ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.332 by root, Tue Mar 9 08:58:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
108# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
109# endif 111# endif
110# endif 112# endif
111 113
112# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
114# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
115# else 117# else
116# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
117# endif 119# endif
118# endif 120# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
143 153
144#endif 154#endif
145 155
146#include <math.h> 156#include <math.h>
147#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
148#include <fcntl.h> 159#include <fcntl.h>
149#include <stddef.h> 160#include <stddef.h>
150 161
151#include <stdio.h> 162#include <stdio.h>
152 163
153#include <assert.h> 164#include <assert.h>
154#include <errno.h> 165#include <errno.h>
155#include <sys/types.h> 166#include <sys/types.h>
156#include <time.h> 167#include <time.h>
168#include <limits.h>
157 169
158#include <signal.h> 170#include <signal.h>
159 171
160#ifdef EV_H 172#ifdef EV_H
161# include EV_H 173# include EV_H
172# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 185# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
176# endif 188# endif
189# undef EV_AVOID_STDIO
177#endif 190#endif
178 191
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
180 220
181#ifndef EV_USE_CLOCK_SYSCALL 221#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 222# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 223# define EV_USE_CLOCK_SYSCALL 1
184# else 224# else
193# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
194# endif 234# endif
195#endif 235#endif
196 236
197#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 239#endif
200 240
201#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 242# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 243# define EV_USE_NANOSLEEP 1
264# else 304# else
265# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
266# endif 306# endif
267#endif 307#endif
268 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
269#if 0 /* debugging */ 317#if 0 /* debugging */
270# define EV_VERIFY 3 318# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 319# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 320# define EV_HEAP_CACHE_AT 1
273#endif 321#endif
282 330
283#ifndef EV_HEAP_CACHE_AT 331#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 332# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 333#endif
286 334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
288 356
289#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
292#endif 360#endif
320 388
321#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 390# include <winsock.h>
323#endif 391#endif
324 392
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
337# ifdef __cplusplus 406# ifdef __cplusplus
338extern "C" { 407extern "C" {
339# endif 408# endif
340int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
341# ifdef __cplusplus 410# ifdef __cplusplus
342} 411}
343# endif 412# endif
344#endif 413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
345 443
346/**/ 444/**/
347 445
348#if EV_VERIFY >= 3 446#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
361 */ 459 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 461
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 464
368#if __GNUC__ >= 4 465#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
371#else 468#else
384# define inline_speed static noinline 481# define inline_speed static noinline
385#else 482#else
386# define inline_speed static inline 483# define inline_speed static inline
387#endif 484#endif
388 485
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
391 493
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
394 496
395typedef ev_watcher *W; 497typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
398 500
399#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
401 503
402#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 522#endif
407 523
408#ifdef _WIN32 524#ifdef _WIN32
409# include "ev_win32.c" 525# include "ev_win32.c"
410#endif 526#endif
411 527
412/*****************************************************************************/ 528/*****************************************************************************/
529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
413 537
414static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
415 539
416void 540void
417ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
427 551
428 if (syserr_cb) 552 if (syserr_cb)
429 syserr_cb (msg); 553 syserr_cb (msg);
430 else 554 else
431 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
432 perror (msg); 564 perror (msg);
565#endif
433 abort (); 566 abort ();
434 } 567 }
435} 568}
436 569
437static void * 570static void *
439{ 572{
440 /* some systems, notably openbsd and darwin, fail to properly 573 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 574 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here. 575 * the single unix specification, so work around them here.
443 */ 576 */
444
445 if (size) 577 if (size)
446 return realloc (ptr, size); 578 return realloc (ptr, size);
447 579
448 free (ptr); 580 free (ptr);
449 return 0; 581 return 0;
462{ 594{
463 ptr = alloc (ptr, size); 595 ptr = alloc (ptr, size);
464 596
465 if (!ptr && size) 597 if (!ptr && size)
466 { 598 {
599#if EV_AVOID_STDIO
600 ev_printerr ("libev: memory allocation failed, aborting.\n");
601#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 602 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
603#endif
468 abort (); 604 abort ();
469 } 605 }
470 606
471 return ptr; 607 return ptr;
472} 608}
474#define ev_malloc(size) ev_realloc (0, (size)) 610#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 611#define ev_free(ptr) ev_realloc ((ptr), 0)
476 612
477/*****************************************************************************/ 613/*****************************************************************************/
478 614
615/* set in reify when reification needed */
616#define EV_ANFD_REIFY 1
617
618/* file descriptor info structure */
479typedef struct 619typedef struct
480{ 620{
481 WL head; 621 WL head;
482 unsigned char events; 622 unsigned char events; /* the events watched for */
483 unsigned char reify; 623 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 624 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 625 unsigned char unused;
486#if EV_USE_EPOLL 626#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 627 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 628#endif
489#if EV_SELECT_IS_WINSOCKET 629#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 630 SOCKET handle;
491#endif 631#endif
492} ANFD; 632} ANFD;
493 633
634/* stores the pending event set for a given watcher */
494typedef struct 635typedef struct
495{ 636{
496 W w; 637 W w;
497 int events; 638 int events; /* the pending event set for the given watcher */
498} ANPENDING; 639} ANPENDING;
499 640
500#if EV_USE_INOTIFY 641#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 642/* hash table entry per inotify-id */
502typedef struct 643typedef struct
505} ANFS; 646} ANFS;
506#endif 647#endif
507 648
508/* Heap Entry */ 649/* Heap Entry */
509#if EV_HEAP_CACHE_AT 650#if EV_HEAP_CACHE_AT
651 /* a heap element */
510 typedef struct { 652 typedef struct {
511 ev_tstamp at; 653 ev_tstamp at;
512 WT w; 654 WT w;
513 } ANHE; 655 } ANHE;
514 656
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 657 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 658 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 659 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 660#else
661 /* a heap element */
519 typedef WT ANHE; 662 typedef WT ANHE;
520 663
521 #define ANHE_w(he) (he) 664 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 665 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 666 #define ANHE_at_cache(he)
547 690
548 static int ev_default_loop_ptr; 691 static int ev_default_loop_ptr;
549 692
550#endif 693#endif
551 694
695#if EV_MINIMAL < 2
696# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
697# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
698# define EV_INVOKE_PENDING invoke_cb (EV_A)
699#else
700# define EV_RELEASE_CB (void)0
701# define EV_ACQUIRE_CB (void)0
702# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
703#endif
704
705#define EVUNLOOP_RECURSE 0x80
706
552/*****************************************************************************/ 707/*****************************************************************************/
553 708
709#ifndef EV_HAVE_EV_TIME
554ev_tstamp 710ev_tstamp
555ev_time (void) 711ev_time (void)
556{ 712{
557#if EV_USE_REALTIME 713#if EV_USE_REALTIME
714 if (expect_true (have_realtime))
715 {
558 struct timespec ts; 716 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 717 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 718 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 719 }
720#endif
721
562 struct timeval tv; 722 struct timeval tv;
563 gettimeofday (&tv, 0); 723 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 724 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 725}
726#endif
567 727
568ev_tstamp inline_size 728inline_size ev_tstamp
569get_clock (void) 729get_clock (void)
570{ 730{
571#if EV_USE_MONOTONIC 731#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 732 if (expect_true (have_monotonic))
573 { 733 {
607 767
608 tv.tv_sec = (time_t)delay; 768 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 769 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 770
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 771 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 772 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 773 /* by older ones */
614 select (0, 0, 0, 0, &tv); 774 select (0, 0, 0, 0, &tv);
615#endif 775#endif
616 } 776 }
617} 777}
618 778
619/*****************************************************************************/ 779/*****************************************************************************/
620 780
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 781#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 782
623int inline_size 783/* find a suitable new size for the given array, */
784/* hopefully by rounding to a ncie-to-malloc size */
785inline_size int
624array_nextsize (int elem, int cur, int cnt) 786array_nextsize (int elem, int cur, int cnt)
625{ 787{
626 int ncur = cur + 1; 788 int ncur = cur + 1;
627 789
628 do 790 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 831 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 832 }
671#endif 833#endif
672 834
673#define array_free(stem, idx) \ 835#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 836 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 837
676/*****************************************************************************/ 838/*****************************************************************************/
839
840/* dummy callback for pending events */
841static void noinline
842pendingcb (EV_P_ ev_prepare *w, int revents)
843{
844}
677 845
678void noinline 846void noinline
679ev_feed_event (EV_P_ void *w, int revents) 847ev_feed_event (EV_P_ void *w, int revents)
680{ 848{
681 W w_ = (W)w; 849 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 858 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 859 pendings [pri][w_->pending - 1].events = revents;
692 } 860 }
693} 861}
694 862
695void inline_speed 863inline_speed void
864feed_reverse (EV_P_ W w)
865{
866 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
867 rfeeds [rfeedcnt++] = w;
868}
869
870inline_size void
871feed_reverse_done (EV_P_ int revents)
872{
873 do
874 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
875 while (rfeedcnt);
876}
877
878inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 879queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 880{
698 int i; 881 int i;
699 882
700 for (i = 0; i < eventcnt; ++i) 883 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 884 ev_feed_event (EV_A_ events [i], type);
702} 885}
703 886
704/*****************************************************************************/ 887/*****************************************************************************/
705 888
706void inline_speed 889inline_speed void
707fd_event (EV_P_ int fd, int revents) 890fd_event_nc (EV_P_ int fd, int revents)
708{ 891{
709 ANFD *anfd = anfds + fd; 892 ANFD *anfd = anfds + fd;
710 ev_io *w; 893 ev_io *w;
711 894
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 895 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 899 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 900 ev_feed_event (EV_A_ (W)w, ev);
718 } 901 }
719} 902}
720 903
904/* do not submit kernel events for fds that have reify set */
905/* because that means they changed while we were polling for new events */
906inline_speed void
907fd_event (EV_P_ int fd, int revents)
908{
909 ANFD *anfd = anfds + fd;
910
911 if (expect_true (!anfd->reify))
912 fd_event_nc (EV_A_ fd, revents);
913}
914
721void 915void
722ev_feed_fd_event (EV_P_ int fd, int revents) 916ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 917{
724 if (fd >= 0 && fd < anfdmax) 918 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 919 fd_event_nc (EV_A_ fd, revents);
726} 920}
727 921
728void inline_size 922/* make sure the external fd watch events are in-sync */
923/* with the kernel/libev internal state */
924inline_size void
729fd_reify (EV_P) 925fd_reify (EV_P)
730{ 926{
731 int i; 927 int i;
732 928
733 for (i = 0; i < fdchangecnt; ++i) 929 for (i = 0; i < fdchangecnt; ++i)
743 939
744#if EV_SELECT_IS_WINSOCKET 940#if EV_SELECT_IS_WINSOCKET
745 if (events) 941 if (events)
746 { 942 {
747 unsigned long arg; 943 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 944 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 945 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 946 }
755#endif 947#endif
756 948
757 { 949 {
759 unsigned char o_reify = anfd->reify; 951 unsigned char o_reify = anfd->reify;
760 952
761 anfd->reify = 0; 953 anfd->reify = 0;
762 anfd->events = events; 954 anfd->events = events;
763 955
764 if (o_events != events || o_reify & EV_IOFDSET) 956 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 957 backend_modify (EV_A_ fd, o_events, events);
766 } 958 }
767 } 959 }
768 960
769 fdchangecnt = 0; 961 fdchangecnt = 0;
770} 962}
771 963
772void inline_size 964/* something about the given fd changed */
965inline_size void
773fd_change (EV_P_ int fd, int flags) 966fd_change (EV_P_ int fd, int flags)
774{ 967{
775 unsigned char reify = anfds [fd].reify; 968 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 969 anfds [fd].reify |= flags;
777 970
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 974 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 975 fdchanges [fdchangecnt - 1] = fd;
783 } 976 }
784} 977}
785 978
786void inline_speed 979/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
980inline_speed void
787fd_kill (EV_P_ int fd) 981fd_kill (EV_P_ int fd)
788{ 982{
789 ev_io *w; 983 ev_io *w;
790 984
791 while ((w = (ev_io *)anfds [fd].head)) 985 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 987 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 988 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 989 }
796} 990}
797 991
798int inline_size 992/* check whether the given fd is atcually valid, for error recovery */
993inline_size int
799fd_valid (int fd) 994fd_valid (int fd)
800{ 995{
801#ifdef _WIN32 996#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 997 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 998#else
804 return fcntl (fd, F_GETFD) != -1; 999 return fcntl (fd, F_GETFD) != -1;
805#endif 1000#endif
806} 1001}
807 1002
825 1020
826 for (fd = anfdmax; fd--; ) 1021 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 1022 if (anfds [fd].events)
828 { 1023 {
829 fd_kill (EV_A_ fd); 1024 fd_kill (EV_A_ fd);
830 return; 1025 break;
831 } 1026 }
832} 1027}
833 1028
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1029/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1030static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1035 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1036 if (anfds [fd].events)
842 { 1037 {
843 anfds [fd].events = 0; 1038 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1039 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1040 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1041 }
847} 1042}
848 1043
849/*****************************************************************************/ 1044/*****************************************************************************/
850 1045
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1061#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1062#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1063#define UPHEAP_DONE(p,k) ((p) == (k))
869 1064
870/* away from the root */ 1065/* away from the root */
871void inline_speed 1066inline_speed void
872downheap (ANHE *heap, int N, int k) 1067downheap (ANHE *heap, int N, int k)
873{ 1068{
874 ANHE he = heap [k]; 1069 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1070 ANHE *E = heap + N + HEAP0;
876 1071
916#define HEAP0 1 1111#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1112#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1113#define UPHEAP_DONE(p,k) (!(p))
919 1114
920/* away from the root */ 1115/* away from the root */
921void inline_speed 1116inline_speed void
922downheap (ANHE *heap, int N, int k) 1117downheap (ANHE *heap, int N, int k)
923{ 1118{
924 ANHE he = heap [k]; 1119 ANHE he = heap [k];
925 1120
926 for (;;) 1121 for (;;)
927 { 1122 {
928 int c = k << 1; 1123 int c = k << 1;
929 1124
930 if (c > N + HEAP0 - 1) 1125 if (c >= N + HEAP0)
931 break; 1126 break;
932 1127
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1128 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1129 ? 1 : 0;
935 1130
946 ev_active (ANHE_w (he)) = k; 1141 ev_active (ANHE_w (he)) = k;
947} 1142}
948#endif 1143#endif
949 1144
950/* towards the root */ 1145/* towards the root */
951void inline_speed 1146inline_speed void
952upheap (ANHE *heap, int k) 1147upheap (ANHE *heap, int k)
953{ 1148{
954 ANHE he = heap [k]; 1149 ANHE he = heap [k];
955 1150
956 for (;;) 1151 for (;;)
967 1162
968 heap [k] = he; 1163 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1164 ev_active (ANHE_w (he)) = k;
970} 1165}
971 1166
972void inline_size 1167/* move an element suitably so it is in a correct place */
1168inline_size void
973adjustheap (ANHE *heap, int N, int k) 1169adjustheap (ANHE *heap, int N, int k)
974{ 1170{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1171 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 1172 upheap (heap, k);
977 else 1173 else
978 downheap (heap, N, k); 1174 downheap (heap, N, k);
979} 1175}
980 1176
981/* rebuild the heap: this function is used only once and executed rarely */ 1177/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1178inline_size void
983reheap (ANHE *heap, int N) 1179reheap (ANHE *heap, int N)
984{ 1180{
985 int i; 1181 int i;
986 1182
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1183 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1186 upheap (heap, i + HEAP0);
991} 1187}
992 1188
993/*****************************************************************************/ 1189/*****************************************************************************/
994 1190
1191/* associate signal watchers to a signal signal */
995typedef struct 1192typedef struct
996{ 1193{
1194 EV_ATOMIC_T pending;
1195#if EV_MULTIPLICITY
1196 EV_P;
1197#endif
997 WL head; 1198 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1199} ANSIG;
1000 1200
1001static ANSIG *signals; 1201static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1202
1006/*****************************************************************************/ 1203/*****************************************************************************/
1007 1204
1008void inline_speed 1205/* used to prepare libev internal fd's */
1206/* this is not fork-safe */
1207inline_speed void
1009fd_intern (int fd) 1208fd_intern (int fd)
1010{ 1209{
1011#ifdef _WIN32 1210#ifdef _WIN32
1012 unsigned long arg = 1; 1211 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1212 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1014#else 1213#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC); 1214 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK); 1215 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif 1216#endif
1018} 1217}
1019 1218
1020static void noinline 1219static void noinline
1021evpipe_init (EV_P) 1220evpipe_init (EV_P)
1022{ 1221{
1023 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
1024 { 1223 {
1025#if EV_USE_EVENTFD 1224#if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1027 { 1230 {
1028 evpipe [0] = -1; 1231 evpipe [0] = -1;
1029 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1234 }
1032 else 1235 else
1033#endif 1236#endif
1034 { 1237 {
1035 while (pipe (evpipe)) 1238 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
1037 1240
1038 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1244 }
1042 1245
1043 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1248 }
1046} 1249}
1047 1250
1048void inline_size 1251inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1253{
1051 if (!*flag) 1254 if (!*flag)
1052 { 1255 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1066 1269
1067 errno = old_errno; 1270 errno = old_errno;
1068 } 1271 }
1069} 1272}
1070 1273
1274/* called whenever the libev signal pipe */
1275/* got some events (signal, async) */
1071static void 1276static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1277pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1278{
1279 int i;
1280
1074#if EV_USE_EVENTFD 1281#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1282 if (evfd >= 0)
1076 { 1283 {
1077 uint64_t counter; 1284 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1285 read (evfd, &counter, sizeof (uint64_t));
1082 { 1289 {
1083 char dummy; 1290 char dummy;
1084 read (evpipe [0], &dummy, 1); 1291 read (evpipe [0], &dummy, 1);
1085 } 1292 }
1086 1293
1087 if (gotsig && ev_is_default_loop (EV_A)) 1294 if (sig_pending)
1088 { 1295 {
1089 int signum; 1296 sig_pending = 0;
1090 gotsig = 0;
1091 1297
1092 for (signum = signalmax; signum--; ) 1298 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1299 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1300 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1301 }
1096 1302
1097#if EV_ASYNC_ENABLE 1303#if EV_ASYNC_ENABLE
1098 if (gotasync) 1304 if (async_pending)
1099 { 1305 {
1100 int i; 1306 async_pending = 0;
1101 gotasync = 0;
1102 1307
1103 for (i = asynccnt; i--; ) 1308 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1309 if (asyncs [i]->sent)
1105 { 1310 {
1106 asyncs [i]->sent = 0; 1311 asyncs [i]->sent = 0;
1114 1319
1115static void 1320static void
1116ev_sighandler (int signum) 1321ev_sighandler (int signum)
1117{ 1322{
1118#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 1324 EV_P = signals [signum - 1].loop;
1120#endif 1325#endif
1121 1326
1122#if _WIN32 1327#ifdef _WIN32
1123 signal (signum, ev_sighandler); 1328 signal (signum, ev_sighandler);
1124#endif 1329#endif
1125 1330
1126 signals [signum - 1].gotsig = 1; 1331 signals [signum - 1].pending = 1;
1127 evpipe_write (EV_A_ &gotsig); 1332 evpipe_write (EV_A_ &sig_pending);
1128} 1333}
1129 1334
1130void noinline 1335void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1336ev_feed_signal_event (EV_P_ int signum)
1132{ 1337{
1133 WL w; 1338 WL w;
1134 1339
1340 if (expect_false (signum <= 0 || signum > EV_NSIG))
1341 return;
1342
1343 --signum;
1344
1135#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1136 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1346 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1347 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1348
1139 --signum; 1349 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1350 return;
1351#endif
1143 1352
1144 signals [signum].gotsig = 0; 1353 signals [signum].pending = 0;
1145 1354
1146 for (w = signals [signum].head; w; w = w->next) 1355 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1356 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1357}
1149 1358
1359#if EV_USE_SIGNALFD
1360static void
1361sigfdcb (EV_P_ ev_io *iow, int revents)
1362{
1363 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1364
1365 for (;;)
1366 {
1367 ssize_t res = read (sigfd, si, sizeof (si));
1368
1369 /* not ISO-C, as res might be -1, but works with SuS */
1370 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1371 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1372
1373 if (res < (ssize_t)sizeof (si))
1374 break;
1375 }
1376}
1377#endif
1378
1150/*****************************************************************************/ 1379/*****************************************************************************/
1151 1380
1152static WL childs [EV_PID_HASHSIZE]; 1381static WL childs [EV_PID_HASHSIZE];
1153 1382
1154#ifndef _WIN32 1383#ifndef _WIN32
1157 1386
1158#ifndef WIFCONTINUED 1387#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1388# define WIFCONTINUED(status) 0
1160#endif 1389#endif
1161 1390
1162void inline_speed 1391/* handle a single child status event */
1392inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1393child_reap (EV_P_ int chain, int pid, int status)
1164{ 1394{
1165 ev_child *w; 1395 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1396 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1397
1180 1410
1181#ifndef WCONTINUED 1411#ifndef WCONTINUED
1182# define WCONTINUED 0 1412# define WCONTINUED 0
1183#endif 1413#endif
1184 1414
1415/* called on sigchld etc., calls waitpid */
1185static void 1416static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1417childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1418{
1188 int pid, status; 1419 int pid, status;
1189 1420
1296ev_backend (EV_P) 1527ev_backend (EV_P)
1297{ 1528{
1298 return backend; 1529 return backend;
1299} 1530}
1300 1531
1532#if EV_MINIMAL < 2
1301unsigned int 1533unsigned int
1302ev_loop_count (EV_P) 1534ev_loop_count (EV_P)
1303{ 1535{
1304 return loop_count; 1536 return loop_count;
1305} 1537}
1306 1538
1539unsigned int
1540ev_loop_depth (EV_P)
1541{
1542 return loop_depth;
1543}
1544
1307void 1545void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1546ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1547{
1310 io_blocktime = interval; 1548 io_blocktime = interval;
1311} 1549}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1552ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1553{
1316 timeout_blocktime = interval; 1554 timeout_blocktime = interval;
1317} 1555}
1318 1556
1557void
1558ev_set_userdata (EV_P_ void *data)
1559{
1560 userdata = data;
1561}
1562
1563void *
1564ev_userdata (EV_P)
1565{
1566 return userdata;
1567}
1568
1569void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1570{
1571 invoke_cb = invoke_pending_cb;
1572}
1573
1574void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1575{
1576 release_cb = release;
1577 acquire_cb = acquire;
1578}
1579#endif
1580
1581/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1582static void noinline
1320loop_init (EV_P_ unsigned int flags) 1583loop_init (EV_P_ unsigned int flags)
1321{ 1584{
1322 if (!backend) 1585 if (!backend)
1323 { 1586 {
1587#if EV_USE_REALTIME
1588 if (!have_realtime)
1589 {
1590 struct timespec ts;
1591
1592 if (!clock_gettime (CLOCK_REALTIME, &ts))
1593 have_realtime = 1;
1594 }
1595#endif
1596
1324#if EV_USE_MONOTONIC 1597#if EV_USE_MONOTONIC
1598 if (!have_monotonic)
1325 { 1599 {
1326 struct timespec ts; 1600 struct timespec ts;
1601
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1603 have_monotonic = 1;
1329 } 1604 }
1330#endif 1605#endif
1606
1607 /* pid check not overridable via env */
1608#ifndef _WIN32
1609 if (flags & EVFLAG_FORKCHECK)
1610 curpid = getpid ();
1611#endif
1612
1613 if (!(flags & EVFLAG_NOENV)
1614 && !enable_secure ()
1615 && getenv ("LIBEV_FLAGS"))
1616 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 1617
1332 ev_rt_now = ev_time (); 1618 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1619 mn_now = get_clock ();
1334 now_floor = mn_now; 1620 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1621 rtmn_diff = ev_rt_now - mn_now;
1622#if EV_MINIMAL < 2
1623 invoke_cb = ev_invoke_pending;
1624#endif
1336 1625
1337 io_blocktime = 0.; 1626 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1627 timeout_blocktime = 0.;
1339 backend = 0; 1628 backend = 0;
1340 backend_fd = -1; 1629 backend_fd = -1;
1341 gotasync = 0; 1630 sig_pending = 0;
1631#if EV_ASYNC_ENABLE
1632 async_pending = 0;
1633#endif
1342#if EV_USE_INOTIFY 1634#if EV_USE_INOTIFY
1343 fs_fd = -2; 1635 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1344#endif 1636#endif
1345 1637#if EV_USE_SIGNALFD
1346 /* pid check not overridable via env */ 1638 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1347#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid ();
1350#endif 1639#endif
1351
1352 if (!(flags & EVFLAG_NOENV)
1353 && !enable_secure ()
1354 && getenv ("LIBEV_FLAGS"))
1355 flags = atoi (getenv ("LIBEV_FLAGS"));
1356 1640
1357 if (!(flags & 0x0000ffffU)) 1641 if (!(flags & 0x0000ffffU))
1358 flags |= ev_recommended_backends (); 1642 flags |= ev_recommended_backends ();
1359 1643
1360#if EV_USE_PORT 1644#if EV_USE_PORT
1371#endif 1655#endif
1372#if EV_USE_SELECT 1656#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1657 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1658#endif
1375 1659
1660 ev_prepare_init (&pending_w, pendingcb);
1661
1376 ev_init (&pipeev, pipecb); 1662 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1663 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1664 }
1379} 1665}
1380 1666
1667/* free up a loop structure */
1381static void noinline 1668static void noinline
1382loop_destroy (EV_P) 1669loop_destroy (EV_P)
1383{ 1670{
1384 int i; 1671 int i;
1385 1672
1386 if (ev_is_active (&pipeev)) 1673 if (ev_is_active (&pipe_w))
1387 { 1674 {
1388 ev_ref (EV_A); /* signal watcher */ 1675 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 1676 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 1677
1391#if EV_USE_EVENTFD 1678#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1679 if (evfd >= 0)
1393 close (evfd); 1680 close (evfd);
1394#endif 1681#endif
1395 1682
1396 if (evpipe [0] >= 0) 1683 if (evpipe [0] >= 0)
1397 { 1684 {
1398 close (evpipe [0]); 1685 EV_WIN32_CLOSE_FD (evpipe [0]);
1399 close (evpipe [1]); 1686 EV_WIN32_CLOSE_FD (evpipe [1]);
1400 } 1687 }
1401 } 1688 }
1689
1690#if EV_USE_SIGNALFD
1691 if (ev_is_active (&sigfd_w))
1692 close (sigfd);
1693#endif
1402 1694
1403#if EV_USE_INOTIFY 1695#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 1696 if (fs_fd >= 0)
1405 close (fs_fd); 1697 close (fs_fd);
1406#endif 1698#endif
1430#if EV_IDLE_ENABLE 1722#if EV_IDLE_ENABLE
1431 array_free (idle, [i]); 1723 array_free (idle, [i]);
1432#endif 1724#endif
1433 } 1725 }
1434 1726
1435 ev_free (anfds); anfdmax = 0; 1727 ev_free (anfds); anfds = 0; anfdmax = 0;
1436 1728
1437 /* have to use the microsoft-never-gets-it-right macro */ 1729 /* have to use the microsoft-never-gets-it-right macro */
1730 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1731 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1732 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1733#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1734 array_free (periodic, EMPTY);
1442#endif 1735#endif
1451 1744
1452 backend = 0; 1745 backend = 0;
1453} 1746}
1454 1747
1455#if EV_USE_INOTIFY 1748#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1749inline_size void infy_fork (EV_P);
1457#endif 1750#endif
1458 1751
1459void inline_size 1752inline_size void
1460loop_fork (EV_P) 1753loop_fork (EV_P)
1461{ 1754{
1462#if EV_USE_PORT 1755#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1756 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1757#endif
1470#endif 1763#endif
1471#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1765 infy_fork (EV_A);
1473#endif 1766#endif
1474 1767
1475 if (ev_is_active (&pipeev)) 1768 if (ev_is_active (&pipe_w))
1476 { 1769 {
1477 /* this "locks" the handlers against writing to the pipe */ 1770 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1771 /* while we modify the fd vars */
1479 gotsig = 1; 1772 sig_pending = 1;
1480#if EV_ASYNC_ENABLE 1773#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1774 async_pending = 1;
1482#endif 1775#endif
1483 1776
1484 ev_ref (EV_A); 1777 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1778 ev_io_stop (EV_A_ &pipe_w);
1486 1779
1487#if EV_USE_EVENTFD 1780#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1781 if (evfd >= 0)
1489 close (evfd); 1782 close (evfd);
1490#endif 1783#endif
1491 1784
1492 if (evpipe [0] >= 0) 1785 if (evpipe [0] >= 0)
1493 { 1786 {
1494 close (evpipe [0]); 1787 EV_WIN32_CLOSE_FD (evpipe [0]);
1495 close (evpipe [1]); 1788 EV_WIN32_CLOSE_FD (evpipe [1]);
1496 } 1789 }
1497 1790
1498 evpipe_init (EV_A); 1791 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1792 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1793 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1794 }
1502 1795
1503 postfork = 0; 1796 postfork = 0;
1504} 1797}
1505 1798
1506#if EV_MULTIPLICITY 1799#if EV_MULTIPLICITY
1507 1800
1508struct ev_loop * 1801struct ev_loop *
1509ev_loop_new (unsigned int flags) 1802ev_loop_new (unsigned int flags)
1510{ 1803{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1804 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 1805
1513 memset (loop, 0, sizeof (struct ev_loop)); 1806 memset (EV_A, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 1807 loop_init (EV_A_ flags);
1516 1808
1517 if (ev_backend (EV_A)) 1809 if (ev_backend (EV_A))
1518 return loop; 1810 return EV_A;
1519 1811
1520 return 0; 1812 return 0;
1521} 1813}
1522 1814
1523void 1815void
1530void 1822void
1531ev_loop_fork (EV_P) 1823ev_loop_fork (EV_P)
1532{ 1824{
1533 postfork = 1; /* must be in line with ev_default_fork */ 1825 postfork = 1; /* must be in line with ev_default_fork */
1534} 1826}
1827#endif /* multiplicity */
1535 1828
1536#if EV_VERIFY 1829#if EV_VERIFY
1537static void noinline 1830static void noinline
1538verify_watcher (EV_P_ W w) 1831verify_watcher (EV_P_ W w)
1539{ 1832{
1567 verify_watcher (EV_A_ ws [cnt]); 1860 verify_watcher (EV_A_ ws [cnt]);
1568 } 1861 }
1569} 1862}
1570#endif 1863#endif
1571 1864
1865#if EV_MINIMAL < 2
1572void 1866void
1573ev_loop_verify (EV_P) 1867ev_loop_verify (EV_P)
1574{ 1868{
1575#if EV_VERIFY 1869#if EV_VERIFY
1576 int i; 1870 int i;
1625 assert (checkmax >= checkcnt); 1919 assert (checkmax >= checkcnt);
1626 array_verify (EV_A_ (W *)checks, checkcnt); 1920 array_verify (EV_A_ (W *)checks, checkcnt);
1627 1921
1628# if 0 1922# if 0
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1924 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1631# endif
1632#endif 1925# endif
1926#endif
1633} 1927}
1634 1928#endif
1635#endif /* multiplicity */
1636 1929
1637#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1638struct ev_loop * 1931struct ev_loop *
1639ev_default_loop_init (unsigned int flags) 1932ev_default_loop_init (unsigned int flags)
1640#else 1933#else
1643#endif 1936#endif
1644{ 1937{
1645 if (!ev_default_loop_ptr) 1938 if (!ev_default_loop_ptr)
1646 { 1939 {
1647#if EV_MULTIPLICITY 1940#if EV_MULTIPLICITY
1648 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1941 EV_P = ev_default_loop_ptr = &default_loop_struct;
1649#else 1942#else
1650 ev_default_loop_ptr = 1; 1943 ev_default_loop_ptr = 1;
1651#endif 1944#endif
1652 1945
1653 loop_init (EV_A_ flags); 1946 loop_init (EV_A_ flags);
1670 1963
1671void 1964void
1672ev_default_destroy (void) 1965ev_default_destroy (void)
1673{ 1966{
1674#if EV_MULTIPLICITY 1967#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr; 1968 EV_P = ev_default_loop_ptr;
1676#endif 1969#endif
1677 1970
1678 ev_default_loop_ptr = 0; 1971 ev_default_loop_ptr = 0;
1679 1972
1680#ifndef _WIN32 1973#ifndef _WIN32
1687 1980
1688void 1981void
1689ev_default_fork (void) 1982ev_default_fork (void)
1690{ 1983{
1691#if EV_MULTIPLICITY 1984#if EV_MULTIPLICITY
1692 struct ev_loop *loop = ev_default_loop_ptr; 1985 EV_P = ev_default_loop_ptr;
1693#endif 1986#endif
1694 1987
1695 postfork = 1; /* must be in line with ev_loop_fork */ 1988 postfork = 1; /* must be in line with ev_loop_fork */
1696} 1989}
1697 1990
1701ev_invoke (EV_P_ void *w, int revents) 1994ev_invoke (EV_P_ void *w, int revents)
1702{ 1995{
1703 EV_CB_INVOKE ((W)w, revents); 1996 EV_CB_INVOKE ((W)w, revents);
1704} 1997}
1705 1998
1706void inline_speed 1999unsigned int
1707call_pending (EV_P) 2000ev_pending_count (EV_P)
2001{
2002 int pri;
2003 unsigned int count = 0;
2004
2005 for (pri = NUMPRI; pri--; )
2006 count += pendingcnt [pri];
2007
2008 return count;
2009}
2010
2011void noinline
2012ev_invoke_pending (EV_P)
1708{ 2013{
1709 int pri; 2014 int pri;
1710 2015
1711 for (pri = NUMPRI; pri--; ) 2016 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 2017 while (pendingcnt [pri])
1713 { 2018 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2019 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 2020
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2021 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2022 /* ^ this is no longer true, as pending_w could be here */
1719 2023
1720 p->w->pending = 0; 2024 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 2025 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 2026 EV_FREQUENT_CHECK;
1723 }
1724 } 2027 }
1725} 2028}
1726 2029
1727#if EV_IDLE_ENABLE 2030#if EV_IDLE_ENABLE
1728void inline_size 2031/* make idle watchers pending. this handles the "call-idle */
2032/* only when higher priorities are idle" logic */
2033inline_size void
1729idle_reify (EV_P) 2034idle_reify (EV_P)
1730{ 2035{
1731 if (expect_false (idleall)) 2036 if (expect_false (idleall))
1732 { 2037 {
1733 int pri; 2038 int pri;
1745 } 2050 }
1746 } 2051 }
1747} 2052}
1748#endif 2053#endif
1749 2054
1750void inline_size 2055/* make timers pending */
2056inline_size void
1751timers_reify (EV_P) 2057timers_reify (EV_P)
1752{ 2058{
1753 EV_FREQUENT_CHECK; 2059 EV_FREQUENT_CHECK;
1754 2060
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2061 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 2062 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2063 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 2064 {
2065 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2066
2067 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2068
2069 /* first reschedule or stop timer */
2070 if (w->repeat)
2071 {
1764 ev_at (w) += w->repeat; 2072 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 2073 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 2074 ev_at (w) = mn_now;
1767 2075
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2076 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 2077
1770 ANHE_at_cache (timers [HEAP0]); 2078 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 2079 downheap (timers, timercnt, HEAP0);
2080 }
2081 else
2082 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1772 } 2086 }
1773 else 2087 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 2088
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2089 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 2090 }
1779} 2091}
1780 2092
1781#if EV_PERIODIC_ENABLE 2093#if EV_PERIODIC_ENABLE
1782void inline_size 2094/* make periodics pending */
2095inline_size void
1783periodics_reify (EV_P) 2096periodics_reify (EV_P)
1784{ 2097{
1785 EV_FREQUENT_CHECK; 2098 EV_FREQUENT_CHECK;
1786 2099
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2100 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 2101 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2102 int feed_count = 0;
1790 2103
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2104 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 2105 {
2106 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2107
2108 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2109
2110 /* first reschedule or stop timer */
2111 if (w->reschedule_cb)
2112 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2113 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 2114
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2115 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 2116
1800 ANHE_at_cache (periodics [HEAP0]); 2117 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 2118 downheap (periodics, periodiccnt, HEAP0);
2119 }
2120 else if (w->interval)
2121 {
2122 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2123 /* if next trigger time is not sufficiently in the future, put it there */
2124 /* this might happen because of floating point inexactness */
2125 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2126 {
2127 ev_at (w) += w->interval;
2128
2129 /* if interval is unreasonably low we might still have a time in the past */
2130 /* so correct this. this will make the periodic very inexact, but the user */
2131 /* has effectively asked to get triggered more often than possible */
2132 if (ev_at (w) < ev_rt_now)
2133 ev_at (w) = ev_rt_now;
2134 }
2135
2136 ANHE_at_cache (periodics [HEAP0]);
2137 downheap (periodics, periodiccnt, HEAP0);
2138 }
2139 else
2140 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2141
2142 EV_FREQUENT_CHECK;
2143 feed_reverse (EV_A_ (W)w);
1802 } 2144 }
1803 else if (w->interval) 2145 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 2146
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2147 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 2148 }
1828} 2149}
1829 2150
2151/* simply recalculate all periodics */
2152/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 2153static void noinline
1831periodics_reschedule (EV_P) 2154periodics_reschedule (EV_P)
1832{ 2155{
1833 int i; 2156 int i;
1834 2157
1847 2170
1848 reheap (periodics, periodiccnt); 2171 reheap (periodics, periodiccnt);
1849} 2172}
1850#endif 2173#endif
1851 2174
1852void inline_speed 2175/* adjust all timers by a given offset */
2176static void noinline
2177timers_reschedule (EV_P_ ev_tstamp adjust)
2178{
2179 int i;
2180
2181 for (i = 0; i < timercnt; ++i)
2182 {
2183 ANHE *he = timers + i + HEAP0;
2184 ANHE_w (*he)->at += adjust;
2185 ANHE_at_cache (*he);
2186 }
2187}
2188
2189/* fetch new monotonic and realtime times from the kernel */
2190/* also detect if there was a timejump, and act accordingly */
2191inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 2192time_update (EV_P_ ev_tstamp max_block)
1854{ 2193{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 2195 if (expect_true (have_monotonic))
1859 { 2196 {
2197 int i;
1860 ev_tstamp odiff = rtmn_diff; 2198 ev_tstamp odiff = rtmn_diff;
1861 2199
1862 mn_now = get_clock (); 2200 mn_now = get_clock ();
1863 2201
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2202 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2228 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2229 mn_now = get_clock ();
1892 now_floor = mn_now; 2230 now_floor = mn_now;
1893 } 2231 }
1894 2232
2233 /* no timer adjustment, as the monotonic clock doesn't jump */
2234 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2235# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2236 periodics_reschedule (EV_A);
1897# endif 2237# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2238 }
1901 else 2239 else
1902#endif 2240#endif
1903 { 2241 {
1904 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1905 2243
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2244 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2245 {
2246 /* adjust timers. this is easy, as the offset is the same for all of them */
2247 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2248#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2249 periodics_reschedule (EV_A);
1910#endif 2250#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2251 }
1919 2252
1920 mn_now = ev_rt_now; 2253 mn_now = ev_rt_now;
1921 } 2254 }
1922} 2255}
1923 2256
1924void 2257void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2258ev_loop (EV_P_ int flags)
1946{ 2259{
2260#if EV_MINIMAL < 2
2261 ++loop_depth;
2262#endif
2263
2264 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2265
1947 loop_done = EVUNLOOP_CANCEL; 2266 loop_done = EVUNLOOP_CANCEL;
1948 2267
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2268 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 2269
1951 do 2270 do
1952 { 2271 {
1953#if EV_VERIFY >= 2 2272#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2273 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2286 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2287 if (expect_false (postfork))
1969 if (forkcnt) 2288 if (forkcnt)
1970 { 2289 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2290 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1973 } 2292 }
1974#endif 2293#endif
1975 2294
1976 /* queue prepare watchers (and execute them) */ 2295 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2296 if (expect_false (preparecnt))
1978 { 2297 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2298 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2299 EV_INVOKE_PENDING;
1981 } 2300 }
1982 2301
1983 if (expect_false (!activecnt)) 2302 if (expect_false (loop_done))
1984 break; 2303 break;
1985 2304
1986 /* we might have forked, so reify kernel state if necessary */ 2305 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2306 if (expect_false (postfork))
1988 loop_fork (EV_A); 2307 loop_fork (EV_A);
1995 ev_tstamp waittime = 0.; 2314 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2315 ev_tstamp sleeptime = 0.;
1997 2316
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2317 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2318 {
2319 /* remember old timestamp for io_blocktime calculation */
2320 ev_tstamp prev_mn_now = mn_now;
2321
2000 /* update time to cancel out callback processing overhead */ 2322 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2323 time_update (EV_A_ 1e100);
2002 2324
2003 waittime = MAX_BLOCKTIME; 2325 waittime = MAX_BLOCKTIME;
2004 2326
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2336 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2337 if (waittime > to) waittime = to;
2016 } 2338 }
2017#endif 2339#endif
2018 2340
2341 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2342 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2343 waittime = timeout_blocktime;
2021 2344
2022 sleeptime = waittime - backend_fudge; 2345 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2346 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2347 {
2348 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2349
2350 if (sleeptime > waittime - backend_fudge)
2351 sleeptime = waittime - backend_fudge;
2352
2353 if (expect_true (sleeptime > 0.))
2354 {
2029 ev_sleep (sleeptime); 2355 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2356 waittime -= sleeptime;
2357 }
2031 } 2358 }
2032 } 2359 }
2033 2360
2361#if EV_MINIMAL < 2
2034 ++loop_count; 2362 ++loop_count;
2363#endif
2364 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 2365 backend_poll (EV_A_ waittime);
2366 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2036 2367
2037 /* update ev_rt_now, do magic */ 2368 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 2369 time_update (EV_A_ waittime + sleeptime);
2039 } 2370 }
2040 2371
2051 2382
2052 /* queue check watchers, to be executed first */ 2383 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2384 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2385 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2386
2056 call_pending (EV_A); 2387 EV_INVOKE_PENDING;
2057 } 2388 }
2058 while (expect_true ( 2389 while (expect_true (
2059 activecnt 2390 activecnt
2060 && !loop_done 2391 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2392 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2393 ));
2063 2394
2064 if (loop_done == EVUNLOOP_ONE) 2395 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2396 loop_done = EVUNLOOP_CANCEL;
2397
2398#if EV_MINIMAL < 2
2399 --loop_depth;
2400#endif
2066} 2401}
2067 2402
2068void 2403void
2069ev_unloop (EV_P_ int how) 2404ev_unloop (EV_P_ int how)
2070{ 2405{
2071 loop_done = how; 2406 loop_done = how;
2072} 2407}
2073 2408
2409void
2410ev_ref (EV_P)
2411{
2412 ++activecnt;
2413}
2414
2415void
2416ev_unref (EV_P)
2417{
2418 --activecnt;
2419}
2420
2421void
2422ev_now_update (EV_P)
2423{
2424 time_update (EV_A_ 1e100);
2425}
2426
2427void
2428ev_suspend (EV_P)
2429{
2430 ev_now_update (EV_A);
2431}
2432
2433void
2434ev_resume (EV_P)
2435{
2436 ev_tstamp mn_prev = mn_now;
2437
2438 ev_now_update (EV_A);
2439 timers_reschedule (EV_A_ mn_now - mn_prev);
2440#if EV_PERIODIC_ENABLE
2441 /* TODO: really do this? */
2442 periodics_reschedule (EV_A);
2443#endif
2444}
2445
2074/*****************************************************************************/ 2446/*****************************************************************************/
2447/* singly-linked list management, used when the expected list length is short */
2075 2448
2076void inline_size 2449inline_size void
2077wlist_add (WL *head, WL elem) 2450wlist_add (WL *head, WL elem)
2078{ 2451{
2079 elem->next = *head; 2452 elem->next = *head;
2080 *head = elem; 2453 *head = elem;
2081} 2454}
2082 2455
2083void inline_size 2456inline_size void
2084wlist_del (WL *head, WL elem) 2457wlist_del (WL *head, WL elem)
2085{ 2458{
2086 while (*head) 2459 while (*head)
2087 { 2460 {
2088 if (*head == elem) 2461 if (expect_true (*head == elem))
2089 { 2462 {
2090 *head = elem->next; 2463 *head = elem->next;
2091 return; 2464 break;
2092 } 2465 }
2093 2466
2094 head = &(*head)->next; 2467 head = &(*head)->next;
2095 } 2468 }
2096} 2469}
2097 2470
2098void inline_speed 2471/* internal, faster, version of ev_clear_pending */
2472inline_speed void
2099clear_pending (EV_P_ W w) 2473clear_pending (EV_P_ W w)
2100{ 2474{
2101 if (w->pending) 2475 if (w->pending)
2102 { 2476 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2478 w->pending = 0;
2105 } 2479 }
2106} 2480}
2107 2481
2108int 2482int
2112 int pending = w_->pending; 2486 int pending = w_->pending;
2113 2487
2114 if (expect_true (pending)) 2488 if (expect_true (pending))
2115 { 2489 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2491 p->w = (W)&pending_w;
2117 w_->pending = 0; 2492 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2493 return p->events;
2120 } 2494 }
2121 else 2495 else
2122 return 0; 2496 return 0;
2123} 2497}
2124 2498
2125void inline_size 2499inline_size void
2126pri_adjust (EV_P_ W w) 2500pri_adjust (EV_P_ W w)
2127{ 2501{
2128 int pri = w->priority; 2502 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2505 ev_set_priority (w, pri);
2132} 2506}
2133 2507
2134void inline_speed 2508inline_speed void
2135ev_start (EV_P_ W w, int active) 2509ev_start (EV_P_ W w, int active)
2136{ 2510{
2137 pri_adjust (EV_A_ w); 2511 pri_adjust (EV_A_ w);
2138 w->active = active; 2512 w->active = active;
2139 ev_ref (EV_A); 2513 ev_ref (EV_A);
2140} 2514}
2141 2515
2142void inline_size 2516inline_size void
2143ev_stop (EV_P_ W w) 2517ev_stop (EV_P_ W w)
2144{ 2518{
2145 ev_unref (EV_A); 2519 ev_unref (EV_A);
2146 w->active = 0; 2520 w->active = 0;
2147} 2521}
2155 2529
2156 if (expect_false (ev_is_active (w))) 2530 if (expect_false (ev_is_active (w)))
2157 return; 2531 return;
2158 2532
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2535
2162 EV_FREQUENT_CHECK; 2536 EV_FREQUENT_CHECK;
2163 2537
2164 ev_start (EV_A_ (W)w, 1); 2538 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2540 wlist_add (&anfds[fd].head, (WL)w);
2167 2541
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2542 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 2543 w->events &= ~EV__IOFDSET;
2170 2544
2171 EV_FREQUENT_CHECK; 2545 EV_FREQUENT_CHECK;
2172} 2546}
2173 2547
2174void noinline 2548void noinline
2235 timers [active] = timers [timercnt + HEAP0]; 2609 timers [active] = timers [timercnt + HEAP0];
2236 adjustheap (timers, timercnt, active); 2610 adjustheap (timers, timercnt, active);
2237 } 2611 }
2238 } 2612 }
2239 2613
2240 EV_FREQUENT_CHECK;
2241
2242 ev_at (w) -= mn_now; 2614 ev_at (w) -= mn_now;
2243 2615
2244 ev_stop (EV_A_ (W)w); 2616 ev_stop (EV_A_ (W)w);
2617
2618 EV_FREQUENT_CHECK;
2245} 2619}
2246 2620
2247void noinline 2621void noinline
2248ev_timer_again (EV_P_ ev_timer *w) 2622ev_timer_again (EV_P_ ev_timer *w)
2249{ 2623{
2267 } 2641 }
2268 2642
2269 EV_FREQUENT_CHECK; 2643 EV_FREQUENT_CHECK;
2270} 2644}
2271 2645
2646ev_tstamp
2647ev_timer_remaining (EV_P_ ev_timer *w)
2648{
2649 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2650}
2651
2272#if EV_PERIODIC_ENABLE 2652#if EV_PERIODIC_ENABLE
2273void noinline 2653void noinline
2274ev_periodic_start (EV_P_ ev_periodic *w) 2654ev_periodic_start (EV_P_ ev_periodic *w)
2275{ 2655{
2276 if (expect_false (ev_is_active (w))) 2656 if (expect_false (ev_is_active (w)))
2322 periodics [active] = periodics [periodiccnt + HEAP0]; 2702 periodics [active] = periodics [periodiccnt + HEAP0];
2323 adjustheap (periodics, periodiccnt, active); 2703 adjustheap (periodics, periodiccnt, active);
2324 } 2704 }
2325 } 2705 }
2326 2706
2327 EV_FREQUENT_CHECK;
2328
2329 ev_stop (EV_A_ (W)w); 2707 ev_stop (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2330} 2710}
2331 2711
2332void noinline 2712void noinline
2333ev_periodic_again (EV_P_ ev_periodic *w) 2713ev_periodic_again (EV_P_ ev_periodic *w)
2334{ 2714{
2343#endif 2723#endif
2344 2724
2345void noinline 2725void noinline
2346ev_signal_start (EV_P_ ev_signal *w) 2726ev_signal_start (EV_P_ ev_signal *w)
2347{ 2727{
2348#if EV_MULTIPLICITY
2349 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2350#endif
2351 if (expect_false (ev_is_active (w))) 2728 if (expect_false (ev_is_active (w)))
2352 return; 2729 return;
2353 2730
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2731 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2355 2732
2356 evpipe_init (EV_A); 2733#if EV_MULTIPLICITY
2734 assert (("libev: a signal must not be attached to two different loops",
2735 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2357 2736
2358 EV_FREQUENT_CHECK; 2737 signals [w->signum - 1].loop = EV_A;
2738#endif
2359 2739
2740 EV_FREQUENT_CHECK;
2741
2742#if EV_USE_SIGNALFD
2743 if (sigfd == -2)
2360 { 2744 {
2361#ifndef _WIN32 2745 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2362 sigset_t full, prev; 2746 if (sigfd < 0 && errno == EINVAL)
2363 sigfillset (&full); 2747 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2364 sigprocmask (SIG_SETMASK, &full, &prev);
2365#endif
2366 2748
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2749 if (sigfd >= 0)
2750 {
2751 fd_intern (sigfd); /* doing it twice will not hurt */
2368 2752
2369#ifndef _WIN32 2753 sigemptyset (&sigfd_set);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 2754
2371#endif 2755 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2756 ev_set_priority (&sigfd_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &sigfd_w);
2758 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2759 }
2372 } 2760 }
2761
2762 if (sigfd >= 0)
2763 {
2764 /* TODO: check .head */
2765 sigaddset (&sigfd_set, w->signum);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2767
2768 signalfd (sigfd, &sigfd_set, 0);
2769 }
2770#endif
2373 2771
2374 ev_start (EV_A_ (W)w, 1); 2772 ev_start (EV_A_ (W)w, 1);
2375 wlist_add (&signals [w->signum - 1].head, (WL)w); 2773 wlist_add (&signals [w->signum - 1].head, (WL)w);
2376 2774
2377 if (!((WL)w)->next) 2775 if (!((WL)w)->next)
2776# if EV_USE_SIGNALFD
2777 if (sigfd < 0) /*TODO*/
2778# endif
2378 { 2779 {
2379#if _WIN32 2780# ifdef _WIN32
2781 evpipe_init (EV_A);
2782
2380 signal (w->signum, ev_sighandler); 2783 signal (w->signum, ev_sighandler);
2381#else 2784# else
2382 struct sigaction sa; 2785 struct sigaction sa;
2786
2787 evpipe_init (EV_A);
2788
2383 sa.sa_handler = ev_sighandler; 2789 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 2790 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2791 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 2792 sigaction (w->signum, &sa, 0);
2793
2794 sigemptyset (&sa.sa_mask);
2795 sigaddset (&sa.sa_mask, w->signum);
2796 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2387#endif 2797#endif
2388 } 2798 }
2389 2799
2390 EV_FREQUENT_CHECK; 2800 EV_FREQUENT_CHECK;
2391} 2801}
2392 2802
2393void noinline 2803void noinline
2401 2811
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 2812 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
2404 2814
2405 if (!signals [w->signum - 1].head) 2815 if (!signals [w->signum - 1].head)
2816 {
2817#if EV_MULTIPLICITY
2818 signals [w->signum - 1].loop = 0; /* unattach from signal */
2819#endif
2820#if EV_USE_SIGNALFD
2821 if (sigfd >= 0)
2822 {
2823 sigset_t ss;
2824
2825 sigemptyset (&ss);
2826 sigaddset (&ss, w->signum);
2827 sigdelset (&sigfd_set, w->signum);
2828
2829 signalfd (sigfd, &sigfd_set, 0);
2830 sigprocmask (SIG_UNBLOCK, &ss, 0);
2831 }
2832 else
2833#endif
2406 signal (w->signum, SIG_DFL); 2834 signal (w->signum, SIG_DFL);
2835 }
2407 2836
2408 EV_FREQUENT_CHECK; 2837 EV_FREQUENT_CHECK;
2409} 2838}
2410 2839
2411void 2840void
2452#define MIN_STAT_INTERVAL 0.1074891 2881#define MIN_STAT_INTERVAL 0.1074891
2453 2882
2454static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2883static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2455 2884
2456#if EV_USE_INOTIFY 2885#if EV_USE_INOTIFY
2457# define EV_INOTIFY_BUFSIZE 8192 2886
2887/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2888# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2458 2889
2459static void noinline 2890static void noinline
2460infy_add (EV_P_ ev_stat *w) 2891infy_add (EV_P_ ev_stat *w)
2461{ 2892{
2462 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2893 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2463 2894
2464 if (w->wd < 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 /* now local changes will be tracked by inotify, but remote changes won't */
2900 /* unless the filesystem is known to be local, we therefore still poll */
2901 /* also do poll on <2.6.25, but with normal frequency */
2902
2903 if (!fs_2625)
2904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2905 else if (!statfs (w->path, &sfs)
2906 && (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */))
2912 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2913 else
2914 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2465 { 2915 }
2916 else
2917 {
2918 /* can't use inotify, continue to stat */
2466 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2919 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2467 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2468 2920
2469 /* monitor some parent directory for speedup hints */ 2921 /* if path is not there, monitor some parent directory for speedup hints */
2470 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2922 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2471 /* but an efficiency issue only */ 2923 /* but an efficiency issue only */
2472 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2924 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2473 { 2925 {
2474 char path [4096]; 2926 char path [4096];
2490 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2942 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2491 } 2943 }
2492 } 2944 }
2493 2945
2494 if (w->wd >= 0) 2946 if (w->wd >= 0)
2495 {
2496 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2947 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2497 2948
2498 /* now local changes will be tracked by inotify, but remote changes won't */ 2949 /* now re-arm timer, if required */
2499 /* unless the filesystem it known to be local, we therefore still poll */ 2950 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2500 /* also do poll on <2.6.25, but with normal frequency */
2501 struct statfs sfs;
2502
2503 if (fs_2625 && !statfs (w->path, &sfs))
2504 if (sfs.f_type == 0x1373 /* devfs */
2505 || sfs.f_type == 0xEF53 /* ext2/3 */
2506 || sfs.f_type == 0x3153464a /* jfs */
2507 || sfs.f_type == 0x52654973 /* reiser3 */
2508 || sfs.f_type == 0x01021994 /* tempfs */
2509 || sfs.f_type == 0x58465342 /* xfs */)
2510 return;
2511
2512 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2513 ev_timer_again (EV_A_ &w->timer); 2951 ev_timer_again (EV_A_ &w->timer);
2514 } 2952 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2515} 2953}
2516 2954
2517static void noinline 2955static void noinline
2518infy_del (EV_P_ ev_stat *w) 2956infy_del (EV_P_ ev_stat *w)
2519{ 2957{
2564 3002
2565static void 3003static void
2566infy_cb (EV_P_ ev_io *w, int revents) 3004infy_cb (EV_P_ ev_io *w, int revents)
2567{ 3005{
2568 char buf [EV_INOTIFY_BUFSIZE]; 3006 char buf [EV_INOTIFY_BUFSIZE];
2569 struct inotify_event *ev = (struct inotify_event *)buf;
2570 int ofs; 3007 int ofs;
2571 int len = read (fs_fd, buf, sizeof (buf)); 3008 int len = read (fs_fd, buf, sizeof (buf));
2572 3009
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3010 for (ofs = 0; ofs < len; )
3011 {
3012 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3013 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3014 ofs += sizeof (struct inotify_event) + ev->len;
3015 }
2575} 3016}
2576 3017
2577void inline_size 3018inline_size unsigned int
3019ev_linux_version (void)
3020{
3021 struct utsname buf;
3022 unsigned int v;
3023 int i;
3024 char *p = buf.release;
3025
3026 if (uname (&buf))
3027 return 0;
3028
3029 for (i = 3+1; --i; )
3030 {
3031 unsigned int c = 0;
3032
3033 for (;;)
3034 {
3035 if (*p >= '0' && *p <= '9')
3036 c = c * 10 + *p++ - '0';
3037 else
3038 {
3039 p += *p == '.';
3040 break;
3041 }
3042 }
3043
3044 v = (v << 8) | c;
3045 }
3046
3047 return v;
3048}
3049
3050inline_size void
2578check_2625 (EV_P) 3051ev_check_2625 (EV_P)
2579{ 3052{
2580 /* kernels < 2.6.25 are borked 3053 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3054 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 3055 */
2583 struct utsname buf; 3056 if (ev_linux_version () < 0x020619)
2584 int major, minor, micro;
2585
2586 if (uname (&buf))
2587 return; 3057 return;
2588 3058
2589 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2590 return;
2591
2592 if (major < 2
2593 || (major == 2 && minor < 6)
2594 || (major == 2 && minor == 6 && micro < 25))
2595 return;
2596
2597 fs_2625 = 1; 3059 fs_2625 = 1;
2598} 3060}
2599 3061
2600void inline_size 3062inline_size int
3063infy_newfd (void)
3064{
3065#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3066 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3067 if (fd >= 0)
3068 return fd;
3069#endif
3070 return inotify_init ();
3071}
3072
3073inline_size void
2601infy_init (EV_P) 3074infy_init (EV_P)
2602{ 3075{
2603 if (fs_fd != -2) 3076 if (fs_fd != -2)
2604 return; 3077 return;
2605 3078
2606 fs_fd = -1; 3079 fs_fd = -1;
2607 3080
2608 check_2625 (EV_A); 3081 ev_check_2625 (EV_A);
2609 3082
2610 fs_fd = inotify_init (); 3083 fs_fd = infy_newfd ();
2611 3084
2612 if (fs_fd >= 0) 3085 if (fs_fd >= 0)
2613 { 3086 {
3087 fd_intern (fs_fd);
2614 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3088 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2615 ev_set_priority (&fs_w, EV_MAXPRI); 3089 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 3090 ev_io_start (EV_A_ &fs_w);
3091 ev_unref (EV_A);
2617 } 3092 }
2618} 3093}
2619 3094
2620void inline_size 3095inline_size void
2621infy_fork (EV_P) 3096infy_fork (EV_P)
2622{ 3097{
2623 int slot; 3098 int slot;
2624 3099
2625 if (fs_fd < 0) 3100 if (fs_fd < 0)
2626 return; 3101 return;
2627 3102
3103 ev_ref (EV_A);
3104 ev_io_stop (EV_A_ &fs_w);
2628 close (fs_fd); 3105 close (fs_fd);
2629 fs_fd = inotify_init (); 3106 fs_fd = infy_newfd ();
3107
3108 if (fs_fd >= 0)
3109 {
3110 fd_intern (fs_fd);
3111 ev_io_set (&fs_w, fs_fd, EV_READ);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
2630 3115
2631 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3116 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2632 { 3117 {
2633 WL w_ = fs_hash [slot].head; 3118 WL w_ = fs_hash [slot].head;
2634 fs_hash [slot].head = 0; 3119 fs_hash [slot].head = 0;
2641 w->wd = -1; 3126 w->wd = -1;
2642 3127
2643 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2644 infy_add (EV_A_ w); /* re-add, no matter what */ 3129 infy_add (EV_A_ w); /* re-add, no matter what */
2645 else 3130 else
3131 {
3132 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3133 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2646 ev_timer_again (EV_A_ &w->timer); 3134 ev_timer_again (EV_A_ &w->timer);
3135 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3136 }
2647 } 3137 }
2648 } 3138 }
2649} 3139}
2650 3140
2651#endif 3141#endif
2668static void noinline 3158static void noinline
2669stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3159stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2670{ 3160{
2671 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3161 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2672 3162
2673 /* we copy this here each the time so that */ 3163 ev_statdata prev = w->attr;
2674 /* prev has the old value when the callback gets invoked */
2675 w->prev = w->attr;
2676 ev_stat_stat (EV_A_ w); 3164 ev_stat_stat (EV_A_ w);
2677 3165
2678 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2679 if ( 3167 if (
2680 w->prev.st_dev != w->attr.st_dev 3168 prev.st_dev != w->attr.st_dev
2681 || w->prev.st_ino != w->attr.st_ino 3169 || prev.st_ino != w->attr.st_ino
2682 || w->prev.st_mode != w->attr.st_mode 3170 || prev.st_mode != w->attr.st_mode
2683 || w->prev.st_nlink != w->attr.st_nlink 3171 || prev.st_nlink != w->attr.st_nlink
2684 || w->prev.st_uid != w->attr.st_uid 3172 || prev.st_uid != w->attr.st_uid
2685 || w->prev.st_gid != w->attr.st_gid 3173 || prev.st_gid != w->attr.st_gid
2686 || w->prev.st_rdev != w->attr.st_rdev 3174 || prev.st_rdev != w->attr.st_rdev
2687 || w->prev.st_size != w->attr.st_size 3175 || prev.st_size != w->attr.st_size
2688 || w->prev.st_atime != w->attr.st_atime 3176 || prev.st_atime != w->attr.st_atime
2689 || w->prev.st_mtime != w->attr.st_mtime 3177 || prev.st_mtime != w->attr.st_mtime
2690 || w->prev.st_ctime != w->attr.st_ctime 3178 || prev.st_ctime != w->attr.st_ctime
2691 ) { 3179 ) {
3180 /* we only update w->prev on actual differences */
3181 /* in case we test more often than invoke the callback, */
3182 /* to ensure that prev is always different to attr */
3183 w->prev = prev;
3184
2692 #if EV_USE_INOTIFY 3185 #if EV_USE_INOTIFY
2693 if (fs_fd >= 0) 3186 if (fs_fd >= 0)
2694 { 3187 {
2695 infy_del (EV_A_ w); 3188 infy_del (EV_A_ w);
2696 infy_add (EV_A_ w); 3189 infy_add (EV_A_ w);
2721 3214
2722 if (fs_fd >= 0) 3215 if (fs_fd >= 0)
2723 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2724 else 3217 else
2725#endif 3218#endif
3219 {
2726 ev_timer_again (EV_A_ &w->timer); 3220 ev_timer_again (EV_A_ &w->timer);
3221 ev_unref (EV_A);
3222 }
2727 3223
2728 ev_start (EV_A_ (W)w, 1); 3224 ev_start (EV_A_ (W)w, 1);
2729 3225
2730 EV_FREQUENT_CHECK; 3226 EV_FREQUENT_CHECK;
2731} 3227}
2740 EV_FREQUENT_CHECK; 3236 EV_FREQUENT_CHECK;
2741 3237
2742#if EV_USE_INOTIFY 3238#if EV_USE_INOTIFY
2743 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2744#endif 3240#endif
3241
3242 if (ev_is_active (&w->timer))
3243 {
3244 ev_ref (EV_A);
2745 ev_timer_stop (EV_A_ &w->timer); 3245 ev_timer_stop (EV_A_ &w->timer);
3246 }
2746 3247
2747 ev_stop (EV_A_ (W)w); 3248 ev_stop (EV_A_ (W)w);
2748 3249
2749 EV_FREQUENT_CHECK; 3250 EV_FREQUENT_CHECK;
2750} 3251}
2891embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3392embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2892{ 3393{
2893 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3394 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2894 3395
2895 { 3396 {
2896 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2897 3398
2898 while (fdchangecnt) 3399 while (fdchangecnt)
2899 { 3400 {
2900 fd_reify (EV_A); 3401 fd_reify (EV_A);
2901 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3402 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2909 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3410 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2910 3411
2911 ev_embed_stop (EV_A_ w); 3412 ev_embed_stop (EV_A_ w);
2912 3413
2913 { 3414 {
2914 struct ev_loop *loop = w->other; 3415 EV_P = w->other;
2915 3416
2916 ev_loop_fork (EV_A); 3417 ev_loop_fork (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3418 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 } 3419 }
2919 3420
2933{ 3434{
2934 if (expect_false (ev_is_active (w))) 3435 if (expect_false (ev_is_active (w)))
2935 return; 3436 return;
2936 3437
2937 { 3438 {
2938 struct ev_loop *loop = w->other; 3439 EV_P = w->other;
2939 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3440 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2940 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3441 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2941 } 3442 }
2942 3443
2943 EV_FREQUENT_CHECK; 3444 EV_FREQUENT_CHECK;
2970 3471
2971 ev_io_stop (EV_A_ &w->io); 3472 ev_io_stop (EV_A_ &w->io);
2972 ev_prepare_stop (EV_A_ &w->prepare); 3473 ev_prepare_stop (EV_A_ &w->prepare);
2973 ev_fork_stop (EV_A_ &w->fork); 3474 ev_fork_stop (EV_A_ &w->fork);
2974 3475
3476 ev_stop (EV_A_ (W)w);
3477
2975 EV_FREQUENT_CHECK; 3478 EV_FREQUENT_CHECK;
2976} 3479}
2977#endif 3480#endif
2978 3481
2979#if EV_FORK_ENABLE 3482#if EV_FORK_ENABLE
3055 3558
3056void 3559void
3057ev_async_send (EV_P_ ev_async *w) 3560ev_async_send (EV_P_ ev_async *w)
3058{ 3561{
3059 w->sent = 1; 3562 w->sent = 1;
3060 evpipe_write (EV_A_ &gotasync); 3563 evpipe_write (EV_A_ &async_pending);
3061} 3564}
3062#endif 3565#endif
3063 3566
3064/*****************************************************************************/ 3567/*****************************************************************************/
3065 3568
3127 ev_timer_set (&once->to, timeout, 0.); 3630 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3631 ev_timer_start (EV_A_ &once->to);
3129 } 3632 }
3130} 3633}
3131 3634
3635/*****************************************************************************/
3636
3637#if EV_WALK_ENABLE
3638void
3639ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3640{
3641 int i, j;
3642 ev_watcher_list *wl, *wn;
3643
3644 if (types & (EV_IO | EV_EMBED))
3645 for (i = 0; i < anfdmax; ++i)
3646 for (wl = anfds [i].head; wl; )
3647 {
3648 wn = wl->next;
3649
3650#if EV_EMBED_ENABLE
3651 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3652 {
3653 if (types & EV_EMBED)
3654 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3655 }
3656 else
3657#endif
3658#if EV_USE_INOTIFY
3659 if (ev_cb ((ev_io *)wl) == infy_cb)
3660 ;
3661 else
3662#endif
3663 if ((ev_io *)wl != &pipe_w)
3664 if (types & EV_IO)
3665 cb (EV_A_ EV_IO, wl);
3666
3667 wl = wn;
3668 }
3669
3670 if (types & (EV_TIMER | EV_STAT))
3671 for (i = timercnt + HEAP0; i-- > HEAP0; )
3672#if EV_STAT_ENABLE
3673 /*TODO: timer is not always active*/
3674 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3675 {
3676 if (types & EV_STAT)
3677 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3678 }
3679 else
3680#endif
3681 if (types & EV_TIMER)
3682 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3683
3684#if EV_PERIODIC_ENABLE
3685 if (types & EV_PERIODIC)
3686 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3687 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3688#endif
3689
3690#if EV_IDLE_ENABLE
3691 if (types & EV_IDLE)
3692 for (j = NUMPRI; i--; )
3693 for (i = idlecnt [j]; i--; )
3694 cb (EV_A_ EV_IDLE, idles [j][i]);
3695#endif
3696
3697#if EV_FORK_ENABLE
3698 if (types & EV_FORK)
3699 for (i = forkcnt; i--; )
3700 if (ev_cb (forks [i]) != embed_fork_cb)
3701 cb (EV_A_ EV_FORK, forks [i]);
3702#endif
3703
3704#if EV_ASYNC_ENABLE
3705 if (types & EV_ASYNC)
3706 for (i = asynccnt; i--; )
3707 cb (EV_A_ EV_ASYNC, asyncs [i]);
3708#endif
3709
3710 if (types & EV_PREPARE)
3711 for (i = preparecnt; i--; )
3712#if EV_EMBED_ENABLE
3713 if (ev_cb (prepares [i]) != embed_prepare_cb)
3714#endif
3715 cb (EV_A_ EV_PREPARE, prepares [i]);
3716
3717 if (types & EV_CHECK)
3718 for (i = checkcnt; i--; )
3719 cb (EV_A_ EV_CHECK, checks [i]);
3720
3721 if (types & EV_SIGNAL)
3722 for (i = 0; i < EV_NSIG - 1; ++i)
3723 for (wl = signals [i].head; wl; )
3724 {
3725 wn = wl->next;
3726 cb (EV_A_ EV_SIGNAL, wl);
3727 wl = wn;
3728 }
3729
3730 if (types & EV_CHILD)
3731 for (i = EV_PID_HASHSIZE; i--; )
3732 for (wl = childs [i]; wl; )
3733 {
3734 wn = wl->next;
3735 cb (EV_A_ EV_CHILD, wl);
3736 wl = wn;
3737 }
3738/* EV_STAT 0x00001000 /* stat data changed */
3739/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3740}
3741#endif
3742
3132#if EV_MULTIPLICITY 3743#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3744 #include "ev_wrap.h"
3134#endif 3745#endif
3135 3746
3136#ifdef __cplusplus 3747#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines