ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
176# endif 186# endif
177#endif 187#endif
178 188
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
180 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
181#ifndef EV_USE_CLOCK_SYSCALL 225#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 226# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 227# define EV_USE_CLOCK_SYSCALL 1
184# else 228# else
185# define EV_USE_CLOCK_SYSCALL 0 229# define EV_USE_CLOCK_SYSCALL 0
193# define EV_USE_MONOTONIC 0 237# define EV_USE_MONOTONIC 0
194# endif 238# endif
195#endif 239#endif
196 240
197#ifndef EV_USE_REALTIME 241#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 243#endif
200 244
201#ifndef EV_USE_NANOSLEEP 245#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 246# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 247# define EV_USE_NANOSLEEP 1
264# else 308# else
265# define EV_USE_EVENTFD 0 309# define EV_USE_EVENTFD 0
266# endif 310# endif
267#endif 311#endif
268 312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
269#if 0 /* debugging */ 321#if 0 /* debugging */
270# define EV_VERIFY 3 322# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 323# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 324# define EV_HEAP_CACHE_AT 1
273#endif 325#endif
280# define EV_USE_4HEAP !EV_MINIMAL 332# define EV_USE_4HEAP !EV_MINIMAL
281#endif 333#endif
282 334
283#ifndef EV_HEAP_CACHE_AT 335#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
285#endif 351#endif
286 352
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 354
289#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
320 386
321#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 388# include <winsock.h>
323#endif 389#endif
324 390
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 391#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
337# ifdef __cplusplus 400# ifdef __cplusplus
338extern "C" { 401extern "C" {
339# endif 402# endif
340int eventfd (unsigned int initval, int flags); 403int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 404# ifdef __cplusplus
342} 405}
343# endif 406# endif
407#endif
408
409#if EV_USE_SIGNALFD
410# include <sys/signalfd.h>
344#endif 411#endif
345 412
346/**/ 413/**/
347 414
348#if EV_VERIFY >= 3 415#if EV_VERIFY >= 3
384# define inline_speed static noinline 451# define inline_speed static noinline
385#else 452#else
386# define inline_speed static inline 453# define inline_speed static inline
387#endif 454#endif
388 455
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
391 463
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 464#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 465#define EMPTY2(a,b) /* used to suppress some warnings */
394 466
395typedef ev_watcher *W; 467typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
398 470
399#define ev_active(w) ((W)(w))->active 471#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 472#define ev_at(w) ((WT)(w))->at
401 473
402#if EV_USE_MONOTONIC 474#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 482#endif
407 483
408#ifdef _WIN32 484#ifdef _WIN32
409# include "ev_win32.c" 485# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
476 552
477/*****************************************************************************/ 553/*****************************************************************************/
478 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
479typedef struct 559typedef struct
480{ 560{
481 WL head; 561 WL head;
482 unsigned char events; 562 unsigned char events; /* the events watched for */
483 unsigned char reify; 563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 565 unsigned char unused;
486#if EV_USE_EPOLL 566#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 567 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 568#endif
489#if EV_SELECT_IS_WINSOCKET 569#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 570 SOCKET handle;
491#endif 571#endif
492} ANFD; 572} ANFD;
493 573
574/* stores the pending event set for a given watcher */
494typedef struct 575typedef struct
495{ 576{
496 W w; 577 W w;
497 int events; 578 int events; /* the pending event set for the given watcher */
498} ANPENDING; 579} ANPENDING;
499 580
500#if EV_USE_INOTIFY 581#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 582/* hash table entry per inotify-id */
502typedef struct 583typedef struct
505} ANFS; 586} ANFS;
506#endif 587#endif
507 588
508/* Heap Entry */ 589/* Heap Entry */
509#if EV_HEAP_CACHE_AT 590#if EV_HEAP_CACHE_AT
591 /* a heap element */
510 typedef struct { 592 typedef struct {
511 ev_tstamp at; 593 ev_tstamp at;
512 WT w; 594 WT w;
513 } ANHE; 595 } ANHE;
514 596
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 597 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 598 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 600#else
601 /* a heap element */
519 typedef WT ANHE; 602 typedef WT ANHE;
520 603
521 #define ANHE_w(he) (he) 604 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 605 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 606 #define ANHE_at_cache(he)
547 630
548 static int ev_default_loop_ptr; 631 static int ev_default_loop_ptr;
549 632
550#endif 633#endif
551 634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
552/*****************************************************************************/ 647/*****************************************************************************/
553 648
649#ifndef EV_HAVE_EV_TIME
554ev_tstamp 650ev_tstamp
555ev_time (void) 651ev_time (void)
556{ 652{
557#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
558 struct timespec ts; 656 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 659 }
660#endif
661
562 struct timeval tv; 662 struct timeval tv;
563 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 665}
666#endif
567 667
568ev_tstamp inline_size 668inline_size ev_tstamp
569get_clock (void) 669get_clock (void)
570{ 670{
571#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
573 { 673 {
607 707
608 tv.tv_sec = (time_t)delay; 708 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 710
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 712 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 713 /* by older ones */
614 select (0, 0, 0, 0, &tv); 714 select (0, 0, 0, 0, &tv);
615#endif 715#endif
616 } 716 }
617} 717}
618 718
619/*****************************************************************************/ 719/*****************************************************************************/
620 720
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 722
623int inline_size 723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
624array_nextsize (int elem, int cur, int cnt) 726array_nextsize (int elem, int cur, int cnt)
625{ 727{
626 int ncur = cur + 1; 728 int ncur = cur + 1;
627 729
628 do 730 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 772 }
671#endif 773#endif
672 774
673#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 777
676/*****************************************************************************/ 778/*****************************************************************************/
779
780/* dummy callback for pending events */
781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
783{
784}
677 785
678void noinline 786void noinline
679ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
680{ 788{
681 W w_ = (W)w; 789 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 798 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 799 pendings [pri][w_->pending - 1].events = revents;
692 } 800 }
693} 801}
694 802
695void inline_speed 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 820{
698 int i; 821 int i;
699 822
700 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
702} 825}
703 826
704/*****************************************************************************/ 827/*****************************************************************************/
705 828
706void inline_speed 829inline_speed void
707fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
708{ 831{
709 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
710 ev_io *w; 833 ev_io *w;
711 834
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 839 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
718 } 841 }
719} 842}
720 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
721void 855void
722ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 857{
724 if (fd >= 0 && fd < anfdmax) 858 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
726} 860}
727 861
728void inline_size 862/* make sure the external fd watch events are in-sync */
863/* with the kernel/libev internal state */
864inline_size void
729fd_reify (EV_P) 865fd_reify (EV_P)
730{ 866{
731 int i; 867 int i;
732 868
733 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 895 unsigned char o_reify = anfd->reify;
760 896
761 anfd->reify = 0; 897 anfd->reify = 0;
762 anfd->events = events; 898 anfd->events = events;
763 899
764 if (o_events != events || o_reify & EV_IOFDSET) 900 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 901 backend_modify (EV_A_ fd, o_events, events);
766 } 902 }
767 } 903 }
768 904
769 fdchangecnt = 0; 905 fdchangecnt = 0;
770} 906}
771 907
772void inline_size 908/* something about the given fd changed */
909inline_size void
773fd_change (EV_P_ int fd, int flags) 910fd_change (EV_P_ int fd, int flags)
774{ 911{
775 unsigned char reify = anfds [fd].reify; 912 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 913 anfds [fd].reify |= flags;
777 914
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
783 } 920 }
784} 921}
785 922
786void inline_speed 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
787fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
788{ 926{
789 ev_io *w; 927 ev_io *w;
790 928
791 while ((w = (ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 933 }
796} 934}
797 935
798int inline_size 936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
799fd_valid (int fd) 938fd_valid (int fd)
800{ 939{
801#ifdef _WIN32 940#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 941 return _get_osfhandle (fd) != -1;
803#else 942#else
840 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 980 if (anfds [fd].events)
842 { 981 {
843 anfds [fd].events = 0; 982 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 983 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 985 }
847} 986}
848 987
849/*****************************************************************************/ 988/*****************************************************************************/
850 989
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1007#define UPHEAP_DONE(p,k) ((p) == (k))
869 1008
870/* away from the root */ 1009/* away from the root */
871void inline_speed 1010inline_speed void
872downheap (ANHE *heap, int N, int k) 1011downheap (ANHE *heap, int N, int k)
873{ 1012{
874 ANHE he = heap [k]; 1013 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1014 ANHE *E = heap + N + HEAP0;
876 1015
916#define HEAP0 1 1055#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1056#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1057#define UPHEAP_DONE(p,k) (!(p))
919 1058
920/* away from the root */ 1059/* away from the root */
921void inline_speed 1060inline_speed void
922downheap (ANHE *heap, int N, int k) 1061downheap (ANHE *heap, int N, int k)
923{ 1062{
924 ANHE he = heap [k]; 1063 ANHE he = heap [k];
925 1064
926 for (;;) 1065 for (;;)
946 ev_active (ANHE_w (he)) = k; 1085 ev_active (ANHE_w (he)) = k;
947} 1086}
948#endif 1087#endif
949 1088
950/* towards the root */ 1089/* towards the root */
951void inline_speed 1090inline_speed void
952upheap (ANHE *heap, int k) 1091upheap (ANHE *heap, int k)
953{ 1092{
954 ANHE he = heap [k]; 1093 ANHE he = heap [k];
955 1094
956 for (;;) 1095 for (;;)
967 1106
968 heap [k] = he; 1107 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1108 ev_active (ANHE_w (he)) = k;
970} 1109}
971 1110
972void inline_size 1111/* move an element suitably so it is in a correct place */
1112inline_size void
973adjustheap (ANHE *heap, int N, int k) 1113adjustheap (ANHE *heap, int N, int k)
974{ 1114{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1116 upheap (heap, k);
977 else 1117 else
978 downheap (heap, N, k); 1118 downheap (heap, N, k);
979} 1119}
980 1120
981/* rebuild the heap: this function is used only once and executed rarely */ 1121/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1122inline_size void
983reheap (ANHE *heap, int N) 1123reheap (ANHE *heap, int N)
984{ 1124{
985 int i; 1125 int i;
986 1126
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1130 upheap (heap, i + HEAP0);
991} 1131}
992 1132
993/*****************************************************************************/ 1133/*****************************************************************************/
994 1134
1135/* associate signal watchers to a signal signal */
995typedef struct 1136typedef struct
996{ 1137{
997 WL head; 1138 WL head;
998 EV_ATOMIC_T gotsig; 1139 EV_ATOMIC_T gotsig;
999} ANSIG; 1140} ANSIG;
1003 1144
1004static EV_ATOMIC_T gotsig; 1145static EV_ATOMIC_T gotsig;
1005 1146
1006/*****************************************************************************/ 1147/*****************************************************************************/
1007 1148
1008void inline_speed 1149/* used to prepare libev internal fd's */
1150/* this is not fork-safe */
1151inline_speed void
1009fd_intern (int fd) 1152fd_intern (int fd)
1010{ 1153{
1011#ifdef _WIN32 1154#ifdef _WIN32
1012 unsigned long arg = 1; 1155 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1161}
1019 1162
1020static void noinline 1163static void noinline
1021evpipe_init (EV_P) 1164evpipe_init (EV_P)
1022{ 1165{
1023 if (!ev_is_active (&pipeev)) 1166 if (!ev_is_active (&pipe_w))
1024 { 1167 {
1025#if EV_USE_EVENTFD 1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1027 { 1174 {
1028 evpipe [0] = -1; 1175 evpipe [0] = -1;
1029 fd_intern (evfd); 1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1177 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1178 }
1032 else 1179 else
1033#endif 1180#endif
1034 { 1181 {
1035 while (pipe (evpipe)) 1182 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1183 ev_syserr ("(libev) error creating signal/async pipe");
1037 1184
1038 fd_intern (evpipe [0]); 1185 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1186 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1188 }
1042 1189
1043 ev_io_start (EV_A_ &pipeev); 1190 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1192 }
1046} 1193}
1047 1194
1048void inline_size 1195inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1197{
1051 if (!*flag) 1198 if (!*flag)
1052 { 1199 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1200 int old_errno = errno; /* save errno because write might clobber it */
1066 1213
1067 errno = old_errno; 1214 errno = old_errno;
1068 } 1215 }
1069} 1216}
1070 1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
1071static void 1220static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1221pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1222{
1074#if EV_USE_EVENTFD 1223#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1224 if (evfd >= 0)
1145 1294
1146 for (w = signals [signum].head; w; w = w->next) 1295 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1297}
1149 1298
1299#if EV_USE_SIGNALFD
1300static void
1301sigfdcb (EV_P_ ev_io *iow, int revents)
1302{
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316}
1317#endif
1318
1150/*****************************************************************************/ 1319/*****************************************************************************/
1151 1320
1152static WL childs [EV_PID_HASHSIZE]; 1321static WL childs [EV_PID_HASHSIZE];
1153 1322
1154#ifndef _WIN32 1323#ifndef _WIN32
1157 1326
1158#ifndef WIFCONTINUED 1327#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1328# define WIFCONTINUED(status) 0
1160#endif 1329#endif
1161 1330
1162void inline_speed 1331/* handle a single child status event */
1332inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1333child_reap (EV_P_ int chain, int pid, int status)
1164{ 1334{
1165 ev_child *w; 1335 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1337
1180 1350
1181#ifndef WCONTINUED 1351#ifndef WCONTINUED
1182# define WCONTINUED 0 1352# define WCONTINUED 0
1183#endif 1353#endif
1184 1354
1355/* called on sigchld etc., calls waitpid */
1185static void 1356static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1358{
1188 int pid, status; 1359 int pid, status;
1189 1360
1296ev_backend (EV_P) 1467ev_backend (EV_P)
1297{ 1468{
1298 return backend; 1469 return backend;
1299} 1470}
1300 1471
1472#if EV_MINIMAL < 2
1301unsigned int 1473unsigned int
1302ev_loop_count (EV_P) 1474ev_loop_count (EV_P)
1303{ 1475{
1304 return loop_count; 1476 return loop_count;
1305} 1477}
1306 1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1307void 1485void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1487{
1310 io_blocktime = interval; 1488 io_blocktime = interval;
1311} 1489}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1493{
1316 timeout_blocktime = interval; 1494 timeout_blocktime = interval;
1317} 1495}
1318 1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1522static void noinline
1320loop_init (EV_P_ unsigned int flags) 1523loop_init (EV_P_ unsigned int flags)
1321{ 1524{
1322 if (!backend) 1525 if (!backend)
1323 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
1324#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
1325 { 1539 {
1326 struct timespec ts; 1540 struct timespec ts;
1541
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1543 have_monotonic = 1;
1329 } 1544 }
1330#endif 1545#endif
1331 1546
1332 ev_rt_now = ev_time (); 1547 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1548 mn_now = get_clock ();
1334 now_floor = mn_now; 1549 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1336 1554
1337 io_blocktime = 0.; 1555 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1556 timeout_blocktime = 0.;
1339 backend = 0; 1557 backend = 0;
1340 backend_fd = -1; 1558 backend_fd = -1;
1341 gotasync = 0; 1559 gotasync = 0;
1342#if EV_USE_INOTIFY 1560#if EV_USE_INOTIFY
1343 fs_fd = -2; 1561 fs_fd = -2;
1344#endif 1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
1345 1566
1346 /* pid check not overridable via env */ 1567 /* pid check not overridable via env */
1347#ifndef _WIN32 1568#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK) 1569 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid (); 1570 curpid = getpid ();
1371#endif 1592#endif
1372#if EV_USE_SELECT 1593#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1595#endif
1375 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1376 ev_init (&pipeev, pipecb); 1599 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1601 }
1379} 1602}
1380 1603
1604/* free up a loop structure */
1381static void noinline 1605static void noinline
1382loop_destroy (EV_P) 1606loop_destroy (EV_P)
1383{ 1607{
1384 int i; 1608 int i;
1385 1609
1386 if (ev_is_active (&pipeev)) 1610 if (ev_is_active (&pipe_w))
1387 { 1611 {
1388 ev_ref (EV_A); /* signal watcher */ 1612 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 1614
1391#if EV_USE_EVENTFD 1615#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1616 if (evfd >= 0)
1393 close (evfd); 1617 close (evfd);
1394#endif 1618#endif
1398 close (evpipe [0]); 1622 close (evpipe [0]);
1399 close (evpipe [1]); 1623 close (evpipe [1]);
1400 } 1624 }
1401 } 1625 }
1402 1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1403#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1405 close (fs_fd); 1639 close (fs_fd);
1406#endif 1640#endif
1407 1641
1430#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1431 array_free (idle, [i]); 1665 array_free (idle, [i]);
1432#endif 1666#endif
1433 } 1667 }
1434 1668
1435 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1436 1670
1437 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1442#endif 1677#endif
1451 1686
1452 backend = 0; 1687 backend = 0;
1453} 1688}
1454 1689
1455#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1457#endif 1692#endif
1458 1693
1459void inline_size 1694inline_size void
1460loop_fork (EV_P) 1695loop_fork (EV_P)
1461{ 1696{
1462#if EV_USE_PORT 1697#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1699#endif
1470#endif 1705#endif
1471#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1707 infy_fork (EV_A);
1473#endif 1708#endif
1474 1709
1475 if (ev_is_active (&pipeev)) 1710 if (ev_is_active (&pipe_w))
1476 { 1711 {
1477 /* this "locks" the handlers against writing to the pipe */ 1712 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1713 /* while we modify the fd vars */
1479 gotsig = 1; 1714 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1715#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1716 gotasync = 1;
1482#endif 1717#endif
1483 1718
1484 ev_ref (EV_A); 1719 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1720 ev_io_stop (EV_A_ &pipe_w);
1486 1721
1487#if EV_USE_EVENTFD 1722#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1723 if (evfd >= 0)
1489 close (evfd); 1724 close (evfd);
1490#endif 1725#endif
1495 close (evpipe [1]); 1730 close (evpipe [1]);
1496 } 1731 }
1497 1732
1498 evpipe_init (EV_A); 1733 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1734 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1736 }
1502 1737
1503 postfork = 0; 1738 postfork = 0;
1504} 1739}
1505 1740
1509ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1510{ 1745{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 1747
1513 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (loop, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1516 1750
1517 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1518 return loop; 1752 return loop;
1519 1753
1530void 1764void
1531ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1532{ 1766{
1533 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1534} 1768}
1769#endif /* multiplicity */
1535 1770
1536#if EV_VERIFY 1771#if EV_VERIFY
1537static void noinline 1772static void noinline
1538verify_watcher (EV_P_ W w) 1773verify_watcher (EV_P_ W w)
1539{ 1774{
1567 verify_watcher (EV_A_ ws [cnt]); 1802 verify_watcher (EV_A_ ws [cnt]);
1568 } 1803 }
1569} 1804}
1570#endif 1805#endif
1571 1806
1807#if EV_MINIMAL < 2
1572void 1808void
1573ev_loop_verify (EV_P) 1809ev_loop_verify (EV_P)
1574{ 1810{
1575#if EV_VERIFY 1811#if EV_VERIFY
1576 int i; 1812 int i;
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1631# endif 1867# endif
1632#endif 1868#endif
1633} 1869}
1634 1870#endif
1635#endif /* multiplicity */
1636 1871
1637#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1638struct ev_loop * 1873struct ev_loop *
1639ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1640#else 1875#else
1701ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1702{ 1937{
1703 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1704} 1939}
1705 1940
1706void inline_speed 1941unsigned int
1707call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1708{ 1955{
1709 int pri; 1956 int pri;
1710 1957
1711 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1713 { 1960 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1962
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1719 1965
1720 p->w->pending = 0; 1966 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1968 EV_FREQUENT_CHECK;
1723 }
1724 } 1969 }
1725} 1970}
1726 1971
1727#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1728void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1729idle_reify (EV_P) 1976idle_reify (EV_P)
1730{ 1977{
1731 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1732 { 1979 {
1733 int pri; 1980 int pri;
1745 } 1992 }
1746 } 1993 }
1747} 1994}
1748#endif 1995#endif
1749 1996
1750void inline_size 1997/* make timers pending */
1998inline_size void
1751timers_reify (EV_P) 1999timers_reify (EV_P)
1752{ 2000{
1753 EV_FREQUENT_CHECK; 2001 EV_FREQUENT_CHECK;
1754 2002
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 2004 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2005 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
1764 ev_at (w) += w->repeat; 2014 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 2015 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 2016 ev_at (w) = mn_now;
1767 2017
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 2019
1770 ANHE_at_cache (timers [HEAP0]); 2020 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1772 } 2028 }
1773 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 2030
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 2032 }
1779} 2033}
1780 2034
1781#if EV_PERIODIC_ENABLE 2035#if EV_PERIODIC_ENABLE
1782void inline_size 2036/* make periodics pending */
2037inline_size void
1783periodics_reify (EV_P) 2038periodics_reify (EV_P)
1784{ 2039{
1785 EV_FREQUENT_CHECK; 2040 EV_FREQUENT_CHECK;
1786 2041
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 2043 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2044 int feed_count = 0;
1790 2045
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2046 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 2056
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 2058
1800 ANHE_at_cache (periodics [HEAP0]); 2059 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1802 } 2086 }
1803 else if (w->interval) 2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 2088
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2089 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 2090 }
1828} 2091}
1829 2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 2095static void noinline
1831periodics_reschedule (EV_P) 2096periodics_reschedule (EV_P)
1832{ 2097{
1833 int i; 2098 int i;
1834 2099
1847 2112
1848 reheap (periodics, periodiccnt); 2113 reheap (periodics, periodiccnt);
1849} 2114}
1850#endif 2115#endif
1851 2116
1852void inline_speed 2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1854{ 2135{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1859 { 2138 {
2139 int i;
1860 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1861 2141
1862 mn_now = get_clock (); 2142 mn_now = get_clock ();
1863 2143
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2171 mn_now = get_clock ();
1892 now_floor = mn_now; 2172 now_floor = mn_now;
1893 } 2173 }
1894 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1897# endif 2179# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2180 }
1901 else 2181 else
1902#endif 2182#endif
1903 { 2183 {
1904 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1905 2185
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1910#endif 2192#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2193 }
1919 2194
1920 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1921 } 2196 }
1922} 2197}
1923 2198
1924void 2199void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1946{ 2201{
2202#if EV_MINIMAL < 2
2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
1947 loop_done = EVUNLOOP_CANCEL; 2208 loop_done = EVUNLOOP_CANCEL;
1948 2209
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 2211
1951 do 2212 do
1952 { 2213 {
1953#if EV_VERIFY >= 2 2214#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2215 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1969 if (forkcnt) 2230 if (forkcnt)
1970 { 2231 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1973 } 2234 }
1974#endif 2235#endif
1975 2236
1976 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1978 { 2239 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1981 } 2242 }
1982 2243
1983 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1984 break; 2245 break;
1985 2246
1986 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1988 loop_fork (EV_A); 2249 loop_fork (EV_A);
1995 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1997 2258
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2000 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
2002 2266
2003 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
2004 2268
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
2016 } 2280 }
2017#endif 2281#endif
2018 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
2021 2286
2022 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2029 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
2031 } 2300 }
2032 } 2301 }
2033 2302
2303#if EV_MINIMAL < 2
2034 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2036 2309
2037 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
2039 } 2312 }
2040 2313
2051 2324
2052 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2328
2056 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
2057 } 2330 }
2058 while (expect_true ( 2331 while (expect_true (
2059 activecnt 2332 activecnt
2060 && !loop_done 2333 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2335 ));
2063 2336
2064 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
2066} 2343}
2067 2344
2068void 2345void
2069ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
2070{ 2347{
2071 loop_done = how; 2348 loop_done = how;
2072} 2349}
2073 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
2074/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
2075 2390
2076void inline_size 2391inline_size void
2077wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
2078{ 2393{
2079 elem->next = *head; 2394 elem->next = *head;
2080 *head = elem; 2395 *head = elem;
2081} 2396}
2082 2397
2083void inline_size 2398inline_size void
2084wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
2085{ 2400{
2086 while (*head) 2401 while (*head)
2087 { 2402 {
2088 if (*head == elem) 2403 if (*head == elem)
2093 2408
2094 head = &(*head)->next; 2409 head = &(*head)->next;
2095 } 2410 }
2096} 2411}
2097 2412
2098void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
2099clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
2100{ 2416{
2101 if (w->pending) 2417 if (w->pending)
2102 { 2418 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2420 w->pending = 0;
2105 } 2421 }
2106} 2422}
2107 2423
2108int 2424int
2112 int pending = w_->pending; 2428 int pending = w_->pending;
2113 2429
2114 if (expect_true (pending)) 2430 if (expect_true (pending))
2115 { 2431 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2117 w_->pending = 0; 2434 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2435 return p->events;
2120 } 2436 }
2121 else 2437 else
2122 return 0; 2438 return 0;
2123} 2439}
2124 2440
2125void inline_size 2441inline_size void
2126pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
2127{ 2443{
2128 int pri = w->priority; 2444 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2447 ev_set_priority (w, pri);
2132} 2448}
2133 2449
2134void inline_speed 2450inline_speed void
2135ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
2136{ 2452{
2137 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
2138 w->active = active; 2454 w->active = active;
2139 ev_ref (EV_A); 2455 ev_ref (EV_A);
2140} 2456}
2141 2457
2142void inline_size 2458inline_size void
2143ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
2144{ 2460{
2145 ev_unref (EV_A); 2461 ev_unref (EV_A);
2146 w->active = 0; 2462 w->active = 0;
2147} 2463}
2155 2471
2156 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
2157 return; 2473 return;
2158 2474
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2477
2162 EV_FREQUENT_CHECK; 2478 EV_FREQUENT_CHECK;
2163 2479
2164 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
2167 2483
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2170 2486
2171 EV_FREQUENT_CHECK; 2487 EV_FREQUENT_CHECK;
2172} 2488}
2173 2489
2174void noinline 2490void noinline
2267 } 2583 }
2268 2584
2269 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2270} 2586}
2271 2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2272#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
2273void noinline 2595void noinline
2274ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
2275{ 2597{
2276 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
2351 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2352 return; 2674 return;
2353 2675
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2355 2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2356 evpipe_init (EV_A); 2710 evpipe_init (EV_A);
2357
2358 EV_FREQUENT_CHECK;
2359 2711
2360 { 2712 {
2361#ifndef _WIN32 2713#ifndef _WIN32
2362 sigset_t full, prev; 2714 sigset_t full, prev;
2363 sigfillset (&full); 2715 sigfillset (&full);
2365#endif 2717#endif
2366 2718
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2368 2720
2369#ifndef _WIN32 2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 2726 sigprocmask (SIG_SETMASK, &prev, 0);
2371#endif 2727#endif
2372 } 2728 }
2373 2729
2374 ev_start (EV_A_ (W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
2377 if (!((WL)w)->next) 2733 if (!((WL)w)->next)
2378 { 2734 {
2379#if _WIN32 2735#if _WIN32
2380 signal (w->signum, ev_sighandler); 2736 signal (w->signum, ev_sighandler);
2381#else 2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
2382 struct sigaction sa; 2742 struct sigaction sa = { };
2383 sa.sa_handler = ev_sighandler; 2743 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
2387#endif 2748#endif
2388 } 2749 }
2389 2750
2390 EV_FREQUENT_CHECK; 2751 EV_FREQUENT_CHECK;
2391} 2752}
2401 2762
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
2404 2765
2405 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
2406 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
2407 2779
2408 EV_FREQUENT_CHECK; 2780 EV_FREQUENT_CHECK;
2409} 2781}
2410 2782
2411void 2783void
2572 2944
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2947}
2576 2948
2577void inline_size 2949inline_size void
2578check_2625 (EV_P) 2950check_2625 (EV_P)
2579{ 2951{
2580 /* kernels < 2.6.25 are borked 2952 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2954 */
2595 return; 2967 return;
2596 2968
2597 fs_2625 = 1; 2969 fs_2625 = 1;
2598} 2970}
2599 2971
2600void inline_size 2972inline_size void
2601infy_init (EV_P) 2973infy_init (EV_P)
2602{ 2974{
2603 if (fs_fd != -2) 2975 if (fs_fd != -2)
2604 return; 2976 return;
2605 2977
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2987 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2988 ev_io_start (EV_A_ &fs_w);
2617 } 2989 }
2618} 2990}
2619 2991
2620void inline_size 2992inline_size void
2621infy_fork (EV_P) 2993infy_fork (EV_P)
2622{ 2994{
2623 int slot; 2995 int slot;
2624 2996
2625 if (fs_fd < 0) 2997 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3499 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3500 ev_timer_start (EV_A_ &once->to);
3129 } 3501 }
3130} 3502}
3131 3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
3132#if EV_MULTIPLICITY 3612#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3613 #include "ev_wrap.h"
3134#endif 3614#endif
3135 3615
3136#ifdef __cplusplus 3616#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines