ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.485 by root, Mon Aug 13 10:01:19 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
67# endif 71# endif
68# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
70# endif 74# endif
71# else 75# else
72# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
74# endif 78# endif
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h> 167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
147#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
148#include <fcntl.h> 179#include <fcntl.h>
149#include <stddef.h> 180#include <stddef.h>
150 181
151#include <stdio.h> 182#include <stdio.h>
152 183
153#include <assert.h> 184#include <assert.h>
154#include <errno.h> 185#include <errno.h>
155#include <sys/types.h> 186#include <sys/types.h>
156#include <time.h> 187#include <time.h>
188#include <limits.h>
157 189
158#include <signal.h> 190#include <signal.h>
159 191
160#ifdef EV_H 192#ifdef EV_H
161# include EV_H 193# include EV_H
162#else 194#else
163# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
164#endif 207#endif
165 208
166#ifndef _WIN32 209#ifndef _WIN32
167# include <sys/time.h> 210# include <sys/time.h>
168# include <sys/wait.h> 211# include <sys/wait.h>
169# include <unistd.h> 212# include <unistd.h>
170#else 213#else
171# include <io.h> 214# include <io.h>
172# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
173# include <windows.h> 217# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
176# endif 220# endif
221# undef EV_AVOID_STDIO
177#endif 222#endif
178 223
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
180 225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
181#ifndef EV_USE_CLOCK_SYSCALL 255#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 258# else
185# define EV_USE_CLOCK_SYSCALL 0 259# define EV_USE_CLOCK_SYSCALL 0
186# endif 260# endif
187#endif 261#endif
188 262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
271
189#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 274# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 275# else
193# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
194# endif 277# endif
195#endif 278#endif
196 279
197#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 282#endif
200 283
201#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 285# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 286# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 287# else
205# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
206# endif 289# endif
207#endif 290#endif
208 291
209#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 294#endif
212 295
213#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
214# ifdef _WIN32 297# ifdef _WIN32
215# define EV_USE_POLL 0 298# define EV_USE_POLL 0
216# else 299# else
217# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 301# endif
219#endif 302#endif
220 303
221#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 307# else
225# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
226# endif 309# endif
227#endif 310#endif
228 311
234# define EV_USE_PORT 0 317# define EV_USE_PORT 0
235#endif 318#endif
236 319
237#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 322# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 323# else
241# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
242# endif 325# endif
243#endif 326#endif
244 327
245#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 330#endif
252 331
253#ifndef EV_INOTIFY_HASHSIZE 332#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 334#endif
260 335
261#ifndef EV_USE_EVENTFD 336#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 338# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 339# else
265# define EV_USE_EVENTFD 0 340# define EV_USE_EVENTFD 0
341# endif
342#endif
343
344#ifndef EV_USE_SIGNALFD
345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346# define EV_USE_SIGNALFD EV_FEATURE_OS
347# else
348# define EV_USE_SIGNALFD 0
266# endif 349# endif
267#endif 350#endif
268 351
269#if 0 /* debugging */ 352#if 0 /* debugging */
270# define EV_VERIFY 3 353# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 354# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 355# define EV_HEAP_CACHE_AT 1
273#endif 356#endif
274 357
275#ifndef EV_VERIFY 358#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 360#endif
278 361
279#ifndef EV_USE_4HEAP 362#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 363# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 364#endif
282 365
283#ifndef EV_HEAP_CACHE_AT 366#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
285#endif 398#endif
286 399
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 401
289#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 413# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
302#endif 415#endif
303 416
304#if !EV_USE_NANOSLEEP 417#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 420# include <sys/select.h>
307# endif 421# endif
308#endif 422#endif
309 423
310#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 425# include <sys/statfs.h>
313# include <sys/inotify.h> 426# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 428# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 429# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 430# define EV_USE_INOTIFY 0
318# endif 431# endif
319#endif 432#endif
320 433
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 434#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 436# include <stdint.h>
337# ifdef __cplusplus 437# ifndef EFD_NONBLOCK
338extern "C" { 438# define EFD_NONBLOCK O_NONBLOCK
339# endif 439# endif
340int eventfd (unsigned int initval, int flags); 440# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 441# ifdef O_CLOEXEC
342} 442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
343# endif 446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
344#endif 470#endif
345 471
346/**/ 472/**/
347 473
348#if EV_VERIFY >= 3 474#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 475# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 476#else
351# define EV_FREQUENT_CHECK do { } while (0) 477# define EV_FREQUENT_CHECK do { } while (0)
352#endif 478#endif
353 479
354/* 480/*
355 * This is used to avoid floating point rounding problems. 481 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 482 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 483 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 486
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
369# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline))
371#else 843#else
372# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif 845#endif
377#endif
378 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
381#define inline_size static inline 1529#define inline_size ecb_inline
382 1530
383#if EV_MINIMAL 1531#if EV_FEATURE_CODE
384# define inline_speed static noinline
385#else
386# define inline_speed static inline 1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
387#endif 1535#endif
388 1536
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
391 1544
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
394 1547
395typedef ev_watcher *W; 1548typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 1550typedef ev_watcher_time *WT;
398 1551
399#define ev_active(w) ((W)(w))->active 1552#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1553#define ev_at(w) ((WT)(w))->at
401 1554
1555#if EV_USE_REALTIME
1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557/* giving it a reasonably high chance of working on typical architectures */
1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559#endif
1560
402#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563#endif
1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 1573#endif
407 1574
408#ifdef _WIN32 1575#ifdef _WIN32
409# include "ev_win32.c" 1576# include "ev_win32.c"
410#endif 1577#endif
411 1578
412/*****************************************************************************/ 1579/*****************************************************************************/
413 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
414static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_THROW;
415 1683
1684ecb_cold
416void 1685void
417ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
418{ 1687{
419 syserr_cb = cb; 1688 syserr_cb = cb;
420} 1689}
421 1690
422static void noinline 1691noinline ecb_cold
1692static void
423ev_syserr (const char *msg) 1693ev_syserr (const char *msg)
424{ 1694{
425 if (!msg) 1695 if (!msg)
426 msg = "(libev) system error"; 1696 msg = "(libev) system error";
427 1697
428 if (syserr_cb) 1698 if (syserr_cb)
429 syserr_cb (msg); 1699 syserr_cb (msg);
430 else 1700 else
431 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
432 perror (msg); 1708 perror (msg);
1709#endif
433 abort (); 1710 abort ();
434 } 1711 }
435} 1712}
436 1713
437static void * 1714static void *
438ev_realloc_emul (void *ptr, long size) 1715ev_realloc_emul (void *ptr, long size) EV_THROW
439{ 1716{
440 /* some systems, notably openbsd and darwin, fail to properly 1717 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 1718 * implement realloc (x, 0) (as required by both ansi c-89 and
442 * the single unix specification, so work around them here. 1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
443 */ 1722 */
444 1723
445 if (size) 1724 if (size)
446 return realloc (ptr, size); 1725 return realloc (ptr, size);
447 1726
448 free (ptr); 1727 free (ptr);
449 return 0; 1728 return 0;
450} 1729}
451 1730
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1731static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
453 1732
1733ecb_cold
454void 1734void
455ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
456{ 1736{
457 alloc = cb; 1737 alloc = cb;
458} 1738}
459 1739
460inline_speed void * 1740inline_speed void *
462{ 1742{
463 ptr = alloc (ptr, size); 1743 ptr = alloc (ptr, size);
464 1744
465 if (!ptr && size) 1745 if (!ptr && size)
466 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
468 abort (); 1752 abort ();
469 } 1753 }
470 1754
471 return ptr; 1755 return ptr;
472} 1756}
474#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
476 1760
477/*****************************************************************************/ 1761/*****************************************************************************/
478 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
479typedef struct 1767typedef struct
480{ 1768{
481 WL head; 1769 WL head;
482 unsigned char events; 1770 unsigned char events; /* the events watched for */
483 unsigned char reify; 1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 1773 unsigned char unused;
486#if EV_USE_EPOLL 1774#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 1775 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 1776#endif
489#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
490 SOCKET handle; 1778 SOCKET handle;
491#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
492} ANFD; 1783} ANFD;
493 1784
1785/* stores the pending event set for a given watcher */
494typedef struct 1786typedef struct
495{ 1787{
496 W w; 1788 W w;
497 int events; 1789 int events; /* the pending event set for the given watcher */
498} ANPENDING; 1790} ANPENDING;
499 1791
500#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 1793/* hash table entry per inotify-id */
502typedef struct 1794typedef struct
505} ANFS; 1797} ANFS;
506#endif 1798#endif
507 1799
508/* Heap Entry */ 1800/* Heap Entry */
509#if EV_HEAP_CACHE_AT 1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
510 typedef struct { 1803 typedef struct {
511 ev_tstamp at; 1804 ev_tstamp at;
512 WT w; 1805 WT w;
513 } ANHE; 1806 } ANHE;
514 1807
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 1811#else
1812 /* a heap element */
519 typedef WT ANHE; 1813 typedef WT ANHE;
520 1814
521 #define ANHE_w(he) (he) 1815 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 1816 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 1817 #define ANHE_at_cache(he)
534 #undef VAR 1828 #undef VAR
535 }; 1829 };
536 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
537 1831
538 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
539 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
540 1834
541#else 1835#else
542 1836
543 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
544 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
545 #include "ev_vars.h" 1839 #include "ev_vars.h"
546 #undef VAR 1840 #undef VAR
547 1841
548 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
549 1843
550#endif 1844#endif
551 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
552/*****************************************************************************/ 1858/*****************************************************************************/
553 1859
1860#ifndef EV_HAVE_EV_TIME
554ev_tstamp 1861ev_tstamp
555ev_time (void) 1862ev_time (void) EV_THROW
556{ 1863{
557#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
558 struct timespec ts; 1867 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 1868 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 1870 }
1871#endif
1872
562 struct timeval tv; 1873 struct timeval tv;
563 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 1876}
1877#endif
567 1878
568ev_tstamp inline_size 1879inline_size ev_tstamp
569get_clock (void) 1880get_clock (void)
570{ 1881{
571#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 1883 if (expect_true (have_monotonic))
573 { 1884 {
580 return ev_time (); 1891 return ev_time ();
581} 1892}
582 1893
583#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
584ev_tstamp 1895ev_tstamp
585ev_now (EV_P) 1896ev_now (EV_P) EV_THROW
586{ 1897{
587 return ev_rt_now; 1898 return ev_rt_now;
588} 1899}
589#endif 1900#endif
590 1901
591void 1902void
592ev_sleep (ev_tstamp delay) 1903ev_sleep (ev_tstamp delay) EV_THROW
593{ 1904{
594 if (delay > 0.) 1905 if (delay > 0.)
595 { 1906 {
596#if EV_USE_NANOSLEEP 1907#if EV_USE_NANOSLEEP
597 struct timespec ts; 1908 struct timespec ts;
598 1909
599 ts.tv_sec = (time_t)delay; 1910 EV_TS_SET (ts, delay);
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0); 1911 nanosleep (&ts, 0);
603#elif defined(_WIN32) 1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
604 Sleep ((unsigned long)(delay * 1e3)); 1915 Sleep ((unsigned long)(delay * 1e3));
605#else 1916#else
606 struct timeval tv; 1917 struct timeval tv;
607 1918
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1920 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
614 select (0, 0, 0, 0, &tv); 1923 select (0, 0, 0, 0, &tv);
615#endif 1924#endif
616 } 1925 }
617} 1926}
618 1927
619/*****************************************************************************/ 1928/*****************************************************************************/
620 1929
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 1931
623int inline_size 1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
1934inline_size int
624array_nextsize (int elem, int cur, int cnt) 1935array_nextsize (int elem, int cur, int cnt)
625{ 1936{
626 int ncur = cur + 1; 1937 int ncur = cur + 1;
627 1938
628 do 1939 do
629 ncur <<= 1; 1940 ncur <<= 1;
630 while (cnt > ncur); 1941 while (cnt > ncur);
631 1942
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 { 1945 {
635 ncur *= elem; 1946 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4; 1948 ncur = ncur - sizeof (void *) * 4;
639 } 1950 }
640 1951
641 return ncur; 1952 return ncur;
642} 1953}
643 1954
644static noinline void * 1955noinline ecb_cold
1956static void *
645array_realloc (int elem, void *base, int *cur, int cnt) 1957array_realloc (int elem, void *base, int *cur, int cnt)
646{ 1958{
647 *cur = array_nextsize (elem, *cur, cnt); 1959 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur); 1960 return ev_realloc (base, elem * *cur);
649} 1961}
652 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
653 1965
654#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
655 if (expect_false ((cnt) > (cur))) \ 1967 if (expect_false ((cnt) > (cur))) \
656 { \ 1968 { \
657 int ocur_ = (cur); \ 1969 ecb_unused int ocur_ = (cur); \
658 (base) = (type *)array_realloc \ 1970 (base) = (type *)array_realloc \
659 (sizeof (type), (base), &(cur), (cnt)); \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
660 init ((base) + (ocur_), (cur) - ocur_); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
661 } 1973 }
662 1974
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 1982 }
671#endif 1983#endif
672 1984
673#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 1987
676/*****************************************************************************/ 1988/*****************************************************************************/
677 1989
1990/* dummy callback for pending events */
678void noinline 1991noinline
1992static void
1993pendingcb (EV_P_ ev_prepare *w, int revents)
1994{
1995}
1996
1997noinline
1998void
679ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_THROW
680{ 2000{
681 W w_ = (W)w; 2001 W w_ = (W)w;
682 int pri = ABSPRI (w_); 2002 int pri = ABSPRI (w_);
683 2003
684 if (expect_false (w_->pending)) 2004 if (expect_false (w_->pending))
688 w_->pending = ++pendingcnt [pri]; 2008 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_; 2010 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 2011 pendings [pri][w_->pending - 1].events = revents;
692 } 2012 }
693}
694 2013
695void inline_speed 2014 pendingpri = NUMPRI - 1;
2015}
2016
2017inline_speed void
2018feed_reverse (EV_P_ W w)
2019{
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022}
2023
2024inline_size void
2025feed_reverse_done (EV_P_ int revents)
2026{
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030}
2031
2032inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 2033queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 2034{
698 int i; 2035 int i;
699 2036
700 for (i = 0; i < eventcnt; ++i) 2037 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 2038 ev_feed_event (EV_A_ events [i], type);
702} 2039}
703 2040
704/*****************************************************************************/ 2041/*****************************************************************************/
705 2042
706void inline_speed 2043inline_speed void
707fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
708{ 2045{
709 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
710 ev_io *w; 2047 ev_io *w;
711 2048
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 2053 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
718 } 2055 }
719} 2056}
720 2057
2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
721void 2069void
722ev_feed_fd_event (EV_P_ int fd, int revents) 2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
723{ 2071{
724 if (fd >= 0 && fd < anfdmax) 2072 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
726} 2074}
727 2075
728void inline_size 2076/* make sure the external fd watch events are in-sync */
2077/* with the kernel/libev internal state */
2078inline_size void
729fd_reify (EV_P) 2079fd_reify (EV_P)
730{ 2080{
731 int i; 2081 int i;
2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106#endif
732 2107
733 for (i = 0; i < fdchangecnt; ++i) 2108 for (i = 0; i < fdchangecnt; ++i)
734 { 2109 {
735 int fd = fdchanges [i]; 2110 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd; 2111 ANFD *anfd = anfds + fd;
737 ev_io *w; 2112 ev_io *w;
738 2113
739 unsigned char events = 0; 2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
740 2116
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2117 anfd->reify = 0;
742 events |= (unsigned char)w->events;
743 2118
744#if EV_SELECT_IS_WINSOCKET 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
745 if (events)
746 { 2120 {
747 unsigned long arg; 2121 anfd->events = 0;
748 #ifdef EV_FD_TO_WIN32_HANDLE 2122
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
750 #else 2124 anfd->events |= (unsigned char)w->events;
751 anfd->handle = _get_osfhandle (fd); 2125
752 #endif 2126 if (o_events != anfd->events)
753 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2127 o_reify = EV__IOFDSET; /* actually |= */
754 } 2128 }
755#endif
756 2129
757 { 2130 if (o_reify & EV__IOFDSET)
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 2131 backend_modify (EV_A_ fd, o_events, anfd->events);
766 }
767 } 2132 }
768 2133
769 fdchangecnt = 0; 2134 fdchangecnt = 0;
770} 2135}
771 2136
2137/* something about the given fd changed */
772void inline_size 2138inline_size
2139void
773fd_change (EV_P_ int fd, int flags) 2140fd_change (EV_P_ int fd, int flags)
774{ 2141{
775 unsigned char reify = anfds [fd].reify; 2142 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 2143 anfds [fd].reify |= flags;
777 2144
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
783 } 2150 }
784} 2151}
785 2152
786void inline_speed 2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154inline_speed ecb_cold void
787fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
788{ 2156{
789 ev_io *w; 2157 ev_io *w;
790 2158
791 while ((w = (ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 2163 }
796} 2164}
797 2165
798int inline_size 2166/* check whether the given fd is actually valid, for error recovery */
2167inline_size ecb_cold int
799fd_valid (int fd) 2168fd_valid (int fd)
800{ 2169{
801#ifdef _WIN32 2170#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 2172#else
804 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
805#endif 2174#endif
806} 2175}
807 2176
808/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
809static void noinline 2178noinline ecb_cold
2179static void
810fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
811{ 2181{
812 int fd; 2182 int fd;
813 2183
814 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
816 if (!fd_valid (fd) && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
817 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
818} 2188}
819 2189
820/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
821static void noinline 2191noinline ecb_cold
2192static void
822fd_enomem (EV_P) 2193fd_enomem (EV_P)
823{ 2194{
824 int fd; 2195 int fd;
825 2196
826 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 2198 if (anfds [fd].events)
828 { 2199 {
829 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
830 return; 2201 break;
831 } 2202 }
832} 2203}
833 2204
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 2206noinline
2207static void
836fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
837{ 2209{
838 int fd; 2210 int fd;
839 2211
840 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 2213 if (anfds [fd].events)
842 { 2214 {
843 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 2216 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 2218 }
847} 2219}
848 2220
2221/* used to prepare libev internal fd's */
2222/* this is not fork-safe */
2223inline_speed void
2224fd_intern (int fd)
2225{
2226#ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229#else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232#endif
2233}
2234
849/*****************************************************************************/ 2235/*****************************************************************************/
850 2236
851/* 2237/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not 2238 * the heap functions want a real array index. array index 0 is guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree. 2240 * the branching factor of the d-tree.
855 */ 2241 */
856 2242
857/* 2243/*
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2252#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2253#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 2254#define UPHEAP_DONE(p,k) ((p) == (k))
869 2255
870/* away from the root */ 2256/* away from the root */
871void inline_speed 2257inline_speed void
872downheap (ANHE *heap, int N, int k) 2258downheap (ANHE *heap, int N, int k)
873{ 2259{
874 ANHE he = heap [k]; 2260 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 2261 ANHE *E = heap + N + HEAP0;
876 2262
916#define HEAP0 1 2302#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 2303#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 2304#define UPHEAP_DONE(p,k) (!(p))
919 2305
920/* away from the root */ 2306/* away from the root */
921void inline_speed 2307inline_speed void
922downheap (ANHE *heap, int N, int k) 2308downheap (ANHE *heap, int N, int k)
923{ 2309{
924 ANHE he = heap [k]; 2310 ANHE he = heap [k];
925 2311
926 for (;;) 2312 for (;;)
927 { 2313 {
928 int c = k << 1; 2314 int c = k << 1;
929 2315
930 if (c > N + HEAP0 - 1) 2316 if (c >= N + HEAP0)
931 break; 2317 break;
932 2318
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 2320 ? 1 : 0;
935 2321
946 ev_active (ANHE_w (he)) = k; 2332 ev_active (ANHE_w (he)) = k;
947} 2333}
948#endif 2334#endif
949 2335
950/* towards the root */ 2336/* towards the root */
951void inline_speed 2337inline_speed void
952upheap (ANHE *heap, int k) 2338upheap (ANHE *heap, int k)
953{ 2339{
954 ANHE he = heap [k]; 2340 ANHE he = heap [k];
955 2341
956 for (;;) 2342 for (;;)
967 2353
968 heap [k] = he; 2354 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 2355 ev_active (ANHE_w (he)) = k;
970} 2356}
971 2357
972void inline_size 2358/* move an element suitably so it is in a correct place */
2359inline_size void
973adjustheap (ANHE *heap, int N, int k) 2360adjustheap (ANHE *heap, int N, int k)
974{ 2361{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 2363 upheap (heap, k);
977 else 2364 else
978 downheap (heap, N, k); 2365 downheap (heap, N, k);
979} 2366}
980 2367
981/* rebuild the heap: this function is used only once and executed rarely */ 2368/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 2369inline_size void
983reheap (ANHE *heap, int N) 2370reheap (ANHE *heap, int N)
984{ 2371{
985 int i; 2372 int i;
986 2373
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 2377 upheap (heap, i + HEAP0);
991} 2378}
992 2379
993/*****************************************************************************/ 2380/*****************************************************************************/
994 2381
2382/* associate signal watchers to a signal signal */
995typedef struct 2383typedef struct
996{ 2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
997 WL head; 2389 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 2390} ANSIG;
1000 2391
1001static ANSIG *signals; 2392static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 2393
1006/*****************************************************************************/ 2394/*****************************************************************************/
1007 2395
1008void inline_speed 2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1009fd_intern (int fd)
1010{
1011#ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif
1018}
1019 2397
1020static void noinline 2398noinline ecb_cold
2399static void
1021evpipe_init (EV_P) 2400evpipe_init (EV_P)
1022{ 2401{
1023 if (!ev_is_active (&pipeev)) 2402 if (!ev_is_active (&pipe_w))
2403 {
2404 int fds [2];
2405
2406# if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
2413# endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
2417
2418 fd_intern (fds [0]);
2419 }
2420
2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
1024 { 2441 }
2442}
2443
2444inline_speed void
2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446{
2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
2460 {
2461 int old_errno;
2462
2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
1025#if EV_USE_EVENTFD 2468#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 2469 if (evpipe [0] < 0)
1027 { 2470 {
1028 evpipe [0] = -1; 2471 uint64_t counter = 1;
1029 fd_intern (evfd); 2472 write (evpipe [1], &counter, sizeof (uint64_t));
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 } 2473 }
1032 else 2474 else
1033#endif 2475#endif
1034 { 2476 {
1035 while (pipe (evpipe)) 2477#ifdef _WIN32
1036 ev_syserr ("(libev) error creating signal/async pipe"); 2478 WSABUF buf;
1037 2479 DWORD sent;
1038 fd_intern (evpipe [0]); 2480 buf.buf = (char *)&buf;
1039 fd_intern (evpipe [1]); 2481 buf.len = 1;
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
1041 } 2486 }
1042 2487
1043 ev_io_start (EV_A_ &pipeev); 2488 errno = old_errno;
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 { 2489 }
1053 int old_errno = errno; /* save errno because write might clobber it */ 2490}
1054 2491
1055 *flag = 1; 2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
2494static void
2495pipecb (EV_P_ ev_io *iow, int revents)
2496{
2497 int i;
1056 2498
2499 if (revents & EV_READ)
2500 {
1057#if EV_USE_EVENTFD 2501#if EV_USE_EVENTFD
1058 if (evfd >= 0) 2502 if (evpipe [0] < 0)
1059 { 2503 {
1060 uint64_t counter = 1; 2504 uint64_t counter;
1061 write (evfd, &counter, sizeof (uint64_t)); 2505 read (evpipe [1], &counter, sizeof (uint64_t));
1062 } 2506 }
1063 else 2507 else
1064#endif 2508#endif
1065 write (evpipe [1], &old_errno, 1); 2509 {
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy; 2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
1084 read (evpipe [0], &dummy, 1); 2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
2522 }
2523
2524 pipe_write_skipped = 0;
2525
2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527
2528#if EV_SIGNAL_ENABLE
2529 if (sig_pending)
1085 } 2530 {
2531 sig_pending = 0;
1086 2532
1087 if (gotsig && ev_is_default_loop (EV_A)) 2533 ECB_MEMORY_FENCE;
1088 {
1089 int signum;
1090 gotsig = 0;
1091 2534
1092 for (signum = signalmax; signum--; ) 2535 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 2536 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 2537 ev_feed_signal_event (EV_A_ i + 1);
1095 } 2538 }
2539#endif
1096 2540
1097#if EV_ASYNC_ENABLE 2541#if EV_ASYNC_ENABLE
1098 if (gotasync) 2542 if (async_pending)
1099 { 2543 {
1100 int i; 2544 async_pending = 0;
1101 gotasync = 0; 2545
2546 ECB_MEMORY_FENCE;
1102 2547
1103 for (i = asynccnt; i--; ) 2548 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 2549 if (asyncs [i]->sent)
1105 { 2550 {
1106 asyncs [i]->sent = 0; 2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 } 2554 }
1109 } 2555 }
1110#endif 2556#endif
1111} 2557}
1112 2558
1113/*****************************************************************************/ 2559/*****************************************************************************/
1114 2560
2561void
2562ev_feed_signal (int signum) EV_THROW
2563{
2564#if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571#endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575}
2576
1115static void 2577static void
1116ev_sighandler (int signum) 2578ev_sighandler (int signum)
1117{ 2579{
2580#ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582#endif
2583
2584 ev_feed_signal (signum);
2585}
2586
2587noinline
2588void
2589ev_feed_signal_event (EV_P_ int signum) EV_THROW
2590{
2591 WL w;
2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
1118#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 2599 /* it is permissible to try to feed a signal to the wrong loop */
1120#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
1121 2601
1122#if _WIN32 2602 if (expect_false (signals [signum].loop != EV_A))
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 2603 return;
2604#endif
1143 2605
1144 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
1145 2608
1146 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 2611}
1149 2612
2613#if EV_USE_SIGNALFD
2614static void
2615sigfdcb (EV_P_ ev_io *iow, int revents)
2616{
2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2618
2619 for (;;)
2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
2622
2623 /* not ISO-C, as res might be -1, but works with SuS */
2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2626
2627 if (res < (ssize_t)sizeof (si))
2628 break;
2629 }
2630}
2631#endif
2632
2633#endif
2634
1150/*****************************************************************************/ 2635/*****************************************************************************/
1151 2636
2637#if EV_CHILD_ENABLE
1152static WL childs [EV_PID_HASHSIZE]; 2638static WL childs [EV_PID_HASHSIZE];
1153
1154#ifndef _WIN32
1155 2639
1156static ev_signal childev; 2640static ev_signal childev;
1157 2641
1158#ifndef WIFCONTINUED 2642#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 2643# define WIFCONTINUED(status) 0
1160#endif 2644#endif
1161 2645
1162void inline_speed 2646/* handle a single child status event */
2647inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 2648child_reap (EV_P_ int chain, int pid, int status)
1164{ 2649{
1165 ev_child *w; 2650 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 2652
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 { 2654 {
1170 if ((w->pid == pid || !w->pid) 2655 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1))) 2656 && (!traced || (w->flags & 1)))
1172 { 2657 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1180 2665
1181#ifndef WCONTINUED 2666#ifndef WCONTINUED
1182# define WCONTINUED 0 2667# define WCONTINUED 0
1183#endif 2668#endif
1184 2669
2670/* called on sigchld etc., calls waitpid */
1185static void 2671static void
1186childcb (EV_P_ ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
1187{ 2673{
1188 int pid, status; 2674 int pid, status;
1189 2675
1197 /* make sure we are called again until all children have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */ 2684 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200 2686
1201 child_reap (EV_A_ pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1) 2688 if ((EV_PID_HASHSIZE) > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204} 2690}
1205 2691
1206#endif 2692#endif
1207 2693
1208/*****************************************************************************/ 2694/*****************************************************************************/
1209 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
1210#if EV_USE_PORT 2699#if EV_USE_PORT
1211# include "ev_port.c" 2700# include "ev_port.c"
1212#endif 2701#endif
1213#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
1214# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
1221#endif 2710#endif
1222#if EV_USE_SELECT 2711#if EV_USE_SELECT
1223# include "ev_select.c" 2712# include "ev_select.c"
1224#endif 2713#endif
1225 2714
1226int 2715ecb_cold int
1227ev_version_major (void) 2716ev_version_major (void) EV_THROW
1228{ 2717{
1229 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
1230} 2719}
1231 2720
1232int 2721ecb_cold int
1233ev_version_minor (void) 2722ev_version_minor (void) EV_THROW
1234{ 2723{
1235 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
1236} 2725}
1237 2726
1238/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
1239int inline_size 2728inline_size ecb_cold int
1240enable_secure (void) 2729enable_secure (void)
1241{ 2730{
1242#ifdef _WIN32 2731#ifdef _WIN32
1243 return 0; 2732 return 0;
1244#else 2733#else
1245 return getuid () != geteuid () 2734 return getuid () != geteuid ()
1246 || getgid () != getegid (); 2735 || getgid () != getegid ();
1247#endif 2736#endif
1248} 2737}
1249 2738
2739ecb_cold
1250unsigned int 2740unsigned int
1251ev_supported_backends (void) 2741ev_supported_backends (void) EV_THROW
1252{ 2742{
1253 unsigned int flags = 0; 2743 unsigned int flags = 0;
1254 2744
1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260 2750
1261 return flags; 2751 return flags;
1262} 2752}
1263 2753
2754ecb_cold
1264unsigned int 2755unsigned int
1265ev_recommended_backends (void) 2756ev_recommended_backends (void) EV_THROW
1266{ 2757{
1267 unsigned int flags = ev_supported_backends (); 2758 unsigned int flags = ev_supported_backends ();
1268 2759
1269#ifndef __NetBSD__ 2760#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */ 2761 /* kqueue is borked on everything but netbsd apparently */
1274#ifdef __APPLE__ 2765#ifdef __APPLE__
1275 /* only select works correctly on that "unix-certified" platform */ 2766 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1277 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1278#endif 2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2772#endif
1279 2773
1280 return flags; 2774 return flags;
1281} 2775}
1282 2776
2777ecb_cold
1283unsigned int 2778unsigned int
1284ev_embeddable_backends (void) 2779ev_embeddable_backends (void) EV_THROW
1285{ 2780{
1286 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1287 2782
1288 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1289 /* please fix it and tell me how to detect the fix */ 2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1290 flags &= ~EVBACKEND_EPOLL; 2785 flags &= ~EVBACKEND_EPOLL;
1291 2786
1292 return flags; 2787 return flags;
1293} 2788}
1294 2789
1295unsigned int 2790unsigned int
1296ev_backend (EV_P) 2791ev_backend (EV_P) EV_THROW
1297{ 2792{
1298 return backend; 2793 return backend;
1299} 2794}
1300 2795
2796#if EV_FEATURE_API
1301unsigned int 2797unsigned int
1302ev_loop_count (EV_P) 2798ev_iteration (EV_P) EV_THROW
1303{ 2799{
1304 return loop_count; 2800 return loop_count;
1305} 2801}
1306 2802
2803unsigned int
2804ev_depth (EV_P) EV_THROW
2805{
2806 return loop_depth;
2807}
2808
1307void 2809void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1309{ 2811{
1310 io_blocktime = interval; 2812 io_blocktime = interval;
1311} 2813}
1312 2814
1313void 2815void
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1315{ 2817{
1316 timeout_blocktime = interval; 2818 timeout_blocktime = interval;
1317} 2819}
1318 2820
1319static void noinline 2821void
2822ev_set_userdata (EV_P_ void *data) EV_THROW
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_THROW
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
2849static void
1320loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_THROW
1321{ 2851{
1322 if (!backend) 2852 if (!backend)
1323 { 2853 {
2854 origflags = flags;
2855
2856#if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864#endif
2865
1324#if EV_USE_MONOTONIC 2866#if EV_USE_MONOTONIC
2867 if (!have_monotonic)
1325 { 2868 {
1326 struct timespec ts; 2869 struct timespec ts;
2870
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 2872 have_monotonic = 1;
1329 } 2873 }
1330#endif
1331
1332 ev_rt_now = ev_time ();
1333 mn_now = get_clock ();
1334 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now;
1336
1337 io_blocktime = 0.;
1338 timeout_blocktime = 0.;
1339 backend = 0;
1340 backend_fd = -1;
1341 gotasync = 0;
1342#if EV_USE_INOTIFY
1343 fs_fd = -2;
1344#endif 2874#endif
1345 2875
1346 /* pid check not overridable via env */ 2876 /* pid check not overridable via env */
1347#ifndef _WIN32 2877#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK) 2878 if (flags & EVFLAG_FORKCHECK)
1352 if (!(flags & EVFLAG_NOENV) 2882 if (!(flags & EVFLAG_NOENV)
1353 && !enable_secure () 2883 && !enable_secure ()
1354 && getenv ("LIBEV_FLAGS")) 2884 && getenv ("LIBEV_FLAGS"))
1355 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
1356 2886
1357 if (!(flags & 0x0000ffffU)) 2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
1358 flags |= ev_recommended_backends (); 2915 flags |= ev_recommended_backends ();
1359 2916
2917#if EV_USE_IOCP
2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919#endif
1360#if EV_USE_PORT 2920#if EV_USE_PORT
1361 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1362#endif 2922#endif
1363#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
1364 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1371#endif 2931#endif
1372#if EV_USE_SELECT 2932#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 2934#endif
1375 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1376 ev_init (&pipeev, pipecb); 2939 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
1378 } 2942 }
1379} 2943}
1380 2944
1381static void noinline 2945/* free up a loop structure */
2946ecb_cold
2947void
1382loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
1383{ 2949{
1384 int i; 2950 int i;
1385 2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
1386 if (ev_is_active (&pipeev)) 2975 if (ev_is_active (&pipe_w))
1387 { 2976 {
1388 ev_ref (EV_A); /* signal watcher */ 2977 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 2978 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
1391#if EV_USE_EVENTFD 2984#if EV_USE_SIGNALFD
1392 if (evfd >= 0) 2985 if (ev_is_active (&sigfd_w))
1393 close (evfd); 2986 close (sigfd);
1394#endif 2987#endif
1395
1396 if (evpipe [0] >= 0)
1397 {
1398 close (evpipe [0]);
1399 close (evpipe [1]);
1400 }
1401 }
1402 2988
1403#if EV_USE_INOTIFY 2989#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 2990 if (fs_fd >= 0)
1405 close (fs_fd); 2991 close (fs_fd);
1406#endif 2992#endif
1407 2993
1408 if (backend_fd >= 0) 2994 if (backend_fd >= 0)
1409 close (backend_fd); 2995 close (backend_fd);
1410 2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
1411#if EV_USE_PORT 3000#if EV_USE_PORT
1412 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1413#endif 3002#endif
1414#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
1415 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1430#if EV_IDLE_ENABLE 3019#if EV_IDLE_ENABLE
1431 array_free (idle, [i]); 3020 array_free (idle, [i]);
1432#endif 3021#endif
1433 } 3022 }
1434 3023
1435 ev_free (anfds); anfdmax = 0; 3024 ev_free (anfds); anfds = 0; anfdmax = 0;
1436 3025
1437 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 3028 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 3029 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 3030#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 3031 array_free (periodic, EMPTY);
1442#endif 3032#endif
1443#if EV_FORK_ENABLE 3033#if EV_FORK_ENABLE
1444 array_free (fork, EMPTY); 3034 array_free (fork, EMPTY);
1445#endif 3035#endif
3036#if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038#endif
1446 array_free (prepare, EMPTY); 3039 array_free (prepare, EMPTY);
1447 array_free (check, EMPTY); 3040 array_free (check, EMPTY);
1448#if EV_ASYNC_ENABLE 3041#if EV_ASYNC_ENABLE
1449 array_free (async, EMPTY); 3042 array_free (async, EMPTY);
1450#endif 3043#endif
1451 3044
1452 backend = 0; 3045 backend = 0;
3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
1453} 3055}
1454 3056
1455#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 3058inline_size void infy_fork (EV_P);
1457#endif 3059#endif
1458 3060
1459void inline_size 3061inline_size void
1460loop_fork (EV_P) 3062loop_fork (EV_P)
1461{ 3063{
1462#if EV_USE_PORT 3064#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 3066#endif
1470#endif 3072#endif
1471#if EV_USE_INOTIFY 3073#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 3074 infy_fork (EV_A);
1473#endif 3075#endif
1474 3076
1475 if (ev_is_active (&pipeev)) 3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
1476 { 3079 {
1477 /* this "locks" the handlers against writing to the pipe */ 3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1478 /* while we modify the fd vars */
1479 gotsig = 1;
1480#if EV_ASYNC_ENABLE
1481 gotasync = 1;
1482#endif
1483 3081
1484 ev_ref (EV_A); 3082 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 3083 ev_io_stop (EV_A_ &pipe_w);
1486
1487#if EV_USE_EVENTFD
1488 if (evfd >= 0)
1489 close (evfd);
1490#endif
1491 3084
1492 if (evpipe [0] >= 0) 3085 if (evpipe [0] >= 0)
1493 { 3086 EV_WIN32_CLOSE_FD (evpipe [0]);
1494 close (evpipe [0]);
1495 close (evpipe [1]);
1496 }
1497 3087
1498 evpipe_init (EV_A); 3088 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 3089 /* iterate over everything, in case we missed something before */
1500 pipecb (EV_A_ &pipeev, EV_READ); 3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1501 } 3091 }
3092#endif
1502 3093
1503 postfork = 0; 3094 postfork = 0;
1504} 3095}
1505 3096
1506#if EV_MULTIPLICITY 3097#if EV_MULTIPLICITY
1507 3098
3099ecb_cold
1508struct ev_loop * 3100struct ev_loop *
1509ev_loop_new (unsigned int flags) 3101ev_loop_new (unsigned int flags) EV_THROW
1510{ 3102{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 3104
1513 memset (loop, 0, sizeof (struct ev_loop)); 3105 memset (EV_A, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 3106 loop_init (EV_A_ flags);
1516 3107
1517 if (ev_backend (EV_A)) 3108 if (ev_backend (EV_A))
1518 return loop; 3109 return EV_A;
1519 3110
3111 ev_free (EV_A);
1520 return 0; 3112 return 0;
1521} 3113}
1522 3114
1523void 3115#endif /* multiplicity */
1524ev_loop_destroy (EV_P)
1525{
1526 loop_destroy (EV_A);
1527 ev_free (loop);
1528}
1529
1530void
1531ev_loop_fork (EV_P)
1532{
1533 postfork = 1; /* must be in line with ev_default_fork */
1534}
1535 3116
1536#if EV_VERIFY 3117#if EV_VERIFY
1537static void noinline 3118noinline ecb_cold
3119static void
1538verify_watcher (EV_P_ W w) 3120verify_watcher (EV_P_ W w)
1539{ 3121{
1540 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1541 3123
1542 if (w->pending) 3124 if (w->pending)
1543 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1544} 3126}
1545 3127
1546static void noinline 3128noinline ecb_cold
3129static void
1547verify_heap (EV_P_ ANHE *heap, int N) 3130verify_heap (EV_P_ ANHE *heap, int N)
1548{ 3131{
1549 int i; 3132 int i;
1550 3133
1551 for (i = HEAP0; i < N + HEAP0; ++i) 3134 for (i = HEAP0; i < N + HEAP0; ++i)
1556 3139
1557 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1558 } 3141 }
1559} 3142}
1560 3143
1561static void noinline 3144noinline ecb_cold
3145static void
1562array_verify (EV_P_ W *ws, int cnt) 3146array_verify (EV_P_ W *ws, int cnt)
1563{ 3147{
1564 while (cnt--) 3148 while (cnt--)
1565 { 3149 {
1566 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1567 verify_watcher (EV_A_ ws [cnt]); 3151 verify_watcher (EV_A_ ws [cnt]);
1568 } 3152 }
1569} 3153}
1570#endif 3154#endif
1571 3155
1572void 3156#if EV_FEATURE_API
1573ev_loop_verify (EV_P) 3157void ecb_cold
3158ev_verify (EV_P) EV_THROW
1574{ 3159{
1575#if EV_VERIFY 3160#if EV_VERIFY
1576 int i; 3161 int i;
1577 WL w; 3162 WL w, w2;
1578 3163
1579 assert (activecnt >= -1); 3164 assert (activecnt >= -1);
1580 3165
1581 assert (fdchangemax >= fdchangecnt); 3166 assert (fdchangemax >= fdchangecnt);
1582 for (i = 0; i < fdchangecnt; ++i) 3167 for (i = 0; i < fdchangecnt; ++i)
1583 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1584 3169
1585 assert (anfdmax >= 0); 3170 assert (anfdmax >= 0);
1586 for (i = 0; i < anfdmax; ++i) 3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
1587 for (w = anfds [i].head; w; w = w->next) 3175 for (w = w2 = anfds [i].head; w; w = w->next)
1588 { 3176 {
1589 verify_watcher (EV_A_ (W)w); 3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
1590 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1591 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1592 } 3187 }
3188 }
1593 3189
1594 assert (timermax >= timercnt); 3190 assert (timermax >= timercnt);
1595 verify_heap (EV_A_ timers, timercnt); 3191 verify_heap (EV_A_ timers, timercnt);
1596 3192
1597#if EV_PERIODIC_ENABLE 3193#if EV_PERIODIC_ENABLE
1612#if EV_FORK_ENABLE 3208#if EV_FORK_ENABLE
1613 assert (forkmax >= forkcnt); 3209 assert (forkmax >= forkcnt);
1614 array_verify (EV_A_ (W *)forks, forkcnt); 3210 array_verify (EV_A_ (W *)forks, forkcnt);
1615#endif 3211#endif
1616 3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
1617#if EV_ASYNC_ENABLE 3218#if EV_ASYNC_ENABLE
1618 assert (asyncmax >= asynccnt); 3219 assert (asyncmax >= asynccnt);
1619 array_verify (EV_A_ (W *)asyncs, asynccnt); 3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
1620#endif 3221#endif
1621 3222
3223#if EV_PREPARE_ENABLE
1622 assert (preparemax >= preparecnt); 3224 assert (preparemax >= preparecnt);
1623 array_verify (EV_A_ (W *)prepares, preparecnt); 3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
1624 3227
3228#if EV_CHECK_ENABLE
1625 assert (checkmax >= checkcnt); 3229 assert (checkmax >= checkcnt);
1626 array_verify (EV_A_ (W *)checks, checkcnt); 3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
1627 3232
1628# if 0 3233# if 0
3234#if EV_CHILD_ENABLE
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
1631# endif 3238# endif
1632#endif 3239#endif
1633} 3240}
1634 3241#endif
1635#endif /* multiplicity */
1636 3242
1637#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
1638struct ev_loop * 3245struct ev_loop *
1639ev_default_loop_init (unsigned int flags)
1640#else 3246#else
1641int 3247int
3248#endif
1642ev_default_loop (unsigned int flags) 3249ev_default_loop (unsigned int flags) EV_THROW
1643#endif
1644{ 3250{
1645 if (!ev_default_loop_ptr) 3251 if (!ev_default_loop_ptr)
1646 { 3252 {
1647#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
1648 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
1649#else 3255#else
1650 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
1651#endif 3257#endif
1652 3258
1653 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
1654 3260
1655 if (ev_backend (EV_A)) 3261 if (ev_backend (EV_A))
1656 { 3262 {
1657#ifndef _WIN32 3263#if EV_CHILD_ENABLE
1658 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
1659 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
1660 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
1661 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
1662#endif 3268#endif
1667 3273
1668 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
1669} 3275}
1670 3276
1671void 3277void
1672ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_THROW
1673{ 3279{
1674#if EV_MULTIPLICITY 3280 postfork = 1;
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 ev_default_loop_ptr = 0;
1679
1680#ifndef _WIN32
1681 ev_ref (EV_A); /* child watcher */
1682 ev_signal_stop (EV_A_ &childev);
1683#endif
1684
1685 loop_destroy (EV_A);
1686}
1687
1688void
1689ev_default_fork (void)
1690{
1691#if EV_MULTIPLICITY
1692 struct ev_loop *loop = ev_default_loop_ptr;
1693#endif
1694
1695 postfork = 1; /* must be in line with ev_loop_fork */
1696} 3281}
1697 3282
1698/*****************************************************************************/ 3283/*****************************************************************************/
1699 3284
1700void 3285void
1701ev_invoke (EV_P_ void *w, int revents) 3286ev_invoke (EV_P_ void *w, int revents)
1702{ 3287{
1703 EV_CB_INVOKE ((W)w, revents); 3288 EV_CB_INVOKE ((W)w, revents);
1704} 3289}
1705 3290
1706void inline_speed 3291unsigned int
1707call_pending (EV_P) 3292ev_pending_count (EV_P) EV_THROW
1708{ 3293{
1709 int pri; 3294 int pri;
3295 unsigned int count = 0;
1710 3296
1711 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 do
3310 {
3311 --pendingpri;
3312
3313 /* pendingpri possibly gets modified in the inner loop */
1712 while (pendingcnt [pri]) 3314 while (pendingcnt [pendingpri])
1713 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715
1716 if (expect_true (p->w))
1717 { 3315 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3316 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1719 3317
1720 p->w->pending = 0; 3318 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 3319 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 3320 EV_FREQUENT_CHECK;
1723 } 3321 }
1724 } 3322 }
3323 while (pendingpri);
1725} 3324}
1726 3325
1727#if EV_IDLE_ENABLE 3326#if EV_IDLE_ENABLE
1728void inline_size 3327/* make idle watchers pending. this handles the "call-idle */
3328/* only when higher priorities are idle" logic */
3329inline_size void
1729idle_reify (EV_P) 3330idle_reify (EV_P)
1730{ 3331{
1731 if (expect_false (idleall)) 3332 if (expect_false (idleall))
1732 { 3333 {
1733 int pri; 3334 int pri;
1745 } 3346 }
1746 } 3347 }
1747} 3348}
1748#endif 3349#endif
1749 3350
1750void inline_size 3351/* make timers pending */
3352inline_size void
1751timers_reify (EV_P) 3353timers_reify (EV_P)
1752{ 3354{
1753 EV_FREQUENT_CHECK; 3355 EV_FREQUENT_CHECK;
1754 3356
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3357 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 3358 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3359 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 3360 {
3361 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3362
3363 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3364
3365 /* first reschedule or stop timer */
3366 if (w->repeat)
3367 {
1764 ev_at (w) += w->repeat; 3368 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 3369 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 3370 ev_at (w) = mn_now;
1767 3371
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3372 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 3373
1770 ANHE_at_cache (timers [HEAP0]); 3374 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 3375 downheap (timers, timercnt, HEAP0);
3376 }
3377 else
3378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3379
3380 EV_FREQUENT_CHECK;
3381 feed_reverse (EV_A_ (W)w);
1772 } 3382 }
1773 else 3383 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 3384
1776 EV_FREQUENT_CHECK; 3385 feed_reverse_done (EV_A_ EV_TIMER);
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1778 } 3386 }
1779} 3387}
1780 3388
1781#if EV_PERIODIC_ENABLE 3389#if EV_PERIODIC_ENABLE
1782void inline_size 3390
3391noinline
3392static void
3393periodic_recalc (EV_P_ ev_periodic *w)
3394{
3395 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3396 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3397
3398 /* the above almost always errs on the low side */
3399 while (at <= ev_rt_now)
3400 {
3401 ev_tstamp nat = at + w->interval;
3402
3403 /* when resolution fails us, we use ev_rt_now */
3404 if (expect_false (nat == at))
3405 {
3406 at = ev_rt_now;
3407 break;
3408 }
3409
3410 at = nat;
3411 }
3412
3413 ev_at (w) = at;
3414}
3415
3416/* make periodics pending */
3417inline_size void
1783periodics_reify (EV_P) 3418periodics_reify (EV_P)
1784{ 3419{
1785 EV_FREQUENT_CHECK; 3420 EV_FREQUENT_CHECK;
1786 3421
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3422 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 3423 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3424 do
1790
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 3425 {
3426 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3427
3428 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3429
3430 /* first reschedule or stop timer */
3431 if (w->reschedule_cb)
3432 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3433 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 3434
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3435 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 3436
1800 ANHE_at_cache (periodics [HEAP0]); 3437 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else if (w->interval)
3441 {
3442 periodic_recalc (EV_A_ w);
3443 ANHE_at_cache (periodics [HEAP0]);
3444 downheap (periodics, periodiccnt, HEAP0);
3445 }
3446 else
3447 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3448
3449 EV_FREQUENT_CHECK;
3450 feed_reverse (EV_A_ (W)w);
1802 } 3451 }
1803 else if (w->interval) 3452 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 3453
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3454 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 3455 }
1828} 3456}
1829 3457
1830static void noinline 3458/* simply recalculate all periodics */
3459/* TODO: maybe ensure that at least one event happens when jumping forward? */
3460noinline ecb_cold
3461static void
1831periodics_reschedule (EV_P) 3462periodics_reschedule (EV_P)
1832{ 3463{
1833 int i; 3464 int i;
1834 3465
1835 /* adjust periodics after time jump */ 3466 /* adjust periodics after time jump */
1838 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3469 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1839 3470
1840 if (w->reschedule_cb) 3471 if (w->reschedule_cb)
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3472 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 3473 else if (w->interval)
1843 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3474 periodic_recalc (EV_A_ w);
1844 3475
1845 ANHE_at_cache (periodics [i]); 3476 ANHE_at_cache (periodics [i]);
1846 } 3477 }
1847 3478
1848 reheap (periodics, periodiccnt); 3479 reheap (periodics, periodiccnt);
1849} 3480}
1850#endif 3481#endif
1851 3482
1852void inline_speed 3483/* adjust all timers by a given offset */
3484noinline ecb_cold
3485static void
3486timers_reschedule (EV_P_ ev_tstamp adjust)
3487{
3488 int i;
3489
3490 for (i = 0; i < timercnt; ++i)
3491 {
3492 ANHE *he = timers + i + HEAP0;
3493 ANHE_w (*he)->at += adjust;
3494 ANHE_at_cache (*he);
3495 }
3496}
3497
3498/* fetch new monotonic and realtime times from the kernel */
3499/* also detect if there was a timejump, and act accordingly */
3500inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 3501time_update (EV_P_ ev_tstamp max_block)
1854{ 3502{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 3503#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 3504 if (expect_true (have_monotonic))
1859 { 3505 {
3506 int i;
1860 ev_tstamp odiff = rtmn_diff; 3507 ev_tstamp odiff = rtmn_diff;
1861 3508
1862 mn_now = get_clock (); 3509 mn_now = get_clock ();
1863 3510
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3511 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1880 * doesn't hurt either as we only do this on time-jumps or 3527 * doesn't hurt either as we only do this on time-jumps or
1881 * in the unlikely event of having been preempted here. 3528 * in the unlikely event of having been preempted here.
1882 */ 3529 */
1883 for (i = 4; --i; ) 3530 for (i = 4; --i; )
1884 { 3531 {
3532 ev_tstamp diff;
1885 rtmn_diff = ev_rt_now - mn_now; 3533 rtmn_diff = ev_rt_now - mn_now;
1886 3534
3535 diff = odiff - rtmn_diff;
3536
1887 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3537 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1888 return; /* all is well */ 3538 return; /* all is well */
1889 3539
1890 ev_rt_now = ev_time (); 3540 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 3541 mn_now = get_clock ();
1892 now_floor = mn_now; 3542 now_floor = mn_now;
1893 } 3543 }
1894 3544
3545 /* no timer adjustment, as the monotonic clock doesn't jump */
3546 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 3547# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 3548 periodics_reschedule (EV_A);
1897# endif 3549# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 3550 }
1901 else 3551 else
1902#endif 3552#endif
1903 { 3553 {
1904 ev_rt_now = ev_time (); 3554 ev_rt_now = ev_time ();
1905 3555
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3556 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 3557 {
3558 /* adjust timers. this is easy, as the offset is the same for all of them */
3559 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 3560#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 3561 periodics_reschedule (EV_A);
1910#endif 3562#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 3563 }
1919 3564
1920 mn_now = ev_rt_now; 3565 mn_now = ev_rt_now;
1921 } 3566 }
1922} 3567}
1923 3568
1924void 3569int
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 3570ev_run (EV_P_ int flags)
1946{ 3571{
3572#if EV_FEATURE_API
3573 ++loop_depth;
3574#endif
3575
3576 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3577
1947 loop_done = EVUNLOOP_CANCEL; 3578 loop_done = EVBREAK_CANCEL;
1948 3579
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3580 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 3581
1951 do 3582 do
1952 { 3583 {
1953#if EV_VERIFY >= 2 3584#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 3585 ev_verify (EV_A);
1955#endif 3586#endif
1956 3587
1957#ifndef _WIN32 3588#ifndef _WIN32
1958 if (expect_false (curpid)) /* penalise the forking check even more */ 3589 if (expect_false (curpid)) /* penalise the forking check even more */
1959 if (expect_false (getpid () != curpid)) 3590 if (expect_false (getpid () != curpid))
1967 /* we might have forked, so queue fork handlers */ 3598 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 3599 if (expect_false (postfork))
1969 if (forkcnt) 3600 if (forkcnt)
1970 { 3601 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3602 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 3603 EV_INVOKE_PENDING;
1973 } 3604 }
1974#endif 3605#endif
1975 3606
3607#if EV_PREPARE_ENABLE
1976 /* queue prepare watchers (and execute them) */ 3608 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 3609 if (expect_false (preparecnt))
1978 { 3610 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3611 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 3612 EV_INVOKE_PENDING;
1981 } 3613 }
3614#endif
1982 3615
1983 if (expect_false (!activecnt)) 3616 if (expect_false (loop_done))
1984 break; 3617 break;
1985 3618
1986 /* we might have forked, so reify kernel state if necessary */ 3619 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 3620 if (expect_false (postfork))
1988 loop_fork (EV_A); 3621 loop_fork (EV_A);
1993 /* calculate blocking time */ 3626 /* calculate blocking time */
1994 { 3627 {
1995 ev_tstamp waittime = 0.; 3628 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 3629 ev_tstamp sleeptime = 0.;
1997 3630
3631 /* remember old timestamp for io_blocktime calculation */
3632 ev_tstamp prev_mn_now = mn_now;
3633
3634 /* update time to cancel out callback processing overhead */
3635 time_update (EV_A_ 1e100);
3636
3637 /* from now on, we want a pipe-wake-up */
3638 pipe_write_wanted = 1;
3639
3640 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3641
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3642 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1999 { 3643 {
2000 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100);
2002
2003 waittime = MAX_BLOCKTIME; 3644 waittime = MAX_BLOCKTIME;
2004 3645
2005 if (timercnt) 3646 if (timercnt)
2006 { 3647 {
2007 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3648 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2008 if (waittime > to) waittime = to; 3649 if (waittime > to) waittime = to;
2009 } 3650 }
2010 3651
2011#if EV_PERIODIC_ENABLE 3652#if EV_PERIODIC_ENABLE
2012 if (periodiccnt) 3653 if (periodiccnt)
2013 { 3654 {
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3655 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2015 if (waittime > to) waittime = to; 3656 if (waittime > to) waittime = to;
2016 } 3657 }
2017#endif 3658#endif
2018 3659
3660 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 3661 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 3662 waittime = timeout_blocktime;
2021 3663
2022 sleeptime = waittime - backend_fudge; 3664 /* at this point, we NEED to wait, so we have to ensure */
3665 /* to pass a minimum nonzero value to the backend */
3666 if (expect_false (waittime < backend_mintime))
3667 waittime = backend_mintime;
2023 3668
3669 /* extra check because io_blocktime is commonly 0 */
2024 if (expect_true (sleeptime > io_blocktime)) 3670 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 3671 {
3672 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3673
3674 if (sleeptime > waittime - backend_mintime)
3675 sleeptime = waittime - backend_mintime;
3676
3677 if (expect_true (sleeptime > 0.))
3678 {
2029 ev_sleep (sleeptime); 3679 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 3680 waittime -= sleeptime;
3681 }
2031 } 3682 }
2032 } 3683 }
2033 3684
3685#if EV_FEATURE_API
2034 ++loop_count; 3686 ++loop_count;
3687#endif
3688 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 3689 backend_poll (EV_A_ waittime);
3690 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3691
3692 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3693
3694 ECB_MEMORY_FENCE_ACQUIRE;
3695 if (pipe_write_skipped)
3696 {
3697 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3698 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3699 }
3700
2036 3701
2037 /* update ev_rt_now, do magic */ 3702 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 3703 time_update (EV_A_ waittime + sleeptime);
2039 } 3704 }
2040 3705
2047#if EV_IDLE_ENABLE 3712#if EV_IDLE_ENABLE
2048 /* queue idle watchers unless other events are pending */ 3713 /* queue idle watchers unless other events are pending */
2049 idle_reify (EV_A); 3714 idle_reify (EV_A);
2050#endif 3715#endif
2051 3716
3717#if EV_CHECK_ENABLE
2052 /* queue check watchers, to be executed first */ 3718 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 3719 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3720 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3721#endif
2055 3722
2056 call_pending (EV_A); 3723 EV_INVOKE_PENDING;
2057 } 3724 }
2058 while (expect_true ( 3725 while (expect_true (
2059 activecnt 3726 activecnt
2060 && !loop_done 3727 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3728 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2062 )); 3729 ));
2063 3730
2064 if (loop_done == EVUNLOOP_ONE) 3731 if (loop_done == EVBREAK_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 3732 loop_done = EVBREAK_CANCEL;
2066}
2067 3733
3734#if EV_FEATURE_API
3735 --loop_depth;
3736#endif
3737
3738 return activecnt;
3739}
3740
2068void 3741void
2069ev_unloop (EV_P_ int how) 3742ev_break (EV_P_ int how) EV_THROW
2070{ 3743{
2071 loop_done = how; 3744 loop_done = how;
2072} 3745}
2073 3746
3747void
3748ev_ref (EV_P) EV_THROW
3749{
3750 ++activecnt;
3751}
3752
3753void
3754ev_unref (EV_P) EV_THROW
3755{
3756 --activecnt;
3757}
3758
3759void
3760ev_now_update (EV_P) EV_THROW
3761{
3762 time_update (EV_A_ 1e100);
3763}
3764
3765void
3766ev_suspend (EV_P) EV_THROW
3767{
3768 ev_now_update (EV_A);
3769}
3770
3771void
3772ev_resume (EV_P) EV_THROW
3773{
3774 ev_tstamp mn_prev = mn_now;
3775
3776 ev_now_update (EV_A);
3777 timers_reschedule (EV_A_ mn_now - mn_prev);
3778#if EV_PERIODIC_ENABLE
3779 /* TODO: really do this? */
3780 periodics_reschedule (EV_A);
3781#endif
3782}
3783
2074/*****************************************************************************/ 3784/*****************************************************************************/
3785/* singly-linked list management, used when the expected list length is short */
2075 3786
2076void inline_size 3787inline_size void
2077wlist_add (WL *head, WL elem) 3788wlist_add (WL *head, WL elem)
2078{ 3789{
2079 elem->next = *head; 3790 elem->next = *head;
2080 *head = elem; 3791 *head = elem;
2081} 3792}
2082 3793
2083void inline_size 3794inline_size void
2084wlist_del (WL *head, WL elem) 3795wlist_del (WL *head, WL elem)
2085{ 3796{
2086 while (*head) 3797 while (*head)
2087 { 3798 {
2088 if (*head == elem) 3799 if (expect_true (*head == elem))
2089 { 3800 {
2090 *head = elem->next; 3801 *head = elem->next;
2091 return; 3802 break;
2092 } 3803 }
2093 3804
2094 head = &(*head)->next; 3805 head = &(*head)->next;
2095 } 3806 }
2096} 3807}
2097 3808
2098void inline_speed 3809/* internal, faster, version of ev_clear_pending */
3810inline_speed void
2099clear_pending (EV_P_ W w) 3811clear_pending (EV_P_ W w)
2100{ 3812{
2101 if (w->pending) 3813 if (w->pending)
2102 { 3814 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3815 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 3816 w->pending = 0;
2105 } 3817 }
2106} 3818}
2107 3819
2108int 3820int
2109ev_clear_pending (EV_P_ void *w) 3821ev_clear_pending (EV_P_ void *w) EV_THROW
2110{ 3822{
2111 W w_ = (W)w; 3823 W w_ = (W)w;
2112 int pending = w_->pending; 3824 int pending = w_->pending;
2113 3825
2114 if (expect_true (pending)) 3826 if (expect_true (pending))
2115 { 3827 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3828 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3829 p->w = (W)&pending_w;
2117 w_->pending = 0; 3830 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 3831 return p->events;
2120 } 3832 }
2121 else 3833 else
2122 return 0; 3834 return 0;
2123} 3835}
2124 3836
2125void inline_size 3837inline_size void
2126pri_adjust (EV_P_ W w) 3838pri_adjust (EV_P_ W w)
2127{ 3839{
2128 int pri = w->priority; 3840 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3841 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3842 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 3843 ev_set_priority (w, pri);
2132} 3844}
2133 3845
2134void inline_speed 3846inline_speed void
2135ev_start (EV_P_ W w, int active) 3847ev_start (EV_P_ W w, int active)
2136{ 3848{
2137 pri_adjust (EV_A_ w); 3849 pri_adjust (EV_A_ w);
2138 w->active = active; 3850 w->active = active;
2139 ev_ref (EV_A); 3851 ev_ref (EV_A);
2140} 3852}
2141 3853
2142void inline_size 3854inline_size void
2143ev_stop (EV_P_ W w) 3855ev_stop (EV_P_ W w)
2144{ 3856{
2145 ev_unref (EV_A); 3857 ev_unref (EV_A);
2146 w->active = 0; 3858 w->active = 0;
2147} 3859}
2148 3860
2149/*****************************************************************************/ 3861/*****************************************************************************/
2150 3862
2151void noinline 3863noinline
3864void
2152ev_io_start (EV_P_ ev_io *w) 3865ev_io_start (EV_P_ ev_io *w) EV_THROW
2153{ 3866{
2154 int fd = w->fd; 3867 int fd = w->fd;
2155 3868
2156 if (expect_false (ev_is_active (w))) 3869 if (expect_false (ev_is_active (w)))
2157 return; 3870 return;
2158 3871
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3872 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3873 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 3874
2162 EV_FREQUENT_CHECK; 3875 EV_FREQUENT_CHECK;
2163 3876
2164 ev_start (EV_A_ (W)w, 1); 3877 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3878 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 3879 wlist_add (&anfds[fd].head, (WL)w);
2167 3880
3881 /* common bug, apparently */
3882 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3883
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3884 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 3885 w->events &= ~EV__IOFDSET;
2170 3886
2171 EV_FREQUENT_CHECK; 3887 EV_FREQUENT_CHECK;
2172} 3888}
2173 3889
2174void noinline 3890noinline
3891void
2175ev_io_stop (EV_P_ ev_io *w) 3892ev_io_stop (EV_P_ ev_io *w) EV_THROW
2176{ 3893{
2177 clear_pending (EV_A_ (W)w); 3894 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w))) 3895 if (expect_false (!ev_is_active (w)))
2179 return; 3896 return;
2180 3897
2183 EV_FREQUENT_CHECK; 3900 EV_FREQUENT_CHECK;
2184 3901
2185 wlist_del (&anfds[w->fd].head, (WL)w); 3902 wlist_del (&anfds[w->fd].head, (WL)w);
2186 ev_stop (EV_A_ (W)w); 3903 ev_stop (EV_A_ (W)w);
2187 3904
2188 fd_change (EV_A_ w->fd, 1); 3905 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2189 3906
2190 EV_FREQUENT_CHECK; 3907 EV_FREQUENT_CHECK;
2191} 3908}
2192 3909
2193void noinline 3910noinline
3911void
2194ev_timer_start (EV_P_ ev_timer *w) 3912ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2195{ 3913{
2196 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2197 return; 3915 return;
2198 3916
2199 ev_at (w) += mn_now; 3917 ev_at (w) += mn_now;
2212 EV_FREQUENT_CHECK; 3930 EV_FREQUENT_CHECK;
2213 3931
2214 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3932 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2215} 3933}
2216 3934
2217void noinline 3935noinline
3936void
2218ev_timer_stop (EV_P_ ev_timer *w) 3937ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2219{ 3938{
2220 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
2222 return; 3941 return;
2223 3942
2235 timers [active] = timers [timercnt + HEAP0]; 3954 timers [active] = timers [timercnt + HEAP0];
2236 adjustheap (timers, timercnt, active); 3955 adjustheap (timers, timercnt, active);
2237 } 3956 }
2238 } 3957 }
2239 3958
2240 EV_FREQUENT_CHECK;
2241
2242 ev_at (w) -= mn_now; 3959 ev_at (w) -= mn_now;
2243 3960
2244 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
2245}
2246 3962
3963 EV_FREQUENT_CHECK;
3964}
3965
2247void noinline 3966noinline
3967void
2248ev_timer_again (EV_P_ ev_timer *w) 3968ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2249{ 3969{
2250 EV_FREQUENT_CHECK; 3970 EV_FREQUENT_CHECK;
3971
3972 clear_pending (EV_A_ (W)w);
2251 3973
2252 if (ev_is_active (w)) 3974 if (ev_is_active (w))
2253 { 3975 {
2254 if (w->repeat) 3976 if (w->repeat)
2255 { 3977 {
2267 } 3989 }
2268 3990
2269 EV_FREQUENT_CHECK; 3991 EV_FREQUENT_CHECK;
2270} 3992}
2271 3993
3994ev_tstamp
3995ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3996{
3997 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3998}
3999
2272#if EV_PERIODIC_ENABLE 4000#if EV_PERIODIC_ENABLE
2273void noinline 4001noinline
4002void
2274ev_periodic_start (EV_P_ ev_periodic *w) 4003ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2275{ 4004{
2276 if (expect_false (ev_is_active (w))) 4005 if (expect_false (ev_is_active (w)))
2277 return; 4006 return;
2278 4007
2279 if (w->reschedule_cb) 4008 if (w->reschedule_cb)
2280 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4009 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2281 else if (w->interval) 4010 else if (w->interval)
2282 { 4011 {
2283 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4012 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2284 /* this formula differs from the one in periodic_reify because we do not always round up */ 4013 periodic_recalc (EV_A_ w);
2285 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2286 } 4014 }
2287 else 4015 else
2288 ev_at (w) = w->offset; 4016 ev_at (w) = w->offset;
2289 4017
2290 EV_FREQUENT_CHECK; 4018 EV_FREQUENT_CHECK;
2299 EV_FREQUENT_CHECK; 4027 EV_FREQUENT_CHECK;
2300 4028
2301 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4029 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2302} 4030}
2303 4031
2304void noinline 4032noinline
4033void
2305ev_periodic_stop (EV_P_ ev_periodic *w) 4034ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2306{ 4035{
2307 clear_pending (EV_A_ (W)w); 4036 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 4037 if (expect_false (!ev_is_active (w)))
2309 return; 4038 return;
2310 4039
2322 periodics [active] = periodics [periodiccnt + HEAP0]; 4051 periodics [active] = periodics [periodiccnt + HEAP0];
2323 adjustheap (periodics, periodiccnt, active); 4052 adjustheap (periodics, periodiccnt, active);
2324 } 4053 }
2325 } 4054 }
2326 4055
2327 EV_FREQUENT_CHECK;
2328
2329 ev_stop (EV_A_ (W)w); 4056 ev_stop (EV_A_ (W)w);
2330}
2331 4057
4058 EV_FREQUENT_CHECK;
4059}
4060
2332void noinline 4061noinline
4062void
2333ev_periodic_again (EV_P_ ev_periodic *w) 4063ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2334{ 4064{
2335 /* TODO: use adjustheap and recalculation */ 4065 /* TODO: use adjustheap and recalculation */
2336 ev_periodic_stop (EV_A_ w); 4066 ev_periodic_stop (EV_A_ w);
2337 ev_periodic_start (EV_A_ w); 4067 ev_periodic_start (EV_A_ w);
2338} 4068}
2340 4070
2341#ifndef SA_RESTART 4071#ifndef SA_RESTART
2342# define SA_RESTART 0 4072# define SA_RESTART 0
2343#endif 4073#endif
2344 4074
4075#if EV_SIGNAL_ENABLE
4076
2345void noinline 4077noinline
4078void
2346ev_signal_start (EV_P_ ev_signal *w) 4079ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2347{ 4080{
2348#if EV_MULTIPLICITY
2349 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2350#endif
2351 if (expect_false (ev_is_active (w))) 4081 if (expect_false (ev_is_active (w)))
2352 return; 4082 return;
2353 4083
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4084 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2355 4085
2356 evpipe_init (EV_A); 4086#if EV_MULTIPLICITY
4087 assert (("libev: a signal must not be attached to two different loops",
4088 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2357 4089
2358 EV_FREQUENT_CHECK; 4090 signals [w->signum - 1].loop = EV_A;
4091 ECB_MEMORY_FENCE_RELEASE;
4092#endif
2359 4093
4094 EV_FREQUENT_CHECK;
4095
4096#if EV_USE_SIGNALFD
4097 if (sigfd == -2)
2360 { 4098 {
2361#ifndef _WIN32 4099 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2362 sigset_t full, prev; 4100 if (sigfd < 0 && errno == EINVAL)
2363 sigfillset (&full); 4101 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2364 sigprocmask (SIG_SETMASK, &full, &prev);
2365#endif
2366 4102
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4103 if (sigfd >= 0)
4104 {
4105 fd_intern (sigfd); /* doing it twice will not hurt */
2368 4106
2369#ifndef _WIN32 4107 sigemptyset (&sigfd_set);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 4108
2371#endif 4109 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4110 ev_set_priority (&sigfd_w, EV_MAXPRI);
4111 ev_io_start (EV_A_ &sigfd_w);
4112 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4113 }
2372 } 4114 }
4115
4116 if (sigfd >= 0)
4117 {
4118 /* TODO: check .head */
4119 sigaddset (&sigfd_set, w->signum);
4120 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4121
4122 signalfd (sigfd, &sigfd_set, 0);
4123 }
4124#endif
2373 4125
2374 ev_start (EV_A_ (W)w, 1); 4126 ev_start (EV_A_ (W)w, 1);
2375 wlist_add (&signals [w->signum - 1].head, (WL)w); 4127 wlist_add (&signals [w->signum - 1].head, (WL)w);
2376 4128
2377 if (!((WL)w)->next) 4129 if (!((WL)w)->next)
4130# if EV_USE_SIGNALFD
4131 if (sigfd < 0) /*TODO*/
4132# endif
2378 { 4133 {
2379#if _WIN32 4134# ifdef _WIN32
4135 evpipe_init (EV_A);
4136
2380 signal (w->signum, ev_sighandler); 4137 signal (w->signum, ev_sighandler);
2381#else 4138# else
2382 struct sigaction sa; 4139 struct sigaction sa;
4140
4141 evpipe_init (EV_A);
4142
2383 sa.sa_handler = ev_sighandler; 4143 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 4144 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4145 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 4146 sigaction (w->signum, &sa, 0);
4147
4148 if (origflags & EVFLAG_NOSIGMASK)
4149 {
4150 sigemptyset (&sa.sa_mask);
4151 sigaddset (&sa.sa_mask, w->signum);
4152 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4153 }
2387#endif 4154#endif
2388 } 4155 }
2389 4156
2390 EV_FREQUENT_CHECK; 4157 EV_FREQUENT_CHECK;
2391} 4158}
2392 4159
2393void noinline 4160noinline
4161void
2394ev_signal_stop (EV_P_ ev_signal *w) 4162ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2395{ 4163{
2396 clear_pending (EV_A_ (W)w); 4164 clear_pending (EV_A_ (W)w);
2397 if (expect_false (!ev_is_active (w))) 4165 if (expect_false (!ev_is_active (w)))
2398 return; 4166 return;
2399 4167
2401 4169
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 4170 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 4171 ev_stop (EV_A_ (W)w);
2404 4172
2405 if (!signals [w->signum - 1].head) 4173 if (!signals [w->signum - 1].head)
4174 {
4175#if EV_MULTIPLICITY
4176 signals [w->signum - 1].loop = 0; /* unattach from signal */
4177#endif
4178#if EV_USE_SIGNALFD
4179 if (sigfd >= 0)
4180 {
4181 sigset_t ss;
4182
4183 sigemptyset (&ss);
4184 sigaddset (&ss, w->signum);
4185 sigdelset (&sigfd_set, w->signum);
4186
4187 signalfd (sigfd, &sigfd_set, 0);
4188 sigprocmask (SIG_UNBLOCK, &ss, 0);
4189 }
4190 else
4191#endif
2406 signal (w->signum, SIG_DFL); 4192 signal (w->signum, SIG_DFL);
4193 }
2407 4194
2408 EV_FREQUENT_CHECK; 4195 EV_FREQUENT_CHECK;
2409} 4196}
2410 4197
4198#endif
4199
4200#if EV_CHILD_ENABLE
4201
2411void 4202void
2412ev_child_start (EV_P_ ev_child *w) 4203ev_child_start (EV_P_ ev_child *w) EV_THROW
2413{ 4204{
2414#if EV_MULTIPLICITY 4205#if EV_MULTIPLICITY
2415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4206 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2416#endif 4207#endif
2417 if (expect_false (ev_is_active (w))) 4208 if (expect_false (ev_is_active (w)))
2418 return; 4209 return;
2419 4210
2420 EV_FREQUENT_CHECK; 4211 EV_FREQUENT_CHECK;
2421 4212
2422 ev_start (EV_A_ (W)w, 1); 4213 ev_start (EV_A_ (W)w, 1);
2423 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4214 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2424 4215
2425 EV_FREQUENT_CHECK; 4216 EV_FREQUENT_CHECK;
2426} 4217}
2427 4218
2428void 4219void
2429ev_child_stop (EV_P_ ev_child *w) 4220ev_child_stop (EV_P_ ev_child *w) EV_THROW
2430{ 4221{
2431 clear_pending (EV_A_ (W)w); 4222 clear_pending (EV_A_ (W)w);
2432 if (expect_false (!ev_is_active (w))) 4223 if (expect_false (!ev_is_active (w)))
2433 return; 4224 return;
2434 4225
2435 EV_FREQUENT_CHECK; 4226 EV_FREQUENT_CHECK;
2436 4227
2437 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4228 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2438 ev_stop (EV_A_ (W)w); 4229 ev_stop (EV_A_ (W)w);
2439 4230
2440 EV_FREQUENT_CHECK; 4231 EV_FREQUENT_CHECK;
2441} 4232}
4233
4234#endif
2442 4235
2443#if EV_STAT_ENABLE 4236#if EV_STAT_ENABLE
2444 4237
2445# ifdef _WIN32 4238# ifdef _WIN32
2446# undef lstat 4239# undef lstat
2449 4242
2450#define DEF_STAT_INTERVAL 5.0074891 4243#define DEF_STAT_INTERVAL 5.0074891
2451#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4244#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2452#define MIN_STAT_INTERVAL 0.1074891 4245#define MIN_STAT_INTERVAL 0.1074891
2453 4246
2454static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4247noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2455 4248
2456#if EV_USE_INOTIFY 4249#if EV_USE_INOTIFY
2457# define EV_INOTIFY_BUFSIZE 8192
2458 4250
2459static void noinline 4251/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4252# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4253
4254noinline
4255static void
2460infy_add (EV_P_ ev_stat *w) 4256infy_add (EV_P_ ev_stat *w)
2461{ 4257{
2462 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4258 w->wd = inotify_add_watch (fs_fd, w->path,
4259 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4260 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4261 | IN_DONT_FOLLOW | IN_MASK_ADD);
2463 4262
2464 if (w->wd < 0) 4263 if (w->wd >= 0)
4264 {
4265 struct statfs sfs;
4266
4267 /* now local changes will be tracked by inotify, but remote changes won't */
4268 /* unless the filesystem is known to be local, we therefore still poll */
4269 /* also do poll on <2.6.25, but with normal frequency */
4270
4271 if (!fs_2625)
4272 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4273 else if (!statfs (w->path, &sfs)
4274 && (sfs.f_type == 0x1373 /* devfs */
4275 || sfs.f_type == 0x4006 /* fat */
4276 || sfs.f_type == 0x4d44 /* msdos */
4277 || sfs.f_type == 0xEF53 /* ext2/3 */
4278 || sfs.f_type == 0x72b6 /* jffs2 */
4279 || sfs.f_type == 0x858458f6 /* ramfs */
4280 || sfs.f_type == 0x5346544e /* ntfs */
4281 || sfs.f_type == 0x3153464a /* jfs */
4282 || sfs.f_type == 0x9123683e /* btrfs */
4283 || sfs.f_type == 0x52654973 /* reiser3 */
4284 || sfs.f_type == 0x01021994 /* tmpfs */
4285 || sfs.f_type == 0x58465342 /* xfs */))
4286 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4287 else
4288 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2465 { 4289 }
4290 else
4291 {
4292 /* can't use inotify, continue to stat */
2466 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2467 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2468 4294
2469 /* monitor some parent directory for speedup hints */ 4295 /* if path is not there, monitor some parent directory for speedup hints */
2470 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4296 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2471 /* but an efficiency issue only */ 4297 /* but an efficiency issue only */
2472 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4298 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2473 { 4299 {
2474 char path [4096]; 4300 char path [4096];
2484 if (!pend || pend == path) 4310 if (!pend || pend == path)
2485 break; 4311 break;
2486 4312
2487 *pend = 0; 4313 *pend = 0;
2488 w->wd = inotify_add_watch (fs_fd, path, mask); 4314 w->wd = inotify_add_watch (fs_fd, path, mask);
2489 } 4315 }
2490 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4316 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2491 } 4317 }
2492 } 4318 }
2493 4319
2494 if (w->wd >= 0) 4320 if (w->wd >= 0)
2495 {
2496 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4321 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2497 4322
2498 /* now local changes will be tracked by inotify, but remote changes won't */ 4323 /* now re-arm timer, if required */
2499 /* unless the filesystem it known to be local, we therefore still poll */ 4324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2500 /* also do poll on <2.6.25, but with normal frequency */
2501 struct statfs sfs;
2502
2503 if (fs_2625 && !statfs (w->path, &sfs))
2504 if (sfs.f_type == 0x1373 /* devfs */
2505 || sfs.f_type == 0xEF53 /* ext2/3 */
2506 || sfs.f_type == 0x3153464a /* jfs */
2507 || sfs.f_type == 0x52654973 /* reiser3 */
2508 || sfs.f_type == 0x01021994 /* tempfs */
2509 || sfs.f_type == 0x58465342 /* xfs */)
2510 return;
2511
2512 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2513 ev_timer_again (EV_A_ &w->timer); 4325 ev_timer_again (EV_A_ &w->timer);
2514 } 4326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2515} 4327}
2516 4328
2517static void noinline 4329noinline
4330static void
2518infy_del (EV_P_ ev_stat *w) 4331infy_del (EV_P_ ev_stat *w)
2519{ 4332{
2520 int slot; 4333 int slot;
2521 int wd = w->wd; 4334 int wd = w->wd;
2522 4335
2523 if (wd < 0) 4336 if (wd < 0)
2524 return; 4337 return;
2525 4338
2526 w->wd = -2; 4339 w->wd = -2;
2527 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4340 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2528 wlist_del (&fs_hash [slot].head, (WL)w); 4341 wlist_del (&fs_hash [slot].head, (WL)w);
2529 4342
2530 /* remove this watcher, if others are watching it, they will rearm */ 4343 /* remove this watcher, if others are watching it, they will rearm */
2531 inotify_rm_watch (fs_fd, wd); 4344 inotify_rm_watch (fs_fd, wd);
2532} 4345}
2533 4346
2534static void noinline 4347noinline
4348static void
2535infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4349infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2536{ 4350{
2537 if (slot < 0) 4351 if (slot < 0)
2538 /* overflow, need to check for all hash slots */ 4352 /* overflow, need to check for all hash slots */
2539 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4353 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2540 infy_wd (EV_A_ slot, wd, ev); 4354 infy_wd (EV_A_ slot, wd, ev);
2541 else 4355 else
2542 { 4356 {
2543 WL w_; 4357 WL w_;
2544 4358
2545 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4359 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2546 { 4360 {
2547 ev_stat *w = (ev_stat *)w_; 4361 ev_stat *w = (ev_stat *)w_;
2548 w_ = w_->next; /* lets us remove this watcher and all before it */ 4362 w_ = w_->next; /* lets us remove this watcher and all before it */
2549 4363
2550 if (w->wd == wd || wd == -1) 4364 if (w->wd == wd || wd == -1)
2551 { 4365 {
2552 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4366 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2553 { 4367 {
2554 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4368 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2555 w->wd = -1; 4369 w->wd = -1;
2556 infy_add (EV_A_ w); /* re-add, no matter what */ 4370 infy_add (EV_A_ w); /* re-add, no matter what */
2557 } 4371 }
2558 4372
2559 stat_timer_cb (EV_A_ &w->timer, 0); 4373 stat_timer_cb (EV_A_ &w->timer, 0);
2564 4378
2565static void 4379static void
2566infy_cb (EV_P_ ev_io *w, int revents) 4380infy_cb (EV_P_ ev_io *w, int revents)
2567{ 4381{
2568 char buf [EV_INOTIFY_BUFSIZE]; 4382 char buf [EV_INOTIFY_BUFSIZE];
2569 struct inotify_event *ev = (struct inotify_event *)buf;
2570 int ofs; 4383 int ofs;
2571 int len = read (fs_fd, buf, sizeof (buf)); 4384 int len = read (fs_fd, buf, sizeof (buf));
2572 4385
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4386 for (ofs = 0; ofs < len; )
4387 {
4388 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4389 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4390 ofs += sizeof (struct inotify_event) + ev->len;
4391 }
2575} 4392}
2576 4393
2577void inline_size 4394inline_size ecb_cold
4395void
2578check_2625 (EV_P) 4396ev_check_2625 (EV_P)
2579{ 4397{
2580 /* kernels < 2.6.25 are borked 4398 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4399 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 4400 */
2583 struct utsname buf; 4401 if (ev_linux_version () < 0x020619)
2584 int major, minor, micro;
2585
2586 if (uname (&buf))
2587 return; 4402 return;
2588 4403
2589 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2590 return;
2591
2592 if (major < 2
2593 || (major == 2 && minor < 6)
2594 || (major == 2 && minor == 6 && micro < 25))
2595 return;
2596
2597 fs_2625 = 1; 4404 fs_2625 = 1;
2598} 4405}
2599 4406
2600void inline_size 4407inline_size int
4408infy_newfd (void)
4409{
4410#if defined IN_CLOEXEC && defined IN_NONBLOCK
4411 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4412 if (fd >= 0)
4413 return fd;
4414#endif
4415 return inotify_init ();
4416}
4417
4418inline_size void
2601infy_init (EV_P) 4419infy_init (EV_P)
2602{ 4420{
2603 if (fs_fd != -2) 4421 if (fs_fd != -2)
2604 return; 4422 return;
2605 4423
2606 fs_fd = -1; 4424 fs_fd = -1;
2607 4425
2608 check_2625 (EV_A); 4426 ev_check_2625 (EV_A);
2609 4427
2610 fs_fd = inotify_init (); 4428 fs_fd = infy_newfd ();
2611 4429
2612 if (fs_fd >= 0) 4430 if (fs_fd >= 0)
2613 { 4431 {
4432 fd_intern (fs_fd);
2614 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4433 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2615 ev_set_priority (&fs_w, EV_MAXPRI); 4434 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 4435 ev_io_start (EV_A_ &fs_w);
4436 ev_unref (EV_A);
2617 } 4437 }
2618} 4438}
2619 4439
2620void inline_size 4440inline_size void
2621infy_fork (EV_P) 4441infy_fork (EV_P)
2622{ 4442{
2623 int slot; 4443 int slot;
2624 4444
2625 if (fs_fd < 0) 4445 if (fs_fd < 0)
2626 return; 4446 return;
2627 4447
4448 ev_ref (EV_A);
4449 ev_io_stop (EV_A_ &fs_w);
2628 close (fs_fd); 4450 close (fs_fd);
2629 fs_fd = inotify_init (); 4451 fs_fd = infy_newfd ();
2630 4452
4453 if (fs_fd >= 0)
4454 {
4455 fd_intern (fs_fd);
4456 ev_io_set (&fs_w, fs_fd, EV_READ);
4457 ev_io_start (EV_A_ &fs_w);
4458 ev_unref (EV_A);
4459 }
4460
2631 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4461 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2632 { 4462 {
2633 WL w_ = fs_hash [slot].head; 4463 WL w_ = fs_hash [slot].head;
2634 fs_hash [slot].head = 0; 4464 fs_hash [slot].head = 0;
2635 4465
2636 while (w_) 4466 while (w_)
2641 w->wd = -1; 4471 w->wd = -1;
2642 4472
2643 if (fs_fd >= 0) 4473 if (fs_fd >= 0)
2644 infy_add (EV_A_ w); /* re-add, no matter what */ 4474 infy_add (EV_A_ w); /* re-add, no matter what */
2645 else 4475 else
4476 {
4477 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4478 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2646 ev_timer_again (EV_A_ &w->timer); 4479 ev_timer_again (EV_A_ &w->timer);
4480 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4481 }
2647 } 4482 }
2648 } 4483 }
2649} 4484}
2650 4485
2651#endif 4486#endif
2655#else 4490#else
2656# define EV_LSTAT(p,b) lstat (p, b) 4491# define EV_LSTAT(p,b) lstat (p, b)
2657#endif 4492#endif
2658 4493
2659void 4494void
2660ev_stat_stat (EV_P_ ev_stat *w) 4495ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2661{ 4496{
2662 if (lstat (w->path, &w->attr) < 0) 4497 if (lstat (w->path, &w->attr) < 0)
2663 w->attr.st_nlink = 0; 4498 w->attr.st_nlink = 0;
2664 else if (!w->attr.st_nlink) 4499 else if (!w->attr.st_nlink)
2665 w->attr.st_nlink = 1; 4500 w->attr.st_nlink = 1;
2666} 4501}
2667 4502
2668static void noinline 4503noinline
4504static void
2669stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4505stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2670{ 4506{
2671 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4507 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2672 4508
2673 /* we copy this here each the time so that */ 4509 ev_statdata prev = w->attr;
2674 /* prev has the old value when the callback gets invoked */
2675 w->prev = w->attr;
2676 ev_stat_stat (EV_A_ w); 4510 ev_stat_stat (EV_A_ w);
2677 4511
2678 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4512 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2679 if ( 4513 if (
2680 w->prev.st_dev != w->attr.st_dev 4514 prev.st_dev != w->attr.st_dev
2681 || w->prev.st_ino != w->attr.st_ino 4515 || prev.st_ino != w->attr.st_ino
2682 || w->prev.st_mode != w->attr.st_mode 4516 || prev.st_mode != w->attr.st_mode
2683 || w->prev.st_nlink != w->attr.st_nlink 4517 || prev.st_nlink != w->attr.st_nlink
2684 || w->prev.st_uid != w->attr.st_uid 4518 || prev.st_uid != w->attr.st_uid
2685 || w->prev.st_gid != w->attr.st_gid 4519 || prev.st_gid != w->attr.st_gid
2686 || w->prev.st_rdev != w->attr.st_rdev 4520 || prev.st_rdev != w->attr.st_rdev
2687 || w->prev.st_size != w->attr.st_size 4521 || prev.st_size != w->attr.st_size
2688 || w->prev.st_atime != w->attr.st_atime 4522 || prev.st_atime != w->attr.st_atime
2689 || w->prev.st_mtime != w->attr.st_mtime 4523 || prev.st_mtime != w->attr.st_mtime
2690 || w->prev.st_ctime != w->attr.st_ctime 4524 || prev.st_ctime != w->attr.st_ctime
2691 ) { 4525 ) {
4526 /* we only update w->prev on actual differences */
4527 /* in case we test more often than invoke the callback, */
4528 /* to ensure that prev is always different to attr */
4529 w->prev = prev;
4530
2692 #if EV_USE_INOTIFY 4531 #if EV_USE_INOTIFY
2693 if (fs_fd >= 0) 4532 if (fs_fd >= 0)
2694 { 4533 {
2695 infy_del (EV_A_ w); 4534 infy_del (EV_A_ w);
2696 infy_add (EV_A_ w); 4535 infy_add (EV_A_ w);
2701 ev_feed_event (EV_A_ w, EV_STAT); 4540 ev_feed_event (EV_A_ w, EV_STAT);
2702 } 4541 }
2703} 4542}
2704 4543
2705void 4544void
2706ev_stat_start (EV_P_ ev_stat *w) 4545ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2707{ 4546{
2708 if (expect_false (ev_is_active (w))) 4547 if (expect_false (ev_is_active (w)))
2709 return; 4548 return;
2710 4549
2711 ev_stat_stat (EV_A_ w); 4550 ev_stat_stat (EV_A_ w);
2721 4560
2722 if (fs_fd >= 0) 4561 if (fs_fd >= 0)
2723 infy_add (EV_A_ w); 4562 infy_add (EV_A_ w);
2724 else 4563 else
2725#endif 4564#endif
4565 {
2726 ev_timer_again (EV_A_ &w->timer); 4566 ev_timer_again (EV_A_ &w->timer);
4567 ev_unref (EV_A);
4568 }
2727 4569
2728 ev_start (EV_A_ (W)w, 1); 4570 ev_start (EV_A_ (W)w, 1);
2729 4571
2730 EV_FREQUENT_CHECK; 4572 EV_FREQUENT_CHECK;
2731} 4573}
2732 4574
2733void 4575void
2734ev_stat_stop (EV_P_ ev_stat *w) 4576ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2735{ 4577{
2736 clear_pending (EV_A_ (W)w); 4578 clear_pending (EV_A_ (W)w);
2737 if (expect_false (!ev_is_active (w))) 4579 if (expect_false (!ev_is_active (w)))
2738 return; 4580 return;
2739 4581
2740 EV_FREQUENT_CHECK; 4582 EV_FREQUENT_CHECK;
2741 4583
2742#if EV_USE_INOTIFY 4584#if EV_USE_INOTIFY
2743 infy_del (EV_A_ w); 4585 infy_del (EV_A_ w);
2744#endif 4586#endif
4587
4588 if (ev_is_active (&w->timer))
4589 {
4590 ev_ref (EV_A);
2745 ev_timer_stop (EV_A_ &w->timer); 4591 ev_timer_stop (EV_A_ &w->timer);
4592 }
2746 4593
2747 ev_stop (EV_A_ (W)w); 4594 ev_stop (EV_A_ (W)w);
2748 4595
2749 EV_FREQUENT_CHECK; 4596 EV_FREQUENT_CHECK;
2750} 4597}
2751#endif 4598#endif
2752 4599
2753#if EV_IDLE_ENABLE 4600#if EV_IDLE_ENABLE
2754void 4601void
2755ev_idle_start (EV_P_ ev_idle *w) 4602ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2756{ 4603{
2757 if (expect_false (ev_is_active (w))) 4604 if (expect_false (ev_is_active (w)))
2758 return; 4605 return;
2759 4606
2760 pri_adjust (EV_A_ (W)w); 4607 pri_adjust (EV_A_ (W)w);
2773 4620
2774 EV_FREQUENT_CHECK; 4621 EV_FREQUENT_CHECK;
2775} 4622}
2776 4623
2777void 4624void
2778ev_idle_stop (EV_P_ ev_idle *w) 4625ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2779{ 4626{
2780 clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w))) 4628 if (expect_false (!ev_is_active (w)))
2782 return; 4629 return;
2783 4630
2795 4642
2796 EV_FREQUENT_CHECK; 4643 EV_FREQUENT_CHECK;
2797} 4644}
2798#endif 4645#endif
2799 4646
4647#if EV_PREPARE_ENABLE
2800void 4648void
2801ev_prepare_start (EV_P_ ev_prepare *w) 4649ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2802{ 4650{
2803 if (expect_false (ev_is_active (w))) 4651 if (expect_false (ev_is_active (w)))
2804 return; 4652 return;
2805 4653
2806 EV_FREQUENT_CHECK; 4654 EV_FREQUENT_CHECK;
2811 4659
2812 EV_FREQUENT_CHECK; 4660 EV_FREQUENT_CHECK;
2813} 4661}
2814 4662
2815void 4663void
2816ev_prepare_stop (EV_P_ ev_prepare *w) 4664ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2817{ 4665{
2818 clear_pending (EV_A_ (W)w); 4666 clear_pending (EV_A_ (W)w);
2819 if (expect_false (!ev_is_active (w))) 4667 if (expect_false (!ev_is_active (w)))
2820 return; 4668 return;
2821 4669
2830 4678
2831 ev_stop (EV_A_ (W)w); 4679 ev_stop (EV_A_ (W)w);
2832 4680
2833 EV_FREQUENT_CHECK; 4681 EV_FREQUENT_CHECK;
2834} 4682}
4683#endif
2835 4684
4685#if EV_CHECK_ENABLE
2836void 4686void
2837ev_check_start (EV_P_ ev_check *w) 4687ev_check_start (EV_P_ ev_check *w) EV_THROW
2838{ 4688{
2839 if (expect_false (ev_is_active (w))) 4689 if (expect_false (ev_is_active (w)))
2840 return; 4690 return;
2841 4691
2842 EV_FREQUENT_CHECK; 4692 EV_FREQUENT_CHECK;
2847 4697
2848 EV_FREQUENT_CHECK; 4698 EV_FREQUENT_CHECK;
2849} 4699}
2850 4700
2851void 4701void
2852ev_check_stop (EV_P_ ev_check *w) 4702ev_check_stop (EV_P_ ev_check *w) EV_THROW
2853{ 4703{
2854 clear_pending (EV_A_ (W)w); 4704 clear_pending (EV_A_ (W)w);
2855 if (expect_false (!ev_is_active (w))) 4705 if (expect_false (!ev_is_active (w)))
2856 return; 4706 return;
2857 4707
2866 4716
2867 ev_stop (EV_A_ (W)w); 4717 ev_stop (EV_A_ (W)w);
2868 4718
2869 EV_FREQUENT_CHECK; 4719 EV_FREQUENT_CHECK;
2870} 4720}
4721#endif
2871 4722
2872#if EV_EMBED_ENABLE 4723#if EV_EMBED_ENABLE
2873void noinline 4724noinline
4725void
2874ev_embed_sweep (EV_P_ ev_embed *w) 4726ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2875{ 4727{
2876 ev_loop (w->other, EVLOOP_NONBLOCK); 4728 ev_run (w->other, EVRUN_NOWAIT);
2877} 4729}
2878 4730
2879static void 4731static void
2880embed_io_cb (EV_P_ ev_io *io, int revents) 4732embed_io_cb (EV_P_ ev_io *io, int revents)
2881{ 4733{
2882 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4734 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2883 4735
2884 if (ev_cb (w)) 4736 if (ev_cb (w))
2885 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4737 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2886 else 4738 else
2887 ev_loop (w->other, EVLOOP_NONBLOCK); 4739 ev_run (w->other, EVRUN_NOWAIT);
2888} 4740}
2889 4741
2890static void 4742static void
2891embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4743embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2892{ 4744{
2893 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4745 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2894 4746
2895 { 4747 {
2896 struct ev_loop *loop = w->other; 4748 EV_P = w->other;
2897 4749
2898 while (fdchangecnt) 4750 while (fdchangecnt)
2899 { 4751 {
2900 fd_reify (EV_A); 4752 fd_reify (EV_A);
2901 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4753 ev_run (EV_A_ EVRUN_NOWAIT);
2902 } 4754 }
2903 } 4755 }
2904} 4756}
2905 4757
2906static void 4758static void
2909 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4761 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2910 4762
2911 ev_embed_stop (EV_A_ w); 4763 ev_embed_stop (EV_A_ w);
2912 4764
2913 { 4765 {
2914 struct ev_loop *loop = w->other; 4766 EV_P = w->other;
2915 4767
2916 ev_loop_fork (EV_A); 4768 ev_loop_fork (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4769 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4770 }
2919 4771
2920 ev_embed_start (EV_A_ w); 4772 ev_embed_start (EV_A_ w);
2921} 4773}
2922 4774
2927 ev_idle_stop (EV_A_ idle); 4779 ev_idle_stop (EV_A_ idle);
2928} 4780}
2929#endif 4781#endif
2930 4782
2931void 4783void
2932ev_embed_start (EV_P_ ev_embed *w) 4784ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2933{ 4785{
2934 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
2935 return; 4787 return;
2936 4788
2937 { 4789 {
2938 struct ev_loop *loop = w->other; 4790 EV_P = w->other;
2939 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4791 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2940 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4792 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2941 } 4793 }
2942 4794
2943 EV_FREQUENT_CHECK; 4795 EV_FREQUENT_CHECK;
2958 4810
2959 EV_FREQUENT_CHECK; 4811 EV_FREQUENT_CHECK;
2960} 4812}
2961 4813
2962void 4814void
2963ev_embed_stop (EV_P_ ev_embed *w) 4815ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2964{ 4816{
2965 clear_pending (EV_A_ (W)w); 4817 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w))) 4818 if (expect_false (!ev_is_active (w)))
2967 return; 4819 return;
2968 4820
2970 4822
2971 ev_io_stop (EV_A_ &w->io); 4823 ev_io_stop (EV_A_ &w->io);
2972 ev_prepare_stop (EV_A_ &w->prepare); 4824 ev_prepare_stop (EV_A_ &w->prepare);
2973 ev_fork_stop (EV_A_ &w->fork); 4825 ev_fork_stop (EV_A_ &w->fork);
2974 4826
4827 ev_stop (EV_A_ (W)w);
4828
2975 EV_FREQUENT_CHECK; 4829 EV_FREQUENT_CHECK;
2976} 4830}
2977#endif 4831#endif
2978 4832
2979#if EV_FORK_ENABLE 4833#if EV_FORK_ENABLE
2980void 4834void
2981ev_fork_start (EV_P_ ev_fork *w) 4835ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2982{ 4836{
2983 if (expect_false (ev_is_active (w))) 4837 if (expect_false (ev_is_active (w)))
2984 return; 4838 return;
2985 4839
2986 EV_FREQUENT_CHECK; 4840 EV_FREQUENT_CHECK;
2991 4845
2992 EV_FREQUENT_CHECK; 4846 EV_FREQUENT_CHECK;
2993} 4847}
2994 4848
2995void 4849void
2996ev_fork_stop (EV_P_ ev_fork *w) 4850ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2997{ 4851{
2998 clear_pending (EV_A_ (W)w); 4852 clear_pending (EV_A_ (W)w);
2999 if (expect_false (!ev_is_active (w))) 4853 if (expect_false (!ev_is_active (w)))
3000 return; 4854 return;
3001 4855
3012 4866
3013 EV_FREQUENT_CHECK; 4867 EV_FREQUENT_CHECK;
3014} 4868}
3015#endif 4869#endif
3016 4870
3017#if EV_ASYNC_ENABLE 4871#if EV_CLEANUP_ENABLE
3018void 4872void
3019ev_async_start (EV_P_ ev_async *w) 4873ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
3020{ 4874{
3021 if (expect_false (ev_is_active (w))) 4875 if (expect_false (ev_is_active (w)))
3022 return; 4876 return;
4877
4878 EV_FREQUENT_CHECK;
4879
4880 ev_start (EV_A_ (W)w, ++cleanupcnt);
4881 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4882 cleanups [cleanupcnt - 1] = w;
4883
4884 /* cleanup watchers should never keep a refcount on the loop */
4885 ev_unref (EV_A);
4886 EV_FREQUENT_CHECK;
4887}
4888
4889void
4890ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4891{
4892 clear_pending (EV_A_ (W)w);
4893 if (expect_false (!ev_is_active (w)))
4894 return;
4895
4896 EV_FREQUENT_CHECK;
4897 ev_ref (EV_A);
4898
4899 {
4900 int active = ev_active (w);
4901
4902 cleanups [active - 1] = cleanups [--cleanupcnt];
4903 ev_active (cleanups [active - 1]) = active;
4904 }
4905
4906 ev_stop (EV_A_ (W)w);
4907
4908 EV_FREQUENT_CHECK;
4909}
4910#endif
4911
4912#if EV_ASYNC_ENABLE
4913void
4914ev_async_start (EV_P_ ev_async *w) EV_THROW
4915{
4916 if (expect_false (ev_is_active (w)))
4917 return;
4918
4919 w->sent = 0;
3023 4920
3024 evpipe_init (EV_A); 4921 evpipe_init (EV_A);
3025 4922
3026 EV_FREQUENT_CHECK; 4923 EV_FREQUENT_CHECK;
3027 4924
3031 4928
3032 EV_FREQUENT_CHECK; 4929 EV_FREQUENT_CHECK;
3033} 4930}
3034 4931
3035void 4932void
3036ev_async_stop (EV_P_ ev_async *w) 4933ev_async_stop (EV_P_ ev_async *w) EV_THROW
3037{ 4934{
3038 clear_pending (EV_A_ (W)w); 4935 clear_pending (EV_A_ (W)w);
3039 if (expect_false (!ev_is_active (w))) 4936 if (expect_false (!ev_is_active (w)))
3040 return; 4937 return;
3041 4938
3052 4949
3053 EV_FREQUENT_CHECK; 4950 EV_FREQUENT_CHECK;
3054} 4951}
3055 4952
3056void 4953void
3057ev_async_send (EV_P_ ev_async *w) 4954ev_async_send (EV_P_ ev_async *w) EV_THROW
3058{ 4955{
3059 w->sent = 1; 4956 w->sent = 1;
3060 evpipe_write (EV_A_ &gotasync); 4957 evpipe_write (EV_A_ &async_pending);
3061} 4958}
3062#endif 4959#endif
3063 4960
3064/*****************************************************************************/ 4961/*****************************************************************************/
3065 4962
3099 4996
3100 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4997 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3101} 4998}
3102 4999
3103void 5000void
3104ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5001ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3105{ 5002{
3106 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5003 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3107 5004
3108 if (expect_false (!once)) 5005 if (expect_false (!once))
3109 { 5006 {
3110 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5007 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3111 return; 5008 return;
3112 } 5009 }
3113 5010
3114 once->cb = cb; 5011 once->cb = cb;
3115 once->arg = arg; 5012 once->arg = arg;
3127 ev_timer_set (&once->to, timeout, 0.); 5024 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 5025 ev_timer_start (EV_A_ &once->to);
3129 } 5026 }
3130} 5027}
3131 5028
5029/*****************************************************************************/
5030
5031#if EV_WALK_ENABLE
5032ecb_cold
5033void
5034ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5035{
5036 int i, j;
5037 ev_watcher_list *wl, *wn;
5038
5039 if (types & (EV_IO | EV_EMBED))
5040 for (i = 0; i < anfdmax; ++i)
5041 for (wl = anfds [i].head; wl; )
5042 {
5043 wn = wl->next;
5044
5045#if EV_EMBED_ENABLE
5046 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5047 {
5048 if (types & EV_EMBED)
5049 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5050 }
5051 else
5052#endif
5053#if EV_USE_INOTIFY
5054 if (ev_cb ((ev_io *)wl) == infy_cb)
5055 ;
5056 else
5057#endif
5058 if ((ev_io *)wl != &pipe_w)
5059 if (types & EV_IO)
5060 cb (EV_A_ EV_IO, wl);
5061
5062 wl = wn;
5063 }
5064
5065 if (types & (EV_TIMER | EV_STAT))
5066 for (i = timercnt + HEAP0; i-- > HEAP0; )
5067#if EV_STAT_ENABLE
5068 /*TODO: timer is not always active*/
5069 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5070 {
5071 if (types & EV_STAT)
5072 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5073 }
5074 else
5075#endif
5076 if (types & EV_TIMER)
5077 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5078
5079#if EV_PERIODIC_ENABLE
5080 if (types & EV_PERIODIC)
5081 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5082 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5083#endif
5084
5085#if EV_IDLE_ENABLE
5086 if (types & EV_IDLE)
5087 for (j = NUMPRI; j--; )
5088 for (i = idlecnt [j]; i--; )
5089 cb (EV_A_ EV_IDLE, idles [j][i]);
5090#endif
5091
5092#if EV_FORK_ENABLE
5093 if (types & EV_FORK)
5094 for (i = forkcnt; i--; )
5095 if (ev_cb (forks [i]) != embed_fork_cb)
5096 cb (EV_A_ EV_FORK, forks [i]);
5097#endif
5098
5099#if EV_ASYNC_ENABLE
5100 if (types & EV_ASYNC)
5101 for (i = asynccnt; i--; )
5102 cb (EV_A_ EV_ASYNC, asyncs [i]);
5103#endif
5104
5105#if EV_PREPARE_ENABLE
5106 if (types & EV_PREPARE)
5107 for (i = preparecnt; i--; )
5108# if EV_EMBED_ENABLE
5109 if (ev_cb (prepares [i]) != embed_prepare_cb)
5110# endif
5111 cb (EV_A_ EV_PREPARE, prepares [i]);
5112#endif
5113
5114#if EV_CHECK_ENABLE
5115 if (types & EV_CHECK)
5116 for (i = checkcnt; i--; )
5117 cb (EV_A_ EV_CHECK, checks [i]);
5118#endif
5119
5120#if EV_SIGNAL_ENABLE
5121 if (types & EV_SIGNAL)
5122 for (i = 0; i < EV_NSIG - 1; ++i)
5123 for (wl = signals [i].head; wl; )
5124 {
5125 wn = wl->next;
5126 cb (EV_A_ EV_SIGNAL, wl);
5127 wl = wn;
5128 }
5129#endif
5130
5131#if EV_CHILD_ENABLE
5132 if (types & EV_CHILD)
5133 for (i = (EV_PID_HASHSIZE); i--; )
5134 for (wl = childs [i]; wl; )
5135 {
5136 wn = wl->next;
5137 cb (EV_A_ EV_CHILD, wl);
5138 wl = wn;
5139 }
5140#endif
5141/* EV_STAT 0x00001000 /* stat data changed */
5142/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5143}
5144#endif
5145
3132#if EV_MULTIPLICITY 5146#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 5147 #include "ev_wrap.h"
3134#endif 5148#endif
3135 5149
3136#ifdef __cplusplus
3137}
3138#endif
3139

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines