ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.280 by root, Sat Mar 14 04:45:39 2009 UTC vs.
Revision 1.354 by root, Fri Oct 22 09:24:11 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
57# endif 53# endif
58# ifndef EV_USE_MONOTONIC 54# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 55# define EV_USE_MONOTONIC 1
60# endif 56# endif
61# endif 57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
62# endif 60# endif
63 61
64# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
77# endif 75# endif
78# endif 76# endif
79 77
78# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
83# else 82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
86# endif 94# endif
87 95
96# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 99# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 100# else
101# undef EV_USE_POLL
100# define EV_USE_POLL 0 102# define EV_USE_POLL 0
101# endif
102# endif 103# endif
103 104
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
107# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
110# endif 112# endif
111 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
118# endif 121# endif
119 122
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
123# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
126# endif 130# endif
127 131
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
134# endif 139# endif
135 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
142# endif 157# endif
143 158
144#endif 159#endif
145 160
146#include <math.h> 161#include <math.h>
147#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
148#include <fcntl.h> 164#include <fcntl.h>
149#include <stddef.h> 165#include <stddef.h>
150 166
151#include <stdio.h> 167#include <stdio.h>
152 168
153#include <assert.h> 169#include <assert.h>
154#include <errno.h> 170#include <errno.h>
155#include <sys/types.h> 171#include <sys/types.h>
156#include <time.h> 172#include <time.h>
173#include <limits.h>
157 174
158#include <signal.h> 175#include <signal.h>
159 176
160#ifdef EV_H 177#ifdef EV_H
161# include EV_H 178# include EV_H
162#else 179#else
163# include "ev.h" 180# include "ev.h"
164#endif 181#endif
182
183EV_CPP(extern "C" {)
165 184
166#ifndef _WIN32 185#ifndef _WIN32
167# include <sys/time.h> 186# include <sys/time.h>
168# include <sys/wait.h> 187# include <sys/wait.h>
169# include <unistd.h> 188# include <unistd.h>
172# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 192# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
176# endif 195# endif
196# undef EV_AVOID_STDIO
177#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
178 206
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
180 236
181#ifndef EV_USE_CLOCK_SYSCALL 237#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 238# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 240# else
185# define EV_USE_CLOCK_SYSCALL 0 241# define EV_USE_CLOCK_SYSCALL 0
186# endif 242# endif
187#endif 243#endif
188 244
189#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 248# else
193# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
194# endif 250# endif
195#endif 251#endif
196 252
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 255#endif
200 256
201#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 260# else
205# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
206# endif 262# endif
207#endif 263#endif
208 264
209#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 267#endif
212 268
213#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
214# ifdef _WIN32 270# ifdef _WIN32
215# define EV_USE_POLL 0 271# define EV_USE_POLL 0
216# else 272# else
217# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 274# endif
219#endif 275#endif
220 276
221#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 280# else
225# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
226# endif 282# endif
227#endif 283#endif
228 284
234# define EV_USE_PORT 0 290# define EV_USE_PORT 0
235#endif 291#endif
236 292
237#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 296# else
241# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
242# endif 298# endif
243#endif 299#endif
244 300
245#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 303#endif
252 304
253#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 307#endif
260 308
261#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 312# else
265# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
266# endif 322# endif
267#endif 323#endif
268 324
269#if 0 /* debugging */ 325#if 0 /* debugging */
270# define EV_VERIFY 3 326# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
273#endif 329#endif
274 330
275#ifndef EV_VERIFY 331#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 333#endif
278 334
279#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 337#endif
282 338
283#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
285#endif 355#endif
286 356
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
288 364
289#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
292#endif 368#endif
320 396
321#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 398# include <winsock.h>
323#endif 399#endif
324 400
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 401#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 403# include <stdint.h>
337# ifdef __cplusplus 404# ifndef EFD_NONBLOCK
338extern "C" { 405# define EFD_NONBLOCK O_NONBLOCK
339# endif 406# endif
340int eventfd (unsigned int initval, int flags); 407# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 408# ifdef O_CLOEXEC
342} 409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
343# endif 413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
344#endif 437#endif
345 438
346/**/ 439/**/
347 440
348#if EV_VERIFY >= 3 441#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 442# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 443#else
351# define EV_FREQUENT_CHECK do { } while (0) 444# define EV_FREQUENT_CHECK do { } while (0)
352#endif 445#endif
353 446
354/* 447/*
361 */ 454 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 456
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 462
368#if __GNUC__ >= 4 463#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
371#else 466#else
378 473
379#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 476#define inline_size static inline
382 477
383#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
384# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
385#else 488#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
391 491
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
394 494
395typedef ev_watcher *W; 495typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 499#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 500#define ev_at(w) ((WT)(w))->at
401 501
402#if EV_USE_REALTIME 502#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 506#endif
407 507
408#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 510#endif
411 511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
521
412#ifdef _WIN32 522#ifdef _WIN32
413# include "ev_win32.c" 523# include "ev_win32.c"
414#endif 524#endif
415 525
416/*****************************************************************************/ 526/*****************************************************************************/
527
528#if EV_AVOID_STDIO
529static void noinline
530ev_printerr (const char *msg)
531{
532 write (STDERR_FILENO, msg, strlen (msg));
533}
534#endif
417 535
418static void (*syserr_cb)(const char *msg); 536static void (*syserr_cb)(const char *msg);
419 537
420void 538void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 539ev_set_syserr_cb (void (*cb)(const char *msg))
431 549
432 if (syserr_cb) 550 if (syserr_cb)
433 syserr_cb (msg); 551 syserr_cb (msg);
434 else 552 else
435 { 553 {
554#if EV_AVOID_STDIO
555 const char *err = strerror (errno);
556
557 ev_printerr (msg);
558 ev_printerr (": ");
559 ev_printerr (err);
560 ev_printerr ("\n");
561#else
436 perror (msg); 562 perror (msg);
563#endif
437 abort (); 564 abort ();
438 } 565 }
439} 566}
440 567
441static void * 568static void *
442ev_realloc_emul (void *ptr, long size) 569ev_realloc_emul (void *ptr, long size)
443{ 570{
571#if __GLIBC__
572 return realloc (ptr, size);
573#else
444 /* some systems, notably openbsd and darwin, fail to properly 574 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 575 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 576 * the single unix specification, so work around them here.
447 */ 577 */
448 578
449 if (size) 579 if (size)
450 return realloc (ptr, size); 580 return realloc (ptr, size);
451 581
452 free (ptr); 582 free (ptr);
453 return 0; 583 return 0;
584#endif
454} 585}
455 586
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 587static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 588
458void 589void
466{ 597{
467 ptr = alloc (ptr, size); 598 ptr = alloc (ptr, size);
468 599
469 if (!ptr && size) 600 if (!ptr && size)
470 { 601 {
602#if EV_AVOID_STDIO
603 ev_printerr ("libev: memory allocation failed, aborting.\n");
604#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 605 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
606#endif
472 abort (); 607 abort ();
473 } 608 }
474 609
475 return ptr; 610 return ptr;
476} 611}
478#define ev_malloc(size) ev_realloc (0, (size)) 613#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 614#define ev_free(ptr) ev_realloc ((ptr), 0)
480 615
481/*****************************************************************************/ 616/*****************************************************************************/
482 617
618/* set in reify when reification needed */
619#define EV_ANFD_REIFY 1
620
621/* file descriptor info structure */
483typedef struct 622typedef struct
484{ 623{
485 WL head; 624 WL head;
486 unsigned char events; 625 unsigned char events; /* the events watched for */
487 unsigned char reify; 626 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 627 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 628 unsigned char unused;
490#if EV_USE_EPOLL 629#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 630 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 631#endif
493#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 633 SOCKET handle;
495#endif 634#endif
496} ANFD; 635} ANFD;
497 636
637/* stores the pending event set for a given watcher */
498typedef struct 638typedef struct
499{ 639{
500 W w; 640 W w;
501 int events; 641 int events; /* the pending event set for the given watcher */
502} ANPENDING; 642} ANPENDING;
503 643
504#if EV_USE_INOTIFY 644#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 645/* hash table entry per inotify-id */
506typedef struct 646typedef struct
509} ANFS; 649} ANFS;
510#endif 650#endif
511 651
512/* Heap Entry */ 652/* Heap Entry */
513#if EV_HEAP_CACHE_AT 653#if EV_HEAP_CACHE_AT
654 /* a heap element */
514 typedef struct { 655 typedef struct {
515 ev_tstamp at; 656 ev_tstamp at;
516 WT w; 657 WT w;
517 } ANHE; 658 } ANHE;
518 659
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 660 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 661 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 662 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 663#else
664 /* a heap element */
523 typedef WT ANHE; 665 typedef WT ANHE;
524 666
525 #define ANHE_w(he) (he) 667 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 668 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 669 #define ANHE_at_cache(he)
551 693
552 static int ev_default_loop_ptr; 694 static int ev_default_loop_ptr;
553 695
554#endif 696#endif
555 697
698#if EV_FEATURE_API
699# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
700# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
701# define EV_INVOKE_PENDING invoke_cb (EV_A)
702#else
703# define EV_RELEASE_CB (void)0
704# define EV_ACQUIRE_CB (void)0
705# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
706#endif
707
708#define EVBREAK_RECURSE 0x80
709
556/*****************************************************************************/ 710/*****************************************************************************/
557 711
712#ifndef EV_HAVE_EV_TIME
558ev_tstamp 713ev_tstamp
559ev_time (void) 714ev_time (void)
560{ 715{
561#if EV_USE_REALTIME 716#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 717 if (expect_true (have_realtime))
569 724
570 struct timeval tv; 725 struct timeval tv;
571 gettimeofday (&tv, 0); 726 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 727 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 728}
729#endif
574 730
575ev_tstamp inline_size 731inline_size ev_tstamp
576get_clock (void) 732get_clock (void)
577{ 733{
578#if EV_USE_MONOTONIC 734#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 735 if (expect_true (have_monotonic))
580 { 736 {
601 if (delay > 0.) 757 if (delay > 0.)
602 { 758 {
603#if EV_USE_NANOSLEEP 759#if EV_USE_NANOSLEEP
604 struct timespec ts; 760 struct timespec ts;
605 761
606 ts.tv_sec = (time_t)delay; 762 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 763 nanosleep (&ts, 0);
610#elif defined(_WIN32) 764#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3)); 765 Sleep ((unsigned long)(delay * 1e3));
612#else 766#else
613 struct timeval tv; 767 struct timeval tv;
614 768
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 770 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 771 /* by older ones */
772 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 773 select (0, 0, 0, 0, &tv);
622#endif 774#endif
623 } 775 }
624} 776}
625 777
626/*****************************************************************************/ 778/*****************************************************************************/
627 779
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 780#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 781
630int inline_size 782/* find a suitable new size for the given array, */
783/* hopefully by rounding to a nice-to-malloc size */
784inline_size int
631array_nextsize (int elem, int cur, int cnt) 785array_nextsize (int elem, int cur, int cnt)
632{ 786{
633 int ncur = cur + 1; 787 int ncur = cur + 1;
634 788
635 do 789 do
680#define array_free(stem, idx) \ 834#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 835 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 836
683/*****************************************************************************/ 837/*****************************************************************************/
684 838
839/* dummy callback for pending events */
840static void noinline
841pendingcb (EV_P_ ev_prepare *w, int revents)
842{
843}
844
685void noinline 845void noinline
686ev_feed_event (EV_P_ void *w, int revents) 846ev_feed_event (EV_P_ void *w, int revents)
687{ 847{
688 W w_ = (W)w; 848 W w_ = (W)w;
689 int pri = ABSPRI (w_); 849 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 857 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 858 pendings [pri][w_->pending - 1].events = revents;
699 } 859 }
700} 860}
701 861
702void inline_speed 862inline_speed void
863feed_reverse (EV_P_ W w)
864{
865 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
866 rfeeds [rfeedcnt++] = w;
867}
868
869inline_size void
870feed_reverse_done (EV_P_ int revents)
871{
872 do
873 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
874 while (rfeedcnt);
875}
876
877inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 878queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 879{
705 int i; 880 int i;
706 881
707 for (i = 0; i < eventcnt; ++i) 882 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 883 ev_feed_event (EV_A_ events [i], type);
709} 884}
710 885
711/*****************************************************************************/ 886/*****************************************************************************/
712 887
713void inline_speed 888inline_speed void
714fd_event (EV_P_ int fd, int revents) 889fd_event_nocheck (EV_P_ int fd, int revents)
715{ 890{
716 ANFD *anfd = anfds + fd; 891 ANFD *anfd = anfds + fd;
717 ev_io *w; 892 ev_io *w;
718 893
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 898 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 899 ev_feed_event (EV_A_ (W)w, ev);
725 } 900 }
726} 901}
727 902
903/* do not submit kernel events for fds that have reify set */
904/* because that means they changed while we were polling for new events */
905inline_speed void
906fd_event (EV_P_ int fd, int revents)
907{
908 ANFD *anfd = anfds + fd;
909
910 if (expect_true (!anfd->reify))
911 fd_event_nocheck (EV_A_ fd, revents);
912}
913
728void 914void
729ev_feed_fd_event (EV_P_ int fd, int revents) 915ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 916{
731 if (fd >= 0 && fd < anfdmax) 917 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 918 fd_event_nocheck (EV_A_ fd, revents);
733} 919}
734 920
735void inline_size 921/* make sure the external fd watch events are in-sync */
922/* with the kernel/libev internal state */
923inline_size void
736fd_reify (EV_P) 924fd_reify (EV_P)
737{ 925{
738 int i; 926 int i;
739 927
740 for (i = 0; i < fdchangecnt; ++i) 928 for (i = 0; i < fdchangecnt; ++i)
741 { 929 {
742 int fd = fdchanges [i]; 930 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 931 ANFD *anfd = anfds + fd;
744 ev_io *w; 932 ev_io *w;
745 933
746 unsigned char events = 0; 934 unsigned char o_events = anfd->events;
935 unsigned char o_reify = anfd->reify;
747 936
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 937 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 938
751#if EV_SELECT_IS_WINSOCKET 939#if EV_SELECT_IS_WINSOCKET
752 if (events) 940 if (o_reify & EV__IOFDSET)
753 { 941 {
754 unsigned long arg; 942 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 943 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 944 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 } 945 }
762#endif 946#endif
763 947
948 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
764 { 949 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events; 950 anfd->events = 0;
770 951
771 if (o_events != events || o_reify & EV_IOFDSET) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
953 anfd->events |= (unsigned char)w->events;
954
955 if (o_events != anfd->events)
956 o_reify = EV__IOFDSET; /* actually |= */
957 }
958
959 if (o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 960 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 961 }
775 962
776 fdchangecnt = 0; 963 fdchangecnt = 0;
777} 964}
778 965
779void inline_size 966/* something about the given fd changed */
967inline_size void
780fd_change (EV_P_ int fd, int flags) 968fd_change (EV_P_ int fd, int flags)
781{ 969{
782 unsigned char reify = anfds [fd].reify; 970 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 971 anfds [fd].reify |= flags;
784 972
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 976 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 977 fdchanges [fdchangecnt - 1] = fd;
790 } 978 }
791} 979}
792 980
793void inline_speed 981/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
982inline_speed void
794fd_kill (EV_P_ int fd) 983fd_kill (EV_P_ int fd)
795{ 984{
796 ev_io *w; 985 ev_io *w;
797 986
798 while ((w = (ev_io *)anfds [fd].head)) 987 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 989 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 990 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 991 }
803} 992}
804 993
805int inline_size 994/* check whether the given fd is actually valid, for error recovery */
995inline_size int
806fd_valid (int fd) 996fd_valid (int fd)
807{ 997{
808#ifdef _WIN32 998#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 999 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1000#else
811 return fcntl (fd, F_GETFD) != -1; 1001 return fcntl (fd, F_GETFD) != -1;
812#endif 1002#endif
813} 1003}
814 1004
832 1022
833 for (fd = anfdmax; fd--; ) 1023 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1024 if (anfds [fd].events)
835 { 1025 {
836 fd_kill (EV_A_ fd); 1026 fd_kill (EV_A_ fd);
837 return; 1027 break;
838 } 1028 }
839} 1029}
840 1030
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1031/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1032static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1037 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1038 if (anfds [fd].events)
849 { 1039 {
850 anfds [fd].events = 0; 1040 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1041 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1042 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1043 }
854} 1044}
855 1045
1046/* used to prepare libev internal fd's */
1047/* this is not fork-safe */
1048inline_speed void
1049fd_intern (int fd)
1050{
1051#ifdef _WIN32
1052 unsigned long arg = 1;
1053 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1054#else
1055 fcntl (fd, F_SETFD, FD_CLOEXEC);
1056 fcntl (fd, F_SETFL, O_NONBLOCK);
1057#endif
1058}
1059
856/*****************************************************************************/ 1060/*****************************************************************************/
857 1061
858/* 1062/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1063 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1064 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1065 * the branching factor of the d-tree.
862 */ 1066 */
863 1067
864/* 1068/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1077#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1078#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1079#define UPHEAP_DONE(p,k) ((p) == (k))
876 1080
877/* away from the root */ 1081/* away from the root */
878void inline_speed 1082inline_speed void
879downheap (ANHE *heap, int N, int k) 1083downheap (ANHE *heap, int N, int k)
880{ 1084{
881 ANHE he = heap [k]; 1085 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1086 ANHE *E = heap + N + HEAP0;
883 1087
923#define HEAP0 1 1127#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1128#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1129#define UPHEAP_DONE(p,k) (!(p))
926 1130
927/* away from the root */ 1131/* away from the root */
928void inline_speed 1132inline_speed void
929downheap (ANHE *heap, int N, int k) 1133downheap (ANHE *heap, int N, int k)
930{ 1134{
931 ANHE he = heap [k]; 1135 ANHE he = heap [k];
932 1136
933 for (;;) 1137 for (;;)
934 { 1138 {
935 int c = k << 1; 1139 int c = k << 1;
936 1140
937 if (c > N + HEAP0 - 1) 1141 if (c >= N + HEAP0)
938 break; 1142 break;
939 1143
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1144 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1145 ? 1 : 0;
942 1146
953 ev_active (ANHE_w (he)) = k; 1157 ev_active (ANHE_w (he)) = k;
954} 1158}
955#endif 1159#endif
956 1160
957/* towards the root */ 1161/* towards the root */
958void inline_speed 1162inline_speed void
959upheap (ANHE *heap, int k) 1163upheap (ANHE *heap, int k)
960{ 1164{
961 ANHE he = heap [k]; 1165 ANHE he = heap [k];
962 1166
963 for (;;) 1167 for (;;)
974 1178
975 heap [k] = he; 1179 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1180 ev_active (ANHE_w (he)) = k;
977} 1181}
978 1182
979void inline_size 1183/* move an element suitably so it is in a correct place */
1184inline_size void
980adjustheap (ANHE *heap, int N, int k) 1185adjustheap (ANHE *heap, int N, int k)
981{ 1186{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1187 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1188 upheap (heap, k);
984 else 1189 else
985 downheap (heap, N, k); 1190 downheap (heap, N, k);
986} 1191}
987 1192
988/* rebuild the heap: this function is used only once and executed rarely */ 1193/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1194inline_size void
990reheap (ANHE *heap, int N) 1195reheap (ANHE *heap, int N)
991{ 1196{
992 int i; 1197 int i;
993 1198
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1199 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1202 upheap (heap, i + HEAP0);
998} 1203}
999 1204
1000/*****************************************************************************/ 1205/*****************************************************************************/
1001 1206
1207/* associate signal watchers to a signal signal */
1002typedef struct 1208typedef struct
1003{ 1209{
1210 EV_ATOMIC_T pending;
1211#if EV_MULTIPLICITY
1212 EV_P;
1213#endif
1004 WL head; 1214 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1215} ANSIG;
1007 1216
1008static ANSIG *signals; 1217static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1218
1013/*****************************************************************************/ 1219/*****************************************************************************/
1014 1220
1015void inline_speed 1221#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1222
1027static void noinline 1223static void noinline
1028evpipe_init (EV_P) 1224evpipe_init (EV_P)
1029{ 1225{
1030 if (!ev_is_active (&pipeev)) 1226 if (!ev_is_active (&pipe_w))
1031 { 1227 {
1032#if EV_USE_EVENTFD 1228# if EV_USE_EVENTFD
1229 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1230 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1231 evfd = eventfd (0, 0);
1232
1233 if (evfd >= 0)
1034 { 1234 {
1035 evpipe [0] = -1; 1235 evpipe [0] = -1;
1036 fd_intern (evfd); 1236 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1237 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1238 }
1039 else 1239 else
1040#endif 1240# endif
1041 { 1241 {
1042 while (pipe (evpipe)) 1242 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1243 ev_syserr ("(libev) error creating signal/async pipe");
1044 1244
1045 fd_intern (evpipe [0]); 1245 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1246 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1247 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1248 }
1049 1249
1050 ev_io_start (EV_A_ &pipeev); 1250 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1251 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1252 }
1053} 1253}
1054 1254
1055void inline_size 1255inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1256evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1257{
1058 if (!*flag) 1258 if (!*flag)
1059 { 1259 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1260 int old_errno = errno; /* save errno because write might clobber it */
1261 char dummy;
1061 1262
1062 *flag = 1; 1263 *flag = 1;
1063 1264
1064#if EV_USE_EVENTFD 1265#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1266 if (evfd >= 0)
1067 uint64_t counter = 1; 1268 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1269 write (evfd, &counter, sizeof (uint64_t));
1069 } 1270 }
1070 else 1271 else
1071#endif 1272#endif
1273 /* win32 people keep sending patches that change this write() to send() */
1274 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1275 /* so when you think this write should be a send instead, please find out */
1276 /* where your send() is from - it's definitely not the microsoft send, and */
1277 /* tell me. thank you. */
1072 write (evpipe [1], &old_errno, 1); 1278 write (evpipe [1], &dummy, 1);
1073 1279
1074 errno = old_errno; 1280 errno = old_errno;
1075 } 1281 }
1076} 1282}
1077 1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
1078static void 1286static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1287pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1288{
1289 int i;
1290
1081#if EV_USE_EVENTFD 1291#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1292 if (evfd >= 0)
1083 { 1293 {
1084 uint64_t counter; 1294 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1295 read (evfd, &counter, sizeof (uint64_t));
1086 } 1296 }
1087 else 1297 else
1088#endif 1298#endif
1089 { 1299 {
1090 char dummy; 1300 char dummy;
1301 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1091 read (evpipe [0], &dummy, 1); 1302 read (evpipe [0], &dummy, 1);
1092 } 1303 }
1093 1304
1094 if (gotsig && ev_is_default_loop (EV_A)) 1305 if (sig_pending)
1095 { 1306 {
1096 int signum; 1307 sig_pending = 0;
1097 gotsig = 0;
1098 1308
1099 for (signum = signalmax; signum--; ) 1309 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1310 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1311 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1312 }
1103 1313
1104#if EV_ASYNC_ENABLE 1314#if EV_ASYNC_ENABLE
1105 if (gotasync) 1315 if (async_pending)
1106 { 1316 {
1107 int i; 1317 async_pending = 0;
1108 gotasync = 0;
1109 1318
1110 for (i = asynccnt; i--; ) 1319 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1320 if (asyncs [i]->sent)
1112 { 1321 {
1113 asyncs [i]->sent = 0; 1322 asyncs [i]->sent = 0;
1121 1330
1122static void 1331static void
1123ev_sighandler (int signum) 1332ev_sighandler (int signum)
1124{ 1333{
1125#if EV_MULTIPLICITY 1334#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1335 EV_P = signals [signum - 1].loop;
1127#endif 1336#endif
1128 1337
1129#if _WIN32 1338#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1339 signal (signum, ev_sighandler);
1131#endif 1340#endif
1132 1341
1133 signals [signum - 1].gotsig = 1; 1342 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1343 evpipe_write (EV_A_ &sig_pending);
1135} 1344}
1136 1345
1137void noinline 1346void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1347ev_feed_signal_event (EV_P_ int signum)
1139{ 1348{
1140 WL w; 1349 WL w;
1141 1350
1351 if (expect_false (signum <= 0 || signum > EV_NSIG))
1352 return;
1353
1354 --signum;
1355
1142#if EV_MULTIPLICITY 1356#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1357 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1358 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1359
1146 --signum; 1360 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1361 return;
1362#endif
1150 1363
1151 signals [signum].gotsig = 0; 1364 signals [signum].pending = 0;
1152 1365
1153 for (w = signals [signum].head; w; w = w->next) 1366 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1368}
1156 1369
1370#if EV_USE_SIGNALFD
1371static void
1372sigfdcb (EV_P_ ev_io *iow, int revents)
1373{
1374 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1375
1376 for (;;)
1377 {
1378 ssize_t res = read (sigfd, si, sizeof (si));
1379
1380 /* not ISO-C, as res might be -1, but works with SuS */
1381 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1382 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1383
1384 if (res < (ssize_t)sizeof (si))
1385 break;
1386 }
1387}
1388#endif
1389
1390#endif
1391
1157/*****************************************************************************/ 1392/*****************************************************************************/
1158 1393
1394#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1395static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1396
1163static ev_signal childev; 1397static ev_signal childev;
1164 1398
1165#ifndef WIFCONTINUED 1399#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1400# define WIFCONTINUED(status) 0
1167#endif 1401#endif
1168 1402
1169void inline_speed 1403/* handle a single child status event */
1404inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1405child_reap (EV_P_ int chain, int pid, int status)
1171{ 1406{
1172 ev_child *w; 1407 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1408 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1409
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1410 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1411 {
1177 if ((w->pid == pid || !w->pid) 1412 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1413 && (!traced || (w->flags & 1)))
1179 { 1414 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1415 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1422
1188#ifndef WCONTINUED 1423#ifndef WCONTINUED
1189# define WCONTINUED 0 1424# define WCONTINUED 0
1190#endif 1425#endif
1191 1426
1427/* called on sigchld etc., calls waitpid */
1192static void 1428static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1429childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1430{
1195 int pid, status; 1431 int pid, status;
1196 1432
1204 /* make sure we are called again until all children have been reaped */ 1440 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1441 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1442 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1443
1208 child_reap (EV_A_ pid, pid, status); 1444 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1445 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1446 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1447}
1212 1448
1213#endif 1449#endif
1214 1450
1281#ifdef __APPLE__ 1517#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1518 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1521#endif
1522#ifdef __FreeBSD__
1523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1524#endif
1286 1525
1287 return flags; 1526 return flags;
1288} 1527}
1289 1528
1290unsigned int 1529unsigned int
1303ev_backend (EV_P) 1542ev_backend (EV_P)
1304{ 1543{
1305 return backend; 1544 return backend;
1306} 1545}
1307 1546
1547#if EV_FEATURE_API
1308unsigned int 1548unsigned int
1309ev_loop_count (EV_P) 1549ev_iteration (EV_P)
1310{ 1550{
1311 return loop_count; 1551 return loop_count;
1312} 1552}
1313 1553
1554unsigned int
1555ev_depth (EV_P)
1556{
1557 return loop_depth;
1558}
1559
1314void 1560void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1561ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1562{
1317 io_blocktime = interval; 1563 io_blocktime = interval;
1318} 1564}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1568{
1323 timeout_blocktime = interval; 1569 timeout_blocktime = interval;
1324} 1570}
1325 1571
1572void
1573ev_set_userdata (EV_P_ void *data)
1574{
1575 userdata = data;
1576}
1577
1578void *
1579ev_userdata (EV_P)
1580{
1581 return userdata;
1582}
1583
1584void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1585{
1586 invoke_cb = invoke_pending_cb;
1587}
1588
1589void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1590{
1591 release_cb = release;
1592 acquire_cb = acquire;
1593}
1594#endif
1595
1596/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1597static void noinline
1327loop_init (EV_P_ unsigned int flags) 1598loop_init (EV_P_ unsigned int flags)
1328{ 1599{
1329 if (!backend) 1600 if (!backend)
1330 { 1601 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1617 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1618 have_monotonic = 1;
1348 } 1619 }
1349#endif 1620#endif
1350 1621
1622 /* pid check not overridable via env */
1623#ifndef _WIN32
1624 if (flags & EVFLAG_FORKCHECK)
1625 curpid = getpid ();
1626#endif
1627
1628 if (!(flags & EVFLAG_NOENV)
1629 && !enable_secure ()
1630 && getenv ("LIBEV_FLAGS"))
1631 flags = atoi (getenv ("LIBEV_FLAGS"));
1632
1351 ev_rt_now = ev_time (); 1633 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1634 mn_now = get_clock ();
1353 now_floor = mn_now; 1635 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1636 rtmn_diff = ev_rt_now - mn_now;
1637#if EV_FEATURE_API
1638 invoke_cb = ev_invoke_pending;
1639#endif
1355 1640
1356 io_blocktime = 0.; 1641 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1642 timeout_blocktime = 0.;
1358 backend = 0; 1643 backend = 0;
1359 backend_fd = -1; 1644 backend_fd = -1;
1360 gotasync = 0; 1645 sig_pending = 0;
1646#if EV_ASYNC_ENABLE
1647 async_pending = 0;
1648#endif
1361#if EV_USE_INOTIFY 1649#if EV_USE_INOTIFY
1362 fs_fd = -2; 1650 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1651#endif
1364 1652#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1653 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1654#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1655
1376 if (!(flags & 0x0000ffffU)) 1656 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1657 flags |= ev_recommended_backends ();
1378 1658
1379#if EV_USE_PORT 1659#if EV_USE_PORT
1390#endif 1670#endif
1391#if EV_USE_SELECT 1671#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1672 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1673#endif
1394 1674
1675 ev_prepare_init (&pending_w, pendingcb);
1676
1677#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1678 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1679 ev_set_priority (&pipe_w, EV_MAXPRI);
1680#endif
1397 } 1681 }
1398} 1682}
1399 1683
1684/* free up a loop structure */
1400static void noinline 1685static void noinline
1401loop_destroy (EV_P) 1686loop_destroy (EV_P)
1402{ 1687{
1403 int i; 1688 int i;
1404 1689
1405 if (ev_is_active (&pipeev)) 1690 if (ev_is_active (&pipe_w))
1406 { 1691 {
1407 ev_ref (EV_A); /* signal watcher */ 1692 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1693 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1694
1410#if EV_USE_EVENTFD 1695#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1696 if (evfd >= 0)
1412 close (evfd); 1697 close (evfd);
1413#endif 1698#endif
1414 1699
1415 if (evpipe [0] >= 0) 1700 if (evpipe [0] >= 0)
1416 { 1701 {
1417 close (evpipe [0]); 1702 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1703 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1704 }
1420 } 1705 }
1706
1707#if EV_USE_SIGNALFD
1708 if (ev_is_active (&sigfd_w))
1709 close (sigfd);
1710#endif
1421 1711
1422#if EV_USE_INOTIFY 1712#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1713 if (fs_fd >= 0)
1424 close (fs_fd); 1714 close (fs_fd);
1425#endif 1715#endif
1449#if EV_IDLE_ENABLE 1739#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1740 array_free (idle, [i]);
1451#endif 1741#endif
1452 } 1742 }
1453 1743
1454 ev_free (anfds); anfdmax = 0; 1744 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1745
1456 /* have to use the microsoft-never-gets-it-right macro */ 1746 /* have to use the microsoft-never-gets-it-right macro */
1747 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1748 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1749 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1750#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1751 array_free (periodic, EMPTY);
1461#endif 1752#endif
1470 1761
1471 backend = 0; 1762 backend = 0;
1472} 1763}
1473 1764
1474#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1766inline_size void infy_fork (EV_P);
1476#endif 1767#endif
1477 1768
1478void inline_size 1769inline_size void
1479loop_fork (EV_P) 1770loop_fork (EV_P)
1480{ 1771{
1481#if EV_USE_PORT 1772#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1773 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1774#endif
1489#endif 1780#endif
1490#if EV_USE_INOTIFY 1781#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1782 infy_fork (EV_A);
1492#endif 1783#endif
1493 1784
1494 if (ev_is_active (&pipeev)) 1785 if (ev_is_active (&pipe_w))
1495 { 1786 {
1496 /* this "locks" the handlers against writing to the pipe */ 1787 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1788 /* while we modify the fd vars */
1498 gotsig = 1; 1789 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1790#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1791 async_pending = 1;
1501#endif 1792#endif
1502 1793
1503 ev_ref (EV_A); 1794 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1795 ev_io_stop (EV_A_ &pipe_w);
1505 1796
1506#if EV_USE_EVENTFD 1797#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1798 if (evfd >= 0)
1508 close (evfd); 1799 close (evfd);
1509#endif 1800#endif
1510 1801
1511 if (evpipe [0] >= 0) 1802 if (evpipe [0] >= 0)
1512 { 1803 {
1513 close (evpipe [0]); 1804 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1805 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1806 }
1516 1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1809 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1810 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1811 pipecb (EV_A_ &pipe_w, EV_READ);
1812#endif
1520 } 1813 }
1521 1814
1522 postfork = 0; 1815 postfork = 0;
1523} 1816}
1524 1817
1525#if EV_MULTIPLICITY 1818#if EV_MULTIPLICITY
1526 1819
1527struct ev_loop * 1820struct ev_loop *
1528ev_loop_new (unsigned int flags) 1821ev_loop_new (unsigned int flags)
1529{ 1822{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1823 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1824
1532 memset (loop, 0, sizeof (struct ev_loop)); 1825 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1826 loop_init (EV_A_ flags);
1535 1827
1536 if (ev_backend (EV_A)) 1828 if (ev_backend (EV_A))
1537 return loop; 1829 return EV_A;
1538 1830
1539 return 0; 1831 return 0;
1540} 1832}
1541 1833
1542void 1834void
1549void 1841void
1550ev_loop_fork (EV_P) 1842ev_loop_fork (EV_P)
1551{ 1843{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1844 postfork = 1; /* must be in line with ev_default_fork */
1553} 1845}
1846#endif /* multiplicity */
1554 1847
1555#if EV_VERIFY 1848#if EV_VERIFY
1556static void noinline 1849static void noinline
1557verify_watcher (EV_P_ W w) 1850verify_watcher (EV_P_ W w)
1558{ 1851{
1586 verify_watcher (EV_A_ ws [cnt]); 1879 verify_watcher (EV_A_ ws [cnt]);
1587 } 1880 }
1588} 1881}
1589#endif 1882#endif
1590 1883
1884#if EV_FEATURE_API
1591void 1885void
1592ev_loop_verify (EV_P) 1886ev_verify (EV_P)
1593{ 1887{
1594#if EV_VERIFY 1888#if EV_VERIFY
1595 int i; 1889 int i;
1596 WL w; 1890 WL w;
1597 1891
1636#if EV_ASYNC_ENABLE 1930#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 1931 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 1932 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 1933#endif
1640 1934
1935#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 1936 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 1937 array_verify (EV_A_ (W *)prepares, preparecnt);
1938#endif
1643 1939
1940#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 1941 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1942 array_verify (EV_A_ (W *)checks, checkcnt);
1943#endif
1646 1944
1647# if 0 1945# if 0
1946#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1948 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1949#endif
1650# endif 1950# endif
1651#endif 1951#endif
1652} 1952}
1653 1953#endif
1654#endif /* multiplicity */
1655 1954
1656#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1657struct ev_loop * 1956struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1957ev_default_loop_init (unsigned int flags)
1659#else 1958#else
1662#endif 1961#endif
1663{ 1962{
1664 if (!ev_default_loop_ptr) 1963 if (!ev_default_loop_ptr)
1665 { 1964 {
1666#if EV_MULTIPLICITY 1965#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1966 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1967#else
1669 ev_default_loop_ptr = 1; 1968 ev_default_loop_ptr = 1;
1670#endif 1969#endif
1671 1970
1672 loop_init (EV_A_ flags); 1971 loop_init (EV_A_ flags);
1673 1972
1674 if (ev_backend (EV_A)) 1973 if (ev_backend (EV_A))
1675 { 1974 {
1676#ifndef _WIN32 1975#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 1976 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 1977 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 1978 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1979 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 1980#endif
1689 1988
1690void 1989void
1691ev_default_destroy (void) 1990ev_default_destroy (void)
1692{ 1991{
1693#if EV_MULTIPLICITY 1992#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 1993 EV_P = ev_default_loop_ptr;
1695#endif 1994#endif
1696 1995
1697 ev_default_loop_ptr = 0; 1996 ev_default_loop_ptr = 0;
1698 1997
1699#ifndef _WIN32 1998#if EV_CHILD_ENABLE
1700 ev_ref (EV_A); /* child watcher */ 1999 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev); 2000 ev_signal_stop (EV_A_ &childev);
1702#endif 2001#endif
1703 2002
1704 loop_destroy (EV_A); 2003 loop_destroy (EV_A);
1706 2005
1707void 2006void
1708ev_default_fork (void) 2007ev_default_fork (void)
1709{ 2008{
1710#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 2010 EV_P = ev_default_loop_ptr;
1712#endif 2011#endif
1713 2012
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2013 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2014}
1716 2015
1720ev_invoke (EV_P_ void *w, int revents) 2019ev_invoke (EV_P_ void *w, int revents)
1721{ 2020{
1722 EV_CB_INVOKE ((W)w, revents); 2021 EV_CB_INVOKE ((W)w, revents);
1723} 2022}
1724 2023
1725void inline_speed 2024unsigned int
1726call_pending (EV_P) 2025ev_pending_count (EV_P)
2026{
2027 int pri;
2028 unsigned int count = 0;
2029
2030 for (pri = NUMPRI; pri--; )
2031 count += pendingcnt [pri];
2032
2033 return count;
2034}
2035
2036void noinline
2037ev_invoke_pending (EV_P)
1727{ 2038{
1728 int pri; 2039 int pri;
1729 2040
1730 for (pri = NUMPRI; pri--; ) 2041 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2042 while (pendingcnt [pri])
1732 { 2043 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2044 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2045
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2046 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2047 /* ^ this is no longer true, as pending_w could be here */
1738 2048
1739 p->w->pending = 0; 2049 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2050 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2051 EV_FREQUENT_CHECK;
1742 }
1743 } 2052 }
1744} 2053}
1745 2054
1746#if EV_IDLE_ENABLE 2055#if EV_IDLE_ENABLE
1747void inline_size 2056/* make idle watchers pending. this handles the "call-idle */
2057/* only when higher priorities are idle" logic */
2058inline_size void
1748idle_reify (EV_P) 2059idle_reify (EV_P)
1749{ 2060{
1750 if (expect_false (idleall)) 2061 if (expect_false (idleall))
1751 { 2062 {
1752 int pri; 2063 int pri;
1764 } 2075 }
1765 } 2076 }
1766} 2077}
1767#endif 2078#endif
1768 2079
1769void inline_size 2080/* make timers pending */
2081inline_size void
1770timers_reify (EV_P) 2082timers_reify (EV_P)
1771{ 2083{
1772 EV_FREQUENT_CHECK; 2084 EV_FREQUENT_CHECK;
1773 2085
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2086 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2087 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2088 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2089 {
2090 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2091
2092 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2093
2094 /* first reschedule or stop timer */
2095 if (w->repeat)
2096 {
1783 ev_at (w) += w->repeat; 2097 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2098 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2099 ev_at (w) = mn_now;
1786 2100
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2101 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2102
1789 ANHE_at_cache (timers [HEAP0]); 2103 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2104 downheap (timers, timercnt, HEAP0);
2105 }
2106 else
2107 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2108
2109 EV_FREQUENT_CHECK;
2110 feed_reverse (EV_A_ (W)w);
1791 } 2111 }
1792 else 2112 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2113
1795 EV_FREQUENT_CHECK; 2114 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2115 }
1798} 2116}
1799 2117
1800#if EV_PERIODIC_ENABLE 2118#if EV_PERIODIC_ENABLE
1801void inline_size 2119/* make periodics pending */
2120inline_size void
1802periodics_reify (EV_P) 2121periodics_reify (EV_P)
1803{ 2122{
1804 EV_FREQUENT_CHECK; 2123 EV_FREQUENT_CHECK;
1805 2124
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2126 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2127 int feed_count = 0;
1809 2128
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2129 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2130 {
2131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->reschedule_cb)
2137 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2139
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2141
1819 ANHE_at_cache (periodics [HEAP0]); 2142 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2143 downheap (periodics, periodiccnt, HEAP0);
2144 }
2145 else if (w->interval)
2146 {
2147 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2148 /* if next trigger time is not sufficiently in the future, put it there */
2149 /* this might happen because of floating point inexactness */
2150 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2151 {
2152 ev_at (w) += w->interval;
2153
2154 /* if interval is unreasonably low we might still have a time in the past */
2155 /* so correct this. this will make the periodic very inexact, but the user */
2156 /* has effectively asked to get triggered more often than possible */
2157 if (ev_at (w) < ev_rt_now)
2158 ev_at (w) = ev_rt_now;
2159 }
2160
2161 ANHE_at_cache (periodics [HEAP0]);
2162 downheap (periodics, periodiccnt, HEAP0);
2163 }
2164 else
2165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2166
2167 EV_FREQUENT_CHECK;
2168 feed_reverse (EV_A_ (W)w);
1821 } 2169 }
1822 else if (w->interval) 2170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2171
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2172 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2173 }
1847} 2174}
1848 2175
2176/* simply recalculate all periodics */
2177/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2178static void noinline
1850periodics_reschedule (EV_P) 2179periodics_reschedule (EV_P)
1851{ 2180{
1852 int i; 2181 int i;
1853 2182
1866 2195
1867 reheap (periodics, periodiccnt); 2196 reheap (periodics, periodiccnt);
1868} 2197}
1869#endif 2198#endif
1870 2199
1871void inline_speed 2200/* adjust all timers by a given offset */
2201static void noinline
2202timers_reschedule (EV_P_ ev_tstamp adjust)
2203{
2204 int i;
2205
2206 for (i = 0; i < timercnt; ++i)
2207 {
2208 ANHE *he = timers + i + HEAP0;
2209 ANHE_w (*he)->at += adjust;
2210 ANHE_at_cache (*he);
2211 }
2212}
2213
2214/* fetch new monotonic and realtime times from the kernel */
2215/* also detect if there was a timejump, and act accordingly */
2216inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2217time_update (EV_P_ ev_tstamp max_block)
1873{ 2218{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2219#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2220 if (expect_true (have_monotonic))
1878 { 2221 {
2222 int i;
1879 ev_tstamp odiff = rtmn_diff; 2223 ev_tstamp odiff = rtmn_diff;
1880 2224
1881 mn_now = get_clock (); 2225 mn_now = get_clock ();
1882 2226
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2253 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2254 mn_now = get_clock ();
1911 now_floor = mn_now; 2255 now_floor = mn_now;
1912 } 2256 }
1913 2257
2258 /* no timer adjustment, as the monotonic clock doesn't jump */
2259 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2260# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1916# endif 2262# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2263 }
1920 else 2264 else
1921#endif 2265#endif
1922 { 2266 {
1923 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1924 2268
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2269 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2270 {
2271 /* adjust timers. this is easy, as the offset is the same for all of them */
2272 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2273#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1929#endif 2275#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2276 }
1938 2277
1939 mn_now = ev_rt_now; 2278 mn_now = ev_rt_now;
1940 } 2279 }
1941} 2280}
1942 2281
1943void 2282void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2283ev_run (EV_P_ int flags)
1965{ 2284{
2285#if EV_FEATURE_API
2286 ++loop_depth;
2287#endif
2288
2289 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2290
1966 loop_done = EVUNLOOP_CANCEL; 2291 loop_done = EVBREAK_CANCEL;
1967 2292
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2293 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2294
1970 do 2295 do
1971 { 2296 {
1972#if EV_VERIFY >= 2 2297#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2298 ev_verify (EV_A);
1974#endif 2299#endif
1975 2300
1976#ifndef _WIN32 2301#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2302 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2303 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2311 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2312 if (expect_false (postfork))
1988 if (forkcnt) 2313 if (forkcnt)
1989 { 2314 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2315 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2316 EV_INVOKE_PENDING;
1992 } 2317 }
1993#endif 2318#endif
1994 2319
2320#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2321 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2322 if (expect_false (preparecnt))
1997 { 2323 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2324 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2325 EV_INVOKE_PENDING;
2000 } 2326 }
2327#endif
2001 2328
2002 if (expect_false (!activecnt)) 2329 if (expect_false (loop_done))
2003 break; 2330 break;
2004 2331
2005 /* we might have forked, so reify kernel state if necessary */ 2332 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2333 if (expect_false (postfork))
2007 loop_fork (EV_A); 2334 loop_fork (EV_A);
2012 /* calculate blocking time */ 2339 /* calculate blocking time */
2013 { 2340 {
2014 ev_tstamp waittime = 0.; 2341 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 2342 ev_tstamp sleeptime = 0.;
2016 2343
2344 /* remember old timestamp for io_blocktime calculation */
2345 ev_tstamp prev_mn_now = mn_now;
2346
2347 /* update time to cancel out callback processing overhead */
2348 time_update (EV_A_ 1e100);
2349
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2350 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2018 { 2351 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 2352 waittime = MAX_BLOCKTIME;
2023 2353
2024 if (timercnt) 2354 if (timercnt)
2025 { 2355 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2356 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2363 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2034 if (waittime > to) waittime = to; 2364 if (waittime > to) waittime = to;
2035 } 2365 }
2036#endif 2366#endif
2037 2367
2368 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 2369 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 2370 waittime = timeout_blocktime;
2040 2371
2041 sleeptime = waittime - backend_fudge; 2372 /* extra check because io_blocktime is commonly 0 */
2042
2043 if (expect_true (sleeptime > io_blocktime)) 2373 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 2374 {
2375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2376
2377 if (sleeptime > waittime - backend_fudge)
2378 sleeptime = waittime - backend_fudge;
2379
2380 if (expect_true (sleeptime > 0.))
2381 {
2048 ev_sleep (sleeptime); 2382 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 2383 waittime -= sleeptime;
2384 }
2050 } 2385 }
2051 } 2386 }
2052 2387
2388#if EV_FEATURE_API
2053 ++loop_count; 2389 ++loop_count;
2390#endif
2391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 2392 backend_poll (EV_A_ waittime);
2393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2055 2394
2056 /* update ev_rt_now, do magic */ 2395 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 2396 time_update (EV_A_ waittime + sleeptime);
2058 } 2397 }
2059 2398
2066#if EV_IDLE_ENABLE 2405#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 2406 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 2407 idle_reify (EV_A);
2069#endif 2408#endif
2070 2409
2410#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 2411 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 2412 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2413 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2414#endif
2074 2415
2075 call_pending (EV_A); 2416 EV_INVOKE_PENDING;
2076 } 2417 }
2077 while (expect_true ( 2418 while (expect_true (
2078 activecnt 2419 activecnt
2079 && !loop_done 2420 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2421 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 2422 ));
2082 2423
2083 if (loop_done == EVUNLOOP_ONE) 2424 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 2425 loop_done = EVBREAK_CANCEL;
2085}
2086 2426
2427#if EV_FEATURE_API
2428 --loop_depth;
2429#endif
2430}
2431
2087void 2432void
2088ev_unloop (EV_P_ int how) 2433ev_break (EV_P_ int how)
2089{ 2434{
2090 loop_done = how; 2435 loop_done = how;
2091} 2436}
2092 2437
2438void
2439ev_ref (EV_P)
2440{
2441 ++activecnt;
2442}
2443
2444void
2445ev_unref (EV_P)
2446{
2447 --activecnt;
2448}
2449
2450void
2451ev_now_update (EV_P)
2452{
2453 time_update (EV_A_ 1e100);
2454}
2455
2456void
2457ev_suspend (EV_P)
2458{
2459 ev_now_update (EV_A);
2460}
2461
2462void
2463ev_resume (EV_P)
2464{
2465 ev_tstamp mn_prev = mn_now;
2466
2467 ev_now_update (EV_A);
2468 timers_reschedule (EV_A_ mn_now - mn_prev);
2469#if EV_PERIODIC_ENABLE
2470 /* TODO: really do this? */
2471 periodics_reschedule (EV_A);
2472#endif
2473}
2474
2093/*****************************************************************************/ 2475/*****************************************************************************/
2476/* singly-linked list management, used when the expected list length is short */
2094 2477
2095void inline_size 2478inline_size void
2096wlist_add (WL *head, WL elem) 2479wlist_add (WL *head, WL elem)
2097{ 2480{
2098 elem->next = *head; 2481 elem->next = *head;
2099 *head = elem; 2482 *head = elem;
2100} 2483}
2101 2484
2102void inline_size 2485inline_size void
2103wlist_del (WL *head, WL elem) 2486wlist_del (WL *head, WL elem)
2104{ 2487{
2105 while (*head) 2488 while (*head)
2106 { 2489 {
2107 if (*head == elem) 2490 if (expect_true (*head == elem))
2108 { 2491 {
2109 *head = elem->next; 2492 *head = elem->next;
2110 return; 2493 break;
2111 } 2494 }
2112 2495
2113 head = &(*head)->next; 2496 head = &(*head)->next;
2114 } 2497 }
2115} 2498}
2116 2499
2117void inline_speed 2500/* internal, faster, version of ev_clear_pending */
2501inline_speed void
2118clear_pending (EV_P_ W w) 2502clear_pending (EV_P_ W w)
2119{ 2503{
2120 if (w->pending) 2504 if (w->pending)
2121 { 2505 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2506 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2507 w->pending = 0;
2124 } 2508 }
2125} 2509}
2126 2510
2127int 2511int
2131 int pending = w_->pending; 2515 int pending = w_->pending;
2132 2516
2133 if (expect_true (pending)) 2517 if (expect_true (pending))
2134 { 2518 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2519 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2520 p->w = (W)&pending_w;
2136 w_->pending = 0; 2521 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2522 return p->events;
2139 } 2523 }
2140 else 2524 else
2141 return 0; 2525 return 0;
2142} 2526}
2143 2527
2144void inline_size 2528inline_size void
2145pri_adjust (EV_P_ W w) 2529pri_adjust (EV_P_ W w)
2146{ 2530{
2147 int pri = w->priority; 2531 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2532 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2533 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2534 ev_set_priority (w, pri);
2151} 2535}
2152 2536
2153void inline_speed 2537inline_speed void
2154ev_start (EV_P_ W w, int active) 2538ev_start (EV_P_ W w, int active)
2155{ 2539{
2156 pri_adjust (EV_A_ w); 2540 pri_adjust (EV_A_ w);
2157 w->active = active; 2541 w->active = active;
2158 ev_ref (EV_A); 2542 ev_ref (EV_A);
2159} 2543}
2160 2544
2161void inline_size 2545inline_size void
2162ev_stop (EV_P_ W w) 2546ev_stop (EV_P_ W w)
2163{ 2547{
2164 ev_unref (EV_A); 2548 ev_unref (EV_A);
2165 w->active = 0; 2549 w->active = 0;
2166} 2550}
2174 2558
2175 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
2176 return; 2560 return;
2177 2561
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2562 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2563 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 2564
2181 EV_FREQUENT_CHECK; 2565 EV_FREQUENT_CHECK;
2182 2566
2183 ev_start (EV_A_ (W)w, 1); 2567 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2568 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2569 wlist_add (&anfds[fd].head, (WL)w);
2186 2570
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2571 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV_IOFDSET; 2572 w->events &= ~EV__IOFDSET;
2189 2573
2190 EV_FREQUENT_CHECK; 2574 EV_FREQUENT_CHECK;
2191} 2575}
2192 2576
2193void noinline 2577void noinline
2202 EV_FREQUENT_CHECK; 2586 EV_FREQUENT_CHECK;
2203 2587
2204 wlist_del (&anfds[w->fd].head, (WL)w); 2588 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
2206 2590
2207 fd_change (EV_A_ w->fd, 1); 2591 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 2592
2209 EV_FREQUENT_CHECK; 2593 EV_FREQUENT_CHECK;
2210} 2594}
2211 2595
2212void noinline 2596void noinline
2254 timers [active] = timers [timercnt + HEAP0]; 2638 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 2639 adjustheap (timers, timercnt, active);
2256 } 2640 }
2257 } 2641 }
2258 2642
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 2643 ev_at (w) -= mn_now;
2262 2644
2263 ev_stop (EV_A_ (W)w); 2645 ev_stop (EV_A_ (W)w);
2646
2647 EV_FREQUENT_CHECK;
2264} 2648}
2265 2649
2266void noinline 2650void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 2651ev_timer_again (EV_P_ ev_timer *w)
2268{ 2652{
2286 } 2670 }
2287 2671
2288 EV_FREQUENT_CHECK; 2672 EV_FREQUENT_CHECK;
2289} 2673}
2290 2674
2675ev_tstamp
2676ev_timer_remaining (EV_P_ ev_timer *w)
2677{
2678 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2679}
2680
2291#if EV_PERIODIC_ENABLE 2681#if EV_PERIODIC_ENABLE
2292void noinline 2682void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 2683ev_periodic_start (EV_P_ ev_periodic *w)
2294{ 2684{
2295 if (expect_false (ev_is_active (w))) 2685 if (expect_false (ev_is_active (w)))
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 2731 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 2732 adjustheap (periodics, periodiccnt, active);
2343 } 2733 }
2344 } 2734 }
2345 2735
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 2736 ev_stop (EV_A_ (W)w);
2737
2738 EV_FREQUENT_CHECK;
2349} 2739}
2350 2740
2351void noinline 2741void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 2742ev_periodic_again (EV_P_ ev_periodic *w)
2353{ 2743{
2359 2749
2360#ifndef SA_RESTART 2750#ifndef SA_RESTART
2361# define SA_RESTART 0 2751# define SA_RESTART 0
2362#endif 2752#endif
2363 2753
2754#if EV_SIGNAL_ENABLE
2755
2364void noinline 2756void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 2757ev_signal_start (EV_P_ ev_signal *w)
2366{ 2758{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 2759 if (expect_false (ev_is_active (w)))
2371 return; 2760 return;
2372 2761
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2762 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 2763
2375 evpipe_init (EV_A); 2764#if EV_MULTIPLICITY
2765 assert (("libev: a signal must not be attached to two different loops",
2766 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 2767
2377 EV_FREQUENT_CHECK; 2768 signals [w->signum - 1].loop = EV_A;
2769#endif
2378 2770
2771 EV_FREQUENT_CHECK;
2772
2773#if EV_USE_SIGNALFD
2774 if (sigfd == -2)
2379 { 2775 {
2380#ifndef _WIN32 2776 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 2777 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 2778 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 2779
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2780 if (sigfd >= 0)
2781 {
2782 fd_intern (sigfd); /* doing it twice will not hurt */
2387 2783
2388#ifndef _WIN32 2784 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 2785
2390#endif 2786 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2787 ev_set_priority (&sigfd_w, EV_MAXPRI);
2788 ev_io_start (EV_A_ &sigfd_w);
2789 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2790 }
2391 } 2791 }
2792
2793 if (sigfd >= 0)
2794 {
2795 /* TODO: check .head */
2796 sigaddset (&sigfd_set, w->signum);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2798
2799 signalfd (sigfd, &sigfd_set, 0);
2800 }
2801#endif
2392 2802
2393 ev_start (EV_A_ (W)w, 1); 2803 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 2804 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 2805
2396 if (!((WL)w)->next) 2806 if (!((WL)w)->next)
2807# if EV_USE_SIGNALFD
2808 if (sigfd < 0) /*TODO*/
2809# endif
2397 { 2810 {
2398#if _WIN32 2811# ifdef _WIN32
2812 evpipe_init (EV_A);
2813
2399 signal (w->signum, ev_sighandler); 2814 signal (w->signum, ev_sighandler);
2400#else 2815# else
2401 struct sigaction sa; 2816 struct sigaction sa;
2817
2818 evpipe_init (EV_A);
2819
2402 sa.sa_handler = ev_sighandler; 2820 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 2821 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2822 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 2823 sigaction (w->signum, &sa, 0);
2824
2825 sigemptyset (&sa.sa_mask);
2826 sigaddset (&sa.sa_mask, w->signum);
2827 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2406#endif 2828#endif
2407 } 2829 }
2408 2830
2409 EV_FREQUENT_CHECK; 2831 EV_FREQUENT_CHECK;
2410} 2832}
2411 2833
2412void noinline 2834void noinline
2420 2842
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 2843 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 2844 ev_stop (EV_A_ (W)w);
2423 2845
2424 if (!signals [w->signum - 1].head) 2846 if (!signals [w->signum - 1].head)
2847 {
2848#if EV_MULTIPLICITY
2849 signals [w->signum - 1].loop = 0; /* unattach from signal */
2850#endif
2851#if EV_USE_SIGNALFD
2852 if (sigfd >= 0)
2853 {
2854 sigset_t ss;
2855
2856 sigemptyset (&ss);
2857 sigaddset (&ss, w->signum);
2858 sigdelset (&sigfd_set, w->signum);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 sigprocmask (SIG_UNBLOCK, &ss, 0);
2862 }
2863 else
2864#endif
2425 signal (w->signum, SIG_DFL); 2865 signal (w->signum, SIG_DFL);
2866 }
2426 2867
2427 EV_FREQUENT_CHECK; 2868 EV_FREQUENT_CHECK;
2428} 2869}
2870
2871#endif
2872
2873#if EV_CHILD_ENABLE
2429 2874
2430void 2875void
2431ev_child_start (EV_P_ ev_child *w) 2876ev_child_start (EV_P_ ev_child *w)
2432{ 2877{
2433#if EV_MULTIPLICITY 2878#if EV_MULTIPLICITY
2437 return; 2882 return;
2438 2883
2439 EV_FREQUENT_CHECK; 2884 EV_FREQUENT_CHECK;
2440 2885
2441 ev_start (EV_A_ (W)w, 1); 2886 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2887 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 2888
2444 EV_FREQUENT_CHECK; 2889 EV_FREQUENT_CHECK;
2445} 2890}
2446 2891
2447void 2892void
2451 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2452 return; 2897 return;
2453 2898
2454 EV_FREQUENT_CHECK; 2899 EV_FREQUENT_CHECK;
2455 2900
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
2458 2903
2459 EV_FREQUENT_CHECK; 2904 EV_FREQUENT_CHECK;
2460} 2905}
2906
2907#endif
2461 2908
2462#if EV_STAT_ENABLE 2909#if EV_STAT_ENABLE
2463 2910
2464# ifdef _WIN32 2911# ifdef _WIN32
2465# undef lstat 2912# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 2918#define MIN_STAT_INTERVAL 0.1074891
2472 2919
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 2921
2475#if EV_USE_INOTIFY 2922#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 2923
2924/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2925# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 2926
2478static void noinline 2927static void noinline
2479infy_add (EV_P_ ev_stat *w) 2928infy_add (EV_P_ ev_stat *w)
2480{ 2929{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 2931
2483 if (w->wd < 0) 2932 if (w->wd >= 0)
2933 {
2934 struct statfs sfs;
2935
2936 /* now local changes will be tracked by inotify, but remote changes won't */
2937 /* unless the filesystem is known to be local, we therefore still poll */
2938 /* also do poll on <2.6.25, but with normal frequency */
2939
2940 if (!fs_2625)
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942 else if (!statfs (w->path, &sfs)
2943 && (sfs.f_type == 0x1373 /* devfs */
2944 || sfs.f_type == 0xEF53 /* ext2/3 */
2945 || sfs.f_type == 0x3153464a /* jfs */
2946 || sfs.f_type == 0x52654973 /* reiser3 */
2947 || sfs.f_type == 0x01021994 /* tempfs */
2948 || sfs.f_type == 0x58465342 /* xfs */))
2949 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2950 else
2951 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 2952 }
2953 else
2954 {
2955 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2956 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 2957
2488 /* monitor some parent directory for speedup hints */ 2958 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2959 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 2960 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2961 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 2962 {
2493 char path [4096]; 2963 char path [4096];
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2979 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 2980 }
2511 } 2981 }
2512 2982
2513 if (w->wd >= 0) 2983 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2984 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 2985
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 2986 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 2987 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 2988 ev_timer_again (EV_A_ &w->timer);
2533 } 2989 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 2990}
2535 2991
2536static void noinline 2992static void noinline
2537infy_del (EV_P_ ev_stat *w) 2993infy_del (EV_P_ ev_stat *w)
2538{ 2994{
2541 2997
2542 if (wd < 0) 2998 if (wd < 0)
2543 return; 2999 return;
2544 3000
2545 w->wd = -2; 3001 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3002 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 3003 wlist_del (&fs_hash [slot].head, (WL)w);
2548 3004
2549 /* remove this watcher, if others are watching it, they will rearm */ 3005 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 3006 inotify_rm_watch (fs_fd, wd);
2551} 3007}
2553static void noinline 3009static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 3011{
2556 if (slot < 0) 3012 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 3013 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3014 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 3015 infy_wd (EV_A_ slot, wd, ev);
2560 else 3016 else
2561 { 3017 {
2562 WL w_; 3018 WL w_;
2563 3019
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3020 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 3021 {
2566 ev_stat *w = (ev_stat *)w_; 3022 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 3023 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 3024
2569 if (w->wd == wd || wd == -1) 3025 if (w->wd == wd || wd == -1)
2570 { 3026 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 3028 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3029 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 3030 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 3031 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 3032 }
2577 3033
2578 stat_timer_cb (EV_A_ &w->timer, 0); 3034 stat_timer_cb (EV_A_ &w->timer, 0);
2583 3039
2584static void 3040static void
2585infy_cb (EV_P_ ev_io *w, int revents) 3041infy_cb (EV_P_ ev_io *w, int revents)
2586{ 3042{
2587 char buf [EV_INOTIFY_BUFSIZE]; 3043 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 3044 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 3045 int len = read (fs_fd, buf, sizeof (buf));
2591 3046
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3047 for (ofs = 0; ofs < len; )
3048 {
3049 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3050 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3051 ofs += sizeof (struct inotify_event) + ev->len;
3052 }
2594} 3053}
2595 3054
2596void inline_size 3055inline_size unsigned int
3056ev_linux_version (void)
3057{
3058 struct utsname buf;
3059 unsigned int v;
3060 int i;
3061 char *p = buf.release;
3062
3063 if (uname (&buf))
3064 return 0;
3065
3066 for (i = 3+1; --i; )
3067 {
3068 unsigned int c = 0;
3069
3070 for (;;)
3071 {
3072 if (*p >= '0' && *p <= '9')
3073 c = c * 10 + *p++ - '0';
3074 else
3075 {
3076 p += *p == '.';
3077 break;
3078 }
3079 }
3080
3081 v = (v << 8) | c;
3082 }
3083
3084 return v;
3085}
3086
3087inline_size void
2597check_2625 (EV_P) 3088ev_check_2625 (EV_P)
2598{ 3089{
2599 /* kernels < 2.6.25 are borked 3090 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 3092 */
2602 struct utsname buf; 3093 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 3094 return;
2607 3095
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 3096 fs_2625 = 1;
2617} 3097}
2618 3098
2619void inline_size 3099inline_size int
3100infy_newfd (void)
3101{
3102#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3104 if (fd >= 0)
3105 return fd;
3106#endif
3107 return inotify_init ();
3108}
3109
3110inline_size void
2620infy_init (EV_P) 3111infy_init (EV_P)
2621{ 3112{
2622 if (fs_fd != -2) 3113 if (fs_fd != -2)
2623 return; 3114 return;
2624 3115
2625 fs_fd = -1; 3116 fs_fd = -1;
2626 3117
2627 check_2625 (EV_A); 3118 ev_check_2625 (EV_A);
2628 3119
2629 fs_fd = inotify_init (); 3120 fs_fd = infy_newfd ();
2630 3121
2631 if (fs_fd >= 0) 3122 if (fs_fd >= 0)
2632 { 3123 {
3124 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 3126 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 3127 ev_io_start (EV_A_ &fs_w);
3128 ev_unref (EV_A);
2636 } 3129 }
2637} 3130}
2638 3131
2639void inline_size 3132inline_size void
2640infy_fork (EV_P) 3133infy_fork (EV_P)
2641{ 3134{
2642 int slot; 3135 int slot;
2643 3136
2644 if (fs_fd < 0) 3137 if (fs_fd < 0)
2645 return; 3138 return;
2646 3139
3140 ev_ref (EV_A);
3141 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 3142 close (fs_fd);
2648 fs_fd = inotify_init (); 3143 fs_fd = infy_newfd ();
2649 3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_set (&fs_w, fs_fd, EV_READ);
3149 ev_io_start (EV_A_ &fs_w);
3150 ev_unref (EV_A);
3151 }
3152
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 3154 {
2652 WL w_ = fs_hash [slot].head; 3155 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 3156 fs_hash [slot].head = 0;
2654 3157
2655 while (w_) 3158 while (w_)
2660 w->wd = -1; 3163 w->wd = -1;
2661 3164
2662 if (fs_fd >= 0) 3165 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 3166 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 3167 else
3168 {
3169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 3171 ev_timer_again (EV_A_ &w->timer);
3172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3173 }
2666 } 3174 }
2667 } 3175 }
2668} 3176}
2669 3177
2670#endif 3178#endif
2687static void noinline 3195static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 3197{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 3199
2692 /* we copy this here each the time so that */ 3200 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 3201 ev_stat_stat (EV_A_ w);
2696 3202
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 3204 if (
2699 w->prev.st_dev != w->attr.st_dev 3205 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 3206 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 3207 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 3208 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 3209 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 3210 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 3211 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 3212 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 3213 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 3214 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 3215 || prev.st_ctime != w->attr.st_ctime
2710 ) { 3216 ) {
3217 /* we only update w->prev on actual differences */
3218 /* in case we test more often than invoke the callback, */
3219 /* to ensure that prev is always different to attr */
3220 w->prev = prev;
3221
2711 #if EV_USE_INOTIFY 3222 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 3223 if (fs_fd >= 0)
2713 { 3224 {
2714 infy_del (EV_A_ w); 3225 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 3226 infy_add (EV_A_ w);
2740 3251
2741 if (fs_fd >= 0) 3252 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 3253 infy_add (EV_A_ w);
2743 else 3254 else
2744#endif 3255#endif
3256 {
2745 ev_timer_again (EV_A_ &w->timer); 3257 ev_timer_again (EV_A_ &w->timer);
3258 ev_unref (EV_A);
3259 }
2746 3260
2747 ev_start (EV_A_ (W)w, 1); 3261 ev_start (EV_A_ (W)w, 1);
2748 3262
2749 EV_FREQUENT_CHECK; 3263 EV_FREQUENT_CHECK;
2750} 3264}
2759 EV_FREQUENT_CHECK; 3273 EV_FREQUENT_CHECK;
2760 3274
2761#if EV_USE_INOTIFY 3275#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 3276 infy_del (EV_A_ w);
2763#endif 3277#endif
3278
3279 if (ev_is_active (&w->timer))
3280 {
3281 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 3282 ev_timer_stop (EV_A_ &w->timer);
3283 }
2765 3284
2766 ev_stop (EV_A_ (W)w); 3285 ev_stop (EV_A_ (W)w);
2767 3286
2768 EV_FREQUENT_CHECK; 3287 EV_FREQUENT_CHECK;
2769} 3288}
2814 3333
2815 EV_FREQUENT_CHECK; 3334 EV_FREQUENT_CHECK;
2816} 3335}
2817#endif 3336#endif
2818 3337
3338#if EV_PREPARE_ENABLE
2819void 3339void
2820ev_prepare_start (EV_P_ ev_prepare *w) 3340ev_prepare_start (EV_P_ ev_prepare *w)
2821{ 3341{
2822 if (expect_false (ev_is_active (w))) 3342 if (expect_false (ev_is_active (w)))
2823 return; 3343 return;
2849 3369
2850 ev_stop (EV_A_ (W)w); 3370 ev_stop (EV_A_ (W)w);
2851 3371
2852 EV_FREQUENT_CHECK; 3372 EV_FREQUENT_CHECK;
2853} 3373}
3374#endif
2854 3375
3376#if EV_CHECK_ENABLE
2855void 3377void
2856ev_check_start (EV_P_ ev_check *w) 3378ev_check_start (EV_P_ ev_check *w)
2857{ 3379{
2858 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2859 return; 3381 return;
2885 3407
2886 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
2887 3409
2888 EV_FREQUENT_CHECK; 3410 EV_FREQUENT_CHECK;
2889} 3411}
3412#endif
2890 3413
2891#if EV_EMBED_ENABLE 3414#if EV_EMBED_ENABLE
2892void noinline 3415void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 3416ev_embed_sweep (EV_P_ ev_embed *w)
2894{ 3417{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 3418 ev_run (w->other, EVRUN_NOWAIT);
2896} 3419}
2897 3420
2898static void 3421static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 3422embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 3423{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 3425
2903 if (ev_cb (w)) 3426 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 3428 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 3429 ev_run (w->other, EVRUN_NOWAIT);
2907} 3430}
2908 3431
2909static void 3432static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 3434{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 3436
2914 { 3437 {
2915 struct ev_loop *loop = w->other; 3438 EV_P = w->other;
2916 3439
2917 while (fdchangecnt) 3440 while (fdchangecnt)
2918 { 3441 {
2919 fd_reify (EV_A); 3442 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3443 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 3444 }
2922 } 3445 }
2923} 3446}
2924 3447
2925static void 3448static void
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 3452
2930 ev_embed_stop (EV_A_ w); 3453 ev_embed_stop (EV_A_ w);
2931 3454
2932 { 3455 {
2933 struct ev_loop *loop = w->other; 3456 EV_P = w->other;
2934 3457
2935 ev_loop_fork (EV_A); 3458 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3459 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 3460 }
2938 3461
2939 ev_embed_start (EV_A_ w); 3462 ev_embed_start (EV_A_ w);
2940} 3463}
2941 3464
2952{ 3475{
2953 if (expect_false (ev_is_active (w))) 3476 if (expect_false (ev_is_active (w)))
2954 return; 3477 return;
2955 3478
2956 { 3479 {
2957 struct ev_loop *loop = w->other; 3480 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 3483 }
2961 3484
2962 EV_FREQUENT_CHECK; 3485 EV_FREQUENT_CHECK;
2989 3512
2990 ev_io_stop (EV_A_ &w->io); 3513 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 3514 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 3515 ev_fork_stop (EV_A_ &w->fork);
2993 3516
3517 ev_stop (EV_A_ (W)w);
3518
2994 EV_FREQUENT_CHECK; 3519 EV_FREQUENT_CHECK;
2995} 3520}
2996#endif 3521#endif
2997 3522
2998#if EV_FORK_ENABLE 3523#if EV_FORK_ENABLE
3038ev_async_start (EV_P_ ev_async *w) 3563ev_async_start (EV_P_ ev_async *w)
3039{ 3564{
3040 if (expect_false (ev_is_active (w))) 3565 if (expect_false (ev_is_active (w)))
3041 return; 3566 return;
3042 3567
3568 w->sent = 0;
3569
3043 evpipe_init (EV_A); 3570 evpipe_init (EV_A);
3044 3571
3045 EV_FREQUENT_CHECK; 3572 EV_FREQUENT_CHECK;
3046 3573
3047 ev_start (EV_A_ (W)w, ++asynccnt); 3574 ev_start (EV_A_ (W)w, ++asynccnt);
3074 3601
3075void 3602void
3076ev_async_send (EV_P_ ev_async *w) 3603ev_async_send (EV_P_ ev_async *w)
3077{ 3604{
3078 w->sent = 1; 3605 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 3606 evpipe_write (EV_A_ &async_pending);
3080} 3607}
3081#endif 3608#endif
3082 3609
3083/*****************************************************************************/ 3610/*****************************************************************************/
3084 3611
3124{ 3651{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3652 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 3653
3127 if (expect_false (!once)) 3654 if (expect_false (!once))
3128 { 3655 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3656 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 3657 return;
3131 } 3658 }
3132 3659
3133 once->cb = cb; 3660 once->cb = cb;
3134 once->arg = arg; 3661 once->arg = arg;
3146 ev_timer_set (&once->to, timeout, 0.); 3673 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 3674 ev_timer_start (EV_A_ &once->to);
3148 } 3675 }
3149} 3676}
3150 3677
3678/*****************************************************************************/
3679
3680#if EV_WALK_ENABLE
3681void
3682ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3683{
3684 int i, j;
3685 ev_watcher_list *wl, *wn;
3686
3687 if (types & (EV_IO | EV_EMBED))
3688 for (i = 0; i < anfdmax; ++i)
3689 for (wl = anfds [i].head; wl; )
3690 {
3691 wn = wl->next;
3692
3693#if EV_EMBED_ENABLE
3694 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3695 {
3696 if (types & EV_EMBED)
3697 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3698 }
3699 else
3700#endif
3701#if EV_USE_INOTIFY
3702 if (ev_cb ((ev_io *)wl) == infy_cb)
3703 ;
3704 else
3705#endif
3706 if ((ev_io *)wl != &pipe_w)
3707 if (types & EV_IO)
3708 cb (EV_A_ EV_IO, wl);
3709
3710 wl = wn;
3711 }
3712
3713 if (types & (EV_TIMER | EV_STAT))
3714 for (i = timercnt + HEAP0; i-- > HEAP0; )
3715#if EV_STAT_ENABLE
3716 /*TODO: timer is not always active*/
3717 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3718 {
3719 if (types & EV_STAT)
3720 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3721 }
3722 else
3723#endif
3724 if (types & EV_TIMER)
3725 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3726
3727#if EV_PERIODIC_ENABLE
3728 if (types & EV_PERIODIC)
3729 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3730 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3731#endif
3732
3733#if EV_IDLE_ENABLE
3734 if (types & EV_IDLE)
3735 for (j = NUMPRI; i--; )
3736 for (i = idlecnt [j]; i--; )
3737 cb (EV_A_ EV_IDLE, idles [j][i]);
3738#endif
3739
3740#if EV_FORK_ENABLE
3741 if (types & EV_FORK)
3742 for (i = forkcnt; i--; )
3743 if (ev_cb (forks [i]) != embed_fork_cb)
3744 cb (EV_A_ EV_FORK, forks [i]);
3745#endif
3746
3747#if EV_ASYNC_ENABLE
3748 if (types & EV_ASYNC)
3749 for (i = asynccnt; i--; )
3750 cb (EV_A_ EV_ASYNC, asyncs [i]);
3751#endif
3752
3753#if EV_PREPARE_ENABLE
3754 if (types & EV_PREPARE)
3755 for (i = preparecnt; i--; )
3756# if EV_EMBED_ENABLE
3757 if (ev_cb (prepares [i]) != embed_prepare_cb)
3758# endif
3759 cb (EV_A_ EV_PREPARE, prepares [i]);
3760#endif
3761
3762#if EV_CHECK_ENABLE
3763 if (types & EV_CHECK)
3764 for (i = checkcnt; i--; )
3765 cb (EV_A_ EV_CHECK, checks [i]);
3766#endif
3767
3768#if EV_SIGNAL_ENABLE
3769 if (types & EV_SIGNAL)
3770 for (i = 0; i < EV_NSIG - 1; ++i)
3771 for (wl = signals [i].head; wl; )
3772 {
3773 wn = wl->next;
3774 cb (EV_A_ EV_SIGNAL, wl);
3775 wl = wn;
3776 }
3777#endif
3778
3779#if EV_CHILD_ENABLE
3780 if (types & EV_CHILD)
3781 for (i = (EV_PID_HASHSIZE); i--; )
3782 for (wl = childs [i]; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_CHILD, wl);
3786 wl = wn;
3787 }
3788#endif
3789/* EV_STAT 0x00001000 /* stat data changed */
3790/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3791}
3792#endif
3793
3151#if EV_MULTIPLICITY 3794#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 3795 #include "ev_wrap.h"
3153#endif 3796#endif
3154 3797
3155#ifdef __cplusplus 3798EV_CPP(})
3156}
3157#endif
3158 3799

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines