ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
398 410
399#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
401 413
402#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 422#endif
407 423
408#ifdef _WIN32 424#ifdef _WIN32
409# include "ev_win32.c" 425# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
476 492
477/*****************************************************************************/ 493/*****************************************************************************/
478 494
495/* file descriptor info structure */
479typedef struct 496typedef struct
480{ 497{
481 WL head; 498 WL head;
482 unsigned char events; 499 unsigned char events; /* the events watched for */
483 unsigned char reify; 500 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 502 unsigned char unused;
486#if EV_USE_EPOLL 503#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 504 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 505#endif
489#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 507 SOCKET handle;
491#endif 508#endif
492} ANFD; 509} ANFD;
493 510
511/* stores the pending event set for a given watcher */
494typedef struct 512typedef struct
495{ 513{
496 W w; 514 W w;
497 int events; 515 int events; /* the pending event set for the given watcher */
498} ANPENDING; 516} ANPENDING;
499 517
500#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
502typedef struct 520typedef struct
505} ANFS; 523} ANFS;
506#endif 524#endif
507 525
508/* Heap Entry */ 526/* Heap Entry */
509#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
510 typedef struct { 529 typedef struct {
511 ev_tstamp at; 530 ev_tstamp at;
512 WT w; 531 WT w;
513 } ANHE; 532 } ANHE;
514 533
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 537#else
538 /* a heap element */
519 typedef WT ANHE; 539 typedef WT ANHE;
520 540
521 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
549 569
550#endif 570#endif
551 571
552/*****************************************************************************/ 572/*****************************************************************************/
553 573
574#ifndef EV_HAVE_EV_TIME
554ev_tstamp 575ev_tstamp
555ev_time (void) 576ev_time (void)
556{ 577{
557#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
558 struct timespec ts; 581 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 584 }
585#endif
586
562 struct timeval tv; 587 struct timeval tv;
563 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 590}
591#endif
567 592
568ev_tstamp inline_size 593inline_size ev_tstamp
569get_clock (void) 594get_clock (void)
570{ 595{
571#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
573 { 598 {
607 632
608 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 635
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 637 /* somehting not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 638 /* by older ones */
614 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
615#endif 640#endif
616 } 641 }
617} 642}
618 643
619/*****************************************************************************/ 644/*****************************************************************************/
620 645
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 647
623int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
624array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
625{ 652{
626 int ncur = cur + 1; 653 int ncur = cur + 1;
627 654
628 do 655 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 697 }
671#endif 698#endif
672 699
673#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 702
676/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
677 710
678void noinline 711void noinline
679ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
680{ 713{
681 W w_ = (W)w; 714 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
692 } 725 }
693} 726}
694 727
695void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 745{
698 int i; 746 int i;
699 747
700 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
702} 750}
703 751
704/*****************************************************************************/ 752/*****************************************************************************/
705 753
706void inline_speed 754inline_speed void
707fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
708{ 756{
709 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
710 ev_io *w; 758 ev_io *w;
711 759
723{ 771{
724 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
726} 774}
727 775
728void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
729fd_reify (EV_P) 779fd_reify (EV_P)
730{ 780{
731 int i; 781 int i;
732 782
733 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
760 810
761 anfd->reify = 0; 811 anfd->reify = 0;
762 anfd->events = events; 812 anfd->events = events;
763 813
764 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
766 } 816 }
767 } 817 }
768 818
769 fdchangecnt = 0; 819 fdchangecnt = 0;
770} 820}
771 821
772void inline_size 822/* something about the given fd changed */
823inline_size void
773fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
774{ 825{
775 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
777 828
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
783 } 834 }
784} 835}
785 836
786void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
787fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
788{ 840{
789 ev_io *w; 841 ev_io *w;
790 842
791 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 847 }
796} 848}
797 849
798int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
799fd_valid (int fd) 852fd_valid (int fd)
800{ 853{
801#ifdef _WIN32 854#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
803#else 856#else
840 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 894 if (anfds [fd].events)
842 { 895 {
843 anfds [fd].events = 0; 896 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 897 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 899 }
847} 900}
848 901
849/*****************************************************************************/ 902/*****************************************************************************/
850 903
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 921#define UPHEAP_DONE(p,k) ((p) == (k))
869 922
870/* away from the root */ 923/* away from the root */
871void inline_speed 924inline_speed void
872downheap (ANHE *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
873{ 926{
874 ANHE he = heap [k]; 927 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 928 ANHE *E = heap + N + HEAP0;
876 929
916#define HEAP0 1 969#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 970#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 971#define UPHEAP_DONE(p,k) (!(p))
919 972
920/* away from the root */ 973/* away from the root */
921void inline_speed 974inline_speed void
922downheap (ANHE *heap, int N, int k) 975downheap (ANHE *heap, int N, int k)
923{ 976{
924 ANHE he = heap [k]; 977 ANHE he = heap [k];
925 978
926 for (;;) 979 for (;;)
946 ev_active (ANHE_w (he)) = k; 999 ev_active (ANHE_w (he)) = k;
947} 1000}
948#endif 1001#endif
949 1002
950/* towards the root */ 1003/* towards the root */
951void inline_speed 1004inline_speed void
952upheap (ANHE *heap, int k) 1005upheap (ANHE *heap, int k)
953{ 1006{
954 ANHE he = heap [k]; 1007 ANHE he = heap [k];
955 1008
956 for (;;) 1009 for (;;)
967 1020
968 heap [k] = he; 1021 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1022 ev_active (ANHE_w (he)) = k;
970} 1023}
971 1024
972void inline_size 1025/* move an element suitably so it is in a correct place */
1026inline_size void
973adjustheap (ANHE *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
974{ 1028{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1030 upheap (heap, k);
977 else 1031 else
978 downheap (heap, N, k); 1032 downheap (heap, N, k);
979} 1033}
980 1034
981/* rebuild the heap: this function is used only once and executed rarely */ 1035/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1036inline_size void
983reheap (ANHE *heap, int N) 1037reheap (ANHE *heap, int N)
984{ 1038{
985 int i; 1039 int i;
986 1040
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1044 upheap (heap, i + HEAP0);
991} 1045}
992 1046
993/*****************************************************************************/ 1047/*****************************************************************************/
994 1048
1049/* associate signal watchers to a signal signal */
995typedef struct 1050typedef struct
996{ 1051{
997 WL head; 1052 WL head;
998 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
999} ANSIG; 1054} ANSIG;
1003 1058
1004static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
1005 1060
1006/*****************************************************************************/ 1061/*****************************************************************************/
1007 1062
1008void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
1009fd_intern (int fd) 1066fd_intern (int fd)
1010{ 1067{
1011#ifdef _WIN32 1068#ifdef _WIN32
1012 unsigned long arg = 1; 1069 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1075}
1019 1076
1020static void noinline 1077static void noinline
1021evpipe_init (EV_P) 1078evpipe_init (EV_P)
1022{ 1079{
1023 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
1024 { 1081 {
1025#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1084 {
1028 evpipe [0] = -1; 1085 evpipe [0] = -1;
1029 fd_intern (evfd); 1086 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1088 }
1032 else 1089 else
1033#endif 1090#endif
1034 { 1091 {
1035 while (pipe (evpipe)) 1092 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
1037 1094
1038 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1098 }
1042 1099
1043 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1102 }
1046} 1103}
1047 1104
1048void inline_size 1105inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1107{
1051 if (!*flag) 1108 if (!*flag)
1052 { 1109 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
1066 1123
1067 errno = old_errno; 1124 errno = old_errno;
1068 } 1125 }
1069} 1126}
1070 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1071static void 1130static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1132{
1074#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1134 if (evfd >= 0)
1157 1216
1158#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1160#endif 1219#endif
1161 1220
1162void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1164{ 1224{
1165 ev_child *w; 1225 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1227
1180 1240
1181#ifndef WCONTINUED 1241#ifndef WCONTINUED
1182# define WCONTINUED 0 1242# define WCONTINUED 0
1183#endif 1243#endif
1184 1244
1245/* called on sigchld etc., calls waitpid */
1185static void 1246static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1248{
1188 int pid, status; 1249 int pid, status;
1189 1250
1302ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1303{ 1364{
1304 return loop_count; 1365 return loop_count;
1305} 1366}
1306 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1307void 1374void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1376{
1310 io_blocktime = interval; 1377 io_blocktime = interval;
1311} 1378}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1382{
1316 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1317} 1384}
1318 1385
1386/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1387static void noinline
1320loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1321{ 1389{
1322 if (!backend) 1390 if (!backend)
1323 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1324#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1325 { 1404 {
1326 struct timespec ts; 1405 struct timespec ts;
1406
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1408 have_monotonic = 1;
1329 } 1409 }
1330#endif 1410#endif
1331 1411
1332 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1413 mn_now = get_clock ();
1334 now_floor = mn_now; 1414 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1336 1417
1337 io_blocktime = 0.; 1418 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1419 timeout_blocktime = 0.;
1339 backend = 0; 1420 backend = 0;
1340 backend_fd = -1; 1421 backend_fd = -1;
1371#endif 1452#endif
1372#if EV_USE_SELECT 1453#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1455#endif
1375 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1376 ev_init (&pipeev, pipecb); 1459 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1461 }
1379} 1462}
1380 1463
1464/* free up a loop structure */
1381static void noinline 1465static void noinline
1382loop_destroy (EV_P) 1466loop_destroy (EV_P)
1383{ 1467{
1384 int i; 1468 int i;
1385 1469
1386 if (ev_is_active (&pipeev)) 1470 if (ev_is_active (&pipe_w))
1387 { 1471 {
1388 ev_ref (EV_A); /* signal watcher */ 1472 ev_ref (EV_A); /* signal watcher */
1389 ev_io_stop (EV_A_ &pipeev); 1473 ev_io_stop (EV_A_ &pipe_w);
1390 1474
1391#if EV_USE_EVENTFD 1475#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1476 if (evfd >= 0)
1393 close (evfd); 1477 close (evfd);
1394#endif 1478#endif
1433 } 1517 }
1434 1518
1435 ev_free (anfds); anfdmax = 0; 1519 ev_free (anfds); anfdmax = 0;
1436 1520
1437 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1523 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1524 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1525#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1526 array_free (periodic, EMPTY);
1442#endif 1527#endif
1451 1536
1452 backend = 0; 1537 backend = 0;
1453} 1538}
1454 1539
1455#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1541inline_size void infy_fork (EV_P);
1457#endif 1542#endif
1458 1543
1459void inline_size 1544inline_size void
1460loop_fork (EV_P) 1545loop_fork (EV_P)
1461{ 1546{
1462#if EV_USE_PORT 1547#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1549#endif
1470#endif 1555#endif
1471#if EV_USE_INOTIFY 1556#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1557 infy_fork (EV_A);
1473#endif 1558#endif
1474 1559
1475 if (ev_is_active (&pipeev)) 1560 if (ev_is_active (&pipe_w))
1476 { 1561 {
1477 /* this "locks" the handlers against writing to the pipe */ 1562 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1563 /* while we modify the fd vars */
1479 gotsig = 1; 1564 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1565#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1566 gotasync = 1;
1482#endif 1567#endif
1483 1568
1484 ev_ref (EV_A); 1569 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1570 ev_io_stop (EV_A_ &pipe_w);
1486 1571
1487#if EV_USE_EVENTFD 1572#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1573 if (evfd >= 0)
1489 close (evfd); 1574 close (evfd);
1490#endif 1575#endif
1495 close (evpipe [1]); 1580 close (evpipe [1]);
1496 } 1581 }
1497 1582
1498 evpipe_init (EV_A); 1583 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1584 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1585 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1586 }
1502 1587
1503 postfork = 0; 1588 postfork = 0;
1504} 1589}
1505 1590
1701ev_invoke (EV_P_ void *w, int revents) 1786ev_invoke (EV_P_ void *w, int revents)
1702{ 1787{
1703 EV_CB_INVOKE ((W)w, revents); 1788 EV_CB_INVOKE ((W)w, revents);
1704} 1789}
1705 1790
1706void inline_speed 1791void
1707call_pending (EV_P) 1792ev_invoke_pending (EV_P)
1708{ 1793{
1709 int pri; 1794 int pri;
1710 1795
1711 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1713 { 1798 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1800
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1719 1803
1720 p->w->pending = 0; 1804 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1806 EV_FREQUENT_CHECK;
1723 }
1724 } 1807 }
1725} 1808}
1726 1809
1727#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1728void inline_size 1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1729idle_reify (EV_P) 1814idle_reify (EV_P)
1730{ 1815{
1731 if (expect_false (idleall)) 1816 if (expect_false (idleall))
1732 { 1817 {
1733 int pri; 1818 int pri;
1745 } 1830 }
1746 } 1831 }
1747} 1832}
1748#endif 1833#endif
1749 1834
1750void inline_size 1835/* make timers pending */
1836inline_size void
1751timers_reify (EV_P) 1837timers_reify (EV_P)
1752{ 1838{
1753 EV_FREQUENT_CHECK; 1839 EV_FREQUENT_CHECK;
1754 1840
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1842 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1843 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1764 ev_at (w) += w->repeat; 1852 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1853 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1854 ev_at (w) = mn_now;
1767 1855
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1857
1770 ANHE_at_cache (timers [HEAP0]); 1858 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1772 } 1866 }
1773 else 1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1868
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1870 }
1779} 1871}
1780 1872
1781#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1782void inline_size 1874/* make periodics pending */
1875inline_size void
1783periodics_reify (EV_P) 1876periodics_reify (EV_P)
1784{ 1877{
1785 EV_FREQUENT_CHECK; 1878 EV_FREQUENT_CHECK;
1786 1879
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 1881 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1882 int feed_count = 0;
1790 1883
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1884 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 1894
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 1896
1800 ANHE_at_cache (periodics [HEAP0]); 1897 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1802 } 1924 }
1803 else if (w->interval) 1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 1926
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 1928 }
1828} 1929}
1829 1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 1933static void noinline
1831periodics_reschedule (EV_P) 1934periodics_reschedule (EV_P)
1832{ 1935{
1833 int i; 1936 int i;
1834 1937
1847 1950
1848 reheap (periodics, periodiccnt); 1951 reheap (periodics, periodiccnt);
1849} 1952}
1850#endif 1953#endif
1851 1954
1852void inline_speed 1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 1972time_update (EV_P_ ev_tstamp max_block)
1854{ 1973{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 1974#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 1975 if (expect_true (have_monotonic))
1859 { 1976 {
1977 int i;
1860 ev_tstamp odiff = rtmn_diff; 1978 ev_tstamp odiff = rtmn_diff;
1861 1979
1862 mn_now = get_clock (); 1980 mn_now = get_clock ();
1863 1981
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2009 mn_now = get_clock ();
1892 now_floor = mn_now; 2010 now_floor = mn_now;
1893 } 2011 }
1894 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2015# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2016 periodics_reschedule (EV_A);
1897# endif 2017# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2018 }
1901 else 2019 else
1902#endif 2020#endif
1903 { 2021 {
1904 ev_rt_now = ev_time (); 2022 ev_rt_now = ev_time ();
1905 2023
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1910#endif 2030#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2031 }
1919 2032
1920 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1921 } 2034 }
1922} 2035}
1923 2036
1924void 2037void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1946{ 2039{
2040 ++loop_depth;
2041
1947 loop_done = EVUNLOOP_CANCEL; 2042 loop_done = EVUNLOOP_CANCEL;
1948 2043
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1950 2045
1951 do 2046 do
1952 { 2047 {
1953#if EV_VERIFY >= 2 2048#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2049 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2062 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2063 if (expect_false (postfork))
1969 if (forkcnt) 2064 if (forkcnt)
1970 { 2065 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2067 invoke_cb (EV_A);
1973 } 2068 }
1974#endif 2069#endif
1975 2070
1976 /* queue prepare watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1978 { 2073 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2075 invoke_cb (EV_A);
1981 } 2076 }
1982
1983 if (expect_false (!activecnt))
1984 break;
1985 2077
1986 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1988 loop_fork (EV_A); 2080 loop_fork (EV_A);
1989 2081
1995 ev_tstamp waittime = 0.; 2087 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2088 ev_tstamp sleeptime = 0.;
1997 2089
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
2000 /* update time to cancel out callback processing overhead */ 2095 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2096 time_update (EV_A_ 1e100);
2002 2097
2003 waittime = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
2004 2099
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2110 if (waittime > to) waittime = to;
2016 } 2111 }
2017#endif 2112#endif
2018 2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2115 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2116 waittime = timeout_blocktime;
2021 2117
2022 sleeptime = waittime - backend_fudge; 2118 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2119 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2029 ev_sleep (sleeptime); 2128 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2129 waittime -= sleeptime;
2130 }
2031 } 2131 }
2032 } 2132 }
2033 2133
2034 ++loop_count; 2134 ++loop_count;
2035 backend_poll (EV_A_ waittime); 2135 backend_poll (EV_A_ waittime);
2051 2151
2052 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2155
2056 call_pending (EV_A); 2156 invoke_cb (EV_A);
2057 } 2157 }
2058 while (expect_true ( 2158 while (expect_true (
2059 activecnt 2159 activecnt
2060 && !loop_done 2160 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2162 ));
2063 2163
2064 if (loop_done == EVUNLOOP_ONE) 2164 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
2066} 2168}
2067 2169
2068void 2170void
2069ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
2070{ 2172{
2071 loop_done = how; 2173 loop_done = how;
2072} 2174}
2073 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
2074/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
2075 2215
2076void inline_size 2216inline_size void
2077wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
2078{ 2218{
2079 elem->next = *head; 2219 elem->next = *head;
2080 *head = elem; 2220 *head = elem;
2081} 2221}
2082 2222
2083void inline_size 2223inline_size void
2084wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
2085{ 2225{
2086 while (*head) 2226 while (*head)
2087 { 2227 {
2088 if (*head == elem) 2228 if (*head == elem)
2093 2233
2094 head = &(*head)->next; 2234 head = &(*head)->next;
2095 } 2235 }
2096} 2236}
2097 2237
2098void inline_speed 2238/* internal, faster, version of ev_clear_pending */
2239inline_speed void
2099clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
2100{ 2241{
2101 if (w->pending) 2242 if (w->pending)
2102 { 2243 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2245 w->pending = 0;
2105 } 2246 }
2106} 2247}
2107 2248
2108int 2249int
2112 int pending = w_->pending; 2253 int pending = w_->pending;
2113 2254
2114 if (expect_true (pending)) 2255 if (expect_true (pending))
2115 { 2256 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2117 w_->pending = 0; 2259 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2260 return p->events;
2120 } 2261 }
2121 else 2262 else
2122 return 0; 2263 return 0;
2123} 2264}
2124 2265
2125void inline_size 2266inline_size void
2126pri_adjust (EV_P_ W w) 2267pri_adjust (EV_P_ W w)
2127{ 2268{
2128 int pri = w->priority; 2269 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2272 ev_set_priority (w, pri);
2132} 2273}
2133 2274
2134void inline_speed 2275inline_speed void
2135ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
2136{ 2277{
2137 pri_adjust (EV_A_ w); 2278 pri_adjust (EV_A_ w);
2138 w->active = active; 2279 w->active = active;
2139 ev_ref (EV_A); 2280 ev_ref (EV_A);
2140} 2281}
2141 2282
2142void inline_size 2283inline_size void
2143ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
2144{ 2285{
2145 ev_unref (EV_A); 2286 ev_unref (EV_A);
2146 w->active = 0; 2287 w->active = 0;
2147} 2288}
2155 2296
2156 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
2157 return; 2298 return;
2158 2299
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2302
2162 EV_FREQUENT_CHECK; 2303 EV_FREQUENT_CHECK;
2163 2304
2164 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
2167 2308
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2169 w->events &= ~EV_IOFDSET; 2310 w->events &= ~EV__IOFDSET;
2170 2311
2171 EV_FREQUENT_CHECK; 2312 EV_FREQUENT_CHECK;
2172} 2313}
2173 2314
2174void noinline 2315void noinline
2572 2713
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2716}
2576 2717
2577void inline_size 2718inline_size void
2578check_2625 (EV_P) 2719check_2625 (EV_P)
2579{ 2720{
2580 /* kernels < 2.6.25 are borked 2721 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2723 */
2595 return; 2736 return;
2596 2737
2597 fs_2625 = 1; 2738 fs_2625 = 1;
2598} 2739}
2599 2740
2600void inline_size 2741inline_size void
2601infy_init (EV_P) 2742infy_init (EV_P)
2602{ 2743{
2603 if (fs_fd != -2) 2744 if (fs_fd != -2)
2604 return; 2745 return;
2605 2746
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2756 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2757 ev_io_start (EV_A_ &fs_w);
2617 } 2758 }
2618} 2759}
2619 2760
2620void inline_size 2761inline_size void
2621infy_fork (EV_P) 2762infy_fork (EV_P)
2622{ 2763{
2623 int slot; 2764 int slot;
2624 2765
2625 if (fs_fd < 0) 2766 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
3129 } 3270 }
3130} 3271}
3131 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
3132#if EV_MULTIPLICITY 3381#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3382 #include "ev_wrap.h"
3134#endif 3383#endif
3135 3384
3136#ifdef __cplusplus 3385#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines