ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.280 by root, Sat Mar 14 04:45:39 2009 UTC vs.
Revision 1.307 by root, Sun Jul 19 07:20:41 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
176# endif 186# endif
177#endif 187#endif
178 188
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
180 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
181#ifndef EV_USE_CLOCK_SYSCALL 218#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 219# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 220# define EV_USE_CLOCK_SYSCALL 1
184# else 221# else
185# define EV_USE_CLOCK_SYSCALL 0 222# define EV_USE_CLOCK_SYSCALL 0
264# else 301# else
265# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
266# endif 303# endif
267#endif 304#endif
268 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
269#if 0 /* debugging */ 314#if 0 /* debugging */
270# define EV_VERIFY 3 315# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 316# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 317# define EV_HEAP_CACHE_AT 1
273#endif 318#endif
280# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
281#endif 326#endif
282 327
283#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
285#endif 344#endif
286 345
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 347
289#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
320 379
321#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 381# include <winsock.h>
323#endif 382#endif
324 383
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
337# ifdef __cplusplus 393# ifdef __cplusplus
338extern "C" { 394extern "C" {
339# endif 395# endif
340int eventfd (unsigned int initval, int flags); 396int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 397# ifdef __cplusplus
342} 398}
343# endif 399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
344#endif 404#endif
345 405
346/**/ 406/**/
347 407
348#if EV_VERIFY >= 3 408#if EV_VERIFY >= 3
384# define inline_speed static noinline 444# define inline_speed static noinline
385#else 445#else
386# define inline_speed static inline 446# define inline_speed static inline
387#endif 447#endif
388 448
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
391 456
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
394 459
395typedef ev_watcher *W; 460typedef ev_watcher *W;
478#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
480 545
481/*****************************************************************************/ 546/*****************************************************************************/
482 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
483typedef struct 552typedef struct
484{ 553{
485 WL head; 554 WL head;
486 unsigned char events; 555 unsigned char events; /* the events watched for */
487 unsigned char reify; 556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 558 unsigned char unused;
490#if EV_USE_EPOLL 559#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 560 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 561#endif
493#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 563 SOCKET handle;
495#endif 564#endif
496} ANFD; 565} ANFD;
497 566
567/* stores the pending event set for a given watcher */
498typedef struct 568typedef struct
499{ 569{
500 W w; 570 W w;
501 int events; 571 int events; /* the pending event set for the given watcher */
502} ANPENDING; 572} ANPENDING;
503 573
504#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 575/* hash table entry per inotify-id */
506typedef struct 576typedef struct
509} ANFS; 579} ANFS;
510#endif 580#endif
511 581
512/* Heap Entry */ 582/* Heap Entry */
513#if EV_HEAP_CACHE_AT 583#if EV_HEAP_CACHE_AT
584 /* a heap element */
514 typedef struct { 585 typedef struct {
515 ev_tstamp at; 586 ev_tstamp at;
516 WT w; 587 WT w;
517 } ANHE; 588 } ANHE;
518 589
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 590 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 591 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 593#else
594 /* a heap element */
523 typedef WT ANHE; 595 typedef WT ANHE;
524 596
525 #define ANHE_w(he) (he) 597 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 598 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 599 #define ANHE_at_cache(he)
551 623
552 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
553 625
554#endif 626#endif
555 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
556/*****************************************************************************/ 640/*****************************************************************************/
557 641
642#ifndef EV_HAVE_EV_TIME
558ev_tstamp 643ev_tstamp
559ev_time (void) 644ev_time (void)
560{ 645{
561#if EV_USE_REALTIME 646#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 647 if (expect_true (have_realtime))
569 654
570 struct timeval tv; 655 struct timeval tv;
571 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 658}
659#endif
574 660
575ev_tstamp inline_size 661inline_size ev_tstamp
576get_clock (void) 662get_clock (void)
577{ 663{
578#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
580 { 666 {
614 700
615 tv.tv_sec = (time_t)delay; 701 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 703
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 705 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 706 /* by older ones */
621 select (0, 0, 0, 0, &tv); 707 select (0, 0, 0, 0, &tv);
622#endif 708#endif
623 } 709 }
624} 710}
625 711
626/*****************************************************************************/ 712/*****************************************************************************/
627 713
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 715
630int inline_size 716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
631array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
632{ 720{
633 int ncur = cur + 1; 721 int ncur = cur + 1;
634 722
635 do 723 do
680#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 770
683/*****************************************************************************/ 771/*****************************************************************************/
684 772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
778
685void noinline 779void noinline
686ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
687{ 781{
688 W w_ = (W)w; 782 W w_ = (W)w;
689 int pri = ABSPRI (w_); 783 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
699 } 793 }
700} 794}
701 795
702void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 813{
705 int i; 814 int i;
706 815
707 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
709} 818}
710 819
711/*****************************************************************************/ 820/*****************************************************************************/
712 821
713void inline_speed 822inline_speed void
714fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
715{ 824{
716 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
717 ev_io *w; 826 ev_io *w;
718 827
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 832 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
725 } 834 }
726} 835}
727 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
728void 848void
729ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 850{
731 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
733} 853}
734 854
735void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
736fd_reify (EV_P) 858fd_reify (EV_P)
737{ 859{
738 int i; 860 int i;
739 861
740 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
766 unsigned char o_reify = anfd->reify; 888 unsigned char o_reify = anfd->reify;
767 889
768 anfd->reify = 0; 890 anfd->reify = 0;
769 anfd->events = events; 891 anfd->events = events;
770 892
771 if (o_events != events || o_reify & EV_IOFDSET) 893 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 894 backend_modify (EV_A_ fd, o_events, events);
773 } 895 }
774 } 896 }
775 897
776 fdchangecnt = 0; 898 fdchangecnt = 0;
777} 899}
778 900
779void inline_size 901/* something about the given fd changed */
902inline_size void
780fd_change (EV_P_ int fd, int flags) 903fd_change (EV_P_ int fd, int flags)
781{ 904{
782 unsigned char reify = anfds [fd].reify; 905 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 906 anfds [fd].reify |= flags;
784 907
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
790 } 913 }
791} 914}
792 915
793void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
794fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
795{ 919{
796 ev_io *w; 920 ev_io *w;
797 921
798 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 926 }
803} 927}
804 928
805int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
806fd_valid (int fd) 931fd_valid (int fd)
807{ 932{
808#ifdef _WIN32 933#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
810#else 935#else
832 957
833 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 959 if (anfds [fd].events)
835 { 960 {
836 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
837 return; 962 break;
838 } 963 }
839} 964}
840 965
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 967static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 973 if (anfds [fd].events)
849 { 974 {
850 anfds [fd].events = 0; 975 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 976 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV_IOFDSET | 1); 977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 978 }
854} 979}
855 980
856/*****************************************************************************/ 981/*****************************************************************************/
857 982
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1000#define UPHEAP_DONE(p,k) ((p) == (k))
876 1001
877/* away from the root */ 1002/* away from the root */
878void inline_speed 1003inline_speed void
879downheap (ANHE *heap, int N, int k) 1004downheap (ANHE *heap, int N, int k)
880{ 1005{
881 ANHE he = heap [k]; 1006 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1007 ANHE *E = heap + N + HEAP0;
883 1008
923#define HEAP0 1 1048#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1049#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1050#define UPHEAP_DONE(p,k) (!(p))
926 1051
927/* away from the root */ 1052/* away from the root */
928void inline_speed 1053inline_speed void
929downheap (ANHE *heap, int N, int k) 1054downheap (ANHE *heap, int N, int k)
930{ 1055{
931 ANHE he = heap [k]; 1056 ANHE he = heap [k];
932 1057
933 for (;;) 1058 for (;;)
953 ev_active (ANHE_w (he)) = k; 1078 ev_active (ANHE_w (he)) = k;
954} 1079}
955#endif 1080#endif
956 1081
957/* towards the root */ 1082/* towards the root */
958void inline_speed 1083inline_speed void
959upheap (ANHE *heap, int k) 1084upheap (ANHE *heap, int k)
960{ 1085{
961 ANHE he = heap [k]; 1086 ANHE he = heap [k];
962 1087
963 for (;;) 1088 for (;;)
974 1099
975 heap [k] = he; 1100 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1101 ev_active (ANHE_w (he)) = k;
977} 1102}
978 1103
979void inline_size 1104/* move an element suitably so it is in a correct place */
1105inline_size void
980adjustheap (ANHE *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
981{ 1107{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1108 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1109 upheap (heap, k);
984 else 1110 else
985 downheap (heap, N, k); 1111 downheap (heap, N, k);
986} 1112}
987 1113
988/* rebuild the heap: this function is used only once and executed rarely */ 1114/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1115inline_size void
990reheap (ANHE *heap, int N) 1116reheap (ANHE *heap, int N)
991{ 1117{
992 int i; 1118 int i;
993 1119
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1123 upheap (heap, i + HEAP0);
998} 1124}
999 1125
1000/*****************************************************************************/ 1126/*****************************************************************************/
1001 1127
1128/* associate signal watchers to a signal signal */
1002typedef struct 1129typedef struct
1003{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
1004 WL head; 1135 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1136} ANSIG;
1007 1137
1008static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1139
1013/*****************************************************************************/ 1140/*****************************************************************************/
1014 1141
1015void inline_speed 1142/* used to prepare libev internal fd's */
1143/* this is not fork-safe */
1144inline_speed void
1016fd_intern (int fd) 1145fd_intern (int fd)
1017{ 1146{
1018#ifdef _WIN32 1147#ifdef _WIN32
1019 unsigned long arg = 1; 1148 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1154}
1026 1155
1027static void noinline 1156static void noinline
1028evpipe_init (EV_P) 1157evpipe_init (EV_P)
1029{ 1158{
1030 if (!ev_is_active (&pipeev)) 1159 if (!ev_is_active (&pipe_w))
1031 { 1160 {
1032#if EV_USE_EVENTFD 1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1034 { 1167 {
1035 evpipe [0] = -1; 1168 evpipe [0] = -1;
1036 fd_intern (evfd); 1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1170 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1171 }
1039 else 1172 else
1040#endif 1173#endif
1041 { 1174 {
1042 while (pipe (evpipe)) 1175 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1176 ev_syserr ("(libev) error creating signal/async pipe");
1044 1177
1045 fd_intern (evpipe [0]); 1178 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1179 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1181 }
1049 1182
1050 ev_io_start (EV_A_ &pipeev); 1183 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1185 }
1053} 1186}
1054 1187
1055void inline_size 1188inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1190{
1058 if (!*flag) 1191 if (!*flag)
1059 { 1192 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1193 int old_errno = errno; /* save errno because write might clobber it */
1073 1206
1074 errno = old_errno; 1207 errno = old_errno;
1075 } 1208 }
1076} 1209}
1077 1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
1078static void 1213static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1214pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1215{
1216 int i;
1217
1081#if EV_USE_EVENTFD 1218#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1219 if (evfd >= 0)
1083 { 1220 {
1084 uint64_t counter; 1221 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1222 read (evfd, &counter, sizeof (uint64_t));
1089 { 1226 {
1090 char dummy; 1227 char dummy;
1091 read (evpipe [0], &dummy, 1); 1228 read (evpipe [0], &dummy, 1);
1092 } 1229 }
1093 1230
1094 if (gotsig && ev_is_default_loop (EV_A)) 1231 if (sig_pending)
1095 { 1232 {
1096 int signum; 1233 sig_pending = 0;
1097 gotsig = 0;
1098 1234
1099 for (signum = signalmax; signum--; ) 1235 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1236 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1237 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1238 }
1103 1239
1104#if EV_ASYNC_ENABLE 1240#if EV_ASYNC_ENABLE
1105 if (gotasync) 1241 if (async_pending)
1106 { 1242 {
1107 int i; 1243 async_pending = 0;
1108 gotasync = 0;
1109 1244
1110 for (i = asynccnt; i--; ) 1245 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1246 if (asyncs [i]->sent)
1112 { 1247 {
1113 asyncs [i]->sent = 0; 1248 asyncs [i]->sent = 0;
1121 1256
1122static void 1257static void
1123ev_sighandler (int signum) 1258ev_sighandler (int signum)
1124{ 1259{
1125#if EV_MULTIPLICITY 1260#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1261 EV_P = signals [signum - 1].loop;
1127#endif 1262#endif
1128 1263
1129#if _WIN32 1264#if _WIN32
1130 signal (signum, ev_sighandler); 1265 signal (signum, ev_sighandler);
1131#endif 1266#endif
1132 1267
1133 signals [signum - 1].gotsig = 1; 1268 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1269 evpipe_write (EV_A_ &sig_pending);
1135} 1270}
1136 1271
1137void noinline 1272void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1273ev_feed_signal_event (EV_P_ int signum)
1139{ 1274{
1140 WL w; 1275 WL w;
1141 1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1142#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1283 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1285
1146 --signum; 1286 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1287 return;
1288#endif
1150 1289
1151 signals [signum].gotsig = 0; 1290 signals [signum].pending = 0;
1152 1291
1153 for (w = signals [signum].head; w; w = w->next) 1292 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1294}
1156 1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1157/*****************************************************************************/ 1316/*****************************************************************************/
1158 1317
1159static WL childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
1160 1319
1161#ifndef _WIN32 1320#ifndef _WIN32
1164 1323
1165#ifndef WIFCONTINUED 1324#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1325# define WIFCONTINUED(status) 0
1167#endif 1326#endif
1168 1327
1169void inline_speed 1328/* handle a single child status event */
1329inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
1171{ 1331{
1172 ev_child *w; 1332 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1334
1187 1347
1188#ifndef WCONTINUED 1348#ifndef WCONTINUED
1189# define WCONTINUED 0 1349# define WCONTINUED 0
1190#endif 1350#endif
1191 1351
1352/* called on sigchld etc., calls waitpid */
1192static void 1353static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1355{
1195 int pid, status; 1356 int pid, status;
1196 1357
1303ev_backend (EV_P) 1464ev_backend (EV_P)
1304{ 1465{
1305 return backend; 1466 return backend;
1306} 1467}
1307 1468
1469#if EV_MINIMAL < 2
1308unsigned int 1470unsigned int
1309ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
1310{ 1472{
1311 return loop_count; 1473 return loop_count;
1312} 1474}
1313 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1314void 1482void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1484{
1317 io_blocktime = interval; 1485 io_blocktime = interval;
1318} 1486}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1490{
1323 timeout_blocktime = interval; 1491 timeout_blocktime = interval;
1324} 1492}
1325 1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1519static void noinline
1327loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
1328{ 1521{
1329 if (!backend) 1522 if (!backend)
1330 { 1523 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1540 have_monotonic = 1;
1348 } 1541 }
1349#endif 1542#endif
1350 1543
1544 /* pid check not overridable via env */
1545#ifndef _WIN32
1546 if (flags & EVFLAG_FORKCHECK)
1547 curpid = getpid ();
1548#endif
1549
1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1554
1351 ev_rt_now = ev_time (); 1555 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1556 mn_now = get_clock ();
1353 now_floor = mn_now; 1557 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1355 1562
1356 io_blocktime = 0.; 1563 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1564 timeout_blocktime = 0.;
1358 backend = 0; 1565 backend = 0;
1359 backend_fd = -1; 1566 backend_fd = -1;
1360 gotasync = 0; 1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1361#if EV_USE_INOTIFY 1571#if EV_USE_INOTIFY
1362 fs_fd = -2; 1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1573#endif
1364 1574#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1576#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1577
1376 if (!(flags & 0x0000ffffU)) 1578 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1378 1580
1379#if EV_USE_PORT 1581#if EV_USE_PORT
1390#endif 1592#endif
1391#if EV_USE_SELECT 1593#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1595#endif
1394 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1395 ev_init (&pipeev, pipecb); 1599 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1601 }
1398} 1602}
1399 1603
1604/* free up a loop structure */
1400static void noinline 1605static void noinline
1401loop_destroy (EV_P) 1606loop_destroy (EV_P)
1402{ 1607{
1403 int i; 1608 int i;
1404 1609
1405 if (ev_is_active (&pipeev)) 1610 if (ev_is_active (&pipe_w))
1406 { 1611 {
1407 ev_ref (EV_A); /* signal watcher */ 1612 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1614
1410#if EV_USE_EVENTFD 1615#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1616 if (evfd >= 0)
1412 close (evfd); 1617 close (evfd);
1413#endif 1618#endif
1417 close (evpipe [0]); 1622 close (evpipe [0]);
1418 close (evpipe [1]); 1623 close (evpipe [1]);
1419 } 1624 }
1420 } 1625 }
1421 1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1422#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1424 close (fs_fd); 1639 close (fs_fd);
1425#endif 1640#endif
1426 1641
1449#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1665 array_free (idle, [i]);
1451#endif 1666#endif
1452 } 1667 }
1453 1668
1454 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1670
1456 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1461#endif 1677#endif
1470 1686
1471 backend = 0; 1687 backend = 0;
1472} 1688}
1473 1689
1474#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1476#endif 1692#endif
1477 1693
1478void inline_size 1694inline_size void
1479loop_fork (EV_P) 1695loop_fork (EV_P)
1480{ 1696{
1481#if EV_USE_PORT 1697#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1699#endif
1489#endif 1705#endif
1490#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1707 infy_fork (EV_A);
1492#endif 1708#endif
1493 1709
1494 if (ev_is_active (&pipeev)) 1710 if (ev_is_active (&pipe_w))
1495 { 1711 {
1496 /* this "locks" the handlers against writing to the pipe */ 1712 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1713 /* while we modify the fd vars */
1498 gotsig = 1; 1714 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1715#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1716 async_pending = 1;
1501#endif 1717#endif
1502 1718
1503 ev_ref (EV_A); 1719 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1720 ev_io_stop (EV_A_ &pipe_w);
1505 1721
1506#if EV_USE_EVENTFD 1722#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1723 if (evfd >= 0)
1508 close (evfd); 1724 close (evfd);
1509#endif 1725#endif
1514 close (evpipe [1]); 1730 close (evpipe [1]);
1515 } 1731 }
1516 1732
1517 evpipe_init (EV_A); 1733 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1734 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1736 }
1521 1737
1522 postfork = 0; 1738 postfork = 0;
1523} 1739}
1524 1740
1525#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1526 1742
1527struct ev_loop * 1743struct ev_loop *
1528ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1529{ 1745{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1747
1532 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1535 1750
1536 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1537 return loop; 1752 return EV_A;
1538 1753
1539 return 0; 1754 return 0;
1540} 1755}
1541 1756
1542void 1757void
1549void 1764void
1550ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1551{ 1766{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1553} 1768}
1769#endif /* multiplicity */
1554 1770
1555#if EV_VERIFY 1771#if EV_VERIFY
1556static void noinline 1772static void noinline
1557verify_watcher (EV_P_ W w) 1773verify_watcher (EV_P_ W w)
1558{ 1774{
1586 verify_watcher (EV_A_ ws [cnt]); 1802 verify_watcher (EV_A_ ws [cnt]);
1587 } 1803 }
1588} 1804}
1589#endif 1805#endif
1590 1806
1807#if EV_MINIMAL < 2
1591void 1808void
1592ev_loop_verify (EV_P) 1809ev_loop_verify (EV_P)
1593{ 1810{
1594#if EV_VERIFY 1811#if EV_VERIFY
1595 int i; 1812 int i;
1644 assert (checkmax >= checkcnt); 1861 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1862 array_verify (EV_A_ (W *)checks, checkcnt);
1646 1863
1647# if 0 1864# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1650# endif 1867# endif
1651#endif 1868#endif
1652} 1869}
1653 1870#endif
1654#endif /* multiplicity */
1655 1871
1656#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1657struct ev_loop * 1873struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1659#else 1875#else
1662#endif 1878#endif
1663{ 1879{
1664 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1665 { 1881 {
1666#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1884#else
1669 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1670#endif 1886#endif
1671 1887
1672 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1689 1905
1690void 1906void
1691ev_default_destroy (void) 1907ev_default_destroy (void)
1692{ 1908{
1693#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1695#endif 1911#endif
1696 1912
1697 ev_default_loop_ptr = 0; 1913 ev_default_loop_ptr = 0;
1698 1914
1699#ifndef _WIN32 1915#ifndef _WIN32
1706 1922
1707void 1923void
1708ev_default_fork (void) 1924ev_default_fork (void)
1709{ 1925{
1710#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1712#endif 1928#endif
1713 1929
1714 postfork = 1; /* must be in line with ev_loop_fork */ 1930 postfork = 1; /* must be in line with ev_loop_fork */
1715} 1931}
1716 1932
1720ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1721{ 1937{
1722 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1723} 1939}
1724 1940
1725void inline_speed 1941unsigned int
1726call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1727{ 1955{
1728 int pri; 1956 int pri;
1729 1957
1730 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1732 { 1960 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1962
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1738 1965
1739 p->w->pending = 0; 1966 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1968 EV_FREQUENT_CHECK;
1742 }
1743 } 1969 }
1744} 1970}
1745 1971
1746#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1747void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1748idle_reify (EV_P) 1976idle_reify (EV_P)
1749{ 1977{
1750 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1751 { 1979 {
1752 int pri; 1980 int pri;
1764 } 1992 }
1765 } 1993 }
1766} 1994}
1767#endif 1995#endif
1768 1996
1769void inline_size 1997/* make timers pending */
1998inline_size void
1770timers_reify (EV_P) 1999timers_reify (EV_P)
1771{ 2000{
1772 EV_FREQUENT_CHECK; 2001 EV_FREQUENT_CHECK;
1773 2002
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2004 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2005 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
1783 ev_at (w) += w->repeat; 2014 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2015 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2016 ev_at (w) = mn_now;
1786 2017
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2019
1789 ANHE_at_cache (timers [HEAP0]); 2020 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1791 } 2028 }
1792 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2030
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 2032 }
1798} 2033}
1799 2034
1800#if EV_PERIODIC_ENABLE 2035#if EV_PERIODIC_ENABLE
1801void inline_size 2036/* make periodics pending */
2037inline_size void
1802periodics_reify (EV_P) 2038periodics_reify (EV_P)
1803{ 2039{
1804 EV_FREQUENT_CHECK; 2040 EV_FREQUENT_CHECK;
1805 2041
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2043 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2044 int feed_count = 0;
1809 2045
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2046 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2056
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2058
1819 ANHE_at_cache (periodics [HEAP0]); 2059 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1821 } 2086 }
1822 else if (w->interval) 2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2088
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2089 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2090 }
1847} 2091}
1848 2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 2095static void noinline
1850periodics_reschedule (EV_P) 2096periodics_reschedule (EV_P)
1851{ 2097{
1852 int i; 2098 int i;
1853 2099
1866 2112
1867 reheap (periodics, periodiccnt); 2113 reheap (periodics, periodiccnt);
1868} 2114}
1869#endif 2115#endif
1870 2116
1871void inline_speed 2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1873{ 2135{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1878 { 2138 {
2139 int i;
1879 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1880 2141
1881 mn_now = get_clock (); 2142 mn_now = get_clock ();
1882 2143
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2171 mn_now = get_clock ();
1911 now_floor = mn_now; 2172 now_floor = mn_now;
1912 } 2173 }
1913 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1916# endif 2179# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2180 }
1920 else 2181 else
1921#endif 2182#endif
1922 { 2183 {
1923 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1924 2185
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1929#endif 2192#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2193 }
1938 2194
1939 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1940 } 2196 }
1941} 2197}
1942 2198
1943void 2199void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1965{ 2201{
2202#if EV_MINIMAL < 2
2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
1966 loop_done = EVUNLOOP_CANCEL; 2208 loop_done = EVUNLOOP_CANCEL;
1967 2209
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2211
1970 do 2212 do
1971 { 2213 {
1972#if EV_VERIFY >= 2 2214#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2215 ev_loop_verify (EV_A);
1986 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1988 if (forkcnt) 2230 if (forkcnt)
1989 { 2231 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1992 } 2234 }
1993#endif 2235#endif
1994 2236
1995 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1997 { 2239 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
2000 } 2242 }
2001 2243
2002 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
2003 break; 2245 break;
2004 2246
2005 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2248 if (expect_false (postfork))
2007 loop_fork (EV_A); 2249 loop_fork (EV_A);
2014 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
2016 2258
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2018 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2019 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
2021 2266
2022 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
2023 2268
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2034 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
2035 } 2280 }
2036#endif 2281#endif
2037 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
2040 2286
2041 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
2042
2043 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2048 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
2050 } 2300 }
2051 } 2301 }
2052 2302
2303#if EV_MINIMAL < 2
2053 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2055 2309
2056 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
2058 } 2312 }
2059 2313
2070 2324
2071 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2074 2328
2075 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
2076 } 2330 }
2077 while (expect_true ( 2331 while (expect_true (
2078 activecnt 2332 activecnt
2079 && !loop_done 2333 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 )); 2335 ));
2082 2336
2083 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
2085} 2343}
2086 2344
2087void 2345void
2088ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
2089{ 2347{
2090 loop_done = how; 2348 loop_done = how;
2091} 2349}
2092 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
2093/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
2094 2390
2095void inline_size 2391inline_size void
2096wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
2097{ 2393{
2098 elem->next = *head; 2394 elem->next = *head;
2099 *head = elem; 2395 *head = elem;
2100} 2396}
2101 2397
2102void inline_size 2398inline_size void
2103wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
2104{ 2400{
2105 while (*head) 2401 while (*head)
2106 { 2402 {
2107 if (*head == elem) 2403 if (expect_true (*head == elem))
2108 { 2404 {
2109 *head = elem->next; 2405 *head = elem->next;
2110 return; 2406 break;
2111 } 2407 }
2112 2408
2113 head = &(*head)->next; 2409 head = &(*head)->next;
2114 } 2410 }
2115} 2411}
2116 2412
2117void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
2118clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
2119{ 2416{
2120 if (w->pending) 2417 if (w->pending)
2121 { 2418 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2420 w->pending = 0;
2124 } 2421 }
2125} 2422}
2126 2423
2127int 2424int
2131 int pending = w_->pending; 2428 int pending = w_->pending;
2132 2429
2133 if (expect_true (pending)) 2430 if (expect_true (pending))
2134 { 2431 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2136 w_->pending = 0; 2434 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2435 return p->events;
2139 } 2436 }
2140 else 2437 else
2141 return 0; 2438 return 0;
2142} 2439}
2143 2440
2144void inline_size 2441inline_size void
2145pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
2146{ 2443{
2147 int pri = w->priority; 2444 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2447 ev_set_priority (w, pri);
2151} 2448}
2152 2449
2153void inline_speed 2450inline_speed void
2154ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
2155{ 2452{
2156 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
2157 w->active = active; 2454 w->active = active;
2158 ev_ref (EV_A); 2455 ev_ref (EV_A);
2159} 2456}
2160 2457
2161void inline_size 2458inline_size void
2162ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
2163{ 2460{
2164 ev_unref (EV_A); 2461 ev_unref (EV_A);
2165 w->active = 0; 2462 w->active = 0;
2166} 2463}
2174 2471
2175 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
2176 return; 2473 return;
2177 2474
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 2477
2181 EV_FREQUENT_CHECK; 2478 EV_FREQUENT_CHECK;
2182 2479
2183 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
2186 2483
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2189 2486
2190 EV_FREQUENT_CHECK; 2487 EV_FREQUENT_CHECK;
2191} 2488}
2192 2489
2193void noinline 2490void noinline
2286 } 2583 }
2287 2584
2288 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2289} 2586}
2290 2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2291#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
2292void noinline 2595void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
2294{ 2597{
2295 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
2362#endif 2665#endif
2363 2666
2364void noinline 2667void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
2366{ 2669{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
2371 return; 2671 return;
2372 2672
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 2674
2375 evpipe_init (EV_A); 2675#if EV_MULTIPLICITY
2676 assert (("libev: tried to attach to a signal from two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 2678
2377 EV_FREQUENT_CHECK; 2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2378 2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2379 { 2686 {
2380#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 2690
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
2387 2694
2388#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 2696
2390#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2391 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
2392 2713
2393 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 2716
2396 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
2397 { 2721 {
2398#if _WIN32 2722# if _WIN32
2399 signal (w->signum, ev_sighandler); 2723 signal (w->signum, ev_sighandler);
2400#else 2724# else
2401 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
2402 sa.sa_handler = ev_sighandler; 2729 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2406#endif 2737#endif
2407 } 2738 }
2408 2739
2409 EV_FREQUENT_CHECK; 2740 EV_FREQUENT_CHECK;
2410} 2741}
2411 2742
2412void noinline 2743void noinline
2420 2751
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2423 2754
2424 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
2425 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2426 2773
2427 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
2428} 2775}
2429 2776
2430void 2777void
2591 2938
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594} 2941}
2595 2942
2596void inline_size 2943inline_size void
2597check_2625 (EV_P) 2944check_2625 (EV_P)
2598{ 2945{
2599 /* kernels < 2.6.25 are borked 2946 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 2948 */
2614 return; 2961 return;
2615 2962
2616 fs_2625 = 1; 2963 fs_2625 = 1;
2617} 2964}
2618 2965
2619void inline_size 2966inline_size void
2620infy_init (EV_P) 2967infy_init (EV_P)
2621{ 2968{
2622 if (fs_fd != -2) 2969 if (fs_fd != -2)
2623 return; 2970 return;
2624 2971
2634 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
2636 } 2983 }
2637} 2984}
2638 2985
2639void inline_size 2986inline_size void
2640infy_fork (EV_P) 2987infy_fork (EV_P)
2641{ 2988{
2642 int slot; 2989 int slot;
2643 2990
2644 if (fs_fd < 0) 2991 if (fs_fd < 0)
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 3258{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 3260
2914 { 3261 {
2915 struct ev_loop *loop = w->other; 3262 EV_P = w->other;
2916 3263
2917 while (fdchangecnt) 3264 while (fdchangecnt)
2918 { 3265 {
2919 fd_reify (EV_A); 3266 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 3276
2930 ev_embed_stop (EV_A_ w); 3277 ev_embed_stop (EV_A_ w);
2931 3278
2932 { 3279 {
2933 struct ev_loop *loop = w->other; 3280 EV_P = w->other;
2934 3281
2935 ev_loop_fork (EV_A); 3282 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 } 3284 }
2938 3285
2952{ 3299{
2953 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2954 return; 3301 return;
2955 3302
2956 { 3303 {
2957 struct ev_loop *loop = w->other; 3304 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 3307 }
2961 3308
2962 EV_FREQUENT_CHECK; 3309 EV_FREQUENT_CHECK;
3074 3421
3075void 3422void
3076ev_async_send (EV_P_ ev_async *w) 3423ev_async_send (EV_P_ ev_async *w)
3077{ 3424{
3078 w->sent = 1; 3425 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 3426 evpipe_write (EV_A_ &async_pending);
3080} 3427}
3081#endif 3428#endif
3082 3429
3083/*****************************************************************************/ 3430/*****************************************************************************/
3084 3431
3146 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
3148 } 3495 }
3149} 3496}
3150 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
3151#if EV_MULTIPLICITY 3606#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 3607 #include "ev_wrap.h"
3153#endif 3608#endif
3154 3609
3155#ifdef __cplusplus 3610#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines