ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.279 by root, Fri Feb 6 20:17:43 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
45# endif 70# endif
46# else 71# else
47# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
49# endif 74# endif
50# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
52# endif 85# endif
53# endif 86# endif
54 87
55# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 123# else
91# define EV_USE_PORT 0 124# define EV_USE_PORT 0
92# endif 125# endif
93# endif 126# endif
94 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
95#endif 144#endif
96 145
97#include <math.h> 146#include <math.h>
98#include <stdlib.h> 147#include <stdlib.h>
99#include <fcntl.h> 148#include <fcntl.h>
106#include <sys/types.h> 155#include <sys/types.h>
107#include <time.h> 156#include <time.h>
108 157
109#include <signal.h> 158#include <signal.h>
110 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
111#ifndef _WIN32 166#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 167# include <sys/time.h>
114# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
115#else 170#else
171# include <io.h>
116# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 173# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
120# endif 176# endif
121#endif 177#endif
122 178
123/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
124 188
125#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
126# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
127#endif 195#endif
128 196
129#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
131#endif 207#endif
132 208
133#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
135#endif 211#endif
141# define EV_USE_POLL 1 217# define EV_USE_POLL 1
142# endif 218# endif
143#endif 219#endif
144 220
145#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
146# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
147#endif 227#endif
148 228
149#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
151#endif 231#endif
152 232
153#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 234# define EV_USE_PORT 0
155#endif 235#endif
156 236
157/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 288
159#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
162#endif 292#endif
164#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
167#endif 297#endif
168 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
169#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 322# include <winsock.h>
171#endif 323#endif
172 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
173/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 363
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 367
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 368#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 370# define noinline __attribute__ ((noinline))
189#else 371#else
190# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
191# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
192#endif 377#endif
193 378
194#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
196 388
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 391
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
202 394
203typedef struct ev_watcher *W; 395typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
206 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
208 411
209#ifdef _WIN32 412#ifdef _WIN32
210# include "ev_win32.c" 413# include "ev_win32.c"
211#endif 414#endif
212 415
213/*****************************************************************************/ 416/*****************************************************************************/
214 417
215static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
216 419
420void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 422{
219 syserr_cb = cb; 423 syserr_cb = cb;
220} 424}
221 425
222static void 426static void noinline
223syserr (const char *msg) 427ev_syserr (const char *msg)
224{ 428{
225 if (!msg) 429 if (!msg)
226 msg = "(libev) system error"; 430 msg = "(libev) system error";
227 431
228 if (syserr_cb) 432 if (syserr_cb)
232 perror (msg); 436 perror (msg);
233 abort (); 437 abort ();
234 } 438 }
235} 439}
236 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
237static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 457
458void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 460{
241 alloc = cb; 461 alloc = cb;
242} 462}
243 463
244static void * 464inline_speed void *
245ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
246{ 466{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
248 468
249 if (!ptr && size) 469 if (!ptr && size)
250 { 470 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 472 abort ();
263typedef struct 483typedef struct
264{ 484{
265 WL head; 485 WL head;
266 unsigned char events; 486 unsigned char events;
267 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
268#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 494 SOCKET handle;
270#endif 495#endif
271} ANFD; 496} ANFD;
272 497
273typedef struct 498typedef struct
274{ 499{
275 W w; 500 W w;
276 int events; 501 int events;
277} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
278 529
279#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
280 531
281 struct ev_loop 532 struct ev_loop
282 { 533 {
306 557
307ev_tstamp 558ev_tstamp
308ev_time (void) 559ev_time (void)
309{ 560{
310#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
311 struct timespec ts; 564 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 567 }
568#endif
569
315 struct timeval tv; 570 struct timeval tv;
316 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 573}
320 574
321inline ev_tstamp 575ev_tstamp inline_size
322get_clock (void) 576get_clock (void)
323{ 577{
324#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
326 { 580 {
339{ 593{
340 return ev_rt_now; 594 return ev_rt_now;
341} 595}
342#endif 596#endif
343 597
344#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 660
346#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
348 { \ 663 { \
349 int newcnt = cur; \ 664 int ocur_ = (cur); \
350 do \ 665 (base) = (type *)array_realloc \
351 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 668 }
360 669
670#if 0
361#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 673 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 677 }
678#endif
368 679
369#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 682
372/*****************************************************************************/ 683/*****************************************************************************/
373 684
374static void 685void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
389{ 687{
390 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
391 690
392 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
393 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 699 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 700}
403 701
404static void 702void inline_speed
405queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 704{
407 int i; 705 int i;
408 706
409 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
411} 709}
412 710
413inline void 711/*****************************************************************************/
712
713void inline_speed
414fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
415{ 715{
416 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 717 ev_io *w;
418 718
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 720 {
421 int ev = w->events & revents; 721 int ev = w->events & revents;
422 722
423 if (ev) 723 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 724 ev_feed_event (EV_A_ (W)w, ev);
426} 726}
427 727
428void 728void
429ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 730{
731 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
432} 733}
433 734
434/*****************************************************************************/ 735void inline_size
435
436inline void
437fd_reify (EV_P) 736fd_reify (EV_P)
438{ 737{
439 int i; 738 int i;
440 739
441 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
442 { 741 {
443 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 744 ev_io *w;
446 745
447 int events = 0; 746 unsigned char events = 0;
448 747
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 749 events |= (unsigned char)w->events;
451 750
452#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
453 if (events) 752 if (events)
454 { 753 {
455 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
456 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 761 }
459#endif 762#endif
460 763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
461 anfd->reify = 0; 768 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV_IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
465 } 774 }
466 775
467 fdchangecnt = 0; 776 fdchangecnt = 0;
468} 777}
469 778
470static void 779void inline_size
471fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
472{ 781{
473 if (expect_false (anfds [fd].reify)) 782 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
477 784
785 if (expect_true (!reify))
786 {
478 ++fdchangecnt; 787 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
481} 791}
482 792
483static void 793void inline_speed
484fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
485{ 795{
486 struct ev_io *w; 796 ev_io *w;
487 797
488 while ((w = (struct ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
489 { 799 {
490 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 802 }
493} 803}
494 804
495inline int 805int inline_size
496fd_valid (int fd) 806fd_valid (int fd)
497{ 807{
498#ifdef _WIN32 808#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 809 return _get_osfhandle (fd) != -1;
500#else 810#else
501 return fcntl (fd, F_GETFD) != -1; 811 return fcntl (fd, F_GETFD) != -1;
502#endif 812#endif
503} 813}
504 814
505/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
506static void 816static void noinline
507fd_ebadf (EV_P) 817fd_ebadf (EV_P)
508{ 818{
509 int fd; 819 int fd;
510 820
511 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 822 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
515} 825}
516 826
517/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 828static void noinline
519fd_enomem (EV_P) 829fd_enomem (EV_P)
520{ 830{
521 int fd; 831 int fd;
522 832
523 for (fd = anfdmax; fd--; ) 833 for (fd = anfdmax; fd--; )
527 return; 837 return;
528 } 838 }
529} 839}
530 840
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 842static void noinline
533fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
534{ 844{
535 int fd; 845 int fd;
536 846
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 848 if (anfds [fd].events)
540 { 849 {
541 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
542 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 853 }
544} 854}
545 855
546/*****************************************************************************/ 856/*****************************************************************************/
547 857
548static void 858/*
549upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
552 863
553 while (k && heap [k >> 1]->at > w->at) 864/*
554 { 865 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 867 * which is more cache-efficient.
557 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
558 } 869 */
870#if EV_USE_4HEAP
559 871
560 heap [k] = w; 872#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
562 876
563} 877/* away from the root */
564 878void inline_speed
565static void
566downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
567{ 880{
568 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
569 883
570 while (k < (N >> 1)) 884 for (;;)
571 { 885 {
572 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 889
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 892 {
576 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
578 break; 906 break;
579 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
580 heap [k] = heap [j]; 946 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
582 k = j; 949 k = c;
583 } 950 }
584 951
585 heap [k] = w; 952 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
587} 954}
955#endif
588 956
589inline void 957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
978
979void inline_size
590adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
591{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
592 upheap (heap, k); 983 upheap (heap, k);
984 else
593 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
594} 998}
595 999
596/*****************************************************************************/ 1000/*****************************************************************************/
597 1001
598typedef struct 1002typedef struct
599{ 1003{
600 WL head; 1004 WL head;
601 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
602} ANSIG; 1006} ANSIG;
603 1007
604static ANSIG *signals; 1008static ANSIG *signals;
605static int signalmax; 1009static int signalmax;
606 1010
607static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 1012
611static void 1013/*****************************************************************************/
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618 1014
619 ++base; 1015void inline_speed
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1016fd_intern (int fd)
676{ 1017{
677#ifdef _WIN32 1018#ifdef _WIN32
678 int arg = 1; 1019 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else 1021#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1024#endif
684} 1025}
685 1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
686static void 1078static void
687siginit (EV_P) 1079pipecb (EV_P_ ev_io *iow, int revents)
688{ 1080{
689 fd_intern (sigpipe [0]); 1081#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
691 1093
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1094 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1095 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
695} 1118}
696 1119
697/*****************************************************************************/ 1120/*****************************************************************************/
698 1121
699static struct ev_child *childs [PID_HASHSIZE]; 1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
1159static WL childs [EV_PID_HASHSIZE];
700 1160
701#ifndef _WIN32 1161#ifndef _WIN32
702 1162
703static struct ev_signal childev; 1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
704 1187
705#ifndef WCONTINUED 1188#ifndef WCONTINUED
706# define WCONTINUED 0 1189# define WCONTINUED 0
707#endif 1190#endif
708 1191
709static void 1192static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
726{ 1194{
727 int pid, status; 1195 int pid, status;
728 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
731 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1207
734 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1211}
738 1212
739#endif 1213#endif
740 1214
741/*****************************************************************************/ 1215/*****************************************************************************/
767{ 1241{
768 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
769} 1243}
770 1244
771/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1246int inline_size
773enable_secure (void) 1247enable_secure (void)
774{ 1248{
775#ifdef _WIN32 1249#ifdef _WIN32
776 return 0; 1250 return 0;
777#else 1251#else
803 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
806#endif 1280#endif
807#ifdef __APPLE__ 1281#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif
1286
1287 return flags;
1288}
1289
1290unsigned int
1291ev_embeddable_backends (void)
1292{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
809 flags &= ~EVBACKEND_POLL; 1297 flags &= ~EVBACKEND_EPOLL;
810#endif
811 1298
812 return flags; 1299 return flags;
813} 1300}
814 1301
815unsigned int 1302unsigned int
816ev_backend (EV_P) 1303ev_backend (EV_P)
817{ 1304{
818 return backend; 1305 return backend;
819} 1306}
820 1307
821static void 1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
822loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
823{ 1328{
824 if (!backend) 1329 if (!backend)
825 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
826#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
827 { 1343 {
828 struct timespec ts; 1344 struct timespec ts;
1345
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 1347 have_monotonic = 1;
831 } 1348 }
832#endif 1349#endif
833 1350
834 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1352 mn_now = get_clock ();
836 now_floor = mn_now; 1353 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
838 1370
839 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1372 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1375
844 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
845 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
846 1378
847 backend = 0;
848#if EV_USE_PORT 1379#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1381#endif
851#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 1390#endif
860#if EV_USE_SELECT 1391#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 1393#endif
863 1394
864 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
866 } 1397 }
867} 1398}
868 1399
869static void 1400static void noinline
870loop_destroy (EV_P) 1401loop_destroy (EV_P)
871{ 1402{
872 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
873 1429
874#if EV_USE_PORT 1430#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1432#endif
877#if EV_USE_KQUEUE 1433#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1442#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1444#endif
889 1445
890 for (i = NUMPRI; i--; ) 1446 for (i = NUMPRI; i--; )
1447 {
891 array_free (pending, [i]); 1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
892 1455
893 /* have to use the microsoft-never-gets-it-right macro */ 1456 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1457 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1458 array_free (timer, EMPTY);
896#if EV_PERIODICS 1459#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1460 array_free (periodic, EMPTY);
898#endif 1461#endif
1462#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1463 array_free (fork, EMPTY);
1464#endif
900 array_free (prepare, EMPTY0); 1465 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
902 1470
903 backend = 0; 1471 backend = 0;
904} 1472}
905 1473
906static void 1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
907loop_fork (EV_P) 1479loop_fork (EV_P)
908{ 1480{
909#if EV_USE_PORT 1481#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1483#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1486#endif
915#if EV_USE_EPOLL 1487#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
918 1493
919 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
920 { 1495 {
921 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
922 1502
923 ev_ref (EV_A); 1503 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
925 close (sigpipe [0]); 1513 close (evpipe [0]);
926 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
927 1516
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
932 } 1520 }
933 1521
934 postfork = 0; 1522 postfork = 0;
935} 1523}
936 1524
937#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
938struct ev_loop * 1527struct ev_loop *
939ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
940{ 1529{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 1531
958} 1547}
959 1548
960void 1549void
961ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
962{ 1551{
963 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
964} 1553}
965 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
966#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
967 1655
968#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
969struct ev_loop * 1657struct ev_loop *
970ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
971#else 1659#else
972int 1660int
973ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
974#endif 1662#endif
975{ 1663{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
981 { 1665 {
982#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
984#else 1668#else
987 1671
988 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
989 1673
990 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
991 { 1675 {
992 siginit (EV_A);
993
994#ifndef _WIN32 1676#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1010{ 1692{
1011#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1012 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif 1695#endif
1014 1696
1697 ev_default_loop_ptr = 0;
1698
1015#ifndef _WIN32 1699#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1018#endif 1702#endif
1019 1703
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1027} 1705}
1028 1706
1029void 1707void
1030ev_default_fork (void) 1708ev_default_fork (void)
1031{ 1709{
1032#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1712#endif
1035 1713
1036 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1037 postfork = 1;
1038} 1715}
1039 1716
1040/*****************************************************************************/ 1717/*****************************************************************************/
1041 1718
1042static int 1719void
1043any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
1044{ 1721{
1045 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1723}
1053 1724
1054inline void 1725void inline_speed
1055call_pending (EV_P) 1726call_pending (EV_P)
1056{ 1727{
1057 int pri; 1728 int pri;
1058 1729
1059 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
1061 { 1732 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1734
1064 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1065 { 1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1066 p->w->pending = 0; 1739 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1068 } 1742 }
1069 } 1743 }
1070} 1744}
1071 1745
1072inline void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
1073timers_reify (EV_P) 1770timers_reify (EV_P)
1074{ 1771{
1772 EV_FREQUENT_CHECK;
1773
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 1775 {
1077 struct ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1078 1777
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1779
1081 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
1082 if (w->repeat) 1781 if (w->repeat)
1083 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1788
1086 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1091 } 1791 }
1092 else 1792 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1794
1795 EV_FREQUENT_CHECK;
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1797 }
1097} 1798}
1098 1799
1099#if EV_PERIODICS 1800#if EV_PERIODIC_ENABLE
1100inline void 1801void inline_size
1101periodics_reify (EV_P) 1802periodics_reify (EV_P)
1102{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 1807 {
1105 struct ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1106 1809
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1811
1109 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1111 { 1814 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1114 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1115 } 1821 }
1116 else if (w->interval) 1822 else if (w->interval)
1117 { 1823 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1120 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1121 } 1840 }
1122 else 1841 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1843
1844 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1846 }
1127} 1847}
1128 1848
1129static void 1849static void noinline
1130periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1131{ 1851{
1132 int i; 1852 int i;
1133 1853
1134 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1136 { 1856 {
1137 struct ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1138 1858
1139 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1861 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1143 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1144 1880
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock (); 1881 mn_now = get_clock ();
1155 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1886 {
1158 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1888 return;
1160 } 1889 }
1161 else 1890
1162 {
1163 now_floor = mn_now; 1891 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1893
1169inline void 1894 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1171{ 1896 * in case we get preempted during the calls to
1172 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1173 1898 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1176 { 1901 */
1177 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1178 { 1903 {
1179 ev_tstamp odiff = rtmn_diff; 1904 rtmn_diff = ev_rt_now - mn_now;
1180 1905
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1182 { 1932 {
1183 rtmn_diff = ev_rt_now - mn_now; 1933 ANHE *he = timers + i + HEAP0;
1184 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1935 ANHE_at_cache (*he);
1186 return; /* all is well */
1187
1188 ev_rt_now = ev_time ();
1189 mn_now = get_clock ();
1190 now_floor = mn_now;
1191 } 1936 }
1192
1193# if EV_PERIODICS
1194 periodics_reschedule (EV_A);
1195# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1937 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 1938
1216 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1217 } 1940 }
1218} 1941}
1219 1942
1227ev_unref (EV_P) 1950ev_unref (EV_P)
1228{ 1951{
1229 --activecnt; 1952 --activecnt;
1230} 1953}
1231 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1232static int loop_done; 1961static int loop_done;
1233 1962
1234void 1963void
1235ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1236{ 1965{
1237 double block; 1966 loop_done = EVUNLOOP_CANCEL;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1239 1967
1240 while (activecnt) 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969
1970 do
1241 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
1242 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1244 { 1997 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1999 call_pending (EV_A);
1247 } 2000 }
1248 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
1249 /* we might have forked, so reify kernel state if necessary */ 2005 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 2006 if (expect_false (postfork))
1251 loop_fork (EV_A); 2007 loop_fork (EV_A);
1252 2008
1253 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 2010 fd_reify (EV_A);
1255 2011
1256 /* calculate blocking time */ 2012 /* calculate blocking time */
2013 {
2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
1257 2016
1258 /* we only need this for !monotonic clock or timers, but as we basically 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 2018 {
1266 ev_rt_now = ev_time (); 2019 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 2020 time_update (EV_A_ 1e100);
1268 }
1269 2021
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
1275 2023
1276 if (timercnt) 2024 if (timercnt)
1277 { 2025 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1279 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
1280 } 2028 }
1281 2029
1282#if EV_PERIODICS 2030#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 2031 if (periodiccnt)
1284 { 2032 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
1287 } 2035 }
1288#endif 2036#endif
1289 2037
1290 if (expect_false (block < 0.)) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
1291 } 2051 }
1292 2052
2053 ++loop_count;
1293 backend_poll (EV_A_ block); 2054 backend_poll (EV_A_ waittime);
1294 2055
1295 /* update ev_rt_now, do magic */ 2056 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 2057 time_update (EV_A_ waittime + sleeptime);
2058 }
1297 2059
1298 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 2062#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 2064#endif
1303 2065
2066#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 2067 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 2068 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
1307 2070
1308 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 2072 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 2074
1312 call_pending (EV_A); 2075 call_pending (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 2076 }
2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1317 2082
1318 if (loop_done != 2) 2083 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 2084 loop_done = EVUNLOOP_CANCEL;
1320} 2085}
1321 2086
1322void 2087void
1323ev_unloop (EV_P_ int how) 2088ev_unloop (EV_P_ int how)
1324{ 2089{
1325 loop_done = how; 2090 loop_done = how;
1326} 2091}
1327 2092
1328/*****************************************************************************/ 2093/*****************************************************************************/
1329 2094
1330inline void 2095void inline_size
1331wlist_add (WL *head, WL elem) 2096wlist_add (WL *head, WL elem)
1332{ 2097{
1333 elem->next = *head; 2098 elem->next = *head;
1334 *head = elem; 2099 *head = elem;
1335} 2100}
1336 2101
1337inline void 2102void inline_size
1338wlist_del (WL *head, WL elem) 2103wlist_del (WL *head, WL elem)
1339{ 2104{
1340 while (*head) 2105 while (*head)
1341 { 2106 {
1342 if (*head == elem) 2107 if (*head == elem)
1347 2112
1348 head = &(*head)->next; 2113 head = &(*head)->next;
1349 } 2114 }
1350} 2115}
1351 2116
1352inline void 2117void inline_speed
1353ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1354{ 2119{
1355 if (w->pending) 2120 if (w->pending)
1356 { 2121 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 2123 w->pending = 0;
1359 } 2124 }
1360} 2125}
1361 2126
1362inline void 2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
2153void inline_speed
1363ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1364{ 2155{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 2157 w->active = active;
1369 ev_ref (EV_A); 2158 ev_ref (EV_A);
1370} 2159}
1371 2160
1372inline void 2161void inline_size
1373ev_stop (EV_P_ W w) 2162ev_stop (EV_P_ W w)
1374{ 2163{
1375 ev_unref (EV_A); 2164 ev_unref (EV_A);
1376 w->active = 0; 2165 w->active = 0;
1377} 2166}
1378 2167
1379/*****************************************************************************/ 2168/*****************************************************************************/
1380 2169
1381void 2170void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1383{ 2172{
1384 int fd = w->fd; 2173 int fd = w->fd;
1385 2174
1386 if (expect_false (ev_is_active (w))) 2175 if (expect_false (ev_is_active (w)))
1387 return; 2176 return;
1388 2177
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1390 2182
1391 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1394 2186
1395 fd_change (EV_A_ fd); 2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1396} 2188 w->events &= ~EV_IOFDSET;
1397 2189
1398void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1400{ 2195{
1401 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
1403 return; 2198 return;
1404 2199
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 2201
2202 EV_FREQUENT_CHECK;
2203
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1409 2206
1410 fd_change (EV_A_ w->fd); 2207 fd_change (EV_A_ w->fd, 1);
1411}
1412 2208
1413void 2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1415{ 2214{
1416 if (expect_false (ev_is_active (w))) 2215 if (expect_false (ev_is_active (w)))
1417 return; 2216 return;
1418 2217
1419 ((WT)w)->at += mn_now; 2218 ev_at (w) += mn_now;
1420 2219
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
1427 2230
2231 EV_FREQUENT_CHECK;
2232
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 2234}
1430 2235
1431void 2236void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1433{ 2238{
1434 ev_clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 2240 if (expect_false (!ev_is_active (w)))
1436 return; 2241 return;
1437 2242
2243 EV_FREQUENT_CHECK;
2244
2245 {
2246 int active = ev_active (w);
2247
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 2249
2250 --timercnt;
2251
1440 if (expect_true (((W)w)->active < timercnt--)) 2252 if (expect_true (active < timercnt + HEAP0))
1441 { 2253 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2255 adjustheap (timers, timercnt, active);
1444 } 2256 }
2257 }
1445 2258
1446 ((WT)w)->at -= mn_now; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1447 2262
1448 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1449} 2264}
1450 2265
1451void 2266void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1453{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1454 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1455 { 2272 {
1456 if (w->repeat) 2273 if (w->repeat)
1457 { 2274 {
1458 ((WT)w)->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2277 adjustheap (timers, timercnt, ev_active (w));
1460 } 2278 }
1461 else 2279 else
1462 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1463 } 2281 }
1464 else if (w->repeat) 2282 else if (w->repeat)
1465 { 2283 {
1466 w->at = w->repeat; 2284 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1468 } 2286 }
1469}
1470 2287
2288 EV_FREQUENT_CHECK;
2289}
2290
1471#if EV_PERIODICS 2291#if EV_PERIODIC_ENABLE
1472void 2292void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 2294{
1475 if (expect_false (ev_is_active (w))) 2295 if (expect_false (ev_is_active (w)))
1476 return; 2296 return;
1477 2297
1478 if (w->reschedule_cb) 2298 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 2300 else if (w->interval)
1481 { 2301 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 2305 }
2306 else
2307 ev_at (w) = w->offset;
1486 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1491 2317
2318 EV_FREQUENT_CHECK;
2319
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 2321}
1494 2322
1495void 2323void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 2325{
1498 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2327 if (expect_false (!ev_is_active (w)))
1500 return; 2328 return;
1501 2329
2330 EV_FREQUENT_CHECK;
2331
2332 {
2333 int active = ev_active (w);
2334
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 2336
2337 --periodiccnt;
2338
1504 if (expect_true (((W)w)->active < periodiccnt--)) 2339 if (expect_true (active < periodiccnt + HEAP0))
1505 { 2340 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2342 adjustheap (periodics, periodiccnt, active);
1508 } 2343 }
2344 }
2345
2346 EV_FREQUENT_CHECK;
1509 2347
1510 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1511} 2349}
1512 2350
1513void 2351void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 2353{
1516 /* TODO: use adjustheap and recalculation */ 2354 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 2355 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 2356 ev_periodic_start (EV_A_ w);
1519} 2357}
1520#endif 2358#endif
1521 2359
1522void 2360#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 2361# define SA_RESTART 0
2362#endif
2363
2364void noinline
2365ev_signal_start (EV_P_ ev_signal *w)
1524{ 2366{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
1525 if (expect_false (ev_is_active (w))) 2370 if (expect_false (ev_is_active (w)))
1526 return; 2371 return;
1527 2372
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART
1589# define SA_RESTART 0
1590#endif
1591
1592void
1593ev_signal_start (EV_P_ struct ev_signal *w)
1594{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w)))
1599 return;
1600
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
2378
2379 {
2380#ifndef _WIN32
2381 sigset_t full, prev;
2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
2391 }
1602 2392
1603 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 2395
1607 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1608 { 2397 {
1609#if _WIN32 2398#if _WIN32
1610 signal (w->signum, sighandler); 2399 signal (w->signum, ev_sighandler);
1611#else 2400#else
1612 struct sigaction sa; 2401 struct sigaction sa;
1613 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1614 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
1617#endif 2406#endif
1618 } 2407 }
1619}
1620 2408
1621void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1623{ 2414{
1624 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2416 if (expect_false (!ev_is_active (w)))
1626 return; 2417 return;
1627 2418
2419 EV_FREQUENT_CHECK;
2420
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1630 2423
1631 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
1633}
1634 2426
2427 EV_FREQUENT_CHECK;
2428}
2429
1635void 2430void
1636ev_child_start (EV_P_ struct ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1637{ 2432{
1638#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 2435#endif
1641 if (expect_false (ev_is_active (w))) 2436 if (expect_false (ev_is_active (w)))
1642 return; 2437 return;
1643 2438
2439 EV_FREQUENT_CHECK;
2440
1644 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646}
1647 2443
2444 EV_FREQUENT_CHECK;
2445}
2446
1648void 2447void
1649ev_child_stop (EV_P_ struct ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1650{ 2449{
1651 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2451 if (expect_false (!ev_is_active (w)))
1653 return; 2452 return;
1654 2453
2454 EV_FREQUENT_CHECK;
2455
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1657} 2460}
2461
2462#if EV_STAT_ENABLE
2463
2464# ifdef _WIN32
2465# undef lstat
2466# define lstat(a,b) _stati64 (a,b)
2467# endif
2468
2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891
2472
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474
2475#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477
2478static void noinline
2479infy_add (EV_P_ ev_stat *w)
2480{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482
2483 if (w->wd < 0)
2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487
2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 {
2493 char path [4096];
2494 strcpy (path, w->path);
2495
2496 do
2497 {
2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2500
2501 char *pend = strrchr (path, '/');
2502
2503 if (!pend || pend == path)
2504 break;
2505
2506 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 }
2511 }
2512
2513 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
2534}
2535
2536static void noinline
2537infy_del (EV_P_ ev_stat *w)
2538{
2539 int slot;
2540 int wd = w->wd;
2541
2542 if (wd < 0)
2543 return;
2544
2545 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w);
2548
2549 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd);
2551}
2552
2553static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{
2556 if (slot < 0)
2557 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2559 infy_wd (EV_A_ slot, wd, ev);
2560 else
2561 {
2562 WL w_;
2563
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2565 {
2566 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */
2568
2569 if (w->wd == wd || wd == -1)
2570 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2574 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */
2576 }
2577
2578 stat_timer_cb (EV_A_ &w->timer, 0);
2579 }
2580 }
2581 }
2582}
2583
2584static void
2585infy_cb (EV_P_ ev_io *w, int revents)
2586{
2587 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf));
2591
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594}
2595
2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
2620infy_init (EV_P)
2621{
2622 if (fs_fd != -2)
2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2628
2629 fs_fd = inotify_init ();
2630
2631 if (fs_fd >= 0)
2632 {
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w);
2636 }
2637}
2638
2639void inline_size
2640infy_fork (EV_P)
2641{
2642 int slot;
2643
2644 if (fs_fd < 0)
2645 return;
2646
2647 close (fs_fd);
2648 fs_fd = inotify_init ();
2649
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 {
2652 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0;
2654
2655 while (w_)
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us add this watcher */
2659
2660 w->wd = -1;
2661
2662 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else
2665 ev_timer_again (EV_A_ &w->timer);
2666 }
2667 }
2668}
2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
2676#endif
2677
2678void
2679ev_stat_stat (EV_P_ ev_stat *w)
2680{
2681 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1;
2685}
2686
2687static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691
2692 /* we copy this here each the time so that */
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w);
2696
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
2710 ) {
2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2714 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w);
2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2718 #endif
2719
2720 ev_feed_event (EV_A_ w, EV_STAT);
2721 }
2722}
2723
2724void
2725ev_stat_start (EV_P_ ev_stat *w)
2726{
2727 if (expect_false (ev_is_active (w)))
2728 return;
2729
2730 ev_stat_stat (EV_A_ w);
2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2733 w->interval = MIN_STAT_INTERVAL;
2734
2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2736 ev_set_priority (&w->timer, ev_priority (w));
2737
2738#if EV_USE_INOTIFY
2739 infy_init (EV_A);
2740
2741 if (fs_fd >= 0)
2742 infy_add (EV_A_ w);
2743 else
2744#endif
2745 ev_timer_again (EV_A_ &w->timer);
2746
2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_stat_stop (EV_P_ ev_stat *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w);
2763#endif
2764 ev_timer_stop (EV_A_ &w->timer);
2765
2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
2773void
2774ev_idle_start (EV_P_ ev_idle *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
2787 ev_start (EV_A_ (W)w, active);
2788
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_idle_stop (EV_P_ ev_idle *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817#endif
2818
2819void
2820ev_prepare_start (EV_P_ ev_prepare *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_prepare_stop (EV_P_ ev_prepare *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 prepares [active - 1] = prepares [--preparecnt];
2847 ev_active (prepares [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854
2855void
2856ev_check_start (EV_P_ ev_check *w)
2857{
2858 if (expect_false (ev_is_active (w)))
2859 return;
2860
2861 EV_FREQUENT_CHECK;
2862
2863 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870void
2871ev_check_stop (EV_P_ ev_check *w)
2872{
2873 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w)))
2875 return;
2876
2877 EV_FREQUENT_CHECK;
2878
2879 {
2880 int active = ev_active (w);
2881
2882 checks [active - 1] = checks [--checkcnt];
2883 ev_active (checks [active - 1]) = active;
2884 }
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890
2891#if EV_EMBED_ENABLE
2892void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w)
2894{
2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2896}
2897
2898static void
2899embed_io_cb (EV_P_ ev_io *io, int revents)
2900{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902
2903 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2949
2950void
2951ev_embed_start (EV_P_ ev_embed *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 {
2957 struct ev_loop *loop = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 }
2961
2962 EV_FREQUENT_CHECK;
2963
2964 ev_set_priority (&w->io, ev_priority (w));
2965 ev_io_start (EV_A_ &w->io);
2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2979}
2980
2981void
2982ev_embed_stop (EV_P_ ev_embed *w)
2983{
2984 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w)))
2986 return;
2987
2988 EV_FREQUENT_CHECK;
2989
2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996#endif
2997
2998#if EV_FORK_ENABLE
2999void
3000ev_fork_start (EV_P_ ev_fork *w)
3001{
3002 if (expect_false (ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
3012}
3013
3014void
3015ev_fork_stop (EV_P_ ev_fork *w)
3016{
3017 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w)))
3019 return;
3020
3021 EV_FREQUENT_CHECK;
3022
3023 {
3024 int active = ev_active (w);
3025
3026 forks [active - 1] = forks [--forkcnt];
3027 ev_active (forks [active - 1]) = active;
3028 }
3029
3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
3080}
3081#endif
1658 3082
1659/*****************************************************************************/ 3083/*****************************************************************************/
1660 3084
1661struct ev_once 3085struct ev_once
1662{ 3086{
1663 struct ev_io io; 3087 ev_io io;
1664 struct ev_timer to; 3088 ev_timer to;
1665 void (*cb)(int revents, void *arg); 3089 void (*cb)(int revents, void *arg);
1666 void *arg; 3090 void *arg;
1667}; 3091};
1668 3092
1669static void 3093static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 3095{
1672 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 3097 void *arg = once->arg;
1674 3098
1675 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 3101 ev_free (once);
1678 3102
1679 cb (revents, arg); 3103 cb (revents, arg);
1680} 3104}
1681 3105
1682static void 3106static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 3108{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 3112}
1687 3113
1688static void 3114static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 3116{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 3120}
1693 3121
1694void 3122void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1696{ 3124{
1718 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
1720 } 3148 }
1721} 3149}
1722 3150
3151#if EV_MULTIPLICITY
3152 #include "ev_wrap.h"
3153#endif
3154
1723#ifdef __cplusplus 3155#ifdef __cplusplus
1724} 3156}
1725#endif 3157#endif
1726 3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines