io *w)
1345{ 2176{
1346 ev_clear_pending (EV_A_ (W)w); 2177 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2178 if (expect_false (!ev_is_active (w)))
1348 return; 2179 return;
1349 2180
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2181 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2182
2183 EV_FREQUENT_CHECK;
2184
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2185 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2186 ev_stop (EV_A_ (W)w);
1354 2187
1355 fd_change (EV_A_ w->fd); 2188 fd_change (EV_A_ w->fd, 1);
1356}
1357 2189
1358void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2194ev_timer_start (EV_P_ ev_timer *w)
1360{ 2195{
1361 if (expect_false (ev_is_active (w))) 2196 if (expect_false (ev_is_active (w)))
1362 return; 2197 return;
1363 2198
1364 ((WT)w)->at += mn_now; 2199 ev_at (w) += mn_now;
1365 2200
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2201 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2202
2203 EV_FREQUENT_CHECK;
2204
2205 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2206 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2207 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2208 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2209 ANHE_at_cache (timers [ev_active (w)]);
2210 upheap (timers, ev_active (w));
1372 2211
2212 EV_FREQUENT_CHECK;
2213
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2214 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2215}
1375 2216
1376void 2217void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2218ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2219{
1379 ev_clear_pending (EV_A_ (W)w); 2220 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2221 if (expect_false (!ev_is_active (w)))
1381 return; 2222 return;
1382 2223
2224 EV_FREQUENT_CHECK;
2225
2226 {
2227 int active = ev_active (w);
2228
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2229 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2230
2231 --timercnt;
2232
1385 if (expect_true (((W)w)->active < timercnt--)) 2233 if (expect_true (active < timercnt + HEAP0))
1386 { 2234 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2235 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2236 adjustheap (timers, timercnt, active);
1389 } 2237 }
2238 }
1390 2239
1391 ((WT)w)->at -= mn_now; 2240 EV_FREQUENT_CHECK;
2241
2242 ev_at (w) -= mn_now;
1392 2243
1393 ev_stop (EV_A_ (W)w); 2244 ev_stop (EV_A_ (W)w);
1394} 2245}
1395 2246
1396void 2247void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2248ev_timer_again (EV_P_ ev_timer *w)
1398{ 2249{
2250 EV_FREQUENT_CHECK;
2251
1399 if (ev_is_active (w)) 2252 if (ev_is_active (w))
1400 { 2253 {
1401 if (w->repeat) 2254 if (w->repeat)
1402 { 2255 {
1403 ((WT)w)->at = mn_now + w->repeat; 2256 ev_at (w) = mn_now + w->repeat;
2257 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2258 adjustheap (timers, timercnt, ev_active (w));
1405 } 2259 }
1406 else 2260 else
1407 ev_timer_stop (EV_A_ w); 2261 ev_timer_stop (EV_A_ w);
1408 } 2262 }
1409 else if (w->repeat) 2263 else if (w->repeat)
1410 { 2264 {
1411 w->at = w->repeat; 2265 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2266 ev_timer_start (EV_A_ w);
1413 } 2267 }
1414}
1415 2268
2269 EV_FREQUENT_CHECK;
2270}
2271
1416#if EV_PERIODICS 2272#if EV_PERIODIC_ENABLE
1417void 2273void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2274ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2275{
1420 if (expect_false (ev_is_active (w))) 2276 if (expect_false (ev_is_active (w)))
1421 return; 2277 return;
1422 2278
1423 if (w->reschedule_cb) 2279 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2280 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2281 else if (w->interval)
1426 { 2282 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2283 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2284 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2285 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2286 }
2287 else
2288 ev_at (w) = w->offset;
1431 2289
2290 EV_FREQUENT_CHECK;
2291
2292 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2293 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2294 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2295 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2296 ANHE_at_cache (periodics [ev_active (w)]);
2297 upheap (periodics, ev_active (w));
1436 2298
2299 EV_FREQUENT_CHECK;
2300
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2301 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2302}
1439 2303
1440void 2304void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2305ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2306{
1443 ev_clear_pending (EV_A_ (W)w); 2307 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2308 if (expect_false (!ev_is_active (w)))
1445 return; 2309 return;
1446 2310
2311 EV_FREQUENT_CHECK;
2312
2313 {
2314 int active = ev_active (w);
2315
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2316 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2317
2318 --periodiccnt;
2319
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2320 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2321 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2322 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2323 adjustheap (periodics, periodiccnt, active);
1453 } 2324 }
2325 }
2326
2327 EV_FREQUENT_CHECK;
1454 2328
1455 ev_stop (EV_A_ (W)w); 2329 ev_stop (EV_A_ (W)w);
1456} 2330}
1457 2331
1458void 2332void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2333ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2334{
1461 /* TODO: use adjustheap and recalculation */ 2335 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2336 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2337 ev_periodic_start (EV_A_ w);
1464} 2338}
1465#endif 2339#endif
1466 2340
1467void 2341#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2342# define SA_RESTART 0
2343#endif
2344
2345void noinline
2346ev_signal_start (EV_P_ ev_signal *w)
1469{ 2347{
2348#if EV_MULTIPLICITY
2349 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2350#endif
1470 if (expect_false (ev_is_active (w))) 2351 if (expect_false (ev_is_active (w)))
1471 return; 2352 return;
1472 2353
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART
1534# define SA_RESTART 0
1535#endif
1536
1537void
1538ev_signal_start (EV_P_ struct ev_signal *w)
1539{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w)))
1544 return;
1545
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2355
2356 evpipe_init (EV_A);
2357
2358 EV_FREQUENT_CHECK;
2359
2360 {
2361#ifndef _WIN32
2362 sigset_t full, prev;
2363 sigfillset (&full);
2364 sigprocmask (SIG_SETMASK, &full, &prev);
2365#endif
2366
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2368
2369#ifndef _WIN32
2370 sigprocmask (SIG_SETMASK, &prev, 0);
2371#endif
2372 }
1547 2373
1548 ev_start (EV_A_ (W)w, 1); 2374 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2375 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2376
1552 if (!((WL)w)->next) 2377 if (!((WL)w)->next)
1553 { 2378 {
1554#if _WIN32 2379#if _WIN32
1555 signal (w->signum, sighandler); 2380 signal (w->signum, ev_sighandler);
1556#else 2381#else
1557 struct sigaction sa; 2382 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2383 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2384 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2386 sigaction (w->signum, &sa, 0);
1562#endif 2387#endif
1563 } 2388 }
1564}
1565 2389
1566void 2390 EV_FREQUENT_CHECK;
2391}
2392
2393void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2394ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2395{
1569 ev_clear_pending (EV_A_ (W)w); 2396 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2397 if (expect_false (!ev_is_active (w)))
1571 return; 2398 return;
1572 2399
2400 EV_FREQUENT_CHECK;
2401
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2402 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2403 ev_stop (EV_A_ (W)w);
1575 2404
1576 if (!signals [w->signum - 1].head) 2405 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2406 signal (w->signum, SIG_DFL);
1578}
1579 2407
2408 EV_FREQUENT_CHECK;
2409}
2410
1580void 2411void
1581ev_child_start (EV_P_ struct ev_child *w) 2412ev_child_start (EV_P_ ev_child *w)
1582{ 2413{
1583#if EV_MULTIPLICITY 2414#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2416#endif
1586 if (expect_false (ev_is_active (w))) 2417 if (expect_false (ev_is_active (w)))
1587 return; 2418 return;
1588 2419
2420 EV_FREQUENT_CHECK;
2421
1589 ev_start (EV_A_ (W)w, 1); 2422 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2423 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2424
2425 EV_FREQUENT_CHECK;
2426}
2427
1593void 2428void
1594ev_child_stop (EV_P_ struct ev_child *w) 2429ev_child_stop (EV_P_ ev_child *w)
1595{ 2430{
1596 ev_clear_pending (EV_A_ (W)w); 2431 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2432 if (expect_false (!ev_is_active (w)))
1598 return; 2433 return;
1599 2434
2435 EV_FREQUENT_CHECK;
2436
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2437 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2438 ev_stop (EV_A_ (W)w);
2439
2440 EV_FREQUENT_CHECK;
1602} 2441}
2442
2443#if EV_STAT_ENABLE
2444
2445# ifdef _WIN32
2446# undef lstat
2447# define lstat(a,b) _stati64 (a,b)
2448# endif
2449
2450#define DEF_STAT_INTERVAL 5.0074891
2451#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2452#define MIN_STAT_INTERVAL 0.1074891
2453
2454static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2455
2456#if EV_USE_INOTIFY
2457# define EV_INOTIFY_BUFSIZE 8192
2458
2459static void noinline
2460infy_add (EV_P_ ev_stat *w)
2461{
2462 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2463
2464 if (w->wd < 0)
2465 {
2466 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2467 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2468
2469 /* monitor some parent directory for speedup hints */
2470 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2471 /* but an efficiency issue only */
2472 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2473 {
2474 char path [4096];
2475 strcpy (path, w->path);
2476
2477 do
2478 {
2479 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2480 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2481
2482 char *pend = strrchr (path, '/');
2483
2484 if (!pend || pend == path)
2485 break;
2486
2487 *pend = 0;
2488 w->wd = inotify_add_watch (fs_fd, path, mask);
2489 }
2490 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2491 }
2492 }
2493
2494 if (w->wd >= 0)
2495 {
2496 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2497
2498 /* now local changes will be tracked by inotify, but remote changes won't */
2499 /* unless the filesystem it known to be local, we therefore still poll */
2500 /* also do poll on <2.6.25, but with normal frequency */
2501 struct statfs sfs;
2502
2503 if (fs_2625 && !statfs (w->path, &sfs))
2504 if (sfs.f_type == 0x1373 /* devfs */
2505 || sfs.f_type == 0xEF53 /* ext2/3 */
2506 || sfs.f_type == 0x3153464a /* jfs */
2507 || sfs.f_type == 0x52654973 /* reiser3 */
2508 || sfs.f_type == 0x01021994 /* tempfs */
2509 || sfs.f_type == 0x58465342 /* xfs */)
2510 return;
2511
2512 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2513 ev_timer_again (EV_A_ &w->timer);
2514 }
2515}
2516
2517static void noinline
2518infy_del (EV_P_ ev_stat *w)
2519{
2520 int slot;
2521 int wd = w->wd;
2522
2523 if (wd < 0)
2524 return;
2525
2526 w->wd = -2;
2527 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2528 wlist_del (&fs_hash [slot].head, (WL)w);
2529
2530 /* remove this watcher, if others are watching it, they will rearm */
2531 inotify_rm_watch (fs_fd, wd);
2532}
2533
2534static void noinline
2535infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2536{
2537 if (slot < 0)
2538 /* overflow, need to check for all hash slots */
2539 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2540 infy_wd (EV_A_ slot, wd, ev);
2541 else
2542 {
2543 WL w_;
2544
2545 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2546 {
2547 ev_stat *w = (ev_stat *)w_;
2548 w_ = w_->next; /* lets us remove this watcher and all before it */
2549
2550 if (w->wd == wd || wd == -1)
2551 {
2552 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2553 {
2554 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2555 w->wd = -1;
2556 infy_add (EV_A_ w); /* re-add, no matter what */
2557 }
2558
2559 stat_timer_cb (EV_A_ &w->timer, 0);
2560 }
2561 }
2562 }
2563}
2564
2565static void
2566infy_cb (EV_P_ ev_io *w, int revents)
2567{
2568 char buf [EV_INOTIFY_BUFSIZE];
2569 struct inotify_event *ev = (struct inotify_event *)buf;
2570 int ofs;
2571 int len = read (fs_fd, buf, sizeof (buf));
2572
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575}
2576
2577void inline_size
2578check_2625 (EV_P)
2579{
2580 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */
2583 struct utsname buf;
2584 int major, minor, micro;
2585
2586 if (uname (&buf))
2587 return;
2588
2589 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2590 return;
2591
2592 if (major < 2
2593 || (major == 2 && minor < 6)
2594 || (major == 2 && minor == 6 && micro < 25))
2595 return;
2596
2597 fs_2625 = 1;
2598}
2599
2600void inline_size
2601infy_init (EV_P)
2602{
2603 if (fs_fd != -2)
2604 return;
2605
2606 fs_fd = -1;
2607
2608 check_2625 (EV_A);
2609
2610 fs_fd = inotify_init ();
2611
2612 if (fs_fd >= 0)
2613 {
2614 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2615 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w);
2617 }
2618}
2619
2620void inline_size
2621infy_fork (EV_P)
2622{
2623 int slot;
2624
2625 if (fs_fd < 0)
2626 return;
2627
2628 close (fs_fd);
2629 fs_fd = inotify_init ();
2630
2631 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2632 {
2633 WL w_ = fs_hash [slot].head;
2634 fs_hash [slot].head = 0;
2635
2636 while (w_)
2637 {
2638 ev_stat *w = (ev_stat *)w_;
2639 w_ = w_->next; /* lets us add this watcher */
2640
2641 w->wd = -1;
2642
2643 if (fs_fd >= 0)
2644 infy_add (EV_A_ w); /* re-add, no matter what */
2645 else
2646 ev_timer_again (EV_A_ &w->timer);
2647 }
2648 }
2649}
2650
2651#endif
2652
2653#ifdef _WIN32
2654# define EV_LSTAT(p,b) _stati64 (p, b)
2655#else
2656# define EV_LSTAT(p,b) lstat (p, b)
2657#endif
2658
2659void
2660ev_stat_stat (EV_P_ ev_stat *w)
2661{
2662 if (lstat (w->path, &w->attr) < 0)
2663 w->attr.st_nlink = 0;
2664 else if (!w->attr.st_nlink)
2665 w->attr.st_nlink = 1;
2666}
2667
2668static void noinline
2669stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2670{
2671 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2672
2673 /* we copy this here each the time so that */
2674 /* prev has the old value when the callback gets invoked */
2675 w->prev = w->attr;
2676 ev_stat_stat (EV_A_ w);
2677
2678 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2679 if (
2680 w->prev.st_dev != w->attr.st_dev
2681 || w->prev.st_ino != w->attr.st_ino
2682 || w->prev.st_mode != w->attr.st_mode
2683 || w->prev.st_nlink != w->attr.st_nlink
2684 || w->prev.st_uid != w->attr.st_uid
2685 || w->prev.st_gid != w->attr.st_gid
2686 || w->prev.st_rdev != w->attr.st_rdev
2687 || w->prev.st_size != w->attr.st_size
2688 || w->prev.st_atime != w->attr.st_atime
2689 || w->prev.st_mtime != w->attr.st_mtime
2690 || w->prev.st_ctime != w->attr.st_ctime
2691 ) {
2692 #if EV_USE_INOTIFY
2693 if (fs_fd >= 0)
2694 {
2695 infy_del (EV_A_ w);
2696 infy_add (EV_A_ w);
2697 ev_stat_stat (EV_A_ w); /* avoid race... */
2698 }
2699 #endif
2700
2701 ev_feed_event (EV_A_ w, EV_STAT);
2702 }
2703}
2704
2705void
2706ev_stat_start (EV_P_ ev_stat *w)
2707{
2708 if (expect_false (ev_is_active (w)))
2709 return;
2710
2711 ev_stat_stat (EV_A_ w);
2712
2713 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2714 w->interval = MIN_STAT_INTERVAL;
2715
2716 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2717 ev_set_priority (&w->timer, ev_priority (w));
2718
2719#if EV_USE_INOTIFY
2720 infy_init (EV_A);
2721
2722 if (fs_fd >= 0)
2723 infy_add (EV_A_ w);
2724 else
2725#endif
2726 ev_timer_again (EV_A_ &w->timer);
2727
2728 ev_start (EV_A_ (W)w, 1);
2729
2730 EV_FREQUENT_CHECK;
2731}
2732
2733void
2734ev_stat_stop (EV_P_ ev_stat *w)
2735{
2736 clear_pending (EV_A_ (W)w);
2737 if (expect_false (!ev_is_active (w)))
2738 return;
2739
2740 EV_FREQUENT_CHECK;
2741
2742#if EV_USE_INOTIFY
2743 infy_del (EV_A_ w);
2744#endif
2745 ev_timer_stop (EV_A_ &w->timer);
2746
2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751#endif
2752
2753#if EV_IDLE_ENABLE
2754void
2755ev_idle_start (EV_P_ ev_idle *w)
2756{
2757 if (expect_false (ev_is_active (w)))
2758 return;
2759
2760 pri_adjust (EV_A_ (W)w);
2761
2762 EV_FREQUENT_CHECK;
2763
2764 {
2765 int active = ++idlecnt [ABSPRI (w)];
2766
2767 ++idleall;
2768 ev_start (EV_A_ (W)w, active);
2769
2770 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2771 idles [ABSPRI (w)][active - 1] = w;
2772 }
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_idle_stop (EV_P_ ev_idle *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786 {
2787 int active = ev_active (w);
2788
2789 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2790 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2791
2792 ev_stop (EV_A_ (W)w);
2793 --idleall;
2794 }
2795
2796 EV_FREQUENT_CHECK;
2797}
2798#endif
2799
2800void
2801ev_prepare_start (EV_P_ ev_prepare *w)
2802{
2803 if (expect_false (ev_is_active (w)))
2804 return;
2805
2806 EV_FREQUENT_CHECK;
2807
2808 ev_start (EV_A_ (W)w, ++preparecnt);
2809 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2810 prepares [preparecnt - 1] = w;
2811
2812 EV_FREQUENT_CHECK;
2813}
2814
2815void
2816ev_prepare_stop (EV_P_ ev_prepare *w)
2817{
2818 clear_pending (EV_A_ (W)w);
2819 if (expect_false (!ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
2823
2824 {
2825 int active = ev_active (w);
2826
2827 prepares [active - 1] = prepares [--preparecnt];
2828 ev_active (prepares [active - 1]) = active;
2829 }
2830
2831 ev_stop (EV_A_ (W)w);
2832
2833 EV_FREQUENT_CHECK;
2834}
2835
2836void
2837ev_check_start (EV_P_ ev_check *w)
2838{
2839 if (expect_false (ev_is_active (w)))
2840 return;
2841
2842 EV_FREQUENT_CHECK;
2843
2844 ev_start (EV_A_ (W)w, ++checkcnt);
2845 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2846 checks [checkcnt - 1] = w;
2847
2848 EV_FREQUENT_CHECK;
2849}
2850
2851void
2852ev_check_stop (EV_P_ ev_check *w)
2853{
2854 clear_pending (EV_A_ (W)w);
2855 if (expect_false (!ev_is_active (w)))
2856 return;
2857
2858 EV_FREQUENT_CHECK;
2859
2860 {
2861 int active = ev_active (w);
2862
2863 checks [active - 1] = checks [--checkcnt];
2864 ev_active (checks [active - 1]) = active;
2865 }
2866
2867 ev_stop (EV_A_ (W)w);
2868
2869 EV_FREQUENT_CHECK;
2870}
2871
2872#if EV_EMBED_ENABLE
2873void noinline
2874ev_embed_sweep (EV_P_ ev_embed *w)
2875{
2876 ev_loop (w->other, EVLOOP_NONBLOCK);
2877}
2878
2879static void
2880embed_io_cb (EV_P_ ev_io *io, int revents)
2881{
2882 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2883
2884 if (ev_cb (w))
2885 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2886 else
2887 ev_loop (w->other, EVLOOP_NONBLOCK);
2888}
2889
2890static void
2891embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2892{
2893 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2894
2895 {
2896 struct ev_loop *loop = w->other;
2897
2898 while (fdchangecnt)
2899 {
2900 fd_reify (EV_A);
2901 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2902 }
2903 }
2904}
2905
2906static void
2907embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2908{
2909 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2910
2911 ev_embed_stop (EV_A_ w);
2912
2913 {
2914 struct ev_loop *loop = w->other;
2915
2916 ev_loop_fork (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919
2920 ev_embed_start (EV_A_ w);
2921}
2922
2923#if 0
2924static void
2925embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2926{
2927 ev_idle_stop (EV_A_ idle);
2928}
2929#endif
2930
2931void
2932ev_embed_start (EV_P_ ev_embed *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 {
2938 struct ev_loop *loop = w->other;
2939 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2940 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2941 }
2942
2943 EV_FREQUENT_CHECK;
2944
2945 ev_set_priority (&w->io, ev_priority (w));
2946 ev_io_start (EV_A_ &w->io);
2947
2948 ev_prepare_init (&w->prepare, embed_prepare_cb);
2949 ev_set_priority (&w->prepare, EV_MINPRI);
2950 ev_prepare_start (EV_A_ &w->prepare);
2951
2952 ev_fork_init (&w->fork, embed_fork_cb);
2953 ev_fork_start (EV_A_ &w->fork);
2954
2955 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2956
2957 ev_start (EV_A_ (W)w, 1);
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_embed_stop (EV_P_ ev_embed *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 ev_io_stop (EV_A_ &w->io);
2972 ev_prepare_stop (EV_A_ &w->prepare);
2973 ev_fork_stop (EV_A_ &w->fork);
2974
2975 EV_FREQUENT_CHECK;
2976}
2977#endif
2978
2979#if EV_FORK_ENABLE
2980void
2981ev_fork_start (EV_P_ ev_fork *w)
2982{
2983 if (expect_false (ev_is_active (w)))
2984 return;
2985
2986 EV_FREQUENT_CHECK;
2987
2988 ev_start (EV_A_ (W)w, ++forkcnt);
2989 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2990 forks [forkcnt - 1] = w;
2991
2992 EV_FREQUENT_CHECK;
2993}
2994
2995void
2996ev_fork_stop (EV_P_ ev_fork *w)
2997{
2998 clear_pending (EV_A_ (W)w);
2999 if (expect_false (!ev_is_active (w)))
3000 return;
3001
3002 EV_FREQUENT_CHECK;
3003
3004 {
3005 int active = ev_active (w);
3006
3007 forks [active - 1] = forks [--forkcnt];
3008 ev_active (forks [active - 1]) = active;
3009 }
3010
3011 ev_stop (EV_A_ (W)w);
3012
3013 EV_FREQUENT_CHECK;
3014}
3015#endif
3016
3017#if EV_ASYNC_ENABLE
3018void
3019ev_async_start (EV_P_ ev_async *w)
3020{
3021 if (expect_false (ev_is_active (w)))
3022 return;
3023
3024 evpipe_init (EV_A);
3025
3026 EV_FREQUENT_CHECK;
3027
3028 ev_start (EV_A_ (W)w, ++asynccnt);
3029 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3030 asyncs [asynccnt - 1] = w;
3031
3032 EV_FREQUENT_CHECK;
3033}
3034
3035void
3036ev_async_stop (EV_P_ ev_async *w)
3037{
3038 clear_pending (EV_A_ (W)w);
3039 if (expect_false (!ev_is_active (w)))
3040 return;
3041
3042 EV_FREQUENT_CHECK;
3043
3044 {
3045 int active = ev_active (w);
3046
3047 asyncs [active - 1] = asyncs [--asynccnt];
3048 ev_active (asyncs [active - 1]) = active;
3049 }
3050
3051 ev_stop (EV_A_ (W)w);
3052
3053 EV_FREQUENT_CHECK;
3054}
3055
3056void
3057ev_async_send (EV_P_ ev_async *w)
3058{
3059 w->sent = 1;
3060 evpipe_write (EV_A_ &gotasync);
3061}
3062#endif
1603 3063
1604/*****************************************************************************/ 3064/*****************************************************************************/
1605 3065
1606struct ev_once 3066struct ev_once
1607{ 3067{
1608 struct ev_io io; 3068 ev_io io;
1609 struct ev_timer to; 3069 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3070 void (*cb)(int revents, void *arg);
1611 void *arg; 3071 void *arg;
1612}; 3072};
1613 3073
1614static void 3074static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3075once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3076{
1617 void (*cb)(int revents, void *arg) = once->cb; 3077 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3078 void *arg = once->arg;
1619 3079
1620 ev_io_stop (EV_A_ &once->io); 3080 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3081 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3082 ev_free (once);
1623 3083
1624 cb (revents, arg); 3084 cb (revents, arg);
1625} 3085}
1626 3086
1627static void 3087static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3088once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3089{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3090 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3091
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3093}
1632 3094
1633static void 3095static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3096once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3097{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3098 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3099
3100 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3101}
1638 3102
1639void 3103void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3104ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3105{
1663 ev_timer_set (&once->to, timeout, 0.); 3127 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3128 ev_timer_start (EV_A_ &once->to);
1665 } 3129 }
1666} 3130}
1667 3131
3132#if EV_MULTIPLICITY
3133 #include "ev_wrap.h"
3134#endif
3135
1668#ifdef __cplusplus 3136#ifdef __cplusplus
1669} 3137}
1670#endif 3138#endif
1671 3139

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines