ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.204 by root, Fri Jan 18 13:45:55 2008 UTC vs.
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
51# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
54# endif 67# endif
55# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
57# endif 70# endif
58# else 71# else
59# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
61# endif 74# endif
118# else 131# else
119# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
120# endif 133# endif
121# endif 134# endif
122 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
123#endif 144#endif
124 145
125#include <math.h> 146#include <math.h>
126#include <stdlib.h> 147#include <stdlib.h>
127#include <fcntl.h> 148#include <fcntl.h>
145#ifndef _WIN32 166#ifndef _WIN32
146# include <sys/time.h> 167# include <sys/time.h>
147# include <sys/wait.h> 168# include <sys/wait.h>
148# include <unistd.h> 169# include <unistd.h>
149#else 170#else
171# include <io.h>
150# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 173# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
154# endif 176# endif
155#endif 177#endif
156 178
157/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
158 188
159#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
160# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
161#endif 195#endif
162 196
163#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 199#endif
166 200
167#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
168# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
169#endif 207#endif
170 208
171#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
173#endif 211#endif
179# define EV_USE_POLL 1 217# define EV_USE_POLL 1
180# endif 218# endif
181#endif 219#endif
182 220
183#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
184# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
185#endif 227#endif
186 228
187#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
189#endif 231#endif
191#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 234# define EV_USE_PORT 0
193#endif 235#endif
194 236
195#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
196# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
197#endif 243#endif
198 244
199#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 246# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
210# else 256# else
211# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
212# endif 258# endif
213#endif 259#endif
214 260
215/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 288
217#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
220#endif 292#endif
234# include <sys/select.h> 306# include <sys/select.h>
235# endif 307# endif
236#endif 308#endif
237 309
238#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
239# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
240#endif 319#endif
241 320
242#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 322# include <winsock.h>
244#endif 323#endif
245 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
246/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
247 353
248/* 354/*
249 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
265#else 371#else
266# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
267# define noinline 373# define noinline
268# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 375# define inline
270# endif 376# endif
271#endif 377#endif
272 378
273#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
288 394
289typedef ev_watcher *W; 395typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
292 398
293#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 410#endif
298 411
299#ifdef _WIN32 412#ifdef _WIN32
300# include "ev_win32.c" 413# include "ev_win32.c"
301#endif 414#endif
309{ 422{
310 syserr_cb = cb; 423 syserr_cb = cb;
311} 424}
312 425
313static void noinline 426static void noinline
314syserr (const char *msg) 427ev_syserr (const char *msg)
315{ 428{
316 if (!msg) 429 if (!msg)
317 msg = "(libev) system error"; 430 msg = "(libev) system error";
318 431
319 if (syserr_cb) 432 if (syserr_cb)
323 perror (msg); 436 perror (msg);
324 abort (); 437 abort ();
325 } 438 }
326} 439}
327 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
328static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 457
330void 458void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 460{
333 alloc = cb; 461 alloc = cb;
334} 462}
335 463
336inline_speed void * 464inline_speed void *
337ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
338{ 466{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
340 468
341 if (!ptr && size) 469 if (!ptr && size)
342 { 470 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 472 abort ();
355typedef struct 483typedef struct
356{ 484{
357 WL head; 485 WL head;
358 unsigned char events; 486 unsigned char events;
359 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
360#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 494 SOCKET handle;
362#endif 495#endif
363} ANFD; 496} ANFD;
364 497
367 W w; 500 W w;
368 int events; 501 int events;
369} ANPENDING; 502} ANPENDING;
370 503
371#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
372typedef struct 506typedef struct
373{ 507{
374 WL head; 508 WL head;
375} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
376#endif 528#endif
377 529
378#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
379 531
380 struct ev_loop 532 struct ev_loop
405 557
406ev_tstamp 558ev_tstamp
407ev_time (void) 559ev_time (void)
408{ 560{
409#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
410 struct timespec ts; 564 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 567 }
568#endif
569
414 struct timeval tv; 570 struct timeval tv;
415 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 573}
419 574
420ev_tstamp inline_size 575ev_tstamp inline_size
421get_clock (void) 576get_clock (void)
422{ 577{
451 ts.tv_sec = (time_t)delay; 606 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 608
454 nanosleep (&ts, 0); 609 nanosleep (&ts, 0);
455#elif defined(_WIN32) 610#elif defined(_WIN32)
456 Sleep (delay * 1e3); 611 Sleep ((unsigned long)(delay * 1e3));
457#else 612#else
458 struct timeval tv; 613 struct timeval tv;
459 614
460 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
463 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
464#endif 622#endif
465 } 623 }
466} 624}
467 625
468/*****************************************************************************/ 626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 629
470int inline_size 630int inline_size
471array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
472{ 632{
473 int ncur = cur + 1; 633 int ncur = cur + 1;
474 634
475 do 635 do
476 ncur <<= 1; 636 ncur <<= 1;
477 while (cnt > ncur); 637 while (cnt > ncur);
478 638
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 641 {
482 ncur *= elem; 642 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 645 ncur /= elem;
486 } 646 }
487 647
488 return ncur; 648 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
493{ 653{
494 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
496} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 660
498#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
500 { \ 663 { \
501 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 677 }
515#endif 678#endif
516 679
517#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 682
520/*****************************************************************************/ 683/*****************************************************************************/
521 684
522void noinline 685void noinline
523ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
545 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
546} 709}
547 710
548/*****************************************************************************/ 711/*****************************************************************************/
549 712
550void inline_size
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed 713void inline_speed
564fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
565{ 715{
566 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
567 ev_io *w; 717 ev_io *w;
599 events |= (unsigned char)w->events; 749 events |= (unsigned char)w->events;
600 750
601#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
602 if (events) 752 if (events)
603 { 753 {
604 unsigned long argp; 754 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 755 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 757 #else
608 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
609 #endif 759 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 761 }
612#endif 762#endif
613 763
614 { 764 {
615 unsigned char o_events = anfd->events; 765 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 766 unsigned char o_reify = anfd->reify;
617 767
618 anfd->reify = 0; 768 anfd->reify = 0;
619 anfd->events = events; 769 anfd->events = events;
620 770
621 if (o_events != events || o_reify & EV_IOFDSET) 771 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 772 backend_modify (EV_A_ fd, o_events, events);
623 } 773 }
624 } 774 }
625 775
626 fdchangecnt = 0; 776 fdchangecnt = 0;
668{ 818{
669 int fd; 819 int fd;
670 820
671 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 822 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
675} 825}
676 826
677/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 828static void noinline
696 846
697 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 848 if (anfds [fd].events)
699 { 849 {
700 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 853 }
703} 854}
704 855
705/*****************************************************************************/ 856/*****************************************************************************/
706 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
707void inline_speed 878void inline_speed
708upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
709{ 880{
710 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
711 883
712 while (k) 884 for (;;)
713 { 885 {
714 int p = (k - 1) >> 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 889
716 if (heap [p]->at <= w->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
717 break; 906 break;
718 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
946 heap [k] = heap [c];
947 ev_active (ANHE_w (heap [k])) = k;
948
949 k = c;
950 }
951
952 heap [k] = he;
953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
719 heap [k] = heap [p]; 970 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 971 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 972 k = p;
722 } 973 }
723 974
724 heap [k] = w; 975 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 976 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 977}
755 978
756void inline_size 979void inline_size
757adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
758{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 983 upheap (heap, k);
984 else
760 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
761} 998}
762 999
763/*****************************************************************************/ 1000/*****************************************************************************/
764 1001
765typedef struct 1002typedef struct
766{ 1003{
767 WL head; 1004 WL head;
768 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
769} ANSIG; 1006} ANSIG;
770 1007
771static ANSIG *signals; 1008static ANSIG *signals;
772static int signalmax; 1009static int signalmax;
773 1010
774static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1012
778void inline_size 1013/*****************************************************************************/
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 1014
841void inline_speed 1015void inline_speed
842fd_intern (int fd) 1016fd_intern (int fd)
843{ 1017{
844#ifdef _WIN32 1018#ifdef _WIN32
845 int arg = 1; 1019 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1021#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1024#endif
851} 1025}
852 1026
853static void noinline 1027static void noinline
854siginit (EV_P) 1028evpipe_init (EV_P)
855{ 1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
856 fd_intern (sigpipe [0]); 1045 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
858 1049
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1050 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
862} 1118}
863 1119
864/*****************************************************************************/ 1120/*****************************************************************************/
865 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
866static WL childs [EV_PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
867 1160
868#ifndef _WIN32 1161#ifndef _WIN32
869 1162
870static ev_signal childev; 1163static ev_signal childev;
871 1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
872void inline_speed 1169void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1170child_reap (EV_P_ int chain, int pid, int status)
874{ 1171{
875 ev_child *w; 1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1174
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
878 if (w->pid == pid || !w->pid) 1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
879 { 1179 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1181 w->rpid = pid;
882 w->rstatus = status; 1182 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1184 }
1185 }
885} 1186}
886 1187
887#ifndef WCONTINUED 1188#ifndef WCONTINUED
888# define WCONTINUED 0 1189# define WCONTINUED 0
889#endif 1190#endif
898 if (!WCONTINUED 1199 if (!WCONTINUED
899 || errno != EINVAL 1200 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1202 return;
902 1203
903 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1207
907 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1209 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1211}
911 1212
912#endif 1213#endif
913 1214
914/*****************************************************************************/ 1215/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
979#endif 1280#endif
980#ifdef __APPLE__ 1281#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
983#endif 1285#endif
984 1286
985 return flags; 1287 return flags;
986} 1288}
987 1289
1024static void noinline 1326static void noinline
1025loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
1026{ 1328{
1027 if (!backend) 1329 if (!backend)
1028 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
1029#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1030 { 1343 {
1031 struct timespec ts; 1344 struct timespec ts;
1345
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1347 have_monotonic = 1;
1034 } 1348 }
1035#endif 1349#endif
1036 1350
1037 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1352 mn_now = get_clock ();
1039 now_floor = mn_now; 1353 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1041 1355
1042 io_blocktime = 0.; 1356 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1044 1364
1045 /* pid check not overridable via env */ 1365 /* pid check not overridable via env */
1046#ifndef _WIN32 1366#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1367 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1368 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1372 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1375
1056 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1378
1065#if EV_USE_PORT 1379#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1381#endif
1068#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
1076#endif 1390#endif
1077#if EV_USE_SELECT 1391#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1393#endif
1080 1394
1081 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1397 }
1084} 1398}
1085 1399
1086static void noinline 1400static void noinline
1087loop_destroy (EV_P) 1401loop_destroy (EV_P)
1088{ 1402{
1089 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1090 1421
1091#if EV_USE_INOTIFY 1422#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1423 if (fs_fd >= 0)
1093 close (fs_fd); 1424 close (fs_fd);
1094#endif 1425#endif
1131#if EV_FORK_ENABLE 1462#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1463 array_free (fork, EMPTY);
1133#endif 1464#endif
1134 array_free (prepare, EMPTY); 1465 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1136 1470
1137 backend = 0; 1471 backend = 0;
1138} 1472}
1139 1473
1474#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1475void inline_size infy_fork (EV_P);
1476#endif
1141 1477
1142void inline_size 1478void inline_size
1143loop_fork (EV_P) 1479loop_fork (EV_P)
1144{ 1480{
1145#if EV_USE_PORT 1481#if EV_USE_PORT
1153#endif 1489#endif
1154#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1491 infy_fork (EV_A);
1156#endif 1492#endif
1157 1493
1158 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
1159 { 1495 {
1160 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1161 1502
1162 ev_ref (EV_A); 1503 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1164 close (sigpipe [0]); 1513 close (evpipe [0]);
1165 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
1166 1516
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1519 pipecb (EV_A_ &pipeev, EV_READ);
1172 } 1520 }
1173 1521
1174 postfork = 0; 1522 postfork = 0;
1175} 1523}
1176 1524
1177#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
1178struct ev_loop * 1527struct ev_loop *
1179ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
1180{ 1529{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1531
1198} 1547}
1199 1548
1200void 1549void
1201ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
1202{ 1551{
1203 postfork = 1; // must be in line with ev_default_fork 1552 postfork = 1; /* must be in line with ev_default_fork */
1204} 1553}
1205 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1206#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
1207 1655
1208#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1209struct ev_loop * 1657struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
1211#else 1659#else
1212int 1660int
1213ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
1214#endif 1662#endif
1215{ 1663{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
1221 { 1665 {
1222#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1668#else
1227 1671
1228 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1229 1673
1230 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1231 { 1675 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1676#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1250{ 1692{
1251#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1695#endif
1254 1696
1697 ev_default_loop_ptr = 0;
1698
1255#ifndef _WIN32 1699#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1258#endif 1702#endif
1259 1703
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1267} 1705}
1268 1706
1269void 1707void
1270ev_default_fork (void) 1708ev_default_fork (void)
1271{ 1709{
1272#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif 1712#endif
1275 1713
1276 if (backend)
1277 postfork = 1; // must be in line with ev_loop_fork 1714 postfork = 1; /* must be in line with ev_loop_fork */
1278} 1715}
1279 1716
1280/*****************************************************************************/ 1717/*****************************************************************************/
1281 1718
1282void 1719void
1295 { 1732 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297 1734
1298 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1299 { 1736 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1301 1738
1302 p->w->pending = 0; 1739 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1304 } 1742 }
1305 } 1743 }
1306} 1744}
1307
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387 1745
1388#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1389void inline_size 1747void inline_size
1390idle_reify (EV_P) 1748idle_reify (EV_P)
1391{ 1749{
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break; 1762 break;
1405 } 1763 }
1406 } 1764 }
1407 } 1765 }
1766}
1767#endif
1768
1769void inline_size
1770timers_reify (EV_P)
1771{
1772 EV_FREQUENT_CHECK;
1773
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788
1789 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0);
1791 }
1792 else
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 }
1798}
1799
1800#if EV_PERIODIC_ENABLE
1801void inline_size
1802periodics_reify (EV_P)
1803{
1804 EV_FREQUENT_CHECK;
1805
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1846 }
1847}
1848
1849static void noinline
1850periodics_reschedule (EV_P)
1851{
1852 int i;
1853
1854 /* adjust periodics after time jump */
1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1856 {
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1408} 1868}
1409#endif 1869#endif
1410 1870
1411void inline_speed 1871void inline_speed
1412time_update (EV_P_ ev_tstamp max_block) 1872time_update (EV_P_ ev_tstamp max_block)
1441 */ 1901 */
1442 for (i = 4; --i; ) 1902 for (i = 4; --i; )
1443 { 1903 {
1444 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1445 1905
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 1907 return; /* all is well */
1448 1908
1449 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 1910 mn_now = get_clock ();
1451 now_floor = mn_now; 1911 now_floor = mn_now;
1467#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1469#endif 1929#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1472 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1473 } 1937 }
1474 1938
1475 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1476 } 1940 }
1477} 1941}
1486ev_unref (EV_P) 1950ev_unref (EV_P)
1487{ 1951{
1488 --activecnt; 1952 --activecnt;
1489} 1953}
1490 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1491static int loop_done; 1961static int loop_done;
1492 1962
1493void 1963void
1494ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1495{ 1965{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499 1967
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1501 1969
1502 do 1970 do
1503 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1504#ifndef _WIN32 1976#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 1977 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 1978 if (expect_false (getpid () != curpid))
1507 { 1979 {
1508 curpid = getpid (); 1980 curpid = getpid ();
1549 2021
1550 waittime = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
1551 2023
1552 if (timercnt) 2024 if (timercnt)
1553 { 2025 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 2027 if (waittime > to) waittime = to;
1556 } 2028 }
1557 2029
1558#if EV_PERIODIC_ENABLE 2030#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 2031 if (periodiccnt)
1560 { 2032 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 2034 if (waittime > to) waittime = to;
1563 } 2035 }
1564#endif 2036#endif
1565 2037
1566 if (expect_false (waittime < timeout_blocktime)) 2038 if (expect_false (waittime < timeout_blocktime))
1599 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2072 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2074
1603 call_pending (EV_A); 2075 call_pending (EV_A);
1604
1605 } 2076 }
1606 while (expect_true (activecnt && !loop_done)); 2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1607 2082
1608 if (loop_done == EVUNLOOP_ONE) 2083 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2084 loop_done = EVUNLOOP_CANCEL;
1610} 2085}
1611 2086
1698 int fd = w->fd; 2173 int fd = w->fd;
1699 2174
1700 if (expect_false (ev_is_active (w))) 2175 if (expect_false (ev_is_active (w)))
1701 return; 2176 return;
1702 2177
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1704 2182
1705 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1707 wlist_add (&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1708 2186
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET; 2188 w->events &= ~EV__IOFDSET;
2189
2190 EV_FREQUENT_CHECK;
1711} 2191}
1712 2192
1713void noinline 2193void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1715{ 2195{
1716 clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
1718 return; 2198 return;
1719 2199
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2201
2202 EV_FREQUENT_CHECK;
1721 2203
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1724 2206
1725 fd_change (EV_A_ w->fd, 1); 2207 fd_change (EV_A_ w->fd, 1);
2208
2209 EV_FREQUENT_CHECK;
1726} 2210}
1727 2211
1728void noinline 2212void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1730{ 2214{
1731 if (expect_false (ev_is_active (w))) 2215 if (expect_false (ev_is_active (w)))
1732 return; 2216 return;
1733 2217
1734 ((WT)w)->at += mn_now; 2218 ev_at (w) += mn_now;
1735 2219
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
1742 2230
2231 EV_FREQUENT_CHECK;
2232
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2234}
1745 2235
1746void noinline 2236void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2238{
1749 clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2240 if (expect_false (!ev_is_active (w)))
1751 return; 2241 return;
1752 2242
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2243 EV_FREQUENT_CHECK;
1754 2244
1755 { 2245 {
1756 int active = ((W)w)->active; 2246 int active = ev_active (w);
1757 2247
2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2249
2250 --timercnt;
2251
1758 if (expect_true (--active < --timercnt)) 2252 if (expect_true (active < timercnt + HEAP0))
1759 { 2253 {
1760 timers [active] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2255 adjustheap (timers, timercnt, active);
1762 } 2256 }
1763 } 2257 }
1764 2258
1765 ((WT)w)->at -= mn_now; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1766 2262
1767 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1768} 2264}
1769 2265
1770void noinline 2266void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1772{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1773 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1774 { 2272 {
1775 if (w->repeat) 2273 if (w->repeat)
1776 { 2274 {
1777 ((WT)w)->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2277 adjustheap (timers, timercnt, ev_active (w));
1779 } 2278 }
1780 else 2279 else
1781 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1782 } 2281 }
1783 else if (w->repeat) 2282 else if (w->repeat)
1784 { 2283 {
1785 w->at = w->repeat; 2284 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1787 } 2286 }
2287
2288 EV_FREQUENT_CHECK;
1788} 2289}
1789 2290
1790#if EV_PERIODIC_ENABLE 2291#if EV_PERIODIC_ENABLE
1791void noinline 2292void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2294{
1794 if (expect_false (ev_is_active (w))) 2295 if (expect_false (ev_is_active (w)))
1795 return; 2296 return;
1796 2297
1797 if (w->reschedule_cb) 2298 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2300 else if (w->interval)
1800 { 2301 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2305 }
1805 else 2306 else
1806 ((WT)w)->at = w->offset; 2307 ev_at (w) = w->offset;
1807 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1812 2317
2318 EV_FREQUENT_CHECK;
2319
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2321}
1815 2322
1816void noinline 2323void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2325{
1819 clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2327 if (expect_false (!ev_is_active (w)))
1821 return; 2328 return;
1822 2329
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2330 EV_FREQUENT_CHECK;
1824 2331
1825 { 2332 {
1826 int active = ((W)w)->active; 2333 int active = ev_active (w);
1827 2334
2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2336
2337 --periodiccnt;
2338
1828 if (expect_true (--active < --periodiccnt)) 2339 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2340 {
1830 periodics [active] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2342 adjustheap (periodics, periodiccnt, active);
1832 } 2343 }
1833 } 2344 }
1834 2345
2346 EV_FREQUENT_CHECK;
2347
1835 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1836} 2349}
1837 2350
1838void noinline 2351void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1850 2363
1851void noinline 2364void noinline
1852ev_signal_start (EV_P_ ev_signal *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1853{ 2366{
1854#if EV_MULTIPLICITY 2367#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1856#endif 2369#endif
1857 if (expect_false (ev_is_active (w))) 2370 if (expect_false (ev_is_active (w)))
1858 return; 2371 return;
1859 2372
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
1861 2378
1862 { 2379 {
1863#ifndef _WIN32 2380#ifndef _WIN32
1864 sigset_t full, prev; 2381 sigset_t full, prev;
1865 sigfillset (&full); 2382 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev); 2383 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif 2384#endif
1868 2385
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1870 2387
1871#ifndef _WIN32 2388#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0); 2389 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif 2390#endif
1874 } 2391 }
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2395
1879 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1880 { 2397 {
1881#if _WIN32 2398#if _WIN32
1882 signal (w->signum, sighandler); 2399 signal (w->signum, ev_sighandler);
1883#else 2400#else
1884 struct sigaction sa; 2401 struct sigaction sa;
1885 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
1889#endif 2406#endif
1890 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
1891} 2410}
1892 2411
1893void noinline 2412void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2414{
1896 clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2416 if (expect_false (!ev_is_active (w)))
1898 return; 2417 return;
1899 2418
2419 EV_FREQUENT_CHECK;
2420
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1902 2423
1903 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
2426
2427 EV_FREQUENT_CHECK;
1905} 2428}
1906 2429
1907void 2430void
1908ev_child_start (EV_P_ ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1909{ 2432{
1910#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2435#endif
1913 if (expect_false (ev_is_active (w))) 2436 if (expect_false (ev_is_active (w)))
1914 return; 2437 return;
1915 2438
2439 EV_FREQUENT_CHECK;
2440
1916 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2443
2444 EV_FREQUENT_CHECK;
1918} 2445}
1919 2446
1920void 2447void
1921ev_child_stop (EV_P_ ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1922{ 2449{
1923 clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2451 if (expect_false (!ev_is_active (w)))
1925 return; 2452 return;
1926 2453
2454 EV_FREQUENT_CHECK;
2455
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1929} 2460}
1930 2461
1931#if EV_STAT_ENABLE 2462#if EV_STAT_ENABLE
1932 2463
1933# ifdef _WIN32 2464# ifdef _WIN32
1934# undef lstat 2465# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 2466# define lstat(a,b) _stati64 (a,b)
1936# endif 2467# endif
1937 2468
1938#define DEF_STAT_INTERVAL 5.0074891 2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 2471#define MIN_STAT_INTERVAL 0.1074891
1940 2472
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 2474
1943#if EV_USE_INOTIFY 2475#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192 2476# define EV_INOTIFY_BUFSIZE 8192
1948{ 2480{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 2482
1951 if (w->wd < 0) 2483 if (w->wd < 0)
1952 { 2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2487
1955 /* monitor some parent directory for speedup hints */ 2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2492 {
1958 char path [4096]; 2493 char path [4096];
1959 strcpy (path, w->path); 2494 strcpy (path, w->path);
1960 2495
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 2500
1966 char *pend = strrchr (path, '/'); 2501 char *pend = strrchr (path, '/');
1967 2502
1968 if (!pend) 2503 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 2504 break;
1970 2505
1971 *pend = 0; 2506 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 2507 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 2508 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 2510 }
1976 } 2511 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 2512
1980 if (w->wd >= 0) 2513 if (w->wd >= 0)
2514 {
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
1982} 2534}
1983 2535
1984static void noinline 2536static void noinline
1985infy_del (EV_P_ ev_stat *w) 2537infy_del (EV_P_ ev_stat *w)
1986{ 2538{
2000 2552
2001static void noinline 2553static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 2555{
2004 if (slot < 0) 2556 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 2557 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 2559 infy_wd (EV_A_ slot, wd, ev);
2008 else 2560 else
2009 { 2561 {
2010 WL w_; 2562 WL w_;
2016 2568
2017 if (w->wd == wd || wd == -1) 2569 if (w->wd == wd || wd == -1)
2018 { 2570 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2021 w->wd = -1; 2574 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 2575 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 2576 }
2024 2577
2025 stat_timer_cb (EV_A_ &w->timer, 0); 2578 stat_timer_cb (EV_A_ &w->timer, 0);
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041} 2594}
2042 2595
2043void inline_size 2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
2044infy_init (EV_P) 2620infy_init (EV_P)
2045{ 2621{
2046 if (fs_fd != -2) 2622 if (fs_fd != -2)
2047 return; 2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2048 2628
2049 fs_fd = inotify_init (); 2629 fs_fd = inotify_init ();
2050 2630
2051 if (fs_fd >= 0) 2631 if (fs_fd >= 0)
2052 { 2632 {
2080 w->wd = -1; 2660 w->wd = -1;
2081 2661
2082 if (fs_fd >= 0) 2662 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 2663 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 2664 else
2085 ev_timer_start (EV_A_ &w->timer); 2665 ev_timer_again (EV_A_ &w->timer);
2086 } 2666 }
2087
2088 } 2667 }
2089} 2668}
2090 2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 2676#endif
2092 2677
2093void 2678void
2094ev_stat_stat (EV_P_ ev_stat *w) 2679ev_stat_stat (EV_P_ ev_stat *w)
2095{ 2680{
2122 || w->prev.st_atime != w->attr.st_atime 2707 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 2708 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 2709 || w->prev.st_ctime != w->attr.st_ctime
2125 ) { 2710 ) {
2126 #if EV_USE_INOTIFY 2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2127 infy_del (EV_A_ w); 2714 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 2715 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2130 #endif 2718 #endif
2131 2719
2132 ev_feed_event (EV_A_ w, EV_STAT); 2720 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 2721 }
2134} 2722}
2137ev_stat_start (EV_P_ ev_stat *w) 2725ev_stat_start (EV_P_ ev_stat *w)
2138{ 2726{
2139 if (expect_false (ev_is_active (w))) 2727 if (expect_false (ev_is_active (w)))
2140 return; 2728 return;
2141 2729
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 2730 ev_stat_stat (EV_A_ w);
2147 2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 2733 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 2734
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 2736 ev_set_priority (&w->timer, ev_priority (w));
2153 2737
2154#if EV_USE_INOTIFY 2738#if EV_USE_INOTIFY
2155 infy_init (EV_A); 2739 infy_init (EV_A);
2156 2740
2157 if (fs_fd >= 0) 2741 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 2742 infy_add (EV_A_ w);
2159 else 2743 else
2160#endif 2744#endif
2161 ev_timer_start (EV_A_ &w->timer); 2745 ev_timer_again (EV_A_ &w->timer);
2162 2746
2163 ev_start (EV_A_ (W)w, 1); 2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
2164} 2750}
2165 2751
2166void 2752void
2167ev_stat_stop (EV_P_ ev_stat *w) 2753ev_stat_stop (EV_P_ ev_stat *w)
2168{ 2754{
2169 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2171 return; 2757 return;
2172 2758
2759 EV_FREQUENT_CHECK;
2760
2173#if EV_USE_INOTIFY 2761#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 2762 infy_del (EV_A_ w);
2175#endif 2763#endif
2176 ev_timer_stop (EV_A_ &w->timer); 2764 ev_timer_stop (EV_A_ &w->timer);
2177 2765
2178 ev_stop (EV_A_ (W)w); 2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2179} 2769}
2180#endif 2770#endif
2181 2771
2182#if EV_IDLE_ENABLE 2772#if EV_IDLE_ENABLE
2183void 2773void
2185{ 2775{
2186 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2187 return; 2777 return;
2188 2778
2189 pri_adjust (EV_A_ (W)w); 2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2190 2782
2191 { 2783 {
2192 int active = ++idlecnt [ABSPRI (w)]; 2784 int active = ++idlecnt [ABSPRI (w)];
2193 2785
2194 ++idleall; 2786 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 2787 ev_start (EV_A_ (W)w, active);
2196 2788
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 2790 idles [ABSPRI (w)][active - 1] = w;
2199 } 2791 }
2792
2793 EV_FREQUENT_CHECK;
2200} 2794}
2201 2795
2202void 2796void
2203ev_idle_stop (EV_P_ ev_idle *w) 2797ev_idle_stop (EV_P_ ev_idle *w)
2204{ 2798{
2205 clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2207 return; 2801 return;
2208 2802
2803 EV_FREQUENT_CHECK;
2804
2209 { 2805 {
2210 int active = ((W)w)->active; 2806 int active = ev_active (w);
2211 2807
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 2810
2215 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2216 --idleall; 2812 --idleall;
2217 } 2813 }
2814
2815 EV_FREQUENT_CHECK;
2218} 2816}
2219#endif 2817#endif
2220 2818
2221void 2819void
2222ev_prepare_start (EV_P_ ev_prepare *w) 2820ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 2821{
2224 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2225 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2226 2826
2227 ev_start (EV_A_ (W)w, ++preparecnt); 2827 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2230} 2832}
2231 2833
2232void 2834void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 2835ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 2836{
2235 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2237 return; 2839 return;
2238 2840
2841 EV_FREQUENT_CHECK;
2842
2239 { 2843 {
2240 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2241 prepares [active - 1] = prepares [--preparecnt]; 2846 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 2847 ev_active (prepares [active - 1]) = active;
2243 } 2848 }
2244 2849
2245 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2246} 2853}
2247 2854
2248void 2855void
2249ev_check_start (EV_P_ ev_check *w) 2856ev_check_start (EV_P_ ev_check *w)
2250{ 2857{
2251 if (expect_false (ev_is_active (w))) 2858 if (expect_false (ev_is_active (w)))
2252 return; 2859 return;
2860
2861 EV_FREQUENT_CHECK;
2253 2862
2254 ev_start (EV_A_ (W)w, ++checkcnt); 2863 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2257} 2868}
2258 2869
2259void 2870void
2260ev_check_stop (EV_P_ ev_check *w) 2871ev_check_stop (EV_P_ ev_check *w)
2261{ 2872{
2262 clear_pending (EV_A_ (W)w); 2873 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 2874 if (expect_false (!ev_is_active (w)))
2264 return; 2875 return;
2265 2876
2877 EV_FREQUENT_CHECK;
2878
2266 { 2879 {
2267 int active = ((W)w)->active; 2880 int active = ev_active (w);
2881
2268 checks [active - 1] = checks [--checkcnt]; 2882 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 2883 ev_active (checks [active - 1]) = active;
2270 } 2884 }
2271 2885
2272 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2273} 2889}
2274 2890
2275#if EV_EMBED_ENABLE 2891#if EV_EMBED_ENABLE
2276void noinline 2892void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 2893ev_embed_sweep (EV_P_ ev_embed *w)
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 2921 }
2306 } 2922 }
2307} 2923}
2308 2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2309#if 0 2942#if 0
2310static void 2943static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 2945{
2313 ev_idle_stop (EV_A_ idle); 2946 ev_idle_stop (EV_A_ idle);
2320 if (expect_false (ev_is_active (w))) 2953 if (expect_false (ev_is_active (w)))
2321 return; 2954 return;
2322 2955
2323 { 2956 {
2324 struct ev_loop *loop = w->other; 2957 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 2960 }
2961
2962 EV_FREQUENT_CHECK;
2328 2963
2329 ev_set_priority (&w->io, ev_priority (w)); 2964 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 2965 ev_io_start (EV_A_ &w->io);
2331 2966
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 2968 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 2969 ev_prepare_start (EV_A_ &w->prepare);
2335 2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 2975
2338 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2339} 2979}
2340 2980
2341void 2981void
2342ev_embed_stop (EV_P_ ev_embed *w) 2982ev_embed_stop (EV_P_ ev_embed *w)
2343{ 2983{
2344 clear_pending (EV_A_ (W)w); 2984 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 2985 if (expect_false (!ev_is_active (w)))
2346 return; 2986 return;
2347 2987
2988 EV_FREQUENT_CHECK;
2989
2348 ev_io_stop (EV_A_ &w->io); 2990 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2350 2993
2351 ev_stop (EV_A_ (W)w); 2994 EV_FREQUENT_CHECK;
2352} 2995}
2353#endif 2996#endif
2354 2997
2355#if EV_FORK_ENABLE 2998#if EV_FORK_ENABLE
2356void 2999void
2357ev_fork_start (EV_P_ ev_fork *w) 3000ev_fork_start (EV_P_ ev_fork *w)
2358{ 3001{
2359 if (expect_false (ev_is_active (w))) 3002 if (expect_false (ev_is_active (w)))
2360 return; 3003 return;
3004
3005 EV_FREQUENT_CHECK;
2361 3006
2362 ev_start (EV_A_ (W)w, ++forkcnt); 3007 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
2365} 3012}
2366 3013
2367void 3014void
2368ev_fork_stop (EV_P_ ev_fork *w) 3015ev_fork_stop (EV_P_ ev_fork *w)
2369{ 3016{
2370 clear_pending (EV_A_ (W)w); 3017 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 3018 if (expect_false (!ev_is_active (w)))
2372 return; 3019 return;
2373 3020
3021 EV_FREQUENT_CHECK;
3022
2374 { 3023 {
2375 int active = ((W)w)->active; 3024 int active = ev_active (w);
3025
2376 forks [active - 1] = forks [--forkcnt]; 3026 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 3027 ev_active (forks [active - 1]) = active;
2378 } 3028 }
2379 3029
2380 ev_stop (EV_A_ (W)w); 3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
2381} 3080}
2382#endif 3081#endif
2383 3082
2384/*****************************************************************************/ 3083/*****************************************************************************/
2385 3084
2395once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3095{
2397 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3097 void *arg = once->arg;
2399 3098
2400 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3101 ev_free (once);
2403 3102
2404 cb (revents, arg); 3103 cb (revents, arg);
2405} 3104}
2406 3105
2407static void 3106static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3108{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3112}
2412 3113
2413static void 3114static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3116{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3120}
2418 3121
2419void 3122void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3124{
2443 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
2445 } 3148 }
2446} 3149}
2447 3150
3151/*****************************************************************************/
3152
3153#if 0
3154void
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3156{
3157 int i, j;
3158 ev_watcher_list *wl, *wn;
3159
3160 if (types & (EV_IO | EV_EMBED))
3161 for (i = 0; i < anfdmax; ++i)
3162 for (wl = anfds [i].head; wl; )
3163 {
3164 wn = wl->next;
3165
3166#if EV_EMBED_ENABLE
3167 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3168 {
3169 if (types & EV_EMBED)
3170 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3171 }
3172 else
3173#endif
3174#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ;
3177 else
3178#endif
3179 if ((ev_io *)wl != &pipeev)
3180 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl);
3182
3183 wl = wn;
3184 }
3185
3186 if (types & (EV_TIMER | EV_STAT))
3187 for (i = timercnt + HEAP0; i-- > HEAP0; )
3188#if EV_STAT_ENABLE
3189 /*TODO: timer is not always active*/
3190 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3191 {
3192 if (types & EV_STAT)
3193 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3194 }
3195 else
3196#endif
3197 if (types & EV_TIMER)
3198 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3199
3200#if EV_PERIODIC_ENABLE
3201 if (types & EV_PERIODIC)
3202 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3203 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3204#endif
3205
3206#if EV_IDLE_ENABLE
3207 if (types & EV_IDLE)
3208 for (j = NUMPRI; i--; )
3209 for (i = idlecnt [j]; i--; )
3210 cb (EV_A_ EV_IDLE, idles [j][i]);
3211#endif
3212
3213#if EV_FORK_ENABLE
3214 if (types & EV_FORK)
3215 for (i = forkcnt; i--; )
3216 if (ev_cb (forks [i]) != embed_fork_cb)
3217 cb (EV_A_ EV_FORK, forks [i]);
3218#endif
3219
3220#if EV_ASYNC_ENABLE
3221 if (types & EV_ASYNC)
3222 for (i = asynccnt; i--; )
3223 cb (EV_A_ EV_ASYNC, asyncs [i]);
3224#endif
3225
3226 if (types & EV_PREPARE)
3227 for (i = preparecnt; i--; )
3228#if EV_EMBED_ENABLE
3229 if (ev_cb (prepares [i]) != embed_prepare_cb)
3230#endif
3231 cb (EV_A_ EV_PREPARE, prepares [i]);
3232
3233 if (types & EV_CHECK)
3234 for (i = checkcnt; i--; )
3235 cb (EV_A_ EV_CHECK, checks [i]);
3236
3237 if (types & EV_SIGNAL)
3238 for (i = 0; i < signalmax; ++i)
3239 for (wl = signals [i].head; wl; )
3240 {
3241 wn = wl->next;
3242 cb (EV_A_ EV_SIGNAL, wl);
3243 wl = wn;
3244 }
3245
3246 if (types & EV_CHILD)
3247 for (i = EV_PID_HASHSIZE; i--; )
3248 for (wl = childs [i]; wl; )
3249 {
3250 wn = wl->next;
3251 cb (EV_A_ EV_CHILD, wl);
3252 wl = wn;
3253 }
3254/* EV_STAT 0x00001000 /* stat data changed */
3255/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3256}
3257#endif
3258
2448#if EV_MULTIPLICITY 3259#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 3260 #include "ev_wrap.h"
2450#endif 3261#endif
2451 3262
2452#ifdef __cplusplus 3263#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines