ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.28 by root, Thu Nov 1 06:48:49 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 149
84/*****************************************************************************/ 150/*****************************************************************************/
85 151
86ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
87ev_time (void) 186ev_time (void)
88{ 187{
89#if HAVE_REALTIME 188#if EV_USE_REALTIME
90 struct timespec ts; 189 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 192#else
94 struct timeval tv; 193 struct timeval tv;
95 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 196#endif
98} 197}
99 198
100static ev_tstamp 199inline ev_tstamp
101get_clock (void) 200get_clock (void)
102{ 201{
103#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
104 if (have_monotonic) 203 if (expect_true (have_monotonic))
105 { 204 {
106 struct timespec ts; 205 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 208 }
110#endif 209#endif
111 210
112 return ev_time (); 211 return ev_time ();
113} 212}
114 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
115#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
117 { \ 224 { \
118 int newcnt = cur; \ 225 int newcnt = cur; \
119 do \ 226 do \
120 { \ 227 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 228 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 229 } \
123 while ((cnt) > newcnt); \ 230 while ((cnt) > newcnt); \
124 \ 231 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 234 cur = newcnt; \
128 } 235 }
129 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
130/*****************************************************************************/ 240/*****************************************************************************/
131
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140 241
141static void 242static void
142anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
143{ 244{
144 while (count--) 245 while (count--)
145 { 246 {
146 base->head = 0; 247 base->head = 0;
147 base->events = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
148 ++base; 251 ++base;
149 } 252 }
150} 253}
151 254
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 255static void
162event (W w, int events) 256event (EV_P_ W w, int events)
163{ 257{
164 if (w->active) 258 if (w->pending)
165 { 259 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
170 } 262 }
171}
172 263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
173static void 270static void
174queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 272{
176 int i; 273 int i;
177 274
178 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 276 event (EV_A_ events [i], type);
180} 277}
181 278
182static void 279static void
183fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
184{ 281{
185 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 283 struct ev_io *w;
187 284
188 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 286 {
190 int ev = w->events & events; 287 int ev = w->events & events;
191 288
192 if (ev) 289 if (ev)
193 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
194 } 291 }
195} 292}
196 293
197/*****************************************************************************/ 294/*****************************************************************************/
198 295
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 296static void
203fd_reify (void) 297fd_reify (EV_P)
204{ 298{
205 int i; 299 int i;
206 300
207 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
208 { 302 {
210 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 305 struct ev_io *w;
212 306
213 int events = 0; 307 int events = 0;
214 308
215 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 310 events |= w->events;
217 311
218 anfd->events &= ~EV_REIFY; 312 anfd->reify = 0;
219 313
220 if (anfd->events != events)
221 {
222 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 315 anfd->events = events;
224 }
225 } 316 }
226 317
227 fdchangecnt = 0; 318 fdchangecnt = 0;
228} 319}
229 320
230static void 321static void
231fd_change (int fd) 322fd_change (EV_P_ int fd)
232{ 323{
233 if (anfds [fd].events & EV_REIFY) 324 if (anfds [fd].reify || fdchangecnt < 0)
234 return; 325 return;
235 326
236 anfds [fd].events |= EV_REIFY; 327 anfds [fd].reify = 1;
237 328
238 ++fdchangecnt; 329 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
240 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
241} 332}
242 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
243/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
244static void 347static void
245fd_recheck (void) 348fd_ebadf (EV_P)
246{ 349{
247 int fd; 350 int fd;
248 351
249 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 353 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
253 { 366 {
254 event ((W)anfds [fd].head, EV_ERROR); 367 close (fd);
255 ev_io_stop (anfds [fd].head); 368 fd_kill (EV_A_ fd);
369 return;
256 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
257} 386}
258 387
259/*****************************************************************************/ 388/*****************************************************************************/
260 389
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 390static void
268upheap (WT *timers, int k) 391upheap (WT *heap, int k)
269{ 392{
270 WT w = timers [k]; 393 WT w = heap [k];
271 394
272 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
273 { 396 {
274 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
276 k >>= 1; 399 k >>= 1;
277 } 400 }
278 401
279 timers [k] = w; 402 heap [k] = w;
280 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
281 404
282} 405}
283 406
284static void 407static void
285downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
286{ 409{
287 WT w = timers [k]; 410 WT w = heap [k];
288 411
289 while (k < (N >> 1)) 412 while (k < (N >> 1))
290 { 413 {
291 int j = k << 1; 414 int j = k << 1;
292 415
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 417 ++j;
295 418
296 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
297 break; 420 break;
298 421
299 timers [k] = timers [j]; 422 heap [k] = heap [j];
300 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
301 k = j; 424 k = j;
302 } 425 }
303 426
304 timers [k] = w; 427 heap [k] = w;
305 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
306} 429}
307 430
308/*****************************************************************************/ 431/*****************************************************************************/
309 432
310typedef struct 433typedef struct
311{ 434{
312 struct ev_signal *head; 435 struct ev_watcher_list *head;
313 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
314} ANSIG; 437} ANSIG;
315 438
316static ANSIG *signals; 439static ANSIG *signals;
317static int signalmax; 440static int signalmax;
318 441
319static int sigpipe [2]; 442static int sigpipe [2];
320static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
321static struct ev_io sigev; 444static struct ev_io sigev;
322 445
323static void 446static void
324signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
325{ 448{
326 while (count--) 449 while (count--)
327 { 450 {
328 base->head = 0; 451 base->head = 0;
329 base->gotsig = 0; 452 base->gotsig = 0;
453
330 ++base; 454 ++base;
331 } 455 }
332} 456}
333 457
334static void 458static void
336{ 460{
337 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
338 462
339 if (!gotsig) 463 if (!gotsig)
340 { 464 {
465 int old_errno = errno;
341 gotsig = 1; 466 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
343 } 469 }
344} 470}
345 471
346static void 472static void
347sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 474{
349 struct ev_signal *w; 475 struct ev_watcher_list *w;
350 int sig; 476 int signum;
351 477
478 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 479 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 480
355 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
357 { 483 {
358 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
359 485
360 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
362 } 488 }
363} 489}
364 490
365static void 491static void
366siginit (void) 492siginit (EV_P)
367{ 493{
494#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 497
371 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
374 502
375 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 506}
378 507
379/*****************************************************************************/ 508/*****************************************************************************/
380 509
381static struct ev_idle **idles; 510#ifndef WIN32
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391 511
392static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 513static struct ev_signal childev;
394 514
395#ifndef WCONTINUED 515#ifndef WCONTINUED
396# define WCONTINUED 0 516# define WCONTINUED 0
397#endif 517#endif
398 518
399static void 519static void
400childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 521{
402 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
403 int pid, status; 537 int pid, status;
404 538
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
407 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
408 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 543
410 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
411 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
412} 547}
548
549#endif
413 550
414/*****************************************************************************/ 551/*****************************************************************************/
415 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
416#if HAVE_EPOLL 556#if EV_USE_EPOLL
417# include "ev_epoll.c" 557# include "ev_epoll.c"
418#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
419#if HAVE_SELECT 562#if EV_USE_SELECT
420# include "ev_select.c" 563# include "ev_select.c"
421#endif 564#endif
422 565
423int 566int
424ev_version_major (void) 567ev_version_major (void)
430ev_version_minor (void) 573ev_version_minor (void)
431{ 574{
432 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
433} 576}
434 577
435int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
436{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
437 if (!ev_method) 599 if (!method)
438 { 600 {
439#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
440 { 602 {
441 struct timespec ts; 603 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 605 have_monotonic = 1;
444 } 606 }
445#endif 607#endif
446 608
447 ev_now = ev_time (); 609 rt_now = ev_time ();
448 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
449 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
450 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
452 return 0; 729 return 0;
453 730
454 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
455#if HAVE_EPOLL 732 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
457#endif 737#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 738
739 loop_init (EV_A_ methods);
740
462 if (ev_method) 741 if (ev_method (EV_A))
463 { 742 {
464 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
465 siginit (); 745 siginit (EV_A);
466 746
747#ifndef WIN32
467 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
468 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
469 } 753 }
754 else
755 default_loop = 0;
470 } 756 }
471 757
472 return ev_method; 758 return default_loop;
473} 759}
474 760
475/*****************************************************************************/
476
477void 761void
478ev_prefork (void) 762ev_default_destroy (void)
479{ 763{
480 /* nop */ 764#if EV_MULTIPLICITY
481} 765 struct ev_loop *loop = default_loop;
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 766#endif
496 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
497 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
498 close (sigpipe [0]); 790 close (sigpipe [0]);
499 close (sigpipe [1]); 791 close (sigpipe [1]);
500 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
501 siginit (); 795 siginit (EV_A);
502} 796}
503 797
504/*****************************************************************************/ 798/*****************************************************************************/
505 799
506static void 800static void
507call_pending (void) 801call_pending (EV_P)
508{ 802{
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 806 while (pendingcnt [pri])
510 { 807 {
511 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 809
513 if (p->w) 810 if (p->w)
514 { 811 {
515 p->w->pending = 0; 812 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
517 } 815 }
518 } 816 }
519} 817}
520 818
521static void 819static void
522timers_reify (void) 820timers_reify (EV_P)
523{ 821{
524 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
525 { 823 {
526 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
527 825
528 event ((W)w, EV_TIMEOUT); 826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 827
530 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
531 if (w->repeat) 829 if (w->repeat)
532 { 830 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
536 } 834 }
537 else 835 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 837
838 event (EV_A_ (W)w, EV_TIMEOUT);
839 }
840}
841
542static void 842static void
543periodics_reify (void) 843periodics_reify (EV_P)
544{ 844{
545 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
546 { 846 {
547 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
548 850
549 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
550 if (w->interval) 852 if (w->interval)
551 { 853 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
555 } 857 }
556 else 858 else
557 ev_periodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 860
559 event ((W)w, EV_TIMEOUT); 861 event (EV_A_ (W)w, EV_PERIODIC);
560 } 862 }
561} 863}
562 864
563static void 865static void
564periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
565{ 867{
566 int i; 868 int i;
567 869
568 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
570 { 872 {
571 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
572 874
573 if (w->interval) 875 if (w->interval)
574 { 876 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
576 878
577 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
578 { 880 {
579 ev_periodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
580 ev_periodic_start (w); 882 ev_periodic_start (EV_A_ w);
581 883
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 885 }
584 } 886 }
585 } 887 }
586} 888}
587 889
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
588static void 908static void
589time_update (void) 909time_update (EV_P)
590{ 910{
591 int i; 911 int i;
592 912
593 ev_now = ev_time (); 913#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 914 if (expect_true (have_monotonic))
596 { 915 {
597 ev_tstamp odiff = diff; 916 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 917 {
601 now = get_clock (); 918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
602 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
603 923
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 925 return; /* all is well */
606 926
607 ev_now = ev_time (); 927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 935 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 936 }
613 else 937 else
938#endif
614 { 939 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 943 {
617 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
618 945
619 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
622 } 949 }
623 950
624 now = ev_now; 951 mn_now = rt_now;
625 } 952 }
626} 953}
627 954
628int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
629 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
630void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
631{ 971{
632 double block; 972 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 974
635 do 975 do
636 { 976 {
637 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
638 if (preparecnt) 978 if (expect_false (preparecnt))
639 { 979 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 981 call_pending (EV_A);
642 } 982 }
643 983
644 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
645 fd_reify (); 985 fd_reify (EV_A);
646 986
647 /* calculate blocking time */ 987 /* calculate blocking time */
648 988
649 /* we only need this for !monotonic clockor timers, but as we basically 989 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
651 ev_now = ev_time (); 997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
652 1000
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 1002 block = 0.;
655 else 1003 else
656 { 1004 {
657 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
658 1006
659 if (timercnt) 1007 if (timercnt)
660 { 1008 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
662 if (block > to) block = to; 1010 if (block > to) block = to;
663 } 1011 }
664 1012
665 if (periodiccnt) 1013 if (periodiccnt)
666 { 1014 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
668 if (block > to) block = to; 1016 if (block > to) block = to;
669 } 1017 }
670 1018
671 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
672 } 1020 }
673 1021
674 method_poll (block); 1022 method_poll (EV_A_ block);
675 1023
676 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
677 time_update (); 1025 time_update (EV_A);
678 1026
679 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
682 1030
683 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 1032 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 1034
687 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
688 if (checkcnt) 1036 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1038
691 call_pending (); 1039 call_pending (EV_A);
692 } 1040 }
693 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
694 1042
695 if (ev_loop_done != 2) 1043 if (loop_done != 2)
696 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
697} 1051}
698 1052
699/*****************************************************************************/ 1053/*****************************************************************************/
700 1054
701static void 1055inline void
702wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
703{ 1057{
704 elem->next = *head; 1058 elem->next = *head;
705 *head = elem; 1059 *head = elem;
706} 1060}
707 1061
708static void 1062inline void
709wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
710{ 1064{
711 while (*head) 1065 while (*head)
712 { 1066 {
713 if (*head == elem) 1067 if (*head == elem)
718 1072
719 head = &(*head)->next; 1073 head = &(*head)->next;
720 } 1074 }
721} 1075}
722 1076
723static void 1077inline void
724ev_clear (W w) 1078ev_clear_pending (EV_P_ W w)
725{ 1079{
726 if (w->pending) 1080 if (w->pending)
727 { 1081 {
728 pendings [w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1083 w->pending = 0;
730 } 1084 }
731} 1085}
732 1086
733static void 1087inline void
734ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
735{ 1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
736 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
737} 1095}
738 1096
739static void 1097inline void
740ev_stop (W w) 1098ev_stop (EV_P_ W w)
741{ 1099{
1100 ev_unref (EV_A);
742 w->active = 0; 1101 w->active = 0;
743} 1102}
744 1103
745/*****************************************************************************/ 1104/*****************************************************************************/
746 1105
747void 1106void
748ev_io_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
749{ 1108{
1109 int fd = w->fd;
1110
750 if (ev_is_active (w)) 1111 if (ev_is_active (w))
751 return; 1112 return;
752 1113
753 int fd = w->fd; 1114 assert (("ev_io_start called with negative fd", fd >= 0));
754 1115
755 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1119
759 fd_change (fd); 1120 fd_change (EV_A_ fd);
760} 1121}
761 1122
762void 1123void
763ev_io_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
764{ 1125{
765 ev_clear ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
767 return; 1128 return;
768 1129
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
771 1132
772 fd_change (w->fd); 1133 fd_change (EV_A_ w->fd);
773} 1134}
774 1135
775void 1136void
776ev_timer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1138{
778 if (ev_is_active (w)) 1139 if (ev_is_active (w))
779 return; 1140 return;
780 1141
781 w->at += now; 1142 ((WT)w)->at += mn_now;
782 1143
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1145
785 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
789}
790 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
791void 1154void
792ev_timer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1156{
794 ev_clear ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
796 return; 1159 return;
797 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
798 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
799 { 1164 {
800 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
801 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
802 } 1167 }
803 1168
804 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
805 1170
806 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
807} 1172}
808 1173
809void 1174void
810ev_timer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1176{
812 if (ev_is_active (w)) 1177 if (ev_is_active (w))
813 { 1178 {
814 if (w->repeat) 1179 if (w->repeat)
815 { 1180 {
816 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
818 } 1183 }
819 else 1184 else
820 ev_timer_stop (w); 1185 ev_timer_stop (EV_A_ w);
821 } 1186 }
822 else if (w->repeat) 1187 else if (w->repeat)
823 ev_timer_start (w); 1188 ev_timer_start (EV_A_ w);
824} 1189}
825 1190
826void 1191void
827ev_periodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1193{
829 if (ev_is_active (w)) 1194 if (ev_is_active (w))
830 return; 1195 return;
831 1196
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1198
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1200 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
837 1202
838 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
840 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
842}
843 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
844void 1211void
845ev_periodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1213{
847 ev_clear ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
849 return; 1216 return;
850 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
851 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
852 { 1221 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
855 } 1224 }
856 1225
857 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
858} 1227}
859 1228
860void 1229void
861ev_signal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1231{
863 if (ev_is_active (w)) 1232 if (ev_is_active (w))
864 return; 1233 return;
865 1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309
866 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1313
870 if (!w->next) 1314 if (!((WL)w)->next)
871 { 1315 {
872 struct sigaction sa; 1316 struct sigaction sa;
873 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
877 } 1321 }
878} 1322}
879 1323
880void 1324void
881ev_signal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1326{
883 ev_clear ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
885 return; 1329 return;
886 1330
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
889 1333
890 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
892} 1336}
893 1337
894void 1338void
895ev_idle_start (struct ev_idle *w) 1339ev_child_start (EV_P_ struct ev_child *w)
896{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
897 if (ev_is_active (w)) 1344 if (ev_is_active (w))
898 return; 1345 return;
899 1346
900 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
901 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
902 idles [idlecnt - 1] = w;
903} 1349}
904 1350
905void 1351void
906ev_idle_stop (struct ev_idle *w) 1352ev_child_stop (EV_P_ struct ev_child *w)
907{ 1353{
908 ev_clear ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
909 if (ev_is_active (w)) 1355 if (ev_is_active (w))
910 return; 1356 return;
911 1357
912 idles [w->active - 1] = idles [--idlecnt];
913 ev_stop ((W)w);
914}
915
916void
917ev_prepare_start (struct ev_prepare *w)
918{
919 if (ev_is_active (w))
920 return;
921
922 ev_start ((W)w, ++preparecnt);
923 array_needsize (prepares, preparemax, preparecnt, );
924 prepares [preparecnt - 1] = w;
925}
926
927void
928ev_prepare_stop (struct ev_prepare *w)
929{
930 ev_clear ((W)w);
931 if (ev_is_active (w))
932 return;
933
934 prepares [w->active - 1] = prepares [--preparecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_check_start (struct ev_check *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++checkcnt);
945 array_needsize (checks, checkmax, checkcnt, );
946 checks [checkcnt - 1] = w;
947}
948
949void
950ev_check_stop (struct ev_check *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 checks [w->active - 1] = checks [--checkcnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_child_start (struct ev_child *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, 1);
967 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
968}
969
970void
971ev_child_stop (struct ev_child *w)
972{
973 ev_clear ((W)w);
974 if (ev_is_active (w))
975 return;
976
977 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
978 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
979} 1360}
980 1361
981/*****************************************************************************/ 1362/*****************************************************************************/
982 1363
983struct ev_once 1364struct ev_once
987 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
988 void *arg; 1369 void *arg;
989}; 1370};
990 1371
991static void 1372static void
992once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
993{ 1374{
994 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
995 void *arg = once->arg; 1376 void *arg = once->arg;
996 1377
997 ev_io_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
998 ev_timer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
999 free (once); 1380 free (once);
1000 1381
1001 cb (revents, arg); 1382 cb (revents, arg);
1002} 1383}
1003 1384
1004static void 1385static void
1005once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
1006{ 1387{
1007 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1008} 1389}
1009 1390
1010static void 1391static void
1011once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
1012{ 1393{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1014} 1395}
1015 1396
1016void 1397void
1017ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1018{ 1399{
1019 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
1020 1401
1021 if (!once) 1402 if (!once)
1022 cb (EV_ERROR, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1023 else 1404 else
1024 { 1405 {
1025 once->cb = cb; 1406 once->cb = cb;
1026 once->arg = arg; 1407 once->arg = arg;
1027 1408
1028 ev_watcher_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
1029
1030 if (fd >= 0) 1410 if (fd >= 0)
1031 { 1411 {
1032 ev_io_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
1033 ev_io_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
1034 } 1414 }
1035 1415
1036 ev_watcher_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
1037
1038 if (timeout >= 0.) 1417 if (timeout >= 0.)
1039 { 1418 {
1040 ev_timer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
1042 } 1421 }
1043 } 1422 }
1044} 1423}
1045 1424
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines