ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.28 by root, Thu Nov 1 06:48:49 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 149
78static int have_monotonic; /* runtime */ 150#if WIN32
79 151/* note: the comment below could not be substantiated, but what would I care */
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
81static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
82static void (*method_poll)(ev_tstamp timeout); 154#endif
83 155
84/*****************************************************************************/ 156/*****************************************************************************/
85 157
86ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
87ev_time (void) 192ev_time (void)
88{ 193{
89#if HAVE_REALTIME 194#if EV_USE_REALTIME
90 struct timespec ts; 195 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 198#else
94 struct timeval tv; 199 struct timeval tv;
95 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 202#endif
98} 203}
99 204
100static ev_tstamp 205inline ev_tstamp
101get_clock (void) 206get_clock (void)
102{ 207{
103#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
104 if (have_monotonic) 209 if (expect_true (have_monotonic))
105 { 210 {
106 struct timespec ts; 211 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 214 }
110#endif 215#endif
111 216
112 return ev_time (); 217 return ev_time ();
113} 218}
114 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
115#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
117 { \ 230 { \
118 int newcnt = cur; \ 231 int newcnt = cur; \
119 do \ 232 do \
120 { \ 233 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 234 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 235 } \
123 while ((cnt) > newcnt); \ 236 while ((cnt) > newcnt); \
124 \ 237 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 240 cur = newcnt; \
128 } 241 }
129 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
130/*****************************************************************************/ 254/*****************************************************************************/
131
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140 255
141static void 256static void
142anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
143{ 258{
144 while (count--) 259 while (count--)
145 { 260 {
146 base->head = 0; 261 base->head = 0;
147 base->events = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
148 ++base; 265 ++base;
149 } 266 }
150} 267}
151 268
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 269static void
162event (W w, int events) 270event (EV_P_ W w, int events)
163{ 271{
164 if (w->active) 272 if (w->pending)
165 { 273 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
170 } 276 }
171}
172 277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
173static void 284static void
174queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 286{
176 int i; 287 int i;
177 288
178 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 290 event (EV_A_ events [i], type);
180} 291}
181 292
182static void 293static void
183fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
184{ 295{
185 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 297 struct ev_io *w;
187 298
188 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 300 {
190 int ev = w->events & events; 301 int ev = w->events & events;
191 302
192 if (ev) 303 if (ev)
193 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
194 } 305 }
195} 306}
196 307
197/*****************************************************************************/ 308/*****************************************************************************/
198 309
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 310static void
203fd_reify (void) 311fd_reify (EV_P)
204{ 312{
205 int i; 313 int i;
206 314
207 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
208 { 316 {
210 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 319 struct ev_io *w;
212 320
213 int events = 0; 321 int events = 0;
214 322
215 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 324 events |= w->events;
217 325
218 anfd->events &= ~EV_REIFY; 326 anfd->reify = 0;
219 327
220 if (anfd->events != events)
221 {
222 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 329 anfd->events = events;
224 }
225 } 330 }
226 331
227 fdchangecnt = 0; 332 fdchangecnt = 0;
228} 333}
229 334
230static void 335static void
231fd_change (int fd) 336fd_change (EV_P_ int fd)
232{ 337{
233 if (anfds [fd].events & EV_REIFY) 338 if (anfds [fd].reify || fdchangecnt < 0)
234 return; 339 return;
235 340
236 anfds [fd].events |= EV_REIFY; 341 anfds [fd].reify = 1;
237 342
238 ++fdchangecnt; 343 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
240 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
241} 346}
242 347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
243/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
244static void 361static void
245fd_recheck (void) 362fd_ebadf (EV_P)
246{ 363{
247 int fd; 364 int fd;
248 365
249 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 367 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
253 { 380 {
254 event ((W)anfds [fd].head, EV_ERROR); 381 fd_kill (EV_A_ fd);
255 ev_io_stop (anfds [fd].head); 382 return;
256 } 383 }
384}
385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
257} 399}
258 400
259/*****************************************************************************/ 401/*****************************************************************************/
260 402
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 403static void
268upheap (WT *timers, int k) 404upheap (WT *heap, int k)
269{ 405{
270 WT w = timers [k]; 406 WT w = heap [k];
271 407
272 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
273 { 409 {
274 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
276 k >>= 1; 412 k >>= 1;
277 } 413 }
278 414
279 timers [k] = w; 415 heap [k] = w;
280 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
281 417
282} 418}
283 419
284static void 420static void
285downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
286{ 422{
287 WT w = timers [k]; 423 WT w = heap [k];
288 424
289 while (k < (N >> 1)) 425 while (k < (N >> 1))
290 { 426 {
291 int j = k << 1; 427 int j = k << 1;
292 428
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 430 ++j;
295 431
296 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
297 break; 433 break;
298 434
299 timers [k] = timers [j]; 435 heap [k] = heap [j];
300 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
301 k = j; 437 k = j;
302 } 438 }
303 439
304 timers [k] = w; 440 heap [k] = w;
305 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
306} 442}
307 443
308/*****************************************************************************/ 444/*****************************************************************************/
309 445
310typedef struct 446typedef struct
311{ 447{
312 struct ev_signal *head; 448 WL head;
313 sig_atomic_t gotsig; 449 sig_atomic_t volatile gotsig;
314} ANSIG; 450} ANSIG;
315 451
316static ANSIG *signals; 452static ANSIG *signals;
317static int signalmax; 453static int signalmax;
318 454
319static int sigpipe [2]; 455static int sigpipe [2];
320static sig_atomic_t gotsig; 456static sig_atomic_t volatile gotsig;
321static struct ev_io sigev; 457static struct ev_io sigev;
322 458
323static void 459static void
324signals_init (ANSIG *base, int count) 460signals_init (ANSIG *base, int count)
325{ 461{
326 while (count--) 462 while (count--)
327 { 463 {
328 base->head = 0; 464 base->head = 0;
329 base->gotsig = 0; 465 base->gotsig = 0;
466
330 ++base; 467 ++base;
331 } 468 }
332} 469}
333 470
334static void 471static void
335sighandler (int signum) 472sighandler (int signum)
336{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
337 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
338 479
339 if (!gotsig) 480 if (!gotsig)
340 { 481 {
482 int old_errno = errno;
341 gotsig = 1; 483 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
343 } 486 }
344} 487}
345 488
346static void 489static void
347sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 491{
349 struct ev_signal *w; 492 WL w;
350 int sig; 493 int signum;
351 494
495 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 496 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 497
355 for (sig = signalmax; sig--; ) 498 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 499 if (signals [signum].gotsig)
357 { 500 {
358 signals [sig].gotsig = 0; 501 signals [signum].gotsig = 0;
359 502
360 for (w = signals [sig].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
362 } 505 }
363} 506}
364 507
365static void 508static void
366siginit (void) 509siginit (EV_P)
367{ 510{
511#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 514
371 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
374 519
375 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 523}
378 524
379/*****************************************************************************/ 525/*****************************************************************************/
380 526
381static struct ev_idle **idles; 527#ifndef WIN32
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391 528
392static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 530static struct ev_signal childev;
394 531
395#ifndef WCONTINUED 532#ifndef WCONTINUED
396# define WCONTINUED 0 533# define WCONTINUED 0
397#endif 534#endif
398 535
399static void 536static void
400childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 538{
402 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
403 int pid, status; 554 int pid, status;
404 555
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
407 if (w->pid == pid || w->pid == -1) 558 /* make sure we are called again until all childs have been reaped */
408 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 560
410 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
411 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
412} 564}
565
566#endif
413 567
414/*****************************************************************************/ 568/*****************************************************************************/
415 569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
416#if HAVE_EPOLL 573#if EV_USE_EPOLL
417# include "ev_epoll.c" 574# include "ev_epoll.c"
418#endif 575#endif
576#if EV_USE_POLL
577# include "ev_poll.c"
578#endif
419#if HAVE_SELECT 579#if EV_USE_SELECT
420# include "ev_select.c" 580# include "ev_select.c"
421#endif 581#endif
422 582
423int 583int
424ev_version_major (void) 584ev_version_major (void)
430ev_version_minor (void) 590ev_version_minor (void)
431{ 591{
432 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
433} 593}
434 594
435int ev_init (int flags) 595/* return true if we are running with elevated privileges and should ignore env variables */
596static int
597enable_secure (void)
436{ 598{
599#ifdef WIN32
600 return 0;
601#else
602 return getuid () != geteuid ()
603 || getgid () != getegid ();
604#endif
605}
606
607int
608ev_method (EV_P)
609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
437 if (!ev_method) 616 if (!method)
438 { 617 {
439#if HAVE_MONOTONIC 618#if EV_USE_MONOTONIC
440 { 619 {
441 struct timespec ts; 620 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 622 have_monotonic = 1;
444 } 623 }
445#endif 624#endif
446 625
447 ev_now = ev_time (); 626 rt_now = ev_time ();
448 now = get_clock (); 627 mn_now = get_clock ();
628 now_floor = mn_now;
449 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
450 630
631 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 745 if (pipe (sigpipe))
452 return 0; 746 return 0;
453 747
454 ev_method = EVMETHOD_NONE; 748 if (!default_loop)
455#if HAVE_EPOLL 749 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
457#endif 754#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 755
756 loop_init (EV_A_ methods);
757
462 if (ev_method) 758 if (ev_method (EV_A))
463 { 759 {
464 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
465 siginit (); 762 siginit (EV_A);
466 763
764#ifndef WIN32
467 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
468 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
469 } 770 }
771 else
772 default_loop = 0;
470 } 773 }
471 774
472 return ev_method; 775 return default_loop;
473} 776}
474 777
475/*****************************************************************************/
476
477void 778void
478ev_prefork (void) 779ev_default_destroy (void)
479{ 780{
480 /* nop */ 781#if EV_MULTIPLICITY
481} 782 struct ev_loop *loop = default_loop;
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 783#endif
496 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
497 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
498 close (sigpipe [0]); 807 close (sigpipe [0]);
499 close (sigpipe [1]); 808 close (sigpipe [1]);
500 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
501 siginit (); 812 siginit (EV_A);
502} 813}
503 814
504/*****************************************************************************/ 815/*****************************************************************************/
505 816
506static void 817static void
507call_pending (void) 818call_pending (EV_P)
508{ 819{
820 int pri;
821
822 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 823 while (pendingcnt [pri])
510 { 824 {
511 ANPENDING *p = pendings + --pendingcnt; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 826
513 if (p->w) 827 if (p->w)
514 { 828 {
515 p->w->pending = 0; 829 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
517 } 831 }
518 } 832 }
519} 833}
520 834
521static void 835static void
522timers_reify (void) 836timers_reify (EV_P)
523{ 837{
524 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
525 { 839 {
526 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
527 841
528 event ((W)w, EV_TIMEOUT); 842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 843
530 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
531 if (w->repeat) 845 if (w->repeat)
532 { 846 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
536 } 850 }
537 else 851 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 853
854 event (EV_A_ (W)w, EV_TIMEOUT);
855 }
856}
857
542static void 858static void
543periodics_reify (void) 859periodics_reify (EV_P)
544{ 860{
545 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
546 { 862 {
547 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
548 866
549 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
550 if (w->interval) 868 if (w->interval)
551 { 869 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
555 } 873 }
556 else 874 else
557 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 876
559 event ((W)w, EV_TIMEOUT); 877 event (EV_A_ (W)w, EV_PERIODIC);
560 } 878 }
561} 879}
562 880
563static void 881static void
564periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
565{ 883{
566 int i; 884 int i;
567 885
568 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
570 { 888 {
571 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
572 890
573 if (w->interval) 891 if (w->interval)
574 { 892 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
576 894
577 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
578 { 896 {
579 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
580 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
581 899
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 901 }
584 } 902 }
585 } 903 }
586} 904}
587 905
906inline int
907time_update_monotonic (EV_P)
908{
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922}
923
588static void 924static void
589time_update (void) 925time_update (EV_P)
590{ 926{
591 int i; 927 int i;
592 928
593 ev_now = ev_time (); 929#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 930 if (expect_true (have_monotonic))
596 { 931 {
597 ev_tstamp odiff = diff; 932 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 933 {
601 now = get_clock (); 934 ev_tstamp odiff = rtmn_diff;
935
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 {
602 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
603 939
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 941 return; /* all is well */
606 942
607 ev_now = ev_time (); 943 rt_now = ev_time ();
944 mn_now = get_clock ();
945 now_floor = mn_now;
946 }
947
948 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 951 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 952 }
613 else 953 else
954#endif
614 { 955 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 956 rt_now = ev_time ();
957
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 959 {
617 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
618 961
619 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
622 } 965 }
623 966
624 now = ev_now; 967 mn_now = rt_now;
625 } 968 }
626} 969}
627 970
628int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
629 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
630void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
631{ 987{
632 double block; 988 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 990
635 do 991 do
636 { 992 {
637 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
638 if (preparecnt) 994 if (expect_false (preparecnt))
639 { 995 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 997 call_pending (EV_A);
642 } 998 }
643 999
644 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
645 fd_reify (); 1001 fd_reify (EV_A);
646 1002
647 /* calculate blocking time */ 1003 /* calculate blocking time */
648 1004
649 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 {
651 ev_now = ev_time (); 1013 rt_now = ev_time ();
1014 mn_now = rt_now;
1015 }
652 1016
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 1018 block = 0.;
655 else 1019 else
656 { 1020 {
657 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
658 1022
659 if (timercnt) 1023 if (timercnt)
660 { 1024 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
662 if (block > to) block = to; 1026 if (block > to) block = to;
663 } 1027 }
664 1028
665 if (periodiccnt) 1029 if (periodiccnt)
666 { 1030 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
668 if (block > to) block = to; 1032 if (block > to) block = to;
669 } 1033 }
670 1034
671 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
672 } 1036 }
673 1037
674 method_poll (block); 1038 method_poll (EV_A_ block);
675 1039
676 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
677 time_update (); 1041 time_update (EV_A);
678 1042
679 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
682 1046
683 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 1048 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 1050
687 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
688 if (checkcnt) 1052 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1054
691 call_pending (); 1055 call_pending (EV_A);
692 } 1056 }
693 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
694 1058
695 if (ev_loop_done != 2) 1059 if (loop_done != 2)
696 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
697} 1067}
698 1068
699/*****************************************************************************/ 1069/*****************************************************************************/
700 1070
701static void 1071inline void
702wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
703{ 1073{
704 elem->next = *head; 1074 elem->next = *head;
705 *head = elem; 1075 *head = elem;
706} 1076}
707 1077
708static void 1078inline void
709wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
710{ 1080{
711 while (*head) 1081 while (*head)
712 { 1082 {
713 if (*head == elem) 1083 if (*head == elem)
718 1088
719 head = &(*head)->next; 1089 head = &(*head)->next;
720 } 1090 }
721} 1091}
722 1092
723static void 1093inline void
724ev_clear (W w) 1094ev_clear_pending (EV_P_ W w)
725{ 1095{
726 if (w->pending) 1096 if (w->pending)
727 { 1097 {
728 pendings [w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1099 w->pending = 0;
730 } 1100 }
731} 1101}
732 1102
733static void 1103inline void
734ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
735{ 1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
736 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
737} 1111}
738 1112
739static void 1113inline void
740ev_stop (W w) 1114ev_stop (EV_P_ W w)
741{ 1115{
1116 ev_unref (EV_A);
742 w->active = 0; 1117 w->active = 0;
743} 1118}
744 1119
745/*****************************************************************************/ 1120/*****************************************************************************/
746 1121
747void 1122void
748ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
749{ 1124{
1125 int fd = w->fd;
1126
750 if (ev_is_active (w)) 1127 if (ev_is_active (w))
751 return; 1128 return;
752 1129
753 int fd = w->fd; 1130 assert (("ev_io_start called with negative fd", fd >= 0));
754 1131
755 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1135
759 fd_change (fd); 1136 fd_change (EV_A_ fd);
760} 1137}
761 1138
762void 1139void
763ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
764{ 1141{
765 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
767 return; 1144 return;
768 1145
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
771 1148
772 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
773} 1150}
774 1151
775void 1152void
776ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1154{
778 if (ev_is_active (w)) 1155 if (ev_is_active (w))
779 return; 1156 return;
780 1157
781 w->at += now; 1158 ((WT)w)->at += mn_now;
782 1159
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1161
785 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
789}
790 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
791void 1170void
792ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1172{
794 ev_clear ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
796 return; 1175 return;
797 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
798 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
799 { 1180 {
800 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
801 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
802 } 1183 }
803 1184
804 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
805 1186
806 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
807} 1188}
808 1189
809void 1190void
810ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1192{
812 if (ev_is_active (w)) 1193 if (ev_is_active (w))
813 { 1194 {
814 if (w->repeat) 1195 if (w->repeat)
815 { 1196 {
816 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
818 } 1199 }
819 else 1200 else
820 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
821 } 1202 }
822 else if (w->repeat) 1203 else if (w->repeat)
823 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
824} 1205}
825 1206
826void 1207void
827ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1209{
829 if (ev_is_active (w)) 1210 if (ev_is_active (w))
830 return; 1211 return;
831 1212
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1214
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1216 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
837 1218
838 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
840 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
842}
843 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
844void 1227void
845ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1229{
847 ev_clear ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
849 return; 1232 return;
850 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
851 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
852 { 1237 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
855 } 1240 }
856 1241
857 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
858} 1243}
859 1244
860void 1245void
861ev_signal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1247{
863 if (ev_is_active (w)) 1248 if (ev_is_active (w))
864 return; 1249 return;
865 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325
866 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1329
870 if (!w->next) 1330 if (!((WL)w)->next)
871 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
872 struct sigaction sa; 1335 struct sigaction sa;
873 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
877 } 1341 }
878} 1342}
879 1343
880void 1344void
881ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1346{
883 ev_clear ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
885 return; 1349 return;
886 1350
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
889 1353
890 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
892} 1356}
893 1357
894void 1358void
895ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
896{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
897 if (ev_is_active (w)) 1364 if (ev_is_active (w))
898 return; 1365 return;
899 1366
900 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
901 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
902 idles [idlecnt - 1] = w;
903} 1369}
904 1370
905void 1371void
906ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
907{ 1373{
908 ev_clear ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
909 if (ev_is_active (w)) 1375 if (ev_is_active (w))
910 return; 1376 return;
911 1377
912 idles [w->active - 1] = idles [--idlecnt];
913 ev_stop ((W)w);
914}
915
916void
917ev_prepare_start (struct ev_prepare *w)
918{
919 if (ev_is_active (w))
920 return;
921
922 ev_start ((W)w, ++preparecnt);
923 array_needsize (prepares, preparemax, preparecnt, );
924 prepares [preparecnt - 1] = w;
925}
926
927void
928ev_prepare_stop (struct ev_prepare *w)
929{
930 ev_clear ((W)w);
931 if (ev_is_active (w))
932 return;
933
934 prepares [w->active - 1] = prepares [--preparecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_check_start (struct ev_check *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++checkcnt);
945 array_needsize (checks, checkmax, checkcnt, );
946 checks [checkcnt - 1] = w;
947}
948
949void
950ev_check_stop (struct ev_check *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 checks [w->active - 1] = checks [--checkcnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_child_start (struct ev_child *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, 1);
967 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
968}
969
970void
971ev_child_stop (struct ev_child *w)
972{
973 ev_clear ((W)w);
974 if (ev_is_active (w))
975 return;
976
977 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
978 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
979} 1380}
980 1381
981/*****************************************************************************/ 1382/*****************************************************************************/
982 1383
983struct ev_once 1384struct ev_once
987 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
988 void *arg; 1389 void *arg;
989}; 1390};
990 1391
991static void 1392static void
992once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
993{ 1394{
994 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
995 void *arg = once->arg; 1396 void *arg = once->arg;
996 1397
997 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
998 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
999 free (once); 1400 free (once);
1000 1401
1001 cb (revents, arg); 1402 cb (revents, arg);
1002} 1403}
1003 1404
1004static void 1405static void
1005once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1006{ 1407{
1007 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1008} 1409}
1009 1410
1010static void 1411static void
1011once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1012{ 1413{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1014} 1415}
1015 1416
1016void 1417void
1017ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1018{ 1419{
1019 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1020 1421
1021 if (!once) 1422 if (!once)
1022 cb (EV_ERROR, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1023 else 1424 else
1024 { 1425 {
1025 once->cb = cb; 1426 once->cb = cb;
1026 once->arg = arg; 1427 once->arg = arg;
1027 1428
1028 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1029
1030 if (fd >= 0) 1430 if (fd >= 0)
1031 { 1431 {
1032 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1033 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1034 } 1434 }
1035 1435
1036 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1037
1038 if (timeout >= 0.) 1437 if (timeout >= 0.)
1039 { 1438 {
1040 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1042 } 1441 }
1043 } 1442 }
1044} 1443}
1045 1444
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines