ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.279 by root, Fri Feb 6 20:17:43 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
33 63
34# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
37# endif 78# endif
38 79
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
41# endif 86# endif
42 87
43# if HAVE_POLL && HAVE_POLL_H 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
45# endif 94# endif
46 95
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
49# endif 102# endif
50 103
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
53# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
54 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
55#endif 144#endif
56 145
57#include <math.h> 146#include <math.h>
58#include <stdlib.h> 147#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 148#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 149#include <stddef.h>
63 150
64#include <stdio.h> 151#include <stdio.h>
65 152
66#include <assert.h> 153#include <assert.h>
67#include <errno.h> 154#include <errno.h>
68#include <sys/types.h> 155#include <sys/types.h>
156#include <time.h>
157
158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
69#ifndef WIN32 166#ifndef _WIN32
167# include <sys/time.h>
70# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
71#endif 176# endif
72#include <sys/time.h> 177#endif
73#include <time.h>
74 178
75/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
76 188
77#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
79#endif 207#endif
80 208
81#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
83#endif 211#endif
84 212
85#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
87#endif 219#endif
88 220
89#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
90# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
91#endif 227#endif
92 228
93#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
95#endif 231#endif
96 232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
97#ifndef EV_USE_WIN32 237#ifndef EV_USE_INOTIFY
98# ifdef WIN32 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 239# define EV_USE_INOTIFY 1
100# else 240# else
101# define EV_USE_WIN32 0 241# define EV_USE_INOTIFY 0
102# endif 242# endif
103#endif 243#endif
104 244
105#ifndef EV_USE_REALTIME 245#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
107#endif 250# endif
251#endif
108 252
109/**/ 253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 288
111#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
114#endif 292#endif
116#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
119#endif 297#endif
120 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
121/**/ 346/**/
122 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 367
128#include "ev.h"
129
130#if __GNUC__ >= 3 368#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 370# define noinline __attribute__ ((noinline))
133#else 371#else
134# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
135# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
136#endif 377#endif
137 378
138#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
140 388
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
144typedef struct ev_watcher *W; 395typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
147 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
411
412#ifdef _WIN32
413# include "ev_win32.c"
414#endif
149 415
150/*****************************************************************************/ 416/*****************************************************************************/
151 417
418static void (*syserr_cb)(const char *msg);
419
420void
421ev_set_syserr_cb (void (*cb)(const char *msg))
422{
423 syserr_cb = cb;
424}
425
426static void noinline
427ev_syserr (const char *msg)
428{
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439}
440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458void
459ev_set_allocator (void *(*cb)(void *ptr, long size))
460{
461 alloc = cb;
462}
463
464inline_speed void *
465ev_realloc (void *ptr, long size)
466{
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476}
477
478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0)
480
481/*****************************************************************************/
482
152typedef struct 483typedef struct
153{ 484{
154 struct ev_watcher_list *head; 485 WL head;
155 unsigned char events; 486 unsigned char events;
156 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
157} ANFD; 496} ANFD;
158 497
159typedef struct 498typedef struct
160{ 499{
161 W w; 500 W w;
162 int events; 501 int events;
163} ANPENDING; 502} ANPENDING;
164 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
165#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
166 531
167struct ev_loop 532 struct ev_loop
168{ 533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
170# include "ev_vars.h" 537 #include "ev_vars.h"
171};
172# undef VAR 538 #undef VAR
539 };
173# include "ev_wrap.h" 540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
174 544
175#else 545#else
176 546
547 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 549 #include "ev_vars.h"
179# undef VAR 550 #undef VAR
551
552 static int ev_default_loop_ptr;
180 553
181#endif 554#endif
182 555
183/*****************************************************************************/ 556/*****************************************************************************/
184 557
185inline ev_tstamp 558ev_tstamp
186ev_time (void) 559ev_time (void)
187{ 560{
188#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
189 struct timespec ts; 564 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 567 }
568#endif
569
193 struct timeval tv; 570 struct timeval tv;
194 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 573}
198 574
199inline ev_tstamp 575ev_tstamp inline_size
200get_clock (void) 576get_clock (void)
201{ 577{
202#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
204 { 580 {
209#endif 585#endif
210 586
211 return ev_time (); 587 return ev_time ();
212} 588}
213 589
590#if EV_MULTIPLICITY
214ev_tstamp 591ev_tstamp
215ev_now (EV_P) 592ev_now (EV_P)
216{ 593{
217 return rt_now; 594 return ev_rt_now;
218} 595}
596#endif
219 597
220#define array_roundsize(base,n) ((n) | 4 & ~3) 598void
221 599ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 600{
223 if (expect_false ((cnt) > cur)) \ 601 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
236 625
237/*****************************************************************************/ 626/*****************************************************************************/
238 627
239static void 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
240anfds_init (ANFD *base, int count)
241{
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247 629
248 ++base; 630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
249 } 641 {
250} 642 ncur *= elem;
251 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
252static void 644 ncur = ncur - sizeof (void *) * 4;
253event (EV_P_ W w, int events) 645 ncur /= elem;
254{
255 if (w->pending)
256 { 646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670#if 0
671#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678#endif
679
680#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
682
683/*****************************************************************************/
684
685void noinline
686ev_feed_event (EV_P_ void *w, int revents)
687{
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 698 pendings [pri][w_->pending - 1].events = revents;
258 return;
259 } 699 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265} 700}
266 701
267static void 702void inline_speed
268queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 704{
270 int i; 705 int i;
271 706
272 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
274} 709}
275 710
276static void 711/*****************************************************************************/
712
713void inline_speed
277fd_event (EV_P_ int fd, int events) 714fd_event (EV_P_ int fd, int revents)
278{ 715{
279 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 717 ev_io *w;
281 718
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 720 {
284 int ev = w->events & events; 721 int ev = w->events & revents;
285 722
286 if (ev) 723 if (ev)
287 event (EV_A_ (W)w, ev); 724 ev_feed_event (EV_A_ (W)w, ev);
288 } 725 }
289} 726}
290 727
291/*****************************************************************************/ 728void
729ev_feed_fd_event (EV_P_ int fd, int revents)
730{
731 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents);
733}
292 734
293static void 735void inline_size
294fd_reify (EV_P) 736fd_reify (EV_P)
295{ 737{
296 int i; 738 int i;
297 739
298 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
299 { 741 {
300 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 744 ev_io *w;
303 745
304 int events = 0; 746 unsigned char events = 0;
305 747
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 749 events |= (unsigned char)w->events;
308 750
751#if EV_SELECT_IS_WINSOCKET
752 if (events)
753 {
754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 }
762#endif
763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
309 anfd->reify = 0; 768 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV_IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
313 } 774 }
314 775
315 fdchangecnt = 0; 776 fdchangecnt = 0;
316} 777}
317 778
318static void 779void inline_size
319fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
320{ 781{
321 if (anfds [fd].reify || fdchangecnt < 0) 782 unsigned char reify = anfds [fd].reify;
322 return;
323
324 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
325 784
785 if (expect_true (!reify))
786 {
326 ++fdchangecnt; 787 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
329} 791}
330 792
331static void 793void inline_speed
332fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
333{ 795{
334 struct ev_io *w; 796 ev_io *w;
335 797
336 while ((w = (struct ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
337 { 799 {
338 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 802 }
803}
804
805int inline_size
806fd_valid (int fd)
807{
808#ifdef _WIN32
809 return _get_osfhandle (fd) != -1;
810#else
811 return fcntl (fd, F_GETFD) != -1;
812#endif
341} 813}
342 814
343/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
344static void 816static void noinline
345fd_ebadf (EV_P) 817fd_ebadf (EV_P)
346{ 818{
347 int fd; 819 int fd;
348 820
349 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 822 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
352 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
353} 825}
354 826
355/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 828static void noinline
357fd_enomem (EV_P) 829fd_enomem (EV_P)
358{ 830{
359 int fd; 831 int fd;
360 832
361 for (fd = anfdmax; fd--; ) 833 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 834 if (anfds [fd].events)
363 { 835 {
364 close (fd);
365 fd_kill (EV_A_ fd); 836 fd_kill (EV_A_ fd);
366 return; 837 return;
367 } 838 }
368} 839}
369 840
370/* susually called after fork if method needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
371static void 842static void noinline
372fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
373{ 844{
374 int fd; 845 int fd;
375 846
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events) 848 if (anfds [fd].events)
379 { 849 {
380 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
381 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV_IOFDSET | 1);
382 } 853 }
383} 854}
384 855
385/*****************************************************************************/ 856/*****************************************************************************/
386 857
387static void 858/*
388upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
389{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
390 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
391 863
392 while (k && heap [k >> 1]->at > w->at) 864/*
393 { 865 * at the moment we allow libev the luxury of two heaps,
394 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
395 ((W)heap [k])->active = k + 1; 867 * which is more cache-efficient.
396 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
397 } 869 */
870#if EV_USE_4HEAP
398 871
399 heap [k] = w; 872#define DHEAP 4
400 ((W)heap [k])->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
401 876
402} 877/* away from the root */
403 878void inline_speed
404static void
405downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
406{ 880{
407 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
408 883
409 while (k < (N >> 1)) 884 for (;;)
410 { 885 {
411 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
412 889
413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
414 ++j; 892 {
415 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
416 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
417 break; 906 break;
418 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
419 heap [k] = heap [j]; 946 heap [k] = heap [c];
420 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
421 k = j; 949 k = c;
422 } 950 }
423 951
424 heap [k] = w; 952 heap [k] = he;
425 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
978
979void inline_size
980adjustheap (ANHE *heap, int N, int k)
981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k);
984 else
985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
426} 998}
427 999
428/*****************************************************************************/ 1000/*****************************************************************************/
429 1001
430typedef struct 1002typedef struct
431{ 1003{
432 struct ev_watcher_list *head; 1004 WL head;
433 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
434} ANSIG; 1006} ANSIG;
435 1007
436static ANSIG *signals; 1008static ANSIG *signals;
437static int signalmax; 1009static int signalmax;
438 1010
439static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
440static sig_atomic_t volatile gotsig; 1012
441static struct ev_io sigev; 1013/*****************************************************************************/
1014
1015void inline_speed
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
442 1077
443static void 1078static void
444signals_init (ANSIG *base, int count) 1079pipecb (EV_P_ ev_io *iow, int revents)
445{ 1080{
446 while (count--) 1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
447 { 1086 }
448 base->head = 0; 1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
449 base->gotsig = 0; 1097 gotsig = 0;
450 1098
451 ++base; 1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
452 } 1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
453} 1118}
1119
1120/*****************************************************************************/
454 1121
455static void 1122static void
456sighandler (int signum) 1123ev_sighandler (int signum)
457{ 1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
458 signals [signum - 1].gotsig = 1; 1133 signals [signum - 1].gotsig = 1;
459 1134 evpipe_write (EV_A_ &gotsig);
460 if (!gotsig)
461 {
462 int old_errno = errno;
463 gotsig = 1;
464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
466 }
467} 1135}
468 1136
469static void 1137void noinline
470sigcb (EV_P_ struct ev_io *iow, int revents) 1138ev_feed_signal_event (EV_P_ int signum)
471{ 1139{
472 struct ev_watcher_list *w; 1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
473 int signum; 1146 --signum;
474 1147
475 read (sigpipe [0], &revents, 1); 1148 if (signum < 0 || signum >= signalmax)
476 gotsig = 0; 1149 return;
477 1150
478 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig)
480 {
481 signals [signum].gotsig = 0; 1151 signals [signum].gotsig = 0;
482 1152
483 for (w = signals [signum].head; w; w = w->next) 1153 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL); 1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
485 }
486}
487
488static void
489siginit (EV_P)
490{
491#ifndef WIN32
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499
500 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 1155}
504 1156
505/*****************************************************************************/ 1157/*****************************************************************************/
506 1158
1159static WL childs [EV_PID_HASHSIZE];
1160
507#ifndef WIN32 1161#ifndef _WIN32
508 1162
509static struct ev_child *childs [PID_HASHSIZE];
510static struct ev_signal childev; 1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
511 1187
512#ifndef WCONTINUED 1188#ifndef WCONTINUED
513# define WCONTINUED 0 1189# define WCONTINUED 0
514#endif 1190#endif
515 1191
516static void 1192static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
533{ 1194{
534 int pid, status; 1195 int pid, status;
535 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
538 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 1207
541 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 1211}
545 1212
546#endif 1213#endif
547 1214
548/*****************************************************************************/ 1215/*****************************************************************************/
549 1216
1217#if EV_USE_PORT
1218# include "ev_port.c"
1219#endif
550#if EV_USE_KQUEUE 1220#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 1221# include "ev_kqueue.c"
552#endif 1222#endif
553#if EV_USE_EPOLL 1223#if EV_USE_EPOLL
554# include "ev_epoll.c" 1224# include "ev_epoll.c"
571{ 1241{
572 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
573} 1243}
574 1244
575/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
576static int 1246int inline_size
577enable_secure (void) 1247enable_secure (void)
578{ 1248{
579#ifdef WIN32 1249#ifdef _WIN32
580 return 0; 1250 return 0;
581#else 1251#else
582 return getuid () != geteuid () 1252 return getuid () != geteuid ()
583 || getgid () != getegid (); 1253 || getgid () != getegid ();
584#endif 1254#endif
585} 1255}
586 1256
587int 1257unsigned int
588ev_method (EV_P) 1258ev_supported_backends (void)
589{ 1259{
590 return method; 1260 unsigned int flags = 0;
591}
592 1261
593static void 1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
594loop_init (EV_P_ int methods) 1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_recommended_backends (void)
595{ 1273{
596 if (!method) 1274 unsigned int flags = ev_supported_backends ();
1275
1276#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */
1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1279 flags &= ~EVBACKEND_KQUEUE;
1280#endif
1281#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif
1286
1287 return flags;
1288}
1289
1290unsigned int
1291ev_embeddable_backends (void)
1292{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300}
1301
1302unsigned int
1303ev_backend (EV_P)
1304{
1305 return backend;
1306}
1307
1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
1327loop_init (EV_P_ unsigned int flags)
1328{
1329 if (!backend)
597 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
598#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1343 {
1344 struct timespec ts;
1345
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1;
1348 }
1349#endif
1350
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends ();
1378
1379#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif
1382#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1384#endif
1385#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif
1388#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif
1391#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif
1394
1395 ev_init (&pipeev, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI);
1397 }
1398}
1399
1400static void noinline
1401loop_destroy (EV_P)
1402{
1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
1429
1430#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif
1433#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1435#endif
1436#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif
1439#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif
1442#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1444#endif
1445
1446 for (i = NUMPRI; i--; )
1447 {
1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1455
1456 /* have to use the microsoft-never-gets-it-right macro */
1457 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY);
1461#endif
1462#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464#endif
1465 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1470
1471 backend = 0;
1472}
1473
1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
1479loop_fork (EV_P)
1480{
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
1493
1494 if (ev_is_active (&pipeev))
1495 {
1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516
1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1520 }
1521
1522 postfork = 0;
1523}
1524
1525#if EV_MULTIPLICITY
1526
1527struct ev_loop *
1528ev_loop_new (unsigned int flags)
1529{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531
1532 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags);
1535
1536 if (ev_backend (EV_A))
1537 return loop;
1538
1539 return 0;
1540}
1541
1542void
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
599 { 1607 {
600 struct timespec ts; 1608 verify_watcher (EV_A_ (W)w);
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
602 have_monotonic = 1; 1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
603 } 1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
604#endif 1650# endif
605
606 rt_now = ev_time ();
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now;
610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif 1651#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633 }
634} 1652}
635 1653
636void 1654#endif /* multiplicity */
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670 1655
671#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
672struct ev_loop * 1657struct ev_loop *
673ev_loop_new (int methods) 1658ev_default_loop_init (unsigned int flags)
674{ 1659#else
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1660int
676 1661ev_default_loop (unsigned int flags)
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif 1662#endif
699 1663{
1664 if (!ev_default_loop_ptr)
1665 {
700#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else 1668#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1; 1669 ev_default_loop_ptr = 1;
722#endif 1670#endif
723 1671
724 loop_init (EV_A_ methods); 1672 loop_init (EV_A_ flags);
725 1673
726 if (ev_method (EV_A)) 1674 if (ev_backend (EV_A))
727 { 1675 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A);
731
732#ifndef WIN32 1676#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 1681#endif
738 } 1682 }
739 else 1683 else
740 default_loop = 0; 1684 ev_default_loop_ptr = 0;
741 } 1685 }
742 1686
743 return default_loop; 1687 return ev_default_loop_ptr;
744} 1688}
745 1689
746void 1690void
747ev_default_destroy (void) 1691ev_default_destroy (void)
748{ 1692{
749#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 1694 struct ev_loop *loop = ev_default_loop_ptr;
751#endif 1695#endif
752 1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
755 1702#endif
756 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761 1703
762 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
763} 1705}
764 1706
765void 1707void
766ev_default_fork (void) 1708ev_default_fork (void)
767{ 1709{
768#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 1711 struct ev_loop *loop = ev_default_loop_ptr;
770#endif 1712#endif
771 1713
772 loop_fork (EV_A); 1714 postfork = 1; /* must be in line with ev_loop_fork */
773
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 1715}
782 1716
783/*****************************************************************************/ 1717/*****************************************************************************/
784 1718
785static void 1719void
1720ev_invoke (EV_P_ void *w, int revents)
1721{
1722 EV_CB_INVOKE ((W)w, revents);
1723}
1724
1725void inline_speed
786call_pending (EV_P) 1726call_pending (EV_P)
787{ 1727{
788 int pri; 1728 int pri;
789 1729
790 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri]) 1731 while (pendingcnt [pri])
792 { 1732 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 1734
795 if (p->w) 1735 if (expect_true (p->w))
796 { 1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
797 p->w->pending = 0; 1739 p->w->pending = 0;
798 1740 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events); 1741 EV_FREQUENT_CHECK;
800 } 1742 }
801 } 1743 }
802} 1744}
803 1745
804static void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
805timers_reify (EV_P) 1770timers_reify (EV_P)
806{ 1771{
1772 EV_FREQUENT_CHECK;
1773
807 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
808 { 1775 {
809 struct ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
810 1777
811 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
812 1779
813 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
814 if (w->repeat) 1781 if (w->repeat)
815 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
817 ((WT)w)->at = mn_now + w->repeat; 1788
1789 ANHE_at_cache (timers [HEAP0]);
818 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
819 } 1791 }
820 else 1792 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1794
1795 EV_FREQUENT_CHECK;
823 event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1797 }
825} 1798}
826 1799
827static void 1800#if EV_PERIODIC_ENABLE
1801void inline_size
828periodics_reify (EV_P) 1802periodics_reify (EV_P)
829{ 1803{
1804 EV_FREQUENT_CHECK;
1805
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
831 { 1807 {
832 struct ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
833 1809
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
835 1811
836 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
837 if (w->interval) 1813 if (w->reschedule_cb)
838 { 1814 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
841 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
842 } 1840 }
843 else 1841 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1843
1844 EV_FREQUENT_CHECK;
846 event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1846 }
848} 1847}
849 1848
850static void 1849static void noinline
851periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
852{ 1851{
853 int i; 1852 int i;
854 1853
855 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
857 { 1856 {
858 struct ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
859 1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1878 {
1879 ev_tstamp odiff = rtmn_diff;
1880
1881 mn_now = get_clock ();
1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
861 { 1886 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1887 ev_rt_now = rtmn_diff + mn_now;
1888 return;
1889 }
863 1890
864 if (fabs (diff) >= 1e-4) 1891 now_floor = mn_now;
1892 ev_rt_now = ev_time ();
1893
1894 /* loop a few times, before making important decisions.
1895 * on the choice of "4": one iteration isn't enough,
1896 * in case we get preempted during the calls to
1897 * ev_time and get_clock. a second call is almost guaranteed
1898 * to succeed in that case, though. and looping a few more times
1899 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here.
1901 */
1902 for (i = 4; --i; )
1903 {
1904 rtmn_diff = ev_rt_now - mn_now;
1905
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
865 { 1932 {
866 ev_periodic_stop (EV_A_ w); 1933 ANHE *he = timers + i + HEAP0;
867 ev_periodic_start (EV_A_ w); 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
868 1935 ANHE_at_cache (*he);
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 } 1936 }
871 } 1937 }
872 }
873}
874 1938
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
893static void
894time_update (EV_P)
895{
896 int i;
897
898#if EV_USE_MONOTONIC
899 if (expect_true (have_monotonic))
900 {
901 if (time_update_monotonic (EV_A))
902 {
903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
907 rtmn_diff = rt_now - mn_now;
908
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */
911
912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 }
921 }
922 else
923#endif
924 {
925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 {
929 periodics_reschedule (EV_A);
930
931 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now;
934 }
935
936 mn_now = rt_now; 1939 mn_now = ev_rt_now;
937 } 1940 }
938} 1941}
939 1942
940void 1943void
941ev_ref (EV_P) 1944ev_ref (EV_P)
947ev_unref (EV_P) 1950ev_unref (EV_P)
948{ 1951{
949 --activecnt; 1952 --activecnt;
950} 1953}
951 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
952static int loop_done; 1961static int loop_done;
953 1962
954void 1963void
955ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
956{ 1965{
957 double block; 1966 loop_done = EVUNLOOP_CANCEL;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1967
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
959 1969
960 do 1970 do
961 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
962 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
963 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
964 { 1997 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1999 call_pending (EV_A);
967 } 2000 }
968 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
2005 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork))
2007 loop_fork (EV_A);
2008
969 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
970 fd_reify (EV_A); 2010 fd_reify (EV_A);
971 2011
972 /* calculate blocking time */ 2012 /* calculate blocking time */
2013 {
2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
973 2016
974 /* we only need this for !monotonic clockor timers, but as we basically 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 { 2018 {
982 rt_now = ev_time (); 2019 /* update time to cancel out callback processing overhead */
983 mn_now = rt_now; 2020 time_update (EV_A_ 1e100);
984 }
985 2021
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
991 2023
992 if (timercnt) 2024 if (timercnt)
993 { 2025 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
995 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
996 } 2028 }
997 2029
2030#if EV_PERIODIC_ENABLE
998 if (periodiccnt) 2031 if (periodiccnt)
999 { 2032 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1001 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
1002 } 2035 }
2036#endif
1003 2037
1004 if (block < 0.) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
1005 } 2051 }
1006 2052
1007 method_poll (EV_A_ block); 2053 ++loop_count;
2054 backend_poll (EV_A_ waittime);
1008 2055
1009 /* update rt_now, do magic */ 2056 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 2057 time_update (EV_A_ waittime + sleeptime);
2058 }
1011 2059
1012 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
2062#if EV_PERIODIC_ENABLE
1014 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
2064#endif
1015 2065
2066#if EV_IDLE_ENABLE
1016 /* queue idle watchers unless io or timers are pending */ 2067 /* queue idle watchers unless other events are pending */
1017 if (!pendingcnt) 2068 idle_reify (EV_A);
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
1019 2070
1020 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1021 if (checkcnt) 2072 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023 2074
1024 call_pending (EV_A); 2075 call_pending (EV_A);
1025 } 2076 }
1026 while (activecnt && !loop_done); 2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1027 2082
1028 if (loop_done != 2) 2083 if (loop_done == EVUNLOOP_ONE)
1029 loop_done = 0; 2084 loop_done = EVUNLOOP_CANCEL;
1030} 2085}
1031 2086
1032void 2087void
1033ev_unloop (EV_P_ int how) 2088ev_unloop (EV_P_ int how)
1034{ 2089{
1035 loop_done = how; 2090 loop_done = how;
1036} 2091}
1037 2092
1038/*****************************************************************************/ 2093/*****************************************************************************/
1039 2094
1040inline void 2095void inline_size
1041wlist_add (WL *head, WL elem) 2096wlist_add (WL *head, WL elem)
1042{ 2097{
1043 elem->next = *head; 2098 elem->next = *head;
1044 *head = elem; 2099 *head = elem;
1045} 2100}
1046 2101
1047inline void 2102void inline_size
1048wlist_del (WL *head, WL elem) 2103wlist_del (WL *head, WL elem)
1049{ 2104{
1050 while (*head) 2105 while (*head)
1051 { 2106 {
1052 if (*head == elem) 2107 if (*head == elem)
1057 2112
1058 head = &(*head)->next; 2113 head = &(*head)->next;
1059 } 2114 }
1060} 2115}
1061 2116
1062inline void 2117void inline_speed
1063ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1064{ 2119{
1065 if (w->pending) 2120 if (w->pending)
1066 { 2121 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0; 2123 w->pending = 0;
1069 } 2124 }
1070} 2125}
1071 2126
1072inline void 2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
2153void inline_speed
1073ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1074{ 2155{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active; 2157 w->active = active;
1079 ev_ref (EV_A); 2158 ev_ref (EV_A);
1080} 2159}
1081 2160
1082inline void 2161void inline_size
1083ev_stop (EV_P_ W w) 2162ev_stop (EV_P_ W w)
1084{ 2163{
1085 ev_unref (EV_A); 2164 ev_unref (EV_A);
1086 w->active = 0; 2165 w->active = 0;
1087} 2166}
1088 2167
1089/*****************************************************************************/ 2168/*****************************************************************************/
1090 2169
1091void 2170void noinline
1092ev_io_start (EV_P_ struct ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1093{ 2172{
1094 int fd = w->fd; 2173 int fd = w->fd;
1095 2174
1096 if (ev_is_active (w)) 2175 if (expect_false (ev_is_active (w)))
1097 return; 2176 return;
1098 2177
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1100 2182
1101 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1104 2186
1105 fd_change (EV_A_ fd); 2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1106} 2188 w->events &= ~EV_IOFDSET;
1107 2189
1108void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1109ev_io_stop (EV_P_ struct ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1110{ 2195{
1111 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 2197 if (expect_false (!ev_is_active (w)))
1113 return; 2198 return;
1114 2199
2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2201
2202 EV_FREQUENT_CHECK;
2203
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1117 2206
1118 fd_change (EV_A_ w->fd); 2207 fd_change (EV_A_ w->fd, 1);
1119}
1120 2208
1121void 2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
1122ev_timer_start (EV_P_ struct ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1123{ 2214{
1124 if (ev_is_active (w)) 2215 if (expect_false (ev_is_active (w)))
1125 return; 2216 return;
1126 2217
1127 ((WT)w)->at += mn_now; 2218 ev_at (w) += mn_now;
1128 2219
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1131 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1132 array_needsize (timers, timermax, timercnt, ); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1133 timers [timercnt - 1] = w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1134 upheap ((WT *)timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
1135 2230
2231 EV_FREQUENT_CHECK;
2232
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1137} 2234}
1138 2235
1139void 2236void noinline
1140ev_timer_stop (EV_P_ struct ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1141{ 2238{
1142 ev_clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 2240 if (expect_false (!ev_is_active (w)))
1144 return; 2241 return;
1145 2242
2243 EV_FREQUENT_CHECK;
2244
2245 {
2246 int active = ev_active (w);
2247
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1147 2249
1148 if (((W)w)->active < timercnt--) 2250 --timercnt;
2251
2252 if (expect_true (active < timercnt + HEAP0))
1149 { 2253 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2255 adjustheap (timers, timercnt, active);
1152 } 2256 }
2257 }
1153 2258
1154 ((WT)w)->at = w->repeat; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1155 2262
1156 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1157} 2264}
1158 2265
1159void 2266void noinline
1160ev_timer_again (EV_P_ struct ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1161{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1162 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1163 { 2272 {
1164 if (w->repeat) 2273 if (w->repeat)
1165 { 2274 {
1166 ((WT)w)->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2276 ANHE_at_cache (timers [ev_active (w)]);
2277 adjustheap (timers, timercnt, ev_active (w));
1168 } 2278 }
1169 else 2279 else
1170 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1171 } 2281 }
1172 else if (w->repeat) 2282 else if (w->repeat)
2283 {
2284 ev_at (w) = w->repeat;
1173 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1174} 2286 }
1175 2287
1176void 2288 EV_FREQUENT_CHECK;
2289}
2290
2291#if EV_PERIODIC_ENABLE
2292void noinline
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1178{ 2294{
1179 if (ev_is_active (w)) 2295 if (expect_false (ev_is_active (w)))
1180 return; 2296 return;
1181 2297
2298 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval)
2301 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 }
2306 else
2307 ev_at (w) = w->offset;
1187 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1192 2317
2318 EV_FREQUENT_CHECK;
2319
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1194} 2321}
1195 2322
1196void 2323void noinline
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1198{ 2325{
1199 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w)) 2327 if (expect_false (!ev_is_active (w)))
1201 return; 2328 return;
1202 2329
2330 EV_FREQUENT_CHECK;
2331
2332 {
2333 int active = ev_active (w);
2334
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1204 2336
1205 if (((W)w)->active < periodiccnt--) 2337 --periodiccnt;
2338
2339 if (expect_true (active < periodiccnt + HEAP0))
1206 { 2340 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2342 adjustheap (periodics, periodiccnt, active);
1209 } 2343 }
2344 }
2345
2346 EV_FREQUENT_CHECK;
1210 2347
1211 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1212} 2349}
1213 2350
1214void 2351void noinline
1215ev_idle_start (EV_P_ struct ev_idle *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1216{ 2353{
1217 if (ev_is_active (w)) 2354 /* TODO: use adjustheap and recalculation */
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 2355 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w);
1234} 2357}
1235 2358#endif
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279 2359
1280#ifndef SA_RESTART 2360#ifndef SA_RESTART
1281# define SA_RESTART 0 2361# define SA_RESTART 0
1282#endif 2362#endif
1283 2363
1284void 2364void noinline
1285ev_signal_start (EV_P_ struct ev_signal *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1286{ 2366{
1287#if EV_MULTIPLICITY 2367#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 2369#endif
1290 if (ev_is_active (w)) 2370 if (expect_false (ev_is_active (w)))
1291 return; 2371 return;
1292 2372
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
2378
2379 {
2380#ifndef _WIN32
2381 sigset_t full, prev;
2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
2391 }
1294 2392
1295 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1298 2395
1299 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1300 { 2397 {
2398#if _WIN32
2399 signal (w->signum, ev_sighandler);
2400#else
1301 struct sigaction sa; 2401 struct sigaction sa;
1302 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1303 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
2406#endif
1306 } 2407 }
1307}
1308 2408
1309void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1310ev_signal_stop (EV_P_ struct ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1311{ 2414{
1312 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 2416 if (expect_false (!ev_is_active (w)))
1314 return; 2417 return;
1315 2418
2419 EV_FREQUENT_CHECK;
2420
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1318 2423
1319 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1320 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
1321}
1322 2426
2427 EV_FREQUENT_CHECK;
2428}
2429
1323void 2430void
1324ev_child_start (EV_P_ struct ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1325{ 2432{
1326#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1328#endif 2435#endif
1329 if (ev_is_active (w)) 2436 if (expect_false (ev_is_active (w)))
1330 return; 2437 return;
1331 2438
2439 EV_FREQUENT_CHECK;
2440
1332 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1334}
1335 2443
2444 EV_FREQUENT_CHECK;
2445}
2446
1336void 2447void
1337ev_child_stop (EV_P_ struct ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1338{ 2449{
1339 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 2451 if (expect_false (!ev_is_active (w)))
1341 return; 2452 return;
1342 2453
2454 EV_FREQUENT_CHECK;
2455
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1345} 2460}
2461
2462#if EV_STAT_ENABLE
2463
2464# ifdef _WIN32
2465# undef lstat
2466# define lstat(a,b) _stati64 (a,b)
2467# endif
2468
2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891
2472
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474
2475#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477
2478static void noinline
2479infy_add (EV_P_ ev_stat *w)
2480{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482
2483 if (w->wd < 0)
2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487
2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 {
2493 char path [4096];
2494 strcpy (path, w->path);
2495
2496 do
2497 {
2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2500
2501 char *pend = strrchr (path, '/');
2502
2503 if (!pend || pend == path)
2504 break;
2505
2506 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 }
2511 }
2512
2513 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
2534}
2535
2536static void noinline
2537infy_del (EV_P_ ev_stat *w)
2538{
2539 int slot;
2540 int wd = w->wd;
2541
2542 if (wd < 0)
2543 return;
2544
2545 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w);
2548
2549 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd);
2551}
2552
2553static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{
2556 if (slot < 0)
2557 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2559 infy_wd (EV_A_ slot, wd, ev);
2560 else
2561 {
2562 WL w_;
2563
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2565 {
2566 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */
2568
2569 if (w->wd == wd || wd == -1)
2570 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2574 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */
2576 }
2577
2578 stat_timer_cb (EV_A_ &w->timer, 0);
2579 }
2580 }
2581 }
2582}
2583
2584static void
2585infy_cb (EV_P_ ev_io *w, int revents)
2586{
2587 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf));
2591
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594}
2595
2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
2620infy_init (EV_P)
2621{
2622 if (fs_fd != -2)
2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2628
2629 fs_fd = inotify_init ();
2630
2631 if (fs_fd >= 0)
2632 {
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w);
2636 }
2637}
2638
2639void inline_size
2640infy_fork (EV_P)
2641{
2642 int slot;
2643
2644 if (fs_fd < 0)
2645 return;
2646
2647 close (fs_fd);
2648 fs_fd = inotify_init ();
2649
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 {
2652 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0;
2654
2655 while (w_)
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us add this watcher */
2659
2660 w->wd = -1;
2661
2662 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else
2665 ev_timer_again (EV_A_ &w->timer);
2666 }
2667 }
2668}
2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
2676#endif
2677
2678void
2679ev_stat_stat (EV_P_ ev_stat *w)
2680{
2681 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1;
2685}
2686
2687static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691
2692 /* we copy this here each the time so that */
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w);
2696
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
2710 ) {
2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2714 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w);
2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2718 #endif
2719
2720 ev_feed_event (EV_A_ w, EV_STAT);
2721 }
2722}
2723
2724void
2725ev_stat_start (EV_P_ ev_stat *w)
2726{
2727 if (expect_false (ev_is_active (w)))
2728 return;
2729
2730 ev_stat_stat (EV_A_ w);
2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2733 w->interval = MIN_STAT_INTERVAL;
2734
2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2736 ev_set_priority (&w->timer, ev_priority (w));
2737
2738#if EV_USE_INOTIFY
2739 infy_init (EV_A);
2740
2741 if (fs_fd >= 0)
2742 infy_add (EV_A_ w);
2743 else
2744#endif
2745 ev_timer_again (EV_A_ &w->timer);
2746
2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_stat_stop (EV_P_ ev_stat *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w);
2763#endif
2764 ev_timer_stop (EV_A_ &w->timer);
2765
2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
2773void
2774ev_idle_start (EV_P_ ev_idle *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
2787 ev_start (EV_A_ (W)w, active);
2788
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_idle_stop (EV_P_ ev_idle *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817#endif
2818
2819void
2820ev_prepare_start (EV_P_ ev_prepare *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_prepare_stop (EV_P_ ev_prepare *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 prepares [active - 1] = prepares [--preparecnt];
2847 ev_active (prepares [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854
2855void
2856ev_check_start (EV_P_ ev_check *w)
2857{
2858 if (expect_false (ev_is_active (w)))
2859 return;
2860
2861 EV_FREQUENT_CHECK;
2862
2863 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870void
2871ev_check_stop (EV_P_ ev_check *w)
2872{
2873 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w)))
2875 return;
2876
2877 EV_FREQUENT_CHECK;
2878
2879 {
2880 int active = ev_active (w);
2881
2882 checks [active - 1] = checks [--checkcnt];
2883 ev_active (checks [active - 1]) = active;
2884 }
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890
2891#if EV_EMBED_ENABLE
2892void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w)
2894{
2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2896}
2897
2898static void
2899embed_io_cb (EV_P_ ev_io *io, int revents)
2900{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902
2903 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2949
2950void
2951ev_embed_start (EV_P_ ev_embed *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 {
2957 struct ev_loop *loop = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 }
2961
2962 EV_FREQUENT_CHECK;
2963
2964 ev_set_priority (&w->io, ev_priority (w));
2965 ev_io_start (EV_A_ &w->io);
2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2979}
2980
2981void
2982ev_embed_stop (EV_P_ ev_embed *w)
2983{
2984 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w)))
2986 return;
2987
2988 EV_FREQUENT_CHECK;
2989
2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996#endif
2997
2998#if EV_FORK_ENABLE
2999void
3000ev_fork_start (EV_P_ ev_fork *w)
3001{
3002 if (expect_false (ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
3012}
3013
3014void
3015ev_fork_stop (EV_P_ ev_fork *w)
3016{
3017 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w)))
3019 return;
3020
3021 EV_FREQUENT_CHECK;
3022
3023 {
3024 int active = ev_active (w);
3025
3026 forks [active - 1] = forks [--forkcnt];
3027 ev_active (forks [active - 1]) = active;
3028 }
3029
3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
3080}
3081#endif
1346 3082
1347/*****************************************************************************/ 3083/*****************************************************************************/
1348 3084
1349struct ev_once 3085struct ev_once
1350{ 3086{
1351 struct ev_io io; 3087 ev_io io;
1352 struct ev_timer to; 3088 ev_timer to;
1353 void (*cb)(int revents, void *arg); 3089 void (*cb)(int revents, void *arg);
1354 void *arg; 3090 void *arg;
1355}; 3091};
1356 3092
1357static void 3093static void
1358once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
1359{ 3095{
1360 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 3097 void *arg = once->arg;
1362 3098
1363 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 3101 ev_free (once);
1366 3102
1367 cb (revents, arg); 3103 cb (revents, arg);
1368} 3104}
1369 3105
1370static void 3106static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
1372{ 3108{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1374} 3112}
1375 3113
1376static void 3114static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
1378{ 3116{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1380} 3120}
1381 3121
1382void 3122void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 3124{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 3126
1387 if (!once) 3127 if (expect_false (!once))
3128 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 3130 return;
1390 { 3131 }
3132
1391 once->cb = cb; 3133 once->cb = cb;
1392 once->arg = arg; 3134 once->arg = arg;
1393 3135
1394 ev_watcher_init (&once->io, once_cb_io); 3136 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 3137 if (fd >= 0)
1396 { 3138 {
1397 ev_io_set (&once->io, fd, events); 3139 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 3140 ev_io_start (EV_A_ &once->io);
1399 } 3141 }
1400 3142
1401 ev_watcher_init (&once->to, once_cb_to); 3143 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 3144 if (timeout >= 0.)
1403 { 3145 {
1404 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
1406 }
1407 } 3148 }
1408} 3149}
1409 3150
3151#if EV_MULTIPLICITY
3152 #include "ev_wrap.h"
3153#endif
3154
3155#ifdef __cplusplus
3156}
3157#endif
3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines