ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.279 by root, Fri Feb 6 20:17:43 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, size_t size) = realloc; 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, size_t size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
303 } 473 }
304 474
305 return ptr; 475 return ptr;
306} 476}
313typedef struct 483typedef struct
314{ 484{
315 WL head; 485 WL head;
316 unsigned char events; 486 unsigned char events;
317 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
318#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 494 SOCKET handle;
320#endif 495#endif
321} ANFD; 496} ANFD;
322 497
324{ 499{
325 W w; 500 W w;
326 int events; 501 int events;
327} ANPENDING; 502} ANPENDING;
328 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
329typedef struct 506typedef struct
330{ 507{
331#if EV_USE_INOTIFY
332 WL head; 508 WL head;
333#endif
334} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
335 529
336#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
337 531
338 struct ev_loop 532 struct ev_loop
339 { 533 {
363 557
364ev_tstamp 558ev_tstamp
365ev_time (void) 559ev_time (void)
366{ 560{
367#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
368 struct timespec ts; 564 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 567 }
568#endif
569
372 struct timeval tv; 570 struct timeval tv;
373 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 573}
377 574
378ev_tstamp inline_size 575ev_tstamp inline_size
379get_clock (void) 576get_clock (void)
380{ 577{
396{ 593{
397 return ev_rt_now; 594 return ev_rt_now;
398} 595}
399#endif 596#endif
400 597
401#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 660
403#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
405 { \ 663 { \
406 int newcnt = cur; \ 664 int ocur_ = (cur); \
407 do \ 665 (base) = (type *)array_realloc \
408 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 668 }
417 669
670#if 0
418#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 673 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 677 }
678#endif
425 679
426#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 682
429/*****************************************************************************/ 683/*****************************************************************************/
430 684
431void noinline 685void noinline
432ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
433{ 687{
434 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
435 690
436 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
437 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 699 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 700}
447 701
448void inline_size 702void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 704{
451 int i; 705 int i;
452 706
453 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
455} 709}
456 710
457/*****************************************************************************/ 711/*****************************************************************************/
458 712
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed 713void inline_speed
473fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
474{ 715{
475 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
476 ev_io *w; 717 ev_io *w;
485} 726}
486 727
487void 728void
488ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 730{
731 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
491} 733}
492 734
493void inline_size 735void inline_size
494fd_reify (EV_P) 736fd_reify (EV_P)
495{ 737{
499 { 741 {
500 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
502 ev_io *w; 744 ev_io *w;
503 745
504 int events = 0; 746 unsigned char events = 0;
505 747
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 749 events |= (unsigned char)w->events;
508 750
509#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
510 if (events) 752 if (events)
511 { 753 {
512 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
513 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 761 }
516#endif 762#endif
517 763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
518 anfd->reify = 0; 768 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV_IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
522 } 774 }
523 775
524 fdchangecnt = 0; 776 fdchangecnt = 0;
525} 777}
526 778
527void inline_size 779void inline_size
528fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
529{ 781{
530 if (expect_false (anfds [fd].reify)) 782 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
534 784
785 if (expect_true (!reify))
786 {
535 ++fdchangecnt; 787 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
538} 791}
539 792
540void inline_speed 793void inline_speed
541fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
542{ 795{
565{ 818{
566 int fd; 819 int fd;
567 820
568 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 822 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
572} 825}
573 826
574/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 828static void noinline
589static void noinline 842static void noinline
590fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
591{ 844{
592 int fd; 845 int fd;
593 846
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 848 if (anfds [fd].events)
597 { 849 {
598 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
599 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 853 }
601} 854}
602 855
603/*****************************************************************************/ 856/*****************************************************************************/
604 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
605void inline_speed 878void inline_speed
606upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
607{ 880{
608 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
609 883
610 while (k && heap [k >> 1]->at > w->at) 884 for (;;)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 } 885 {
886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
616 889
890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
906 break;
907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
617 heap [k] = w; 917 heap [k] = he;
618 ((W)heap [k])->active = k + 1; 918 ev_active (ANHE_w (he)) = k;
619
620} 919}
621 920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
622void inline_speed 928void inline_speed
623downheap (WT *heap, int N, int k) 929downheap (ANHE *heap, int N, int k)
624{ 930{
625 WT w = heap [k]; 931 ANHE he = heap [k];
626 932
627 while (k < (N >> 1)) 933 for (;;)
628 { 934 {
629 int j = k << 1; 935 int c = k << 1;
630 936
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 937 if (c > N + HEAP0 - 1)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 938 break;
636 939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
637 heap [k] = heap [j]; 946 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
639 k = j; 949 k = c;
640 } 950 }
641 951
642 heap [k] = w; 952 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
644} 977}
645 978
646void inline_size 979void inline_size
647adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
648{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 983 upheap (heap, k);
984 else
650 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
651} 998}
652 999
653/*****************************************************************************/ 1000/*****************************************************************************/
654 1001
655typedef struct 1002typedef struct
656{ 1003{
657 WL head; 1004 WL head;
658 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
659} ANSIG; 1006} ANSIG;
660 1007
661static ANSIG *signals; 1008static ANSIG *signals;
662static int signalmax; 1009static int signalmax;
663 1010
664static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1012
1013/*****************************************************************************/
1014
668void inline_size 1015void inline_speed
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1016fd_intern (int fd)
733{ 1017{
734#ifdef _WIN32 1018#ifdef _WIN32
735 int arg = 1; 1019 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1021#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1024#endif
741} 1025}
742 1026
743static void noinline 1027static void noinline
744siginit (EV_P) 1028evpipe_init (EV_P)
745{ 1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
746 fd_intern (sigpipe [0]); 1045 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
748 1049
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1050 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
752} 1118}
753 1119
754/*****************************************************************************/ 1120/*****************************************************************************/
755 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
756static ev_child *childs [EV_PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
757 1160
758#ifndef _WIN32 1161#ifndef _WIN32
759 1162
760static ev_signal childev; 1163static ev_signal childev;
761 1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
762void inline_speed 1169void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1170child_reap (EV_P_ int chain, int pid, int status)
764{ 1171{
765 ev_child *w; 1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1174
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
768 if (w->pid == pid || !w->pid) 1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
769 { 1179 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1181 w->rpid = pid;
772 w->rstatus = status; 1182 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1184 }
1185 }
775} 1186}
776 1187
777#ifndef WCONTINUED 1188#ifndef WCONTINUED
778# define WCONTINUED 0 1189# define WCONTINUED 0
779#endif 1190#endif
788 if (!WCONTINUED 1199 if (!WCONTINUED
789 || errno != EINVAL 1200 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1202 return;
792 1203
793 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1207
797 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1209 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1211}
801 1212
802#endif 1213#endif
803 1214
804/*****************************************************************************/ 1215/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
869#endif 1280#endif
870#ifdef __APPLE__ 1281#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1285#endif
874 1286
875 return flags; 1287 return flags;
876} 1288}
877 1289
878unsigned int 1290unsigned int
879ev_embeddable_backends (void) 1291ev_embeddable_backends (void)
880{ 1292{
881 return EVBACKEND_EPOLL 1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1294
883 | EVBACKEND_PORT; 1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
884} 1300}
885 1301
886unsigned int 1302unsigned int
887ev_backend (EV_P) 1303ev_backend (EV_P)
888{ 1304{
889 return backend; 1305 return backend;
890} 1306}
891 1307
1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
892static void noinline 1326static void noinline
893loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
894{ 1328{
895 if (!backend) 1329 if (!backend)
896 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
897#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
898 { 1343 {
899 struct timespec ts; 1344 struct timespec ts;
1345
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1347 have_monotonic = 1;
902 } 1348 }
903#endif 1349#endif
904 1350
905 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1352 mn_now = get_clock ();
907 now_floor = mn_now; 1353 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
909 1370
910 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1372 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1375
915 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1378
924#if EV_USE_PORT 1379#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1381#endif
927#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
935#endif 1390#endif
936#if EV_USE_SELECT 1391#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1393#endif
939 1394
940 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1397 }
943} 1398}
944 1399
945static void noinline 1400static void noinline
946loop_destroy (EV_P) 1401loop_destroy (EV_P)
947{ 1402{
948 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
949 1421
950#if EV_USE_INOTIFY 1422#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1423 if (fs_fd >= 0)
952 close (fs_fd); 1424 close (fs_fd);
953#endif 1425#endif
970#if EV_USE_SELECT 1442#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1444#endif
973 1445
974 for (i = NUMPRI; i--; ) 1446 for (i = NUMPRI; i--; )
1447 {
975 array_free (pending, [i]); 1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
976 1455
977 /* have to use the microsoft-never-gets-it-right macro */ 1456 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1457 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1458 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1459#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1460 array_free (periodic, EMPTY);
982#endif 1461#endif
1462#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1463 array_free (fork, EMPTY);
1464#endif
984 array_free (prepare, EMPTY0); 1465 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
986 1470
987 backend = 0; 1471 backend = 0;
988} 1472}
989 1473
1474#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1475void inline_size infy_fork (EV_P);
1476#endif
991 1477
992void inline_size 1478void inline_size
993loop_fork (EV_P) 1479loop_fork (EV_P)
994{ 1480{
995#if EV_USE_PORT 1481#if EV_USE_PORT
1003#endif 1489#endif
1004#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1491 infy_fork (EV_A);
1006#endif 1492#endif
1007 1493
1008 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
1009 { 1495 {
1010 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1011 1502
1012 ev_ref (EV_A); 1503 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1014 close (sigpipe [0]); 1513 close (evpipe [0]);
1015 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
1016 1516
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1520 }
1022 1521
1023 postfork = 0; 1522 postfork = 0;
1024} 1523}
1025 1524
1026#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
1027struct ev_loop * 1527struct ev_loop *
1028ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
1029{ 1529{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1531
1047} 1547}
1048 1548
1049void 1549void
1050ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
1051{ 1551{
1052 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
1053} 1553}
1054 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1055#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
1056 1655
1057#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1058struct ev_loop * 1657struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
1060#else 1659#else
1061int 1660int
1062ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
1063#endif 1662#endif
1064{ 1663{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
1070 { 1665 {
1071#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1668#else
1076 1671
1077 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1078 1673
1079 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1080 { 1675 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1676#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099{ 1692{
1100#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif 1695#endif
1103 1696
1697 ev_default_loop_ptr = 0;
1698
1104#ifndef _WIN32 1699#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1107#endif 1702#endif
1108 1703
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1116} 1705}
1117 1706
1118void 1707void
1119ev_default_fork (void) 1708ev_default_fork (void)
1120{ 1709{
1121#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1712#endif
1124 1713
1125 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1715}
1128 1716
1129/*****************************************************************************/ 1717/*****************************************************************************/
1130 1718
1131int inline_size 1719void
1132any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
1133{ 1721{
1134 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1723}
1142 1724
1143void inline_speed 1725void inline_speed
1144call_pending (EV_P) 1726call_pending (EV_P)
1145{ 1727{
1150 { 1732 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 1734
1153 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1154 { 1736 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1156 1738
1157 p->w->pending = 0; 1739 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1159 } 1742 }
1160 } 1743 }
1161} 1744}
1162 1745
1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1163void inline_size 1769void inline_size
1164timers_reify (EV_P) 1770timers_reify (EV_P)
1165{ 1771{
1772 EV_FREQUENT_CHECK;
1773
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1775 {
1168 ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1169 1777
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1779
1172 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
1173 if (w->repeat) 1781 if (w->repeat)
1174 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1788
1177 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1182 } 1791 }
1183 else 1792 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1794
1795 EV_FREQUENT_CHECK;
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1187 } 1797 }
1188} 1798}
1189 1799
1190#if EV_PERIODIC_ENABLE 1800#if EV_PERIODIC_ENABLE
1191void inline_size 1801void inline_size
1192periodics_reify (EV_P) 1802periodics_reify (EV_P)
1193{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 1807 {
1196 ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 1809
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1811
1200 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1202 { 1814 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1206 } 1821 }
1207 else if (w->interval) 1822 else if (w->interval)
1208 { 1823 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1211 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1212 } 1840 }
1213 else 1841 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1843
1844 EV_FREQUENT_CHECK;
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1217 } 1846 }
1218} 1847}
1219 1848
1220static void noinline 1849static void noinline
1221periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1222{ 1851{
1223 int i; 1852 int i;
1224 1853
1225 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1856 {
1228 ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1858
1230 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1861 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1234 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1235 1880
1236 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i);
1239}
1240#endif
1241
1242int inline_size
1243time_update_monotonic (EV_P)
1244{
1245 mn_now = get_clock (); 1881 mn_now = get_clock ();
1246 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1886 {
1249 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1888 return;
1251 } 1889 }
1252 else 1890
1253 {
1254 now_floor = mn_now; 1891 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1893
1260void inline_size 1894 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1262{ 1896 * in case we get preempted during the calls to
1263 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1264 1898 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1267 { 1901 */
1268 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1269 { 1903 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1283 1905
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1907 return; /* all is well */
1286 1908
1287 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1910 mn_now = get_clock ();
1289 now_floor = mn_now; 1911 now_floor = mn_now;
1290 } 1912 }
1291 1913
1292# if EV_PERIODIC_ENABLE 1914# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1915 periodics_reschedule (EV_A);
1294# endif 1916# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1919 }
1299 else 1920 else
1300#endif 1921#endif
1301 { 1922 {
1302 ev_rt_now = ev_time (); 1923 ev_rt_now = ev_time ();
1303 1924
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1926 {
1306#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1308#endif 1929#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1313 } 1937 }
1314 1938
1315 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1316 } 1940 }
1317} 1941}
1326ev_unref (EV_P) 1950ev_unref (EV_P)
1327{ 1951{
1328 --activecnt; 1952 --activecnt;
1329} 1953}
1330 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1331static int loop_done; 1961static int loop_done;
1332 1962
1333void 1963void
1334ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1335{ 1965{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1967
1340 while (activecnt) 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969
1970 do
1341 { 1971 {
1342 /* we might have forked, so reify kernel state if necessary */ 1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1343 #if EV_FORK_ENABLE 1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1987 if (expect_false (postfork))
1345 if (forkcnt) 1988 if (forkcnt)
1346 { 1989 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1991 call_pending (EV_A);
1349 } 1992 }
1350 #endif 1993#endif
1351 1994
1352 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1354 { 1997 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1999 call_pending (EV_A);
1357 } 2000 }
1358 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
1359 /* we might have forked, so reify kernel state if necessary */ 2005 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2006 if (expect_false (postfork))
1361 loop_fork (EV_A); 2007 loop_fork (EV_A);
1362 2008
1363 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2010 fd_reify (EV_A);
1365 2011
1366 /* calculate blocking time */ 2012 /* calculate blocking time */
1367 { 2013 {
1368 double block; 2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
1369 2016
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2018 {
1374 /* update time to cancel out callback processing overhead */ 2019 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2020 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2021
1385 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
1386 2023
1387 if (timercnt) 2024 if (timercnt)
1388 { 2025 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
1391 } 2028 }
1392 2029
1393#if EV_PERIODIC_ENABLE 2030#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2031 if (periodiccnt)
1395 { 2032 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
1398 } 2035 }
1399#endif 2036#endif
1400 2037
1401 if (expect_false (block < 0.)) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
1402 } 2051 }
1403 2052
2053 ++loop_count;
1404 backend_poll (EV_A_ block); 2054 backend_poll (EV_A_ waittime);
2055
2056 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime);
1405 } 2058 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2059
1410 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2062#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2064#endif
1415 2065
2066#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2067 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2068 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
1419 2070
1420 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2072 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2074
1424 call_pending (EV_A); 2075 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2076 }
2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1429 2082
1430 if (loop_done == EVUNLOOP_ONE) 2083 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2084 loop_done = EVUNLOOP_CANCEL;
1432} 2085}
1433 2086
1460 head = &(*head)->next; 2113 head = &(*head)->next;
1461 } 2114 }
1462} 2115}
1463 2116
1464void inline_speed 2117void inline_speed
1465ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1466{ 2119{
1467 if (w->pending) 2120 if (w->pending)
1468 { 2121 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 2123 w->pending = 0;
1471 } 2124 }
1472} 2125}
1473 2126
2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
1474void inline_speed 2153void inline_speed
1475ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1476{ 2155{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2157 w->active = active;
1481 ev_ref (EV_A); 2158 ev_ref (EV_A);
1482} 2159}
1483 2160
1484void inline_size 2161void inline_size
1488 w->active = 0; 2165 w->active = 0;
1489} 2166}
1490 2167
1491/*****************************************************************************/ 2168/*****************************************************************************/
1492 2169
1493void 2170void noinline
1494ev_io_start (EV_P_ ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1495{ 2172{
1496 int fd = w->fd; 2173 int fd = w->fd;
1497 2174
1498 if (expect_false (ev_is_active (w))) 2175 if (expect_false (ev_is_active (w)))
1499 return; 2176 return;
1500 2177
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1502 2182
1503 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1506 2186
1507 fd_change (EV_A_ fd); 2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1508} 2188 w->events &= ~EV_IOFDSET;
1509 2189
1510void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1512{ 2195{
1513 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
1515 return; 2198 return;
1516 2199
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2201
2202 EV_FREQUENT_CHECK;
2203
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1521 2206
1522 fd_change (EV_A_ w->fd); 2207 fd_change (EV_A_ w->fd, 1);
1523}
1524 2208
1525void 2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1527{ 2214{
1528 if (expect_false (ev_is_active (w))) 2215 if (expect_false (ev_is_active (w)))
1529 return; 2216 return;
1530 2217
1531 ((WT)w)->at += mn_now; 2218 ev_at (w) += mn_now;
1532 2219
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
1539 2230
2231 EV_FREQUENT_CHECK;
2232
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2234}
1542 2235
1543void 2236void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2238{
1546 ev_clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2240 if (expect_false (!ev_is_active (w)))
1548 return; 2241 return;
1549 2242
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2243 EV_FREQUENT_CHECK;
1551 2244
1552 { 2245 {
1553 int active = ((W)w)->active; 2246 int active = ev_active (w);
1554 2247
2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2249
2250 --timercnt;
2251
1555 if (expect_true (--active < --timercnt)) 2252 if (expect_true (active < timercnt + HEAP0))
1556 { 2253 {
1557 timers [active] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2255 adjustheap (timers, timercnt, active);
1559 } 2256 }
1560 } 2257 }
1561 2258
1562 ((WT)w)->at -= mn_now; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1563 2262
1564 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1565} 2264}
1566 2265
1567void 2266void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1569{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1570 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1571 { 2272 {
1572 if (w->repeat) 2273 if (w->repeat)
1573 { 2274 {
1574 ((WT)w)->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2277 adjustheap (timers, timercnt, ev_active (w));
1576 } 2278 }
1577 else 2279 else
1578 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1579 } 2281 }
1580 else if (w->repeat) 2282 else if (w->repeat)
1581 { 2283 {
1582 w->at = w->repeat; 2284 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1584 } 2286 }
2287
2288 EV_FREQUENT_CHECK;
1585} 2289}
1586 2290
1587#if EV_PERIODIC_ENABLE 2291#if EV_PERIODIC_ENABLE
1588void 2292void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2294{
1591 if (expect_false (ev_is_active (w))) 2295 if (expect_false (ev_is_active (w)))
1592 return; 2296 return;
1593 2297
1594 if (w->reschedule_cb) 2298 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2300 else if (w->interval)
1597 { 2301 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2305 }
2306 else
2307 ev_at (w) = w->offset;
1602 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1607 2317
2318 EV_FREQUENT_CHECK;
2319
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2321}
1610 2322
1611void 2323void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2325{
1614 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2327 if (expect_false (!ev_is_active (w)))
1616 return; 2328 return;
1617 2329
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2330 EV_FREQUENT_CHECK;
1619 2331
1620 { 2332 {
1621 int active = ((W)w)->active; 2333 int active = ev_active (w);
1622 2334
2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2336
2337 --periodiccnt;
2338
1623 if (expect_true (--active < --periodiccnt)) 2339 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2340 {
1625 periodics [active] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2342 adjustheap (periodics, periodiccnt, active);
1627 } 2343 }
1628 } 2344 }
1629 2345
2346 EV_FREQUENT_CHECK;
2347
1630 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1631} 2349}
1632 2350
1633void 2351void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2353{
1636 /* TODO: use adjustheap and recalculation */ 2354 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2355 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2356 ev_periodic_start (EV_A_ w);
1641 2359
1642#ifndef SA_RESTART 2360#ifndef SA_RESTART
1643# define SA_RESTART 0 2361# define SA_RESTART 0
1644#endif 2362#endif
1645 2363
1646void 2364void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1648{ 2366{
1649#if EV_MULTIPLICITY 2367#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2369#endif
1652 if (expect_false (ev_is_active (w))) 2370 if (expect_false (ev_is_active (w)))
1653 return; 2371 return;
1654 2372
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
2378
2379 {
2380#ifndef _WIN32
2381 sigset_t full, prev;
2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
2391 }
1656 2392
1657 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2395
1661 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1662 { 2397 {
1663#if _WIN32 2398#if _WIN32
1664 signal (w->signum, sighandler); 2399 signal (w->signum, ev_sighandler);
1665#else 2400#else
1666 struct sigaction sa; 2401 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
1671#endif 2406#endif
1672 } 2407 }
1673}
1674 2408
1675void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2414{
1678 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2416 if (expect_false (!ev_is_active (w)))
1680 return; 2417 return;
1681 2418
2419 EV_FREQUENT_CHECK;
2420
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1684 2423
1685 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
2426
2427 EV_FREQUENT_CHECK;
1687} 2428}
1688 2429
1689void 2430void
1690ev_child_start (EV_P_ ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1691{ 2432{
1692#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2435#endif
1695 if (expect_false (ev_is_active (w))) 2436 if (expect_false (ev_is_active (w)))
1696 return; 2437 return;
1697 2438
2439 EV_FREQUENT_CHECK;
2440
1698 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2443
2444 EV_FREQUENT_CHECK;
1700} 2445}
1701 2446
1702void 2447void
1703ev_child_stop (EV_P_ ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1704{ 2449{
1705 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2451 if (expect_false (!ev_is_active (w)))
1707 return; 2452 return;
1708 2453
2454 EV_FREQUENT_CHECK;
2455
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1711} 2460}
1712 2461
1713#if EV_STAT_ENABLE 2462#if EV_STAT_ENABLE
1714 2463
1715# ifdef _WIN32 2464# ifdef _WIN32
1716# undef lstat 2465# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2466# define lstat(a,b) _stati64 (a,b)
1718# endif 2467# endif
1719 2468
1720#define DEF_STAT_INTERVAL 5.0074891 2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2471#define MIN_STAT_INTERVAL 0.1074891
1722 2472
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2474
1725#if EV_USE_INOTIFY 2475#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2476# define EV_INOTIFY_BUFSIZE 8192
1727 2477
1728static void noinline 2478static void noinline
1730{ 2480{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2482
1733 if (w->wd < 0) 2483 if (w->wd < 0)
1734 { 2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2487
1737 /* monitor some parent directory for speedup hints */ 2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2492 {
1740 char path [4096]; 2493 char path [4096];
1741 strcpy (path, w->path); 2494 strcpy (path, w->path);
1742 2495
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2500
1748 char *pend = strrchr (path, '/'); 2501 char *pend = strrchr (path, '/');
1749 2502
1750 if (!pend) 2503 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2504 break;
1752 2505
1753 *pend = 0; 2506 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2507 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2508 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2510 }
1758 } 2511 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2512
1762 if (w->wd >= 0) 2513 if (w->wd >= 0)
2514 {
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
1764} 2534}
1765 2535
1766static void noinline 2536static void noinline
1767infy_del (EV_P_ ev_stat *w) 2537infy_del (EV_P_ ev_stat *w)
1768{ 2538{
1782 2552
1783static void noinline 2553static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2555{
1786 if (slot < 0) 2556 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2557 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2559 infy_wd (EV_A_ slot, wd, ev);
1790 else 2560 else
1791 { 2561 {
1792 WL w_; 2562 WL w_;
1798 2568
1799 if (w->wd == wd || wd == -1) 2569 if (w->wd == wd || wd == -1)
1800 { 2570 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2574 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2575 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2576 }
1806 2577
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2578 stat_timer_cb (EV_A_ &w->timer, 0);
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823} 2594}
1824 2595
1825void inline_size 2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
1826infy_init (EV_P) 2620infy_init (EV_P)
1827{ 2621{
1828 if (fs_fd != -2) 2622 if (fs_fd != -2)
1829 return; 2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
1830 2628
1831 fs_fd = inotify_init (); 2629 fs_fd = inotify_init ();
1832 2630
1833 if (fs_fd >= 0) 2631 if (fs_fd >= 0)
1834 { 2632 {
1862 w->wd = -1; 2660 w->wd = -1;
1863 2661
1864 if (fs_fd >= 0) 2662 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 2663 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 2664 else
1867 ev_timer_start (EV_A_ &w->timer); 2665 ev_timer_again (EV_A_ &w->timer);
1868 } 2666 }
1869
1870 } 2667 }
1871} 2668}
1872 2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 2676#endif
1874 2677
1875void 2678void
1876ev_stat_stat (EV_P_ ev_stat *w) 2679ev_stat_stat (EV_P_ ev_stat *w)
1877{ 2680{
1879 w->attr.st_nlink = 0; 2682 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2683 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2684 w->attr.st_nlink = 1;
1882} 2685}
1883 2686
1884void noinline 2687static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2689{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2691
1889 /* we copy this here each the time so that */ 2692 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2693 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2694 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2695 ev_stat_stat (EV_A_ w);
1893 2696
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2710 ) {
1896 #if EV_USE_INOTIFY 2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
1897 infy_del (EV_A_ w); 2714 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2715 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
1900 #endif 2718 #endif
1901 2719
1902 ev_feed_event (EV_A_ w, EV_STAT); 2720 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 2721 }
1904} 2722}
1907ev_stat_start (EV_P_ ev_stat *w) 2725ev_stat_start (EV_P_ ev_stat *w)
1908{ 2726{
1909 if (expect_false (ev_is_active (w))) 2727 if (expect_false (ev_is_active (w)))
1910 return; 2728 return;
1911 2729
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 2730 ev_stat_stat (EV_A_ w);
1917 2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 2733 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 2734
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 2736 ev_set_priority (&w->timer, ev_priority (w));
1923 2737
1924#if EV_USE_INOTIFY 2738#if EV_USE_INOTIFY
1925 infy_init (EV_A); 2739 infy_init (EV_A);
1926 2740
1927 if (fs_fd >= 0) 2741 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 2742 infy_add (EV_A_ w);
1929 else 2743 else
1930#endif 2744#endif
1931 ev_timer_start (EV_A_ &w->timer); 2745 ev_timer_again (EV_A_ &w->timer);
1932 2746
1933 ev_start (EV_A_ (W)w, 1); 2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
1934} 2750}
1935 2751
1936void 2752void
1937ev_stat_stop (EV_P_ ev_stat *w) 2753ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2754{
1939 ev_clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
1941 return; 2757 return;
1942 2758
2759 EV_FREQUENT_CHECK;
2760
1943#if EV_USE_INOTIFY 2761#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2762 infy_del (EV_A_ w);
1945#endif 2763#endif
1946 ev_timer_stop (EV_A_ &w->timer); 2764 ev_timer_stop (EV_A_ &w->timer);
1947 2765
1948 ev_stop (EV_A_ (W)w); 2766 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
1952void 2773void
1953ev_idle_start (EV_P_ ev_idle *w) 2774ev_idle_start (EV_P_ ev_idle *w)
1954{ 2775{
1955 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
1956 return; 2777 return;
1957 2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2787 ev_start (EV_A_ (W)w, active);
2788
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
1961} 2794}
1962 2795
1963void 2796void
1964ev_idle_stop (EV_P_ ev_idle *w) 2797ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2798{
1966 ev_clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
1968 return; 2801 return;
1969 2802
2803 EV_FREQUENT_CHECK;
2804
1970 { 2805 {
1971 int active = ((W)w)->active; 2806 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 2807
1973 ((W)idles [active - 1])->active = active; 2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
1974 } 2813 }
1975 2814
1976 ev_stop (EV_A_ (W)w); 2815 EV_FREQUENT_CHECK;
1977} 2816}
2817#endif
1978 2818
1979void 2819void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2820ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2821{
1982 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
1983 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
1984 2826
1985 ev_start (EV_A_ (W)w, ++preparecnt); 2827 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
1988} 2832}
1989 2833
1990void 2834void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2835ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2836{
1993 ev_clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
1995 return; 2839 return;
1996 2840
2841 EV_FREQUENT_CHECK;
2842
1997 { 2843 {
1998 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
1999 prepares [active - 1] = prepares [--preparecnt]; 2846 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 2847 ev_active (prepares [active - 1]) = active;
2001 } 2848 }
2002 2849
2003 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2004} 2853}
2005 2854
2006void 2855void
2007ev_check_start (EV_P_ ev_check *w) 2856ev_check_start (EV_P_ ev_check *w)
2008{ 2857{
2009 if (expect_false (ev_is_active (w))) 2858 if (expect_false (ev_is_active (w)))
2010 return; 2859 return;
2860
2861 EV_FREQUENT_CHECK;
2011 2862
2012 ev_start (EV_A_ (W)w, ++checkcnt); 2863 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2015} 2868}
2016 2869
2017void 2870void
2018ev_check_stop (EV_P_ ev_check *w) 2871ev_check_stop (EV_P_ ev_check *w)
2019{ 2872{
2020 ev_clear_pending (EV_A_ (W)w); 2873 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2874 if (expect_false (!ev_is_active (w)))
2022 return; 2875 return;
2023 2876
2877 EV_FREQUENT_CHECK;
2878
2024 { 2879 {
2025 int active = ((W)w)->active; 2880 int active = ev_active (w);
2881
2026 checks [active - 1] = checks [--checkcnt]; 2882 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 2883 ev_active (checks [active - 1]) = active;
2028 } 2884 }
2029 2885
2030 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2031} 2889}
2032 2890
2033#if EV_EMBED_ENABLE 2891#if EV_EMBED_ENABLE
2034void noinline 2892void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2893ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2894{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2896}
2039 2897
2040static void 2898static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2899embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2900{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2902
2045 if (ev_cb (w)) 2903 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2905 else
2048 ev_embed_sweep (loop, w); 2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2050 2949
2051void 2950void
2052ev_embed_start (EV_P_ ev_embed *w) 2951ev_embed_start (EV_P_ ev_embed *w)
2053{ 2952{
2054 if (expect_false (ev_is_active (w))) 2953 if (expect_false (ev_is_active (w)))
2055 return; 2954 return;
2056 2955
2057 { 2956 {
2058 struct ev_loop *loop = w->loop; 2957 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2960 }
2961
2962 EV_FREQUENT_CHECK;
2062 2963
2063 ev_set_priority (&w->io, ev_priority (w)); 2964 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2965 ev_io_start (EV_A_ &w->io);
2065 2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2066 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2067} 2979}
2068 2980
2069void 2981void
2070ev_embed_stop (EV_P_ ev_embed *w) 2982ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2983{
2072 ev_clear_pending (EV_A_ (W)w); 2984 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2985 if (expect_false (!ev_is_active (w)))
2074 return; 2986 return;
2075 2987
2988 EV_FREQUENT_CHECK;
2989
2076 ev_io_stop (EV_A_ &w->io); 2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2077 2993
2078 ev_stop (EV_A_ (W)w); 2994 EV_FREQUENT_CHECK;
2079} 2995}
2080#endif 2996#endif
2081 2997
2082#if EV_FORK_ENABLE 2998#if EV_FORK_ENABLE
2083void 2999void
2084ev_fork_start (EV_P_ ev_fork *w) 3000ev_fork_start (EV_P_ ev_fork *w)
2085{ 3001{
2086 if (expect_false (ev_is_active (w))) 3002 if (expect_false (ev_is_active (w)))
2087 return; 3003 return;
3004
3005 EV_FREQUENT_CHECK;
2088 3006
2089 ev_start (EV_A_ (W)w, ++forkcnt); 3007 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
2092} 3012}
2093 3013
2094void 3014void
2095ev_fork_stop (EV_P_ ev_fork *w) 3015ev_fork_stop (EV_P_ ev_fork *w)
2096{ 3016{
2097 ev_clear_pending (EV_A_ (W)w); 3017 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 3018 if (expect_false (!ev_is_active (w)))
2099 return; 3019 return;
2100 3020
3021 EV_FREQUENT_CHECK;
3022
2101 { 3023 {
2102 int active = ((W)w)->active; 3024 int active = ev_active (w);
3025
2103 forks [active - 1] = forks [--forkcnt]; 3026 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 3027 ev_active (forks [active - 1]) = active;
2105 } 3028 }
2106 3029
2107 ev_stop (EV_A_ (W)w); 3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
2108} 3080}
2109#endif 3081#endif
2110 3082
2111/*****************************************************************************/ 3083/*****************************************************************************/
2112 3084
2122once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3095{
2124 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3097 void *arg = once->arg;
2126 3098
2127 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3101 ev_free (once);
2130 3102
2131 cb (revents, arg); 3103 cb (revents, arg);
2132} 3104}
2133 3105
2134static void 3106static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3108{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3112}
2139 3113
2140static void 3114static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3116{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3120}
2145 3121
2146void 3122void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3124{
2170 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
2172 } 3148 }
2173} 3149}
2174 3150
3151#if EV_MULTIPLICITY
3152 #include "ev_wrap.h"
3153#endif
3154
2175#ifdef __cplusplus 3155#ifdef __cplusplus
2176} 3156}
2177#endif 3157#endif
2178 3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines