ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.292 by root, Mon Jun 29 07:22:56 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
397typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
398 405
399#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
401 408
402#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 417#endif
407 418
408#ifdef _WIN32 419#ifdef _WIN32
409# include "ev_win32.c" 420# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
476 487
477/*****************************************************************************/ 488/*****************************************************************************/
478 489
490/* file descriptor info structure */
479typedef struct 491typedef struct
480{ 492{
481 WL head; 493 WL head;
482 unsigned char events; 494 unsigned char events; /* the events watched for */
483 unsigned char reify; 495 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 497 unsigned char unused;
486#if EV_USE_EPOLL 498#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 499 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 500#endif
489#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 502 SOCKET handle;
491#endif 503#endif
492} ANFD; 504} ANFD;
493 505
506/* stores the pending event set for a given watcher */
494typedef struct 507typedef struct
495{ 508{
496 W w; 509 W w;
497 int events; 510 int events; /* the pending event set for the given watcher */
498} ANPENDING; 511} ANPENDING;
499 512
500#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
502typedef struct 515typedef struct
505} ANFS; 518} ANFS;
506#endif 519#endif
507 520
508/* Heap Entry */ 521/* Heap Entry */
509#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
510 typedef struct { 524 typedef struct {
511 ev_tstamp at; 525 ev_tstamp at;
512 WT w; 526 WT w;
513 } ANHE; 527 } ANHE;
514 528
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 532#else
533 /* a heap element */
519 typedef WT ANHE; 534 typedef WT ANHE;
520 535
521 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 538 #define ANHE_at_cache(he)
549 564
550#endif 565#endif
551 566
552/*****************************************************************************/ 567/*****************************************************************************/
553 568
569#ifndef EV_HAVE_EV_TIME
554ev_tstamp 570ev_tstamp
555ev_time (void) 571ev_time (void)
556{ 572{
557#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
558 struct timespec ts; 576 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 579 }
580#endif
581
562 struct timeval tv; 582 struct timeval tv;
563 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 585}
586#endif
567 587
568ev_tstamp inline_size 588inline_size ev_tstamp
569get_clock (void) 589get_clock (void)
570{ 590{
571#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
573 { 593 {
618 638
619/*****************************************************************************/ 639/*****************************************************************************/
620 640
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 642
623int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
624array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
625{ 647{
626 int ncur = cur + 1; 648 int ncur = cur + 1;
627 649
628 do 650 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 692 }
671#endif 693#endif
672 694
673#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 697
676/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
677 705
678void noinline 706void noinline
679ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
680{ 708{
681 W w_ = (W)w; 709 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
692 } 720 }
693} 721}
694 722
695void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 740{
698 int i; 741 int i;
699 742
700 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
702} 745}
703 746
704/*****************************************************************************/ 747/*****************************************************************************/
705 748
706void inline_speed 749inline_speed void
707fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
708{ 751{
709 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
710 ev_io *w; 753 ev_io *w;
711 754
723{ 766{
724 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
726} 769}
727 770
728void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
729fd_reify (EV_P) 774fd_reify (EV_P)
730{ 775{
731 int i; 776 int i;
732 777
733 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
760 805
761 anfd->reify = 0; 806 anfd->reify = 0;
762 anfd->events = events; 807 anfd->events = events;
763 808
764 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
766 } 811 }
767 } 812 }
768 813
769 fdchangecnt = 0; 814 fdchangecnt = 0;
770} 815}
771 816
772void inline_size 817/* something about the given fd changed */
818inline_size void
773fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
774{ 820{
775 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
777 823
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
783 } 829 }
784} 830}
785 831
786void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
787fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
788{ 835{
789 ev_io *w; 836 ev_io *w;
790 837
791 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 842 }
796} 843}
797 844
798int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
799fd_valid (int fd) 847fd_valid (int fd)
800{ 848{
801#ifdef _WIN32 849#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
803#else 851#else
840 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 889 if (anfds [fd].events)
842 { 890 {
843 anfds [fd].events = 0; 891 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 892 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 894 }
847} 895}
848 896
849/*****************************************************************************/ 897/*****************************************************************************/
850 898
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 916#define UPHEAP_DONE(p,k) ((p) == (k))
869 917
870/* away from the root */ 918/* away from the root */
871void inline_speed 919inline_speed void
872downheap (ANHE *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
873{ 921{
874 ANHE he = heap [k]; 922 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 923 ANHE *E = heap + N + HEAP0;
876 924
916#define HEAP0 1 964#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 965#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 966#define UPHEAP_DONE(p,k) (!(p))
919 967
920/* away from the root */ 968/* away from the root */
921void inline_speed 969inline_speed void
922downheap (ANHE *heap, int N, int k) 970downheap (ANHE *heap, int N, int k)
923{ 971{
924 ANHE he = heap [k]; 972 ANHE he = heap [k];
925 973
926 for (;;) 974 for (;;)
946 ev_active (ANHE_w (he)) = k; 994 ev_active (ANHE_w (he)) = k;
947} 995}
948#endif 996#endif
949 997
950/* towards the root */ 998/* towards the root */
951void inline_speed 999inline_speed void
952upheap (ANHE *heap, int k) 1000upheap (ANHE *heap, int k)
953{ 1001{
954 ANHE he = heap [k]; 1002 ANHE he = heap [k];
955 1003
956 for (;;) 1004 for (;;)
967 1015
968 heap [k] = he; 1016 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1017 ev_active (ANHE_w (he)) = k;
970} 1018}
971 1019
972void inline_size 1020/* move an element suitably so it is in a correct place */
1021inline_size void
973adjustheap (ANHE *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
974{ 1023{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1025 upheap (heap, k);
977 else 1026 else
978 downheap (heap, N, k); 1027 downheap (heap, N, k);
979} 1028}
980 1029
981/* rebuild the heap: this function is used only once and executed rarely */ 1030/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1031inline_size void
983reheap (ANHE *heap, int N) 1032reheap (ANHE *heap, int N)
984{ 1033{
985 int i; 1034 int i;
986 1035
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1039 upheap (heap, i + HEAP0);
991} 1040}
992 1041
993/*****************************************************************************/ 1042/*****************************************************************************/
994 1043
1044/* associate signal watchers to a signal signal */
995typedef struct 1045typedef struct
996{ 1046{
997 WL head; 1047 WL head;
998 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
999} ANSIG; 1049} ANSIG;
1003 1053
1004static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
1005 1055
1006/*****************************************************************************/ 1056/*****************************************************************************/
1007 1057
1008void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1009fd_intern (int fd) 1061fd_intern (int fd)
1010{ 1062{
1011#ifdef _WIN32 1063#ifdef _WIN32
1012 unsigned long arg = 1; 1064 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1070}
1019 1071
1020static void noinline 1072static void noinline
1021evpipe_init (EV_P) 1073evpipe_init (EV_P)
1022{ 1074{
1023 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
1024 { 1076 {
1025#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1079 {
1028 evpipe [0] = -1; 1080 evpipe [0] = -1;
1029 fd_intern (evfd); 1081 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1083 }
1032 else 1084 else
1033#endif 1085#endif
1034 { 1086 {
1035 while (pipe (evpipe)) 1087 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
1037 1089
1038 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1093 }
1042 1094
1043 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1097 }
1046} 1098}
1047 1099
1048void inline_size 1100inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1102{
1051 if (!*flag) 1103 if (!*flag)
1052 { 1104 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
1066 1118
1067 errno = old_errno; 1119 errno = old_errno;
1068 } 1120 }
1069} 1121}
1070 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1071static void 1125static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1127{
1074#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1129 if (evfd >= 0)
1157 1211
1158#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1160#endif 1214#endif
1161 1215
1162void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1164{ 1219{
1165 ev_child *w; 1220 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1222
1180 1235
1181#ifndef WCONTINUED 1236#ifndef WCONTINUED
1182# define WCONTINUED 0 1237# define WCONTINUED 0
1183#endif 1238#endif
1184 1239
1240/* called on sigchld etc., calls waitpid */
1185static void 1241static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1243{
1188 int pid, status; 1244 int pid, status;
1189 1245
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1371{
1316 timeout_blocktime = interval; 1372 timeout_blocktime = interval;
1317} 1373}
1318 1374
1375/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1376static void noinline
1320loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
1321{ 1378{
1322 if (!backend) 1379 if (!backend)
1323 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
1324#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1325 { 1393 {
1326 struct timespec ts; 1394 struct timespec ts;
1395
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1397 have_monotonic = 1;
1329 } 1398 }
1330#endif 1399#endif
1331 1400
1332 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1402 mn_now = get_clock ();
1334 now_floor = mn_now; 1403 now_floor = mn_now;
1371#endif 1440#endif
1372#if EV_USE_SELECT 1441#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1443#endif
1375 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1376 ev_init (&pipeev, pipecb); 1447 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1449 }
1379} 1450}
1380 1451
1452/* free up a loop structure */
1381static void noinline 1453static void noinline
1382loop_destroy (EV_P) 1454loop_destroy (EV_P)
1383{ 1455{
1384 int i; 1456 int i;
1385 1457
1386 if (ev_is_active (&pipeev)) 1458 if (ev_is_active (&pipe_w))
1387 { 1459 {
1388 ev_ref (EV_A); /* signal watcher */ 1460 ev_ref (EV_A); /* signal watcher */
1389 ev_io_stop (EV_A_ &pipeev); 1461 ev_io_stop (EV_A_ &pipe_w);
1390 1462
1391#if EV_USE_EVENTFD 1463#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1464 if (evfd >= 0)
1393 close (evfd); 1465 close (evfd);
1394#endif 1466#endif
1433 } 1505 }
1434 1506
1435 ev_free (anfds); anfdmax = 0; 1507 ev_free (anfds); anfdmax = 0;
1436 1508
1437 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1511 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1512 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1514 array_free (periodic, EMPTY);
1442#endif 1515#endif
1451 1524
1452 backend = 0; 1525 backend = 0;
1453} 1526}
1454 1527
1455#if EV_USE_INOTIFY 1528#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1457#endif 1530#endif
1458 1531
1459void inline_size 1532inline_size void
1460loop_fork (EV_P) 1533loop_fork (EV_P)
1461{ 1534{
1462#if EV_USE_PORT 1535#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1537#endif
1470#endif 1543#endif
1471#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1545 infy_fork (EV_A);
1473#endif 1546#endif
1474 1547
1475 if (ev_is_active (&pipeev)) 1548 if (ev_is_active (&pipe_w))
1476 { 1549 {
1477 /* this "locks" the handlers against writing to the pipe */ 1550 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1551 /* while we modify the fd vars */
1479 gotsig = 1; 1552 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1553#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1554 gotasync = 1;
1482#endif 1555#endif
1483 1556
1484 ev_ref (EV_A); 1557 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1558 ev_io_stop (EV_A_ &pipe_w);
1486 1559
1487#if EV_USE_EVENTFD 1560#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1561 if (evfd >= 0)
1489 close (evfd); 1562 close (evfd);
1490#endif 1563#endif
1495 close (evpipe [1]); 1568 close (evpipe [1]);
1496 } 1569 }
1497 1570
1498 evpipe_init (EV_A); 1571 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1572 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1573 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1574 }
1502 1575
1503 postfork = 0; 1576 postfork = 0;
1504} 1577}
1505 1578
1701ev_invoke (EV_P_ void *w, int revents) 1774ev_invoke (EV_P_ void *w, int revents)
1702{ 1775{
1703 EV_CB_INVOKE ((W)w, revents); 1776 EV_CB_INVOKE ((W)w, revents);
1704} 1777}
1705 1778
1706void inline_speed 1779inline_speed void
1707call_pending (EV_P) 1780call_pending (EV_P)
1708{ 1781{
1709 int pri; 1782 int pri;
1710 1783
1711 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1713 { 1786 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1788
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1719 1791
1720 p->w->pending = 0; 1792 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1794 EV_FREQUENT_CHECK;
1723 }
1724 } 1795 }
1725} 1796}
1726 1797
1727#if EV_IDLE_ENABLE 1798#if EV_IDLE_ENABLE
1728void inline_size 1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1729idle_reify (EV_P) 1802idle_reify (EV_P)
1730{ 1803{
1731 if (expect_false (idleall)) 1804 if (expect_false (idleall))
1732 { 1805 {
1733 int pri; 1806 int pri;
1745 } 1818 }
1746 } 1819 }
1747} 1820}
1748#endif 1821#endif
1749 1822
1750void inline_size 1823/* make timers pending */
1824inline_size void
1751timers_reify (EV_P) 1825timers_reify (EV_P)
1752{ 1826{
1753 EV_FREQUENT_CHECK; 1827 EV_FREQUENT_CHECK;
1754 1828
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1830 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1831 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1764 ev_at (w) += w->repeat; 1840 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1841 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1842 ev_at (w) = mn_now;
1767 1843
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1845
1770 ANHE_at_cache (timers [HEAP0]); 1846 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1772 } 1854 }
1773 else 1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1856
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1858 }
1779} 1859}
1780 1860
1781#if EV_PERIODIC_ENABLE 1861#if EV_PERIODIC_ENABLE
1782void inline_size 1862/* make periodics pending */
1863inline_size void
1783periodics_reify (EV_P) 1864periodics_reify (EV_P)
1784{ 1865{
1785 EV_FREQUENT_CHECK; 1866 EV_FREQUENT_CHECK;
1786 1867
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 1869 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1870 int feed_count = 0;
1790 1871
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1872 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 1882
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 1884
1800 ANHE_at_cache (periodics [HEAP0]); 1885 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1802 } 1912 }
1803 else if (w->interval) 1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 1914
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 1916 }
1828} 1917}
1829 1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 1921static void noinline
1831periodics_reschedule (EV_P) 1922periodics_reschedule (EV_P)
1832{ 1923{
1833 int i; 1924 int i;
1834 1925
1847 1938
1848 reheap (periodics, periodiccnt); 1939 reheap (periodics, periodiccnt);
1849} 1940}
1850#endif 1941#endif
1851 1942
1852void inline_speed 1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 1960time_update (EV_P_ ev_tstamp max_block)
1854{ 1961{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 1962#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 1963 if (expect_true (have_monotonic))
1859 { 1964 {
1965 int i;
1860 ev_tstamp odiff = rtmn_diff; 1966 ev_tstamp odiff = rtmn_diff;
1861 1967
1862 mn_now = get_clock (); 1968 mn_now = get_clock ();
1863 1969
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 1997 mn_now = get_clock ();
1892 now_floor = mn_now; 1998 now_floor = mn_now;
1893 } 1999 }
1894 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1897# endif 2005# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2006 }
1901 else 2007 else
1902#endif 2008#endif
1903 { 2009 {
1904 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1905 2011
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1910#endif 2018#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2019 }
1919 2020
1920 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1921 } 2022 }
1922}
1923
1924void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940} 2023}
1941 2024
1942static int loop_done; 2025static int loop_done;
1943 2026
1944void 2027void
1978 { 2061 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2063 call_pending (EV_A);
1981 } 2064 }
1982 2065
1983 if (expect_false (!activecnt))
1984 break;
1985
1986 /* we might have forked, so reify kernel state if necessary */ 2066 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2067 if (expect_false (postfork))
1988 loop_fork (EV_A); 2068 loop_fork (EV_A);
1989 2069
1990 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
2069ev_unloop (EV_P_ int how) 2149ev_unloop (EV_P_ int how)
2070{ 2150{
2071 loop_done = how; 2151 loop_done = how;
2072} 2152}
2073 2153
2154void
2155ev_ref (EV_P)
2156{
2157 ++activecnt;
2158}
2159
2160void
2161ev_unref (EV_P)
2162{
2163 --activecnt;
2164}
2165
2166void
2167ev_now_update (EV_P)
2168{
2169 time_update (EV_A_ 1e100);
2170}
2171
2172void
2173ev_suspend (EV_P)
2174{
2175 ev_now_update (EV_A);
2176}
2177
2178void
2179ev_resume (EV_P)
2180{
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185#if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188#endif
2189}
2190
2074/*****************************************************************************/ 2191/*****************************************************************************/
2192/* singly-linked list management, used when the expected list length is short */
2075 2193
2076void inline_size 2194inline_size void
2077wlist_add (WL *head, WL elem) 2195wlist_add (WL *head, WL elem)
2078{ 2196{
2079 elem->next = *head; 2197 elem->next = *head;
2080 *head = elem; 2198 *head = elem;
2081} 2199}
2082 2200
2083void inline_size 2201inline_size void
2084wlist_del (WL *head, WL elem) 2202wlist_del (WL *head, WL elem)
2085{ 2203{
2086 while (*head) 2204 while (*head)
2087 { 2205 {
2088 if (*head == elem) 2206 if (*head == elem)
2093 2211
2094 head = &(*head)->next; 2212 head = &(*head)->next;
2095 } 2213 }
2096} 2214}
2097 2215
2098void inline_speed 2216/* internal, faster, version of ev_clear_pending */
2217inline_speed void
2099clear_pending (EV_P_ W w) 2218clear_pending (EV_P_ W w)
2100{ 2219{
2101 if (w->pending) 2220 if (w->pending)
2102 { 2221 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2223 w->pending = 0;
2105 } 2224 }
2106} 2225}
2107 2226
2108int 2227int
2112 int pending = w_->pending; 2231 int pending = w_->pending;
2113 2232
2114 if (expect_true (pending)) 2233 if (expect_true (pending))
2115 { 2234 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
2117 w_->pending = 0; 2237 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2238 return p->events;
2120 } 2239 }
2121 else 2240 else
2122 return 0; 2241 return 0;
2123} 2242}
2124 2243
2125void inline_size 2244inline_size void
2126pri_adjust (EV_P_ W w) 2245pri_adjust (EV_P_ W w)
2127{ 2246{
2128 int pri = w->priority; 2247 int pri = w->priority;
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2250 w->priority = pri;
2132} 2251}
2133 2252
2134void inline_speed 2253inline_speed void
2135ev_start (EV_P_ W w, int active) 2254ev_start (EV_P_ W w, int active)
2136{ 2255{
2137 pri_adjust (EV_A_ w); 2256 pri_adjust (EV_A_ w);
2138 w->active = active; 2257 w->active = active;
2139 ev_ref (EV_A); 2258 ev_ref (EV_A);
2140} 2259}
2141 2260
2142void inline_size 2261inline_size void
2143ev_stop (EV_P_ W w) 2262ev_stop (EV_P_ W w)
2144{ 2263{
2145 ev_unref (EV_A); 2264 ev_unref (EV_A);
2146 w->active = 0; 2265 w->active = 0;
2147} 2266}
2155 2274
2156 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
2157 return; 2276 return;
2158 2277
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2280
2162 EV_FREQUENT_CHECK; 2281 EV_FREQUENT_CHECK;
2163 2282
2164 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2285 wlist_add (&anfds[fd].head, (WL)w);
2167 2286
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2169 w->events &= ~EV_IOFDSET; 2288 w->events &= ~EV__IOFDSET;
2170 2289
2171 EV_FREQUENT_CHECK; 2290 EV_FREQUENT_CHECK;
2172} 2291}
2173 2292
2174void noinline 2293void noinline
2572 2691
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2694}
2576 2695
2577void inline_size 2696inline_size void
2578check_2625 (EV_P) 2697check_2625 (EV_P)
2579{ 2698{
2580 /* kernels < 2.6.25 are borked 2699 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2701 */
2595 return; 2714 return;
2596 2715
2597 fs_2625 = 1; 2716 fs_2625 = 1;
2598} 2717}
2599 2718
2600void inline_size 2719inline_size void
2601infy_init (EV_P) 2720infy_init (EV_P)
2602{ 2721{
2603 if (fs_fd != -2) 2722 if (fs_fd != -2)
2604 return; 2723 return;
2605 2724
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2734 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2735 ev_io_start (EV_A_ &fs_w);
2617 } 2736 }
2618} 2737}
2619 2738
2620void inline_size 2739inline_size void
2621infy_fork (EV_P) 2740infy_fork (EV_P)
2622{ 2741{
2623 int slot; 2742 int slot;
2624 2743
2625 if (fs_fd < 0) 2744 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3246 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3247 ev_timer_start (EV_A_ &once->to);
3129 } 3248 }
3130} 3249}
3131 3250
3251/*****************************************************************************/
3252
3253#if EV_WALK_ENABLE
3254void
3255ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256{
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
3263 {
3264 wn = wl->next;
3265
3266#if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273#endif
3274#if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278#endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
3284 }
3285
3286 if (types & (EV_TIMER | EV_STAT))
3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288#if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291 {
3292 if (types & EV_STAT)
3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294 }
3295 else
3296#endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299
3300#if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304#endif
3305
3306#if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318#endif
3319
3320#if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324#endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328#if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330#endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354/* EV_STAT 0x00001000 /* stat data changed */
3355/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356}
3357#endif
3358
3132#if EV_MULTIPLICITY 3359#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3360 #include "ev_wrap.h"
3134#endif 3361#endif
3135 3362
3136#ifdef __cplusplus 3363#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines