ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC vs.
Revision 1.448 by root, Tue Jul 24 16:28:08 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
180 255
181#ifndef EV_USE_CLOCK_SYSCALL 256#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 257# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 259# else
185# define EV_USE_CLOCK_SYSCALL 0 260# define EV_USE_CLOCK_SYSCALL 0
186# endif 261# endif
187#endif 262#endif
188 263
189#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 267# else
193# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
194# endif 269# endif
195#endif 270#endif
196 271
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 274#endif
200 275
201#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 279# else
205# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
206# endif 281# endif
207#endif 282#endif
208 283
209#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 286#endif
212 287
213#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
214# ifdef _WIN32 289# ifdef _WIN32
215# define EV_USE_POLL 0 290# define EV_USE_POLL 0
216# else 291# else
217# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 293# endif
219#endif 294#endif
220 295
221#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 299# else
225# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
226# endif 301# endif
227#endif 302#endif
228 303
234# define EV_USE_PORT 0 309# define EV_USE_PORT 0
235#endif 310#endif
236 311
237#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 315# else
241# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
242# endif 317# endif
243#endif 318#endif
244 319
245#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 322#endif
252 323
253#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 326#endif
260 327
261#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 331# else
265# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
266# endif 341# endif
267#endif 342#endif
268 343
269#if 0 /* debugging */ 344#if 0 /* debugging */
270# define EV_VERIFY 3 345# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
273#endif 348#endif
274 349
275#ifndef EV_VERIFY 350#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 352#endif
278 353
279#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 356#endif
282 357
283#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
285#endif 374#endif
286 375
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
288 383
289#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
292#endif 387#endif
300# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
302#endif 397#endif
303 398
304#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 402# include <sys/select.h>
307# endif 403# endif
308#endif 404#endif
309 405
310#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 407# include <sys/statfs.h>
313# include <sys/inotify.h> 408# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 410# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
318# endif 413# endif
319#endif 414#endif
320 415
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 418# include <stdint.h>
337# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
338extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
339# endif 421# endif
340int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 423# ifdef O_CLOEXEC
342} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
343# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
344#endif 452#endif
345 453
346/**/ 454/**/
347 455
348#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 458#else
351# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
352#endif 460#endif
353 461
354/* 462/*
355 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 465 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 468
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 519 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
371#else 536#else
372# define expect(expr,value) (expr) 537 #include <inttypes.h>
373# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
375# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
376# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
377#endif 557 #endif
558#endif
378 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
381#define inline_size static inline 1013#define inline_size ecb_inline
382 1014
383#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
384# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
385#else 1025#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
391 1028
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
394 1031
395typedef ev_watcher *W; 1032typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1036#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1037#define ev_at(w) ((WT)(w))->at
401 1038
402#if EV_USE_REALTIME 1039#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1041/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1043#endif
407 1044
408#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1047#endif
411 1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
412#ifdef _WIN32 1059#ifdef _WIN32
413# include "ev_win32.c" 1060# include "ev_win32.c"
414#endif 1061#endif
415 1062
416/*****************************************************************************/ 1063/*****************************************************************************/
417 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
418static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
419 1164
420void 1165void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1167{
423 syserr_cb = cb; 1168 syserr_cb = cb;
424} 1169}
425 1170
426static void noinline 1171static void noinline ecb_cold
427ev_syserr (const char *msg) 1172ev_syserr (const char *msg)
428{ 1173{
429 if (!msg) 1174 if (!msg)
430 msg = "(libev) system error"; 1175 msg = "(libev) system error";
431 1176
432 if (syserr_cb) 1177 if (syserr_cb)
433 syserr_cb (msg); 1178 syserr_cb (msg);
434 else 1179 else
435 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
436 perror (msg); 1187 perror (msg);
1188#endif
437 abort (); 1189 abort ();
438 } 1190 }
439} 1191}
440 1192
441static void * 1193static void *
442ev_realloc_emul (void *ptr, long size) 1194ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1195{
444 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
447 */ 1201 */
448 1202
449 if (size) 1203 if (size)
450 return realloc (ptr, size); 1204 return realloc (ptr, size);
451 1205
452 free (ptr); 1206 free (ptr);
453 return 0; 1207 return 0;
454} 1208}
455 1209
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1211
458void 1212void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1214{
461 alloc = cb; 1215 alloc = cb;
462} 1216}
463 1217
464inline_speed void * 1218inline_speed void *
466{ 1220{
467 ptr = alloc (ptr, size); 1221 ptr = alloc (ptr, size);
468 1222
469 if (!ptr && size) 1223 if (!ptr && size)
470 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
472 abort (); 1230 abort ();
473 } 1231 }
474 1232
475 return ptr; 1233 return ptr;
476} 1234}
478#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1238
481/*****************************************************************************/ 1239/*****************************************************************************/
482 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
483typedef struct 1245typedef struct
484{ 1246{
485 WL head; 1247 WL head;
486 unsigned char events; 1248 unsigned char events; /* the events watched for */
487 unsigned char reify; 1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1251 unsigned char unused;
490#if EV_USE_EPOLL 1252#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1253 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1254#endif
493#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1256 SOCKET handle;
495#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
496} ANFD; 1261} ANFD;
497 1262
1263/* stores the pending event set for a given watcher */
498typedef struct 1264typedef struct
499{ 1265{
500 W w; 1266 W w;
501 int events; 1267 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1268} ANPENDING;
503 1269
504#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1271/* hash table entry per inotify-id */
506typedef struct 1272typedef struct
509} ANFS; 1275} ANFS;
510#endif 1276#endif
511 1277
512/* Heap Entry */ 1278/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
514 typedef struct { 1281 typedef struct {
515 ev_tstamp at; 1282 ev_tstamp at;
516 WT w; 1283 WT w;
517 } ANHE; 1284 } ANHE;
518 1285
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1289#else
1290 /* a heap element */
523 typedef WT ANHE; 1291 typedef WT ANHE;
524 1292
525 #define ANHE_w(he) (he) 1293 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1294 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1295 #define ANHE_at_cache(he)
538 #undef VAR 1306 #undef VAR
539 }; 1307 };
540 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
541 1309
542 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1312
545#else 1313#else
546 1314
547 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1317 #include "ev_vars.h"
550 #undef VAR 1318 #undef VAR
551 1319
552 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
553 1321
554#endif 1322#endif
555 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
556/*****************************************************************************/ 1336/*****************************************************************************/
557 1337
1338#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1339ev_tstamp
559ev_time (void) 1340ev_time (void) EV_THROW
560{ 1341{
561#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1343 if (expect_true (have_realtime))
563 { 1344 {
564 struct timespec ts; 1345 struct timespec ts;
569 1350
570 struct timeval tv; 1351 struct timeval tv;
571 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1354}
1355#endif
574 1356
575ev_tstamp inline_size 1357inline_size ev_tstamp
576get_clock (void) 1358get_clock (void)
577{ 1359{
578#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
580 { 1362 {
587 return ev_time (); 1369 return ev_time ();
588} 1370}
589 1371
590#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
591ev_tstamp 1373ev_tstamp
592ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
593{ 1375{
594 return ev_rt_now; 1376 return ev_rt_now;
595} 1377}
596#endif 1378#endif
597 1379
598void 1380void
599ev_sleep (ev_tstamp delay) 1381ev_sleep (ev_tstamp delay) EV_THROW
600{ 1382{
601 if (delay > 0.) 1383 if (delay > 0.)
602 { 1384 {
603#if EV_USE_NANOSLEEP 1385#if EV_USE_NANOSLEEP
604 struct timespec ts; 1386 struct timespec ts;
605 1387
606 ts.tv_sec = (time_t)delay; 1388 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1389 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1390#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1391 Sleep ((unsigned long)(delay * 1e3));
612#else 1392#else
613 struct timeval tv; 1393 struct timeval tv;
614 1394
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1396 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1399 select (0, 0, 0, 0, &tv);
622#endif 1400#endif
623 } 1401 }
624} 1402}
625 1403
626/*****************************************************************************/ 1404/*****************************************************************************/
627 1405
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1407
630int inline_size 1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
631array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
632{ 1412{
633 int ncur = cur + 1; 1413 int ncur = cur + 1;
634 1414
635 do 1415 do
636 ncur <<= 1; 1416 ncur <<= 1;
637 while (cnt > ncur); 1417 while (cnt > ncur);
638 1418
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1421 {
642 ncur *= elem; 1422 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
646 } 1426 }
647 1427
648 return ncur; 1428 return ncur;
649} 1429}
650 1430
651static noinline void * 1431static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1433{
654 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
656} 1436}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1440
661#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
663 { \ 1443 { \
664 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1448 }
669 1449
680#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1462
683/*****************************************************************************/ 1463/*****************************************************************************/
684 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
685void noinline 1471void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1473{
688 W w_ = (W)w; 1474 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
690 1476
691 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
699 } 1485 }
700}
701 1486
702void inline_speed 1487 pendingpri = NUMPRI - 1;
1488}
1489
1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 1507{
705 int i; 1508 int i;
706 1509
707 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
709} 1512}
710 1513
711/*****************************************************************************/ 1514/*****************************************************************************/
712 1515
713void inline_speed 1516inline_speed void
714fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
715{ 1518{
716 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
717 ev_io *w; 1520 ev_io *w;
718 1521
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 1526 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
725 } 1528 }
726} 1529}
727 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
728void 1542void
729ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
730{ 1544{
731 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
733} 1547}
734 1548
735void inline_size 1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
1551inline_size void
736fd_reify (EV_P) 1552fd_reify (EV_P)
737{ 1553{
738 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
739 1580
740 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
741 { 1582 {
742 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
744 ev_io *w; 1585 ev_io *w;
745 1586
746 unsigned char events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
747 1589
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 1591
751#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 1593 {
754 unsigned long arg; 1594 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 1595
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 1597 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 1598
759 #endif 1599 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1600 o_reify = EV__IOFDSET; /* actually |= */
761 } 1601 }
762#endif
763 1602
764 { 1603 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1605 }
775 1606
776 fdchangecnt = 0; 1607 fdchangecnt = 0;
777} 1608}
778 1609
779void inline_size 1610/* something about the given fd changed */
1611inline_size void
780fd_change (EV_P_ int fd, int flags) 1612fd_change (EV_P_ int fd, int flags)
781{ 1613{
782 unsigned char reify = anfds [fd].reify; 1614 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1615 anfds [fd].reify |= flags;
784 1616
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
790 } 1622 }
791} 1623}
792 1624
793void inline_speed 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
794fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
795{ 1628{
796 ev_io *w; 1629 ev_io *w;
797 1630
798 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1635 }
803} 1636}
804 1637
805int inline_size 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
806fd_valid (int fd) 1640fd_valid (int fd)
807{ 1641{
808#ifdef _WIN32 1642#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1644#else
811 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
812#endif 1646#endif
813} 1647}
814 1648
815/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
816static void noinline 1650static void noinline ecb_cold
817fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
818{ 1652{
819 int fd; 1653 int fd;
820 1654
821 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
825} 1659}
826 1660
827/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 1662static void noinline ecb_cold
829fd_enomem (EV_P) 1663fd_enomem (EV_P)
830{ 1664{
831 int fd; 1665 int fd;
832 1666
833 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1668 if (anfds [fd].events)
835 { 1669 {
836 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
837 return; 1671 break;
838 } 1672 }
839} 1673}
840 1674
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1676static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1682 if (anfds [fd].events)
849 { 1683 {
850 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1685 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1687 }
854} 1688}
855 1689
1690/* used to prepare libev internal fd's */
1691/* this is not fork-safe */
1692inline_speed void
1693fd_intern (int fd)
1694{
1695#ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698#else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701#endif
1702}
1703
856/*****************************************************************************/ 1704/*****************************************************************************/
857 1705
858/* 1706/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1707 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1709 * the branching factor of the d-tree.
862 */ 1710 */
863 1711
864/* 1712/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1723#define UPHEAP_DONE(p,k) ((p) == (k))
876 1724
877/* away from the root */ 1725/* away from the root */
878void inline_speed 1726inline_speed void
879downheap (ANHE *heap, int N, int k) 1727downheap (ANHE *heap, int N, int k)
880{ 1728{
881 ANHE he = heap [k]; 1729 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1730 ANHE *E = heap + N + HEAP0;
883 1731
923#define HEAP0 1 1771#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1772#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1773#define UPHEAP_DONE(p,k) (!(p))
926 1774
927/* away from the root */ 1775/* away from the root */
928void inline_speed 1776inline_speed void
929downheap (ANHE *heap, int N, int k) 1777downheap (ANHE *heap, int N, int k)
930{ 1778{
931 ANHE he = heap [k]; 1779 ANHE he = heap [k];
932 1780
933 for (;;) 1781 for (;;)
934 { 1782 {
935 int c = k << 1; 1783 int c = k << 1;
936 1784
937 if (c > N + HEAP0 - 1) 1785 if (c >= N + HEAP0)
938 break; 1786 break;
939 1787
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1789 ? 1 : 0;
942 1790
953 ev_active (ANHE_w (he)) = k; 1801 ev_active (ANHE_w (he)) = k;
954} 1802}
955#endif 1803#endif
956 1804
957/* towards the root */ 1805/* towards the root */
958void inline_speed 1806inline_speed void
959upheap (ANHE *heap, int k) 1807upheap (ANHE *heap, int k)
960{ 1808{
961 ANHE he = heap [k]; 1809 ANHE he = heap [k];
962 1810
963 for (;;) 1811 for (;;)
974 1822
975 heap [k] = he; 1823 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1824 ev_active (ANHE_w (he)) = k;
977} 1825}
978 1826
979void inline_size 1827/* move an element suitably so it is in a correct place */
1828inline_size void
980adjustheap (ANHE *heap, int N, int k) 1829adjustheap (ANHE *heap, int N, int k)
981{ 1830{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1832 upheap (heap, k);
984 else 1833 else
985 downheap (heap, N, k); 1834 downheap (heap, N, k);
986} 1835}
987 1836
988/* rebuild the heap: this function is used only once and executed rarely */ 1837/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1838inline_size void
990reheap (ANHE *heap, int N) 1839reheap (ANHE *heap, int N)
991{ 1840{
992 int i; 1841 int i;
993 1842
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1846 upheap (heap, i + HEAP0);
998} 1847}
999 1848
1000/*****************************************************************************/ 1849/*****************************************************************************/
1001 1850
1851/* associate signal watchers to a signal signal */
1002typedef struct 1852typedef struct
1003{ 1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1004 WL head; 1858 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1859} ANSIG;
1007 1860
1008static ANSIG *signals; 1861static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1862
1013/*****************************************************************************/ 1863/*****************************************************************************/
1014 1864
1015void inline_speed 1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1866
1027static void noinline 1867static void noinline ecb_cold
1028evpipe_init (EV_P) 1868evpipe_init (EV_P)
1029{ 1869{
1030 if (!ev_is_active (&pipeev)) 1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 1909 }
1910}
1911
1912inline_speed void
1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914{
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1032#if EV_USE_EVENTFD 1936#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 1937 if (evpipe [0] < 0)
1034 { 1938 {
1035 evpipe [0] = -1; 1939 uint64_t counter = 1;
1036 fd_intern (evfd); 1940 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 1941 }
1039 else 1942 else
1040#endif 1943#endif
1041 { 1944 {
1042 while (pipe (evpipe)) 1945#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1946 WSABUF buf;
1044 1947 DWORD sent;
1045 fd_intern (evpipe [0]); 1948 buf.buf = &buf;
1046 fd_intern (evpipe [1]); 1949 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1048 } 1954 }
1049 1955
1050 ev_io_start (EV_A_ &pipeev); 1956 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 1957 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 1958}
1061 1959
1062 *flag = 1; 1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
1962static void
1963pipecb (EV_P_ ev_io *iow, int revents)
1964{
1965 int i;
1063 1966
1967 if (revents & EV_READ)
1968 {
1064#if EV_USE_EVENTFD 1969#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1970 if (evpipe [0] < 0)
1066 { 1971 {
1067 uint64_t counter = 1; 1972 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 1973 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 1974 }
1070 else 1975 else
1071#endif 1976#endif
1072 write (evpipe [1], &old_errno, 1); 1977 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1091 read (evpipe [0], &dummy, 1); 1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1092 } 1998 {
1999 sig_pending = 0;
1093 2000
1094 if (gotsig && ev_is_default_loop (EV_A)) 2001 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2002
1099 for (signum = signalmax; signum--; ) 2003 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2004 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2005 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2006 }
2007#endif
1103 2008
1104#if EV_ASYNC_ENABLE 2009#if EV_ASYNC_ENABLE
1105 if (gotasync) 2010 if (async_pending)
1106 { 2011 {
1107 int i; 2012 async_pending = 0;
1108 gotasync = 0; 2013
2014 ECB_MEMORY_FENCE;
1109 2015
1110 for (i = asynccnt; i--; ) 2016 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2017 if (asyncs [i]->sent)
1112 { 2018 {
1113 asyncs [i]->sent = 0; 2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2022 }
1116 } 2023 }
1117#endif 2024#endif
1118} 2025}
1119 2026
1120/*****************************************************************************/ 2027/*****************************************************************************/
1121 2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 EV_P = signals [signum - 1].loop;
2034
2035 if (!EV_A)
2036 return;
2037#endif
2038
2039 signals [signum - 1].pending = 1;
2040 evpipe_write (EV_A_ &sig_pending);
2041}
2042
1122static void 2043static void
1123ev_sighandler (int signum) 2044ev_sighandler (int signum)
1124{ 2045{
2046#ifdef _WIN32
2047 signal (signum, ev_sighandler);
2048#endif
2049
2050 ev_feed_signal (signum);
2051}
2052
2053void noinline
2054ev_feed_signal_event (EV_P_ int signum) EV_THROW
2055{
2056 WL w;
2057
2058 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2059 return;
2060
2061 --signum;
2062
1125#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2064 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2065 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2066
1129#if _WIN32 2067 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2068 return;
2069#endif
1150 2070
1151 signals [signum].gotsig = 0; 2071 signals [signum].pending = 0;
2072 ECB_MEMORY_FENCE_RELEASE;
1152 2073
1153 for (w = signals [signum].head; w; w = w->next) 2074 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2076}
1156 2077
2078#if EV_USE_SIGNALFD
2079static void
2080sigfdcb (EV_P_ ev_io *iow, int revents)
2081{
2082 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2083
2084 for (;;)
2085 {
2086 ssize_t res = read (sigfd, si, sizeof (si));
2087
2088 /* not ISO-C, as res might be -1, but works with SuS */
2089 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2090 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2091
2092 if (res < (ssize_t)sizeof (si))
2093 break;
2094 }
2095}
2096#endif
2097
2098#endif
2099
1157/*****************************************************************************/ 2100/*****************************************************************************/
1158 2101
2102#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2103static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2104
1163static ev_signal childev; 2105static ev_signal childev;
1164 2106
1165#ifndef WIFCONTINUED 2107#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2108# define WIFCONTINUED(status) 0
1167#endif 2109#endif
1168 2110
1169void inline_speed 2111/* handle a single child status event */
2112inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2113child_reap (EV_P_ int chain, int pid, int status)
1171{ 2114{
1172 ev_child *w; 2115 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2117
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2118 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2119 {
1177 if ((w->pid == pid || !w->pid) 2120 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2121 && (!traced || (w->flags & 1)))
1179 { 2122 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2130
1188#ifndef WCONTINUED 2131#ifndef WCONTINUED
1189# define WCONTINUED 0 2132# define WCONTINUED 0
1190#endif 2133#endif
1191 2134
2135/* called on sigchld etc., calls waitpid */
1192static void 2136static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2137childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2138{
1195 int pid, status; 2139 int pid, status;
1196 2140
1204 /* make sure we are called again until all children have been reaped */ 2148 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2149 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2151
1208 child_reap (EV_A_ pid, pid, status); 2152 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2153 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2155}
1212 2156
1213#endif 2157#endif
1214 2158
1215/*****************************************************************************/ 2159/*****************************************************************************/
1216 2160
2161#if EV_USE_IOCP
2162# include "ev_iocp.c"
2163#endif
1217#if EV_USE_PORT 2164#if EV_USE_PORT
1218# include "ev_port.c" 2165# include "ev_port.c"
1219#endif 2166#endif
1220#if EV_USE_KQUEUE 2167#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2168# include "ev_kqueue.c"
1228#endif 2175#endif
1229#if EV_USE_SELECT 2176#if EV_USE_SELECT
1230# include "ev_select.c" 2177# include "ev_select.c"
1231#endif 2178#endif
1232 2179
1233int 2180int ecb_cold
1234ev_version_major (void) 2181ev_version_major (void) EV_THROW
1235{ 2182{
1236 return EV_VERSION_MAJOR; 2183 return EV_VERSION_MAJOR;
1237} 2184}
1238 2185
1239int 2186int ecb_cold
1240ev_version_minor (void) 2187ev_version_minor (void) EV_THROW
1241{ 2188{
1242 return EV_VERSION_MINOR; 2189 return EV_VERSION_MINOR;
1243} 2190}
1244 2191
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2192/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2193int inline_size ecb_cold
1247enable_secure (void) 2194enable_secure (void)
1248{ 2195{
1249#ifdef _WIN32 2196#ifdef _WIN32
1250 return 0; 2197 return 0;
1251#else 2198#else
1252 return getuid () != geteuid () 2199 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2200 || getgid () != getegid ();
1254#endif 2201#endif
1255} 2202}
1256 2203
1257unsigned int 2204unsigned int ecb_cold
1258ev_supported_backends (void) 2205ev_supported_backends (void) EV_THROW
1259{ 2206{
1260 unsigned int flags = 0; 2207 unsigned int flags = 0;
1261 2208
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2209 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2210 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2213 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267 2214
1268 return flags; 2215 return flags;
1269} 2216}
1270 2217
1271unsigned int 2218unsigned int ecb_cold
1272ev_recommended_backends (void) 2219ev_recommended_backends (void) EV_THROW
1273{ 2220{
1274 unsigned int flags = ev_supported_backends (); 2221 unsigned int flags = ev_supported_backends ();
1275 2222
1276#ifndef __NetBSD__ 2223#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2224 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2228#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2229 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2230 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2231 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2232#endif
2233#ifdef __FreeBSD__
2234 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2235#endif
1286 2236
1287 return flags; 2237 return flags;
1288} 2238}
1289 2239
2240unsigned int ecb_cold
2241ev_embeddable_backends (void) EV_THROW
2242{
2243 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2244
2245 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2246 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2247 flags &= ~EVBACKEND_EPOLL;
2248
2249 return flags;
2250}
2251
1290unsigned int 2252unsigned int
1291ev_embeddable_backends (void) 2253ev_backend (EV_P) EV_THROW
1292{ 2254{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2255 return backend;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300} 2256}
1301 2257
2258#if EV_FEATURE_API
1302unsigned int 2259unsigned int
1303ev_backend (EV_P) 2260ev_iteration (EV_P) EV_THROW
1304{ 2261{
1305 return backend; 2262 return loop_count;
1306} 2263}
1307 2264
1308unsigned int 2265unsigned int
1309ev_loop_count (EV_P) 2266ev_depth (EV_P) EV_THROW
1310{ 2267{
1311 return loop_count; 2268 return loop_depth;
1312} 2269}
1313 2270
1314void 2271void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2272ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1316{ 2273{
1317 io_blocktime = interval; 2274 io_blocktime = interval;
1318} 2275}
1319 2276
1320void 2277void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2278ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1322{ 2279{
1323 timeout_blocktime = interval; 2280 timeout_blocktime = interval;
1324} 2281}
1325 2282
2283void
2284ev_set_userdata (EV_P_ void *data) EV_THROW
2285{
2286 userdata = data;
2287}
2288
2289void *
2290ev_userdata (EV_P) EV_THROW
2291{
2292 return userdata;
2293}
2294
2295void
2296ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2297{
2298 invoke_cb = invoke_pending_cb;
2299}
2300
2301void
2302ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2303{
2304 release_cb = release;
2305 acquire_cb = acquire;
2306}
2307#endif
2308
2309/* initialise a loop structure, must be zero-initialised */
1326static void noinline 2310static void noinline ecb_cold
1327loop_init (EV_P_ unsigned int flags) 2311loop_init (EV_P_ unsigned int flags) EV_THROW
1328{ 2312{
1329 if (!backend) 2313 if (!backend)
1330 { 2314 {
2315 origflags = flags;
2316
1331#if EV_USE_REALTIME 2317#if EV_USE_REALTIME
1332 if (!have_realtime) 2318 if (!have_realtime)
1333 { 2319 {
1334 struct timespec ts; 2320 struct timespec ts;
1335 2321
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2332 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2333 have_monotonic = 1;
1348 } 2334 }
1349#endif 2335#endif
1350 2336
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2337 /* pid check not overridable via env */
1366#ifndef _WIN32 2338#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2339 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2340 curpid = getpid ();
1369#endif 2341#endif
1371 if (!(flags & EVFLAG_NOENV) 2343 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2344 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2345 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2346 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2347
1376 if (!(flags & 0x0000ffffU)) 2348 ev_rt_now = ev_time ();
2349 mn_now = get_clock ();
2350 now_floor = mn_now;
2351 rtmn_diff = ev_rt_now - mn_now;
2352#if EV_FEATURE_API
2353 invoke_cb = ev_invoke_pending;
2354#endif
2355
2356 io_blocktime = 0.;
2357 timeout_blocktime = 0.;
2358 backend = 0;
2359 backend_fd = -1;
2360 sig_pending = 0;
2361#if EV_ASYNC_ENABLE
2362 async_pending = 0;
2363#endif
2364 pipe_write_skipped = 0;
2365 pipe_write_wanted = 0;
2366 evpipe [0] = -1;
2367 evpipe [1] = -1;
2368#if EV_USE_INOTIFY
2369 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2370#endif
2371#if EV_USE_SIGNALFD
2372 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2373#endif
2374
2375 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2376 flags |= ev_recommended_backends ();
1378 2377
2378#if EV_USE_IOCP
2379 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2380#endif
1379#if EV_USE_PORT 2381#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2382 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2383#endif
1382#if EV_USE_KQUEUE 2384#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2385 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 2392#endif
1391#if EV_USE_SELECT 2393#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2394 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 2395#endif
1394 2396
2397 ev_prepare_init (&pending_w, pendingcb);
2398
2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2400 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2401 ev_set_priority (&pipe_w, EV_MAXPRI);
2402#endif
1397 } 2403 }
1398} 2404}
1399 2405
1400static void noinline 2406/* free up a loop structure */
2407void ecb_cold
1401loop_destroy (EV_P) 2408ev_loop_destroy (EV_P)
1402{ 2409{
1403 int i; 2410 int i;
1404 2411
2412#if EV_MULTIPLICITY
2413 /* mimic free (0) */
2414 if (!EV_A)
2415 return;
2416#endif
2417
2418#if EV_CLEANUP_ENABLE
2419 /* queue cleanup watchers (and execute them) */
2420 if (expect_false (cleanupcnt))
2421 {
2422 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2423 EV_INVOKE_PENDING;
2424 }
2425#endif
2426
2427#if EV_CHILD_ENABLE
2428 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2429 {
2430 ev_ref (EV_A); /* child watcher */
2431 ev_signal_stop (EV_A_ &childev);
2432 }
2433#endif
2434
1405 if (ev_is_active (&pipeev)) 2435 if (ev_is_active (&pipe_w))
1406 { 2436 {
1407 ev_ref (EV_A); /* signal watcher */ 2437 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 2438 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 2439
2440 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2441 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2442 }
2443
1410#if EV_USE_EVENTFD 2444#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 2445 if (ev_is_active (&sigfd_w))
1412 close (evfd); 2446 close (sigfd);
1413#endif 2447#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 2448
1422#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 2450 if (fs_fd >= 0)
1424 close (fs_fd); 2451 close (fs_fd);
1425#endif 2452#endif
1426 2453
1427 if (backend_fd >= 0) 2454 if (backend_fd >= 0)
1428 close (backend_fd); 2455 close (backend_fd);
1429 2456
2457#if EV_USE_IOCP
2458 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2459#endif
1430#if EV_USE_PORT 2460#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2461 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 2462#endif
1433#if EV_USE_KQUEUE 2463#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2464 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 2479#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 2480 array_free (idle, [i]);
1451#endif 2481#endif
1452 } 2482 }
1453 2483
1454 ev_free (anfds); anfdmax = 0; 2484 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 2485
1456 /* have to use the microsoft-never-gets-it-right macro */ 2486 /* have to use the microsoft-never-gets-it-right macro */
2487 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 2488 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 2489 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 2490#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 2491 array_free (periodic, EMPTY);
1461#endif 2492#endif
1462#if EV_FORK_ENABLE 2493#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 2494 array_free (fork, EMPTY);
1464#endif 2495#endif
2496#if EV_CLEANUP_ENABLE
2497 array_free (cleanup, EMPTY);
2498#endif
1465 array_free (prepare, EMPTY); 2499 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 2500 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 2501#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 2502 array_free (async, EMPTY);
1469#endif 2503#endif
1470 2504
1471 backend = 0; 2505 backend = 0;
2506
2507#if EV_MULTIPLICITY
2508 if (ev_is_default_loop (EV_A))
2509#endif
2510 ev_default_loop_ptr = 0;
2511#if EV_MULTIPLICITY
2512 else
2513 ev_free (EV_A);
2514#endif
1472} 2515}
1473 2516
1474#if EV_USE_INOTIFY 2517#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 2518inline_size void infy_fork (EV_P);
1476#endif 2519#endif
1477 2520
1478void inline_size 2521inline_size void
1479loop_fork (EV_P) 2522loop_fork (EV_P)
1480{ 2523{
1481#if EV_USE_PORT 2524#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2525 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 2526#endif
1489#endif 2532#endif
1490#if EV_USE_INOTIFY 2533#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 2534 infy_fork (EV_A);
1492#endif 2535#endif
1493 2536
2537#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1494 if (ev_is_active (&pipeev)) 2538 if (ev_is_active (&pipe_w))
1495 { 2539 {
1496 /* this "locks" the handlers against writing to the pipe */ 2540 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 2541
1503 ev_ref (EV_A); 2542 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 2543 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 2544
1511 if (evpipe [0] >= 0) 2545 if (evpipe [0] >= 0)
1512 { 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 2547
1517 evpipe_init (EV_A); 2548 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 2549 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 2550 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 2551 }
2552#endif
1521 2553
1522 postfork = 0; 2554 postfork = 0;
1523} 2555}
1524 2556
1525#if EV_MULTIPLICITY 2557#if EV_MULTIPLICITY
1526 2558
1527struct ev_loop * 2559struct ev_loop * ecb_cold
1528ev_loop_new (unsigned int flags) 2560ev_loop_new (unsigned int flags) EV_THROW
1529{ 2561{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2562 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 2563
1532 memset (loop, 0, sizeof (struct ev_loop)); 2564 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 2565 loop_init (EV_A_ flags);
1535 2566
1536 if (ev_backend (EV_A)) 2567 if (ev_backend (EV_A))
1537 return loop; 2568 return EV_A;
1538 2569
2570 ev_free (EV_A);
1539 return 0; 2571 return 0;
1540} 2572}
1541 2573
1542void 2574#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 2575
1555#if EV_VERIFY 2576#if EV_VERIFY
1556static void noinline 2577static void noinline ecb_cold
1557verify_watcher (EV_P_ W w) 2578verify_watcher (EV_P_ W w)
1558{ 2579{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2580 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 2581
1561 if (w->pending) 2582 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2583 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 2584}
1564 2585
1565static void noinline 2586static void noinline ecb_cold
1566verify_heap (EV_P_ ANHE *heap, int N) 2587verify_heap (EV_P_ ANHE *heap, int N)
1567{ 2588{
1568 int i; 2589 int i;
1569 2590
1570 for (i = HEAP0; i < N + HEAP0; ++i) 2591 for (i = HEAP0; i < N + HEAP0; ++i)
1575 2596
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2597 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 2598 }
1578} 2599}
1579 2600
1580static void noinline 2601static void noinline ecb_cold
1581array_verify (EV_P_ W *ws, int cnt) 2602array_verify (EV_P_ W *ws, int cnt)
1582{ 2603{
1583 while (cnt--) 2604 while (cnt--)
1584 { 2605 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2606 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 2607 verify_watcher (EV_A_ ws [cnt]);
1587 } 2608 }
1588} 2609}
1589#endif 2610#endif
1590 2611
1591void 2612#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 2613void ecb_cold
2614ev_verify (EV_P) EV_THROW
1593{ 2615{
1594#if EV_VERIFY 2616#if EV_VERIFY
1595 int i; 2617 int i;
1596 WL w; 2618 WL w, w2;
1597 2619
1598 assert (activecnt >= -1); 2620 assert (activecnt >= -1);
1599 2621
1600 assert (fdchangemax >= fdchangecnt); 2622 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 2623 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2624 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 2625
1604 assert (anfdmax >= 0); 2626 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 2627 for (i = 0; i < anfdmax; ++i)
2628 {
2629 int j = 0;
2630
1606 for (w = anfds [i].head; w; w = w->next) 2631 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 2632 {
1608 verify_watcher (EV_A_ (W)w); 2633 verify_watcher (EV_A_ (W)w);
2634
2635 if (j++ & 1)
2636 {
2637 assert (("libev: io watcher list contains a loop", w != w2));
2638 w2 = w2->next;
2639 }
2640
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2641 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2642 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 2643 }
2644 }
1612 2645
1613 assert (timermax >= timercnt); 2646 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 2647 verify_heap (EV_A_ timers, timercnt);
1615 2648
1616#if EV_PERIODIC_ENABLE 2649#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 2664#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2665 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2666 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2667#endif
1635 2668
2669#if EV_CLEANUP_ENABLE
2670 assert (cleanupmax >= cleanupcnt);
2671 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2672#endif
2673
1636#if EV_ASYNC_ENABLE 2674#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2675 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2676 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2677#endif
1640 2678
2679#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2680 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2681 array_verify (EV_A_ (W *)prepares, preparecnt);
2682#endif
1643 2683
2684#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2685 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2686 array_verify (EV_A_ (W *)checks, checkcnt);
2687#endif
1646 2688
1647# if 0 2689# if 0
2690#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2691 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2692 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2693#endif
1650# endif 2694# endif
1651#endif 2695#endif
1652} 2696}
1653 2697#endif
1654#endif /* multiplicity */
1655 2698
1656#if EV_MULTIPLICITY 2699#if EV_MULTIPLICITY
1657struct ev_loop * 2700struct ev_loop * ecb_cold
1658ev_default_loop_init (unsigned int flags)
1659#else 2701#else
1660int 2702int
2703#endif
1661ev_default_loop (unsigned int flags) 2704ev_default_loop (unsigned int flags) EV_THROW
1662#endif
1663{ 2705{
1664 if (!ev_default_loop_ptr) 2706 if (!ev_default_loop_ptr)
1665 { 2707 {
1666#if EV_MULTIPLICITY 2708#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2709 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 2710#else
1669 ev_default_loop_ptr = 1; 2711 ev_default_loop_ptr = 1;
1670#endif 2712#endif
1671 2713
1672 loop_init (EV_A_ flags); 2714 loop_init (EV_A_ flags);
1673 2715
1674 if (ev_backend (EV_A)) 2716 if (ev_backend (EV_A))
1675 { 2717 {
1676#ifndef _WIN32 2718#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 2719 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 2720 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 2721 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2722 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 2723#endif
1686 2728
1687 return ev_default_loop_ptr; 2729 return ev_default_loop_ptr;
1688} 2730}
1689 2731
1690void 2732void
1691ev_default_destroy (void) 2733ev_loop_fork (EV_P) EV_THROW
1692{ 2734{
1693#if EV_MULTIPLICITY 2735 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2736}
1716 2737
1717/*****************************************************************************/ 2738/*****************************************************************************/
1718 2739
1719void 2740void
1720ev_invoke (EV_P_ void *w, int revents) 2741ev_invoke (EV_P_ void *w, int revents)
1721{ 2742{
1722 EV_CB_INVOKE ((W)w, revents); 2743 EV_CB_INVOKE ((W)w, revents);
1723} 2744}
1724 2745
1725void inline_speed 2746unsigned int
1726call_pending (EV_P) 2747ev_pending_count (EV_P) EV_THROW
1727{ 2748{
1728 int pri; 2749 int pri;
2750 unsigned int count = 0;
1729 2751
1730 for (pri = NUMPRI; pri--; ) 2752 for (pri = NUMPRI; pri--; )
2753 count += pendingcnt [pri];
2754
2755 return count;
2756}
2757
2758void noinline
2759ev_invoke_pending (EV_P)
2760{
2761 pendingpri = NUMPRI;
2762
2763 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2764 {
2765 --pendingpri;
2766
1731 while (pendingcnt [pri]) 2767 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 2768 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2769 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 2770
1739 p->w->pending = 0; 2771 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2772 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2773 EV_FREQUENT_CHECK;
1742 } 2774 }
1743 } 2775 }
1744} 2776}
1745 2777
1746#if EV_IDLE_ENABLE 2778#if EV_IDLE_ENABLE
1747void inline_size 2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
2781inline_size void
1748idle_reify (EV_P) 2782idle_reify (EV_P)
1749{ 2783{
1750 if (expect_false (idleall)) 2784 if (expect_false (idleall))
1751 { 2785 {
1752 int pri; 2786 int pri;
1764 } 2798 }
1765 } 2799 }
1766} 2800}
1767#endif 2801#endif
1768 2802
1769void inline_size 2803/* make timers pending */
2804inline_size void
1770timers_reify (EV_P) 2805timers_reify (EV_P)
1771{ 2806{
1772 EV_FREQUENT_CHECK; 2807 EV_FREQUENT_CHECK;
1773 2808
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2810 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2811 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
1783 ev_at (w) += w->repeat; 2820 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2821 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2822 ev_at (w) = mn_now;
1786 2823
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2825
1789 ANHE_at_cache (timers [HEAP0]); 2826 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
1791 } 2834 }
1792 else 2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2836
1795 EV_FREQUENT_CHECK; 2837 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2838 }
1798} 2839}
1799 2840
1800#if EV_PERIODIC_ENABLE 2841#if EV_PERIODIC_ENABLE
1801void inline_size 2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
2851 {
2852 ev_tstamp nat = at + w->interval;
2853
2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
2868inline_size void
1802periodics_reify (EV_P) 2869periodics_reify (EV_P)
1803{ 2870{
1804 EV_FREQUENT_CHECK; 2871 EV_FREQUENT_CHECK;
1805 2872
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2874 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2875 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878
2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880
2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2885
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2887
1819 ANHE_at_cache (periodics [HEAP0]); 2888 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
1821 } 2902 }
1822 else if (w->interval) 2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2904
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2905 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2906 }
1847} 2907}
1848 2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2911static void noinline ecb_cold
1850periodics_reschedule (EV_P) 2912periodics_reschedule (EV_P)
1851{ 2913{
1852 int i; 2914 int i;
1853 2915
1854 /* adjust periodics after time jump */ 2916 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 2920
1859 if (w->reschedule_cb) 2921 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 2923 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2924 periodic_recalc (EV_A_ w);
1863 2925
1864 ANHE_at_cache (periodics [i]); 2926 ANHE_at_cache (periodics [i]);
1865 } 2927 }
1866 2928
1867 reheap (periodics, periodiccnt); 2929 reheap (periodics, periodiccnt);
1868} 2930}
1869#endif 2931#endif
1870 2932
1871void inline_speed 2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2950time_update (EV_P_ ev_tstamp max_block)
1873{ 2951{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2952#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2953 if (expect_true (have_monotonic))
1878 { 2954 {
2955 int i;
1879 ev_tstamp odiff = rtmn_diff; 2956 ev_tstamp odiff = rtmn_diff;
1880 2957
1881 mn_now = get_clock (); 2958 mn_now = get_clock ();
1882 2959
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 2976 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 2977 * in the unlikely event of having been preempted here.
1901 */ 2978 */
1902 for (i = 4; --i; ) 2979 for (i = 4; --i; )
1903 { 2980 {
2981 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1905 2983
2984 diff = odiff - rtmn_diff;
2985
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 2987 return; /* all is well */
1908 2988
1909 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2990 mn_now = get_clock ();
1911 now_floor = mn_now; 2991 now_floor = mn_now;
1912 } 2992 }
1913 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2996# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2997 periodics_reschedule (EV_A);
1916# endif 2998# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2999 }
1920 else 3000 else
1921#endif 3001#endif
1922 { 3002 {
1923 ev_rt_now = ev_time (); 3003 ev_rt_now = ev_time ();
1924 3004
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3009#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1929#endif 3011#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3012 }
1938 3013
1939 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1940 } 3015 }
1941} 3016}
1942 3017
1943void 3018int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1965{ 3020{
3021#if EV_FEATURE_API
3022 ++loop_depth;
3023#endif
3024
3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
1966 loop_done = EVUNLOOP_CANCEL; 3027 loop_done = EVBREAK_CANCEL;
1967 3028
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3030
1970 do 3031 do
1971 { 3032 {
1972#if EV_VERIFY >= 2 3033#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3034 ev_verify (EV_A);
1974#endif 3035#endif
1975 3036
1976#ifndef _WIN32 3037#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3038 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3039 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3047 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3048 if (expect_false (postfork))
1988 if (forkcnt) 3049 if (forkcnt)
1989 { 3050 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3052 EV_INVOKE_PENDING;
1992 } 3053 }
1993#endif 3054#endif
1994 3055
3056#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1997 { 3059 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
2000 } 3062 }
3063#endif
2001 3064
2002 if (expect_false (!activecnt)) 3065 if (expect_false (loop_done))
2003 break; 3066 break;
2004 3067
2005 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 3069 if (expect_false (postfork))
2007 loop_fork (EV_A); 3070 loop_fork (EV_A);
2012 /* calculate blocking time */ 3075 /* calculate blocking time */
2013 { 3076 {
2014 ev_tstamp waittime = 0.; 3077 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 3078 ev_tstamp sleeptime = 0.;
2016 3079
3080 /* remember old timestamp for io_blocktime calculation */
3081 ev_tstamp prev_mn_now = mn_now;
3082
3083 /* update time to cancel out callback processing overhead */
3084 time_update (EV_A_ 1e100);
3085
3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2018 { 3092 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
2023 3094
2024 if (timercnt) 3095 if (timercnt)
2025 { 3096 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2027 if (waittime > to) waittime = to; 3098 if (waittime > to) waittime = to;
2028 } 3099 }
2029 3100
2030#if EV_PERIODIC_ENABLE 3101#if EV_PERIODIC_ENABLE
2031 if (periodiccnt) 3102 if (periodiccnt)
2032 { 3103 {
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2034 if (waittime > to) waittime = to; 3105 if (waittime > to) waittime = to;
2035 } 3106 }
2036#endif 3107#endif
2037 3108
3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 3110 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 3111 waittime = timeout_blocktime;
2040 3112
2041 sleeptime = waittime - backend_fudge; 3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
2042 3117
3118 /* extra check because io_blocktime is commonly 0 */
2043 if (expect_true (sleeptime > io_blocktime)) 3119 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
2048 ev_sleep (sleeptime); 3128 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 3129 waittime -= sleeptime;
3130 }
2050 } 3131 }
2051 } 3132 }
2052 3133
3134#if EV_FEATURE_API
2053 ++loop_count; 3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 ECB_MEMORY_FENCE_ACQUIRE;
3144 if (pipe_write_skipped)
3145 {
3146 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3147 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3148 }
3149
2055 3150
2056 /* update ev_rt_now, do magic */ 3151 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 3152 time_update (EV_A_ waittime + sleeptime);
2058 } 3153 }
2059 3154
2066#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 3162 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 3163 idle_reify (EV_A);
2069#endif 3164#endif
2070 3165
3166#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 3167 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 3168 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3169 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3170#endif
2074 3171
2075 call_pending (EV_A); 3172 EV_INVOKE_PENDING;
2076 } 3173 }
2077 while (expect_true ( 3174 while (expect_true (
2078 activecnt 3175 activecnt
2079 && !loop_done 3176 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3177 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 3178 ));
2082 3179
2083 if (loop_done == EVUNLOOP_ONE) 3180 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 3181 loop_done = EVBREAK_CANCEL;
3182
3183#if EV_FEATURE_API
3184 --loop_depth;
3185#endif
3186
3187 return activecnt;
2085} 3188}
2086 3189
2087void 3190void
2088ev_unloop (EV_P_ int how) 3191ev_break (EV_P_ int how) EV_THROW
2089{ 3192{
2090 loop_done = how; 3193 loop_done = how;
2091} 3194}
2092 3195
3196void
3197ev_ref (EV_P) EV_THROW
3198{
3199 ++activecnt;
3200}
3201
3202void
3203ev_unref (EV_P) EV_THROW
3204{
3205 --activecnt;
3206}
3207
3208void
3209ev_now_update (EV_P) EV_THROW
3210{
3211 time_update (EV_A_ 1e100);
3212}
3213
3214void
3215ev_suspend (EV_P) EV_THROW
3216{
3217 ev_now_update (EV_A);
3218}
3219
3220void
3221ev_resume (EV_P) EV_THROW
3222{
3223 ev_tstamp mn_prev = mn_now;
3224
3225 ev_now_update (EV_A);
3226 timers_reschedule (EV_A_ mn_now - mn_prev);
3227#if EV_PERIODIC_ENABLE
3228 /* TODO: really do this? */
3229 periodics_reschedule (EV_A);
3230#endif
3231}
3232
2093/*****************************************************************************/ 3233/*****************************************************************************/
3234/* singly-linked list management, used when the expected list length is short */
2094 3235
2095void inline_size 3236inline_size void
2096wlist_add (WL *head, WL elem) 3237wlist_add (WL *head, WL elem)
2097{ 3238{
2098 elem->next = *head; 3239 elem->next = *head;
2099 *head = elem; 3240 *head = elem;
2100} 3241}
2101 3242
2102void inline_size 3243inline_size void
2103wlist_del (WL *head, WL elem) 3244wlist_del (WL *head, WL elem)
2104{ 3245{
2105 while (*head) 3246 while (*head)
2106 { 3247 {
2107 if (*head == elem) 3248 if (expect_true (*head == elem))
2108 { 3249 {
2109 *head = elem->next; 3250 *head = elem->next;
2110 return; 3251 break;
2111 } 3252 }
2112 3253
2113 head = &(*head)->next; 3254 head = &(*head)->next;
2114 } 3255 }
2115} 3256}
2116 3257
2117void inline_speed 3258/* internal, faster, version of ev_clear_pending */
3259inline_speed void
2118clear_pending (EV_P_ W w) 3260clear_pending (EV_P_ W w)
2119{ 3261{
2120 if (w->pending) 3262 if (w->pending)
2121 { 3263 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3264 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 3265 w->pending = 0;
2124 } 3266 }
2125} 3267}
2126 3268
2127int 3269int
2128ev_clear_pending (EV_P_ void *w) 3270ev_clear_pending (EV_P_ void *w) EV_THROW
2129{ 3271{
2130 W w_ = (W)w; 3272 W w_ = (W)w;
2131 int pending = w_->pending; 3273 int pending = w_->pending;
2132 3274
2133 if (expect_true (pending)) 3275 if (expect_true (pending))
2134 { 3276 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3277 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3278 p->w = (W)&pending_w;
2136 w_->pending = 0; 3279 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 3280 return p->events;
2139 } 3281 }
2140 else 3282 else
2141 return 0; 3283 return 0;
2142} 3284}
2143 3285
2144void inline_size 3286inline_size void
2145pri_adjust (EV_P_ W w) 3287pri_adjust (EV_P_ W w)
2146{ 3288{
2147 int pri = w->priority; 3289 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3290 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3291 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 3292 ev_set_priority (w, pri);
2151} 3293}
2152 3294
2153void inline_speed 3295inline_speed void
2154ev_start (EV_P_ W w, int active) 3296ev_start (EV_P_ W w, int active)
2155{ 3297{
2156 pri_adjust (EV_A_ w); 3298 pri_adjust (EV_A_ w);
2157 w->active = active; 3299 w->active = active;
2158 ev_ref (EV_A); 3300 ev_ref (EV_A);
2159} 3301}
2160 3302
2161void inline_size 3303inline_size void
2162ev_stop (EV_P_ W w) 3304ev_stop (EV_P_ W w)
2163{ 3305{
2164 ev_unref (EV_A); 3306 ev_unref (EV_A);
2165 w->active = 0; 3307 w->active = 0;
2166} 3308}
2167 3309
2168/*****************************************************************************/ 3310/*****************************************************************************/
2169 3311
2170void noinline 3312void noinline
2171ev_io_start (EV_P_ ev_io *w) 3313ev_io_start (EV_P_ ev_io *w) EV_THROW
2172{ 3314{
2173 int fd = w->fd; 3315 int fd = w->fd;
2174 3316
2175 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
2176 return; 3318 return;
2177 3319
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3320 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3321 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 3322
2181 EV_FREQUENT_CHECK; 3323 EV_FREQUENT_CHECK;
2182 3324
2183 ev_start (EV_A_ (W)w, 1); 3325 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3326 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 3327 wlist_add (&anfds[fd].head, (WL)w);
2186 3328
3329 /* common bug, apparently */
3330 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3331
2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3332 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV__IOFDSET; 3333 w->events &= ~EV__IOFDSET;
2189 3334
2190 EV_FREQUENT_CHECK; 3335 EV_FREQUENT_CHECK;
2191} 3336}
2192 3337
2193void noinline 3338void noinline
2194ev_io_stop (EV_P_ ev_io *w) 3339ev_io_stop (EV_P_ ev_io *w) EV_THROW
2195{ 3340{
2196 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2198 return; 3343 return;
2199 3344
2202 EV_FREQUENT_CHECK; 3347 EV_FREQUENT_CHECK;
2203 3348
2204 wlist_del (&anfds[w->fd].head, (WL)w); 3349 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 3350 ev_stop (EV_A_ (W)w);
2206 3351
2207 fd_change (EV_A_ w->fd, 1); 3352 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 3353
2209 EV_FREQUENT_CHECK; 3354 EV_FREQUENT_CHECK;
2210} 3355}
2211 3356
2212void noinline 3357void noinline
2213ev_timer_start (EV_P_ ev_timer *w) 3358ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2214{ 3359{
2215 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2216 return; 3361 return;
2217 3362
2218 ev_at (w) += mn_now; 3363 ev_at (w) += mn_now;
2232 3377
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3378 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234} 3379}
2235 3380
2236void noinline 3381void noinline
2237ev_timer_stop (EV_P_ ev_timer *w) 3382ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2238{ 3383{
2239 clear_pending (EV_A_ (W)w); 3384 clear_pending (EV_A_ (W)w);
2240 if (expect_false (!ev_is_active (w))) 3385 if (expect_false (!ev_is_active (w)))
2241 return; 3386 return;
2242 3387
2254 timers [active] = timers [timercnt + HEAP0]; 3399 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 3400 adjustheap (timers, timercnt, active);
2256 } 3401 }
2257 } 3402 }
2258 3403
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 3404 ev_at (w) -= mn_now;
2262 3405
2263 ev_stop (EV_A_ (W)w); 3406 ev_stop (EV_A_ (W)w);
3407
3408 EV_FREQUENT_CHECK;
2264} 3409}
2265 3410
2266void noinline 3411void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 3412ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2268{ 3413{
2269 EV_FREQUENT_CHECK; 3414 EV_FREQUENT_CHECK;
3415
3416 clear_pending (EV_A_ (W)w);
2270 3417
2271 if (ev_is_active (w)) 3418 if (ev_is_active (w))
2272 { 3419 {
2273 if (w->repeat) 3420 if (w->repeat)
2274 { 3421 {
2286 } 3433 }
2287 3434
2288 EV_FREQUENT_CHECK; 3435 EV_FREQUENT_CHECK;
2289} 3436}
2290 3437
3438ev_tstamp
3439ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3440{
3441 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3442}
3443
2291#if EV_PERIODIC_ENABLE 3444#if EV_PERIODIC_ENABLE
2292void noinline 3445void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 3446ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2294{ 3447{
2295 if (expect_false (ev_is_active (w))) 3448 if (expect_false (ev_is_active (w)))
2296 return; 3449 return;
2297 3450
2298 if (w->reschedule_cb) 3451 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3452 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval) 3453 else if (w->interval)
2301 { 3454 {
2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3455 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2303 /* this formula differs from the one in periodic_reify because we do not always round up */ 3456 periodic_recalc (EV_A_ w);
2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 } 3457 }
2306 else 3458 else
2307 ev_at (w) = w->offset; 3459 ev_at (w) = w->offset;
2308 3460
2309 EV_FREQUENT_CHECK; 3461 EV_FREQUENT_CHECK;
2319 3471
2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3472 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2321} 3473}
2322 3474
2323void noinline 3475void noinline
2324ev_periodic_stop (EV_P_ ev_periodic *w) 3476ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2325{ 3477{
2326 clear_pending (EV_A_ (W)w); 3478 clear_pending (EV_A_ (W)w);
2327 if (expect_false (!ev_is_active (w))) 3479 if (expect_false (!ev_is_active (w)))
2328 return; 3480 return;
2329 3481
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 3493 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 3494 adjustheap (periodics, periodiccnt, active);
2343 } 3495 }
2344 } 3496 }
2345 3497
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2349} 3501}
2350 3502
2351void noinline 3503void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 3504ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2353{ 3505{
2354 /* TODO: use adjustheap and recalculation */ 3506 /* TODO: use adjustheap and recalculation */
2355 ev_periodic_stop (EV_A_ w); 3507 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w); 3508 ev_periodic_start (EV_A_ w);
2357} 3509}
2359 3511
2360#ifndef SA_RESTART 3512#ifndef SA_RESTART
2361# define SA_RESTART 0 3513# define SA_RESTART 0
2362#endif 3514#endif
2363 3515
3516#if EV_SIGNAL_ENABLE
3517
2364void noinline 3518void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 3519ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2366{ 3520{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 3521 if (expect_false (ev_is_active (w)))
2371 return; 3522 return;
2372 3523
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3524 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 3525
2375 evpipe_init (EV_A); 3526#if EV_MULTIPLICITY
3527 assert (("libev: a signal must not be attached to two different loops",
3528 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 3529
2377 EV_FREQUENT_CHECK; 3530 signals [w->signum - 1].loop = EV_A;
3531#endif
2378 3532
3533 EV_FREQUENT_CHECK;
3534
3535#if EV_USE_SIGNALFD
3536 if (sigfd == -2)
2379 { 3537 {
2380#ifndef _WIN32 3538 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 3539 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 3540 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 3541
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3542 if (sigfd >= 0)
3543 {
3544 fd_intern (sigfd); /* doing it twice will not hurt */
2387 3545
2388#ifndef _WIN32 3546 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 3547
2390#endif 3548 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3549 ev_set_priority (&sigfd_w, EV_MAXPRI);
3550 ev_io_start (EV_A_ &sigfd_w);
3551 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3552 }
2391 } 3553 }
3554
3555 if (sigfd >= 0)
3556 {
3557 /* TODO: check .head */
3558 sigaddset (&sigfd_set, w->signum);
3559 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3560
3561 signalfd (sigfd, &sigfd_set, 0);
3562 }
3563#endif
2392 3564
2393 ev_start (EV_A_ (W)w, 1); 3565 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 3566 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 3567
2396 if (!((WL)w)->next) 3568 if (!((WL)w)->next)
3569# if EV_USE_SIGNALFD
3570 if (sigfd < 0) /*TODO*/
3571# endif
2397 { 3572 {
2398#if _WIN32 3573# ifdef _WIN32
3574 evpipe_init (EV_A);
3575
2399 signal (w->signum, ev_sighandler); 3576 signal (w->signum, ev_sighandler);
2400#else 3577# else
2401 struct sigaction sa; 3578 struct sigaction sa;
3579
3580 evpipe_init (EV_A);
3581
2402 sa.sa_handler = ev_sighandler; 3582 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 3583 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3584 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 3585 sigaction (w->signum, &sa, 0);
3586
3587 if (origflags & EVFLAG_NOSIGMASK)
3588 {
3589 sigemptyset (&sa.sa_mask);
3590 sigaddset (&sa.sa_mask, w->signum);
3591 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3592 }
2406#endif 3593#endif
2407 } 3594 }
2408 3595
2409 EV_FREQUENT_CHECK; 3596 EV_FREQUENT_CHECK;
2410} 3597}
2411 3598
2412void noinline 3599void noinline
2413ev_signal_stop (EV_P_ ev_signal *w) 3600ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2414{ 3601{
2415 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
2417 return; 3604 return;
2418 3605
2420 3607
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 3608 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
2423 3610
2424 if (!signals [w->signum - 1].head) 3611 if (!signals [w->signum - 1].head)
3612 {
3613#if EV_MULTIPLICITY
3614 signals [w->signum - 1].loop = 0; /* unattach from signal */
3615#endif
3616#if EV_USE_SIGNALFD
3617 if (sigfd >= 0)
3618 {
3619 sigset_t ss;
3620
3621 sigemptyset (&ss);
3622 sigaddset (&ss, w->signum);
3623 sigdelset (&sigfd_set, w->signum);
3624
3625 signalfd (sigfd, &sigfd_set, 0);
3626 sigprocmask (SIG_UNBLOCK, &ss, 0);
3627 }
3628 else
3629#endif
2425 signal (w->signum, SIG_DFL); 3630 signal (w->signum, SIG_DFL);
3631 }
2426 3632
2427 EV_FREQUENT_CHECK; 3633 EV_FREQUENT_CHECK;
2428} 3634}
3635
3636#endif
3637
3638#if EV_CHILD_ENABLE
2429 3639
2430void 3640void
2431ev_child_start (EV_P_ ev_child *w) 3641ev_child_start (EV_P_ ev_child *w) EV_THROW
2432{ 3642{
2433#if EV_MULTIPLICITY 3643#if EV_MULTIPLICITY
2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3644 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2435#endif 3645#endif
2436 if (expect_false (ev_is_active (w))) 3646 if (expect_false (ev_is_active (w)))
2437 return; 3647 return;
2438 3648
2439 EV_FREQUENT_CHECK; 3649 EV_FREQUENT_CHECK;
2440 3650
2441 ev_start (EV_A_ (W)w, 1); 3651 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3652 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 3653
2444 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2445} 3655}
2446 3656
2447void 3657void
2448ev_child_stop (EV_P_ ev_child *w) 3658ev_child_stop (EV_P_ ev_child *w) EV_THROW
2449{ 3659{
2450 clear_pending (EV_A_ (W)w); 3660 clear_pending (EV_A_ (W)w);
2451 if (expect_false (!ev_is_active (w))) 3661 if (expect_false (!ev_is_active (w)))
2452 return; 3662 return;
2453 3663
2454 EV_FREQUENT_CHECK; 3664 EV_FREQUENT_CHECK;
2455 3665
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3666 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 3667 ev_stop (EV_A_ (W)w);
2458 3668
2459 EV_FREQUENT_CHECK; 3669 EV_FREQUENT_CHECK;
2460} 3670}
3671
3672#endif
2461 3673
2462#if EV_STAT_ENABLE 3674#if EV_STAT_ENABLE
2463 3675
2464# ifdef _WIN32 3676# ifdef _WIN32
2465# undef lstat 3677# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 3683#define MIN_STAT_INTERVAL 0.1074891
2472 3684
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3685static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 3686
2475#if EV_USE_INOTIFY 3687#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 3688
3689/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3690# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 3691
2478static void noinline 3692static void noinline
2479infy_add (EV_P_ ev_stat *w) 3693infy_add (EV_P_ ev_stat *w)
2480{ 3694{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3695 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 3696
2483 if (w->wd < 0) 3697 if (w->wd >= 0)
3698 {
3699 struct statfs sfs;
3700
3701 /* now local changes will be tracked by inotify, but remote changes won't */
3702 /* unless the filesystem is known to be local, we therefore still poll */
3703 /* also do poll on <2.6.25, but with normal frequency */
3704
3705 if (!fs_2625)
3706 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707 else if (!statfs (w->path, &sfs)
3708 && (sfs.f_type == 0x1373 /* devfs */
3709 || sfs.f_type == 0xEF53 /* ext2/3 */
3710 || sfs.f_type == 0x3153464a /* jfs */
3711 || sfs.f_type == 0x52654973 /* reiser3 */
3712 || sfs.f_type == 0x01021994 /* tempfs */
3713 || sfs.f_type == 0x58465342 /* xfs */))
3714 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3715 else
3716 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 3717 }
3718 else
3719 {
3720 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3721 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 3722
2488 /* monitor some parent directory for speedup hints */ 3723 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3724 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 3725 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3726 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 3727 {
2493 char path [4096]; 3728 char path [4096];
2503 if (!pend || pend == path) 3738 if (!pend || pend == path)
2504 break; 3739 break;
2505 3740
2506 *pend = 0; 3741 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask); 3742 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 } 3743 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3744 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 3745 }
2511 } 3746 }
2512 3747
2513 if (w->wd >= 0) 3748 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3749 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 3750
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 3751 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 3752 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 3753 ev_timer_again (EV_A_ &w->timer);
2533 } 3754 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 3755}
2535 3756
2536static void noinline 3757static void noinline
2537infy_del (EV_P_ ev_stat *w) 3758infy_del (EV_P_ ev_stat *w)
2538{ 3759{
2541 3762
2542 if (wd < 0) 3763 if (wd < 0)
2543 return; 3764 return;
2544 3765
2545 w->wd = -2; 3766 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3767 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 3768 wlist_del (&fs_hash [slot].head, (WL)w);
2548 3769
2549 /* remove this watcher, if others are watching it, they will rearm */ 3770 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 3771 inotify_rm_watch (fs_fd, wd);
2551} 3772}
2553static void noinline 3774static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3775infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 3776{
2556 if (slot < 0) 3777 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 3778 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3779 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 3780 infy_wd (EV_A_ slot, wd, ev);
2560 else 3781 else
2561 { 3782 {
2562 WL w_; 3783 WL w_;
2563 3784
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3785 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 3786 {
2566 ev_stat *w = (ev_stat *)w_; 3787 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 3788 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 3789
2569 if (w->wd == wd || wd == -1) 3790 if (w->wd == wd || wd == -1)
2570 { 3791 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3792 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 3793 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3794 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 3795 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 3796 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 3797 }
2577 3798
2578 stat_timer_cb (EV_A_ &w->timer, 0); 3799 stat_timer_cb (EV_A_ &w->timer, 0);
2583 3804
2584static void 3805static void
2585infy_cb (EV_P_ ev_io *w, int revents) 3806infy_cb (EV_P_ ev_io *w, int revents)
2586{ 3807{
2587 char buf [EV_INOTIFY_BUFSIZE]; 3808 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 3809 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 3810 int len = read (fs_fd, buf, sizeof (buf));
2591 3811
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3812 for (ofs = 0; ofs < len; )
3813 {
3814 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3815 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3816 ofs += sizeof (struct inotify_event) + ev->len;
3817 }
2594} 3818}
2595 3819
2596void inline_size 3820inline_size void ecb_cold
2597check_2625 (EV_P) 3821ev_check_2625 (EV_P)
2598{ 3822{
2599 /* kernels < 2.6.25 are borked 3823 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3824 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 3825 */
2602 struct utsname buf; 3826 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 3827 return;
2607 3828
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 3829 fs_2625 = 1;
2617} 3830}
2618 3831
2619void inline_size 3832inline_size int
3833infy_newfd (void)
3834{
3835#if defined IN_CLOEXEC && defined IN_NONBLOCK
3836 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3837 if (fd >= 0)
3838 return fd;
3839#endif
3840 return inotify_init ();
3841}
3842
3843inline_size void
2620infy_init (EV_P) 3844infy_init (EV_P)
2621{ 3845{
2622 if (fs_fd != -2) 3846 if (fs_fd != -2)
2623 return; 3847 return;
2624 3848
2625 fs_fd = -1; 3849 fs_fd = -1;
2626 3850
2627 check_2625 (EV_A); 3851 ev_check_2625 (EV_A);
2628 3852
2629 fs_fd = inotify_init (); 3853 fs_fd = infy_newfd ();
2630 3854
2631 if (fs_fd >= 0) 3855 if (fs_fd >= 0)
2632 { 3856 {
3857 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3858 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 3859 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 3860 ev_io_start (EV_A_ &fs_w);
3861 ev_unref (EV_A);
2636 } 3862 }
2637} 3863}
2638 3864
2639void inline_size 3865inline_size void
2640infy_fork (EV_P) 3866infy_fork (EV_P)
2641{ 3867{
2642 int slot; 3868 int slot;
2643 3869
2644 if (fs_fd < 0) 3870 if (fs_fd < 0)
2645 return; 3871 return;
2646 3872
3873 ev_ref (EV_A);
3874 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 3875 close (fs_fd);
2648 fs_fd = inotify_init (); 3876 fs_fd = infy_newfd ();
2649 3877
3878 if (fs_fd >= 0)
3879 {
3880 fd_intern (fs_fd);
3881 ev_io_set (&fs_w, fs_fd, EV_READ);
3882 ev_io_start (EV_A_ &fs_w);
3883 ev_unref (EV_A);
3884 }
3885
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3886 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 3887 {
2652 WL w_ = fs_hash [slot].head; 3888 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 3889 fs_hash [slot].head = 0;
2654 3890
2655 while (w_) 3891 while (w_)
2660 w->wd = -1; 3896 w->wd = -1;
2661 3897
2662 if (fs_fd >= 0) 3898 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 3899 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 3900 else
3901 {
3902 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3903 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 3904 ev_timer_again (EV_A_ &w->timer);
3905 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3906 }
2666 } 3907 }
2667 } 3908 }
2668} 3909}
2669 3910
2670#endif 3911#endif
2674#else 3915#else
2675# define EV_LSTAT(p,b) lstat (p, b) 3916# define EV_LSTAT(p,b) lstat (p, b)
2676#endif 3917#endif
2677 3918
2678void 3919void
2679ev_stat_stat (EV_P_ ev_stat *w) 3920ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2680{ 3921{
2681 if (lstat (w->path, &w->attr) < 0) 3922 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0; 3923 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink) 3924 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1; 3925 w->attr.st_nlink = 1;
2687static void noinline 3928static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3929stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 3930{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3931 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 3932
2692 /* we copy this here each the time so that */ 3933 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 3934 ev_stat_stat (EV_A_ w);
2696 3935
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3936 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 3937 if (
2699 w->prev.st_dev != w->attr.st_dev 3938 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 3939 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 3940 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 3941 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 3942 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 3943 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 3944 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 3945 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 3946 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 3947 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 3948 || prev.st_ctime != w->attr.st_ctime
2710 ) { 3949 ) {
3950 /* we only update w->prev on actual differences */
3951 /* in case we test more often than invoke the callback, */
3952 /* to ensure that prev is always different to attr */
3953 w->prev = prev;
3954
2711 #if EV_USE_INOTIFY 3955 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 3956 if (fs_fd >= 0)
2713 { 3957 {
2714 infy_del (EV_A_ w); 3958 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 3959 infy_add (EV_A_ w);
2720 ev_feed_event (EV_A_ w, EV_STAT); 3964 ev_feed_event (EV_A_ w, EV_STAT);
2721 } 3965 }
2722} 3966}
2723 3967
2724void 3968void
2725ev_stat_start (EV_P_ ev_stat *w) 3969ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2726{ 3970{
2727 if (expect_false (ev_is_active (w))) 3971 if (expect_false (ev_is_active (w)))
2728 return; 3972 return;
2729 3973
2730 ev_stat_stat (EV_A_ w); 3974 ev_stat_stat (EV_A_ w);
2740 3984
2741 if (fs_fd >= 0) 3985 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 3986 infy_add (EV_A_ w);
2743 else 3987 else
2744#endif 3988#endif
3989 {
2745 ev_timer_again (EV_A_ &w->timer); 3990 ev_timer_again (EV_A_ &w->timer);
3991 ev_unref (EV_A);
3992 }
2746 3993
2747 ev_start (EV_A_ (W)w, 1); 3994 ev_start (EV_A_ (W)w, 1);
2748 3995
2749 EV_FREQUENT_CHECK; 3996 EV_FREQUENT_CHECK;
2750} 3997}
2751 3998
2752void 3999void
2753ev_stat_stop (EV_P_ ev_stat *w) 4000ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2754{ 4001{
2755 clear_pending (EV_A_ (W)w); 4002 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4003 if (expect_false (!ev_is_active (w)))
2757 return; 4004 return;
2758 4005
2759 EV_FREQUENT_CHECK; 4006 EV_FREQUENT_CHECK;
2760 4007
2761#if EV_USE_INOTIFY 4008#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 4009 infy_del (EV_A_ w);
2763#endif 4010#endif
4011
4012 if (ev_is_active (&w->timer))
4013 {
4014 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 4015 ev_timer_stop (EV_A_ &w->timer);
4016 }
2765 4017
2766 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
2767 4019
2768 EV_FREQUENT_CHECK; 4020 EV_FREQUENT_CHECK;
2769} 4021}
2770#endif 4022#endif
2771 4023
2772#if EV_IDLE_ENABLE 4024#if EV_IDLE_ENABLE
2773void 4025void
2774ev_idle_start (EV_P_ ev_idle *w) 4026ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2775{ 4027{
2776 if (expect_false (ev_is_active (w))) 4028 if (expect_false (ev_is_active (w)))
2777 return; 4029 return;
2778 4030
2779 pri_adjust (EV_A_ (W)w); 4031 pri_adjust (EV_A_ (W)w);
2792 4044
2793 EV_FREQUENT_CHECK; 4045 EV_FREQUENT_CHECK;
2794} 4046}
2795 4047
2796void 4048void
2797ev_idle_stop (EV_P_ ev_idle *w) 4049ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2798{ 4050{
2799 clear_pending (EV_A_ (W)w); 4051 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w))) 4052 if (expect_false (!ev_is_active (w)))
2801 return; 4053 return;
2802 4054
2814 4066
2815 EV_FREQUENT_CHECK; 4067 EV_FREQUENT_CHECK;
2816} 4068}
2817#endif 4069#endif
2818 4070
4071#if EV_PREPARE_ENABLE
2819void 4072void
2820ev_prepare_start (EV_P_ ev_prepare *w) 4073ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2821{ 4074{
2822 if (expect_false (ev_is_active (w))) 4075 if (expect_false (ev_is_active (w)))
2823 return; 4076 return;
2824 4077
2825 EV_FREQUENT_CHECK; 4078 EV_FREQUENT_CHECK;
2830 4083
2831 EV_FREQUENT_CHECK; 4084 EV_FREQUENT_CHECK;
2832} 4085}
2833 4086
2834void 4087void
2835ev_prepare_stop (EV_P_ ev_prepare *w) 4088ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2836{ 4089{
2837 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4091 if (expect_false (!ev_is_active (w)))
2839 return; 4092 return;
2840 4093
2849 4102
2850 ev_stop (EV_A_ (W)w); 4103 ev_stop (EV_A_ (W)w);
2851 4104
2852 EV_FREQUENT_CHECK; 4105 EV_FREQUENT_CHECK;
2853} 4106}
4107#endif
2854 4108
4109#if EV_CHECK_ENABLE
2855void 4110void
2856ev_check_start (EV_P_ ev_check *w) 4111ev_check_start (EV_P_ ev_check *w) EV_THROW
2857{ 4112{
2858 if (expect_false (ev_is_active (w))) 4113 if (expect_false (ev_is_active (w)))
2859 return; 4114 return;
2860 4115
2861 EV_FREQUENT_CHECK; 4116 EV_FREQUENT_CHECK;
2866 4121
2867 EV_FREQUENT_CHECK; 4122 EV_FREQUENT_CHECK;
2868} 4123}
2869 4124
2870void 4125void
2871ev_check_stop (EV_P_ ev_check *w) 4126ev_check_stop (EV_P_ ev_check *w) EV_THROW
2872{ 4127{
2873 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2875 return; 4130 return;
2876 4131
2885 4140
2886 ev_stop (EV_A_ (W)w); 4141 ev_stop (EV_A_ (W)w);
2887 4142
2888 EV_FREQUENT_CHECK; 4143 EV_FREQUENT_CHECK;
2889} 4144}
4145#endif
2890 4146
2891#if EV_EMBED_ENABLE 4147#if EV_EMBED_ENABLE
2892void noinline 4148void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 4149ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2894{ 4150{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 4151 ev_run (w->other, EVRUN_NOWAIT);
2896} 4152}
2897 4153
2898static void 4154static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 4155embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 4156{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4157 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 4158
2903 if (ev_cb (w)) 4159 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4160 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 4161 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 4162 ev_run (w->other, EVRUN_NOWAIT);
2907} 4163}
2908 4164
2909static void 4165static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4166embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 4167{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4168 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 4169
2914 { 4170 {
2915 struct ev_loop *loop = w->other; 4171 EV_P = w->other;
2916 4172
2917 while (fdchangecnt) 4173 while (fdchangecnt)
2918 { 4174 {
2919 fd_reify (EV_A); 4175 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4176 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 4177 }
2922 } 4178 }
2923} 4179}
2924 4180
2925static void 4181static void
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4184 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 4185
2930 ev_embed_stop (EV_A_ w); 4186 ev_embed_stop (EV_A_ w);
2931 4187
2932 { 4188 {
2933 struct ev_loop *loop = w->other; 4189 EV_P = w->other;
2934 4190
2935 ev_loop_fork (EV_A); 4191 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4192 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 4193 }
2938 4194
2939 ev_embed_start (EV_A_ w); 4195 ev_embed_start (EV_A_ w);
2940} 4196}
2941 4197
2946 ev_idle_stop (EV_A_ idle); 4202 ev_idle_stop (EV_A_ idle);
2947} 4203}
2948#endif 4204#endif
2949 4205
2950void 4206void
2951ev_embed_start (EV_P_ ev_embed *w) 4207ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2952{ 4208{
2953 if (expect_false (ev_is_active (w))) 4209 if (expect_false (ev_is_active (w)))
2954 return; 4210 return;
2955 4211
2956 { 4212 {
2957 struct ev_loop *loop = w->other; 4213 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4214 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4215 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 4216 }
2961 4217
2962 EV_FREQUENT_CHECK; 4218 EV_FREQUENT_CHECK;
2977 4233
2978 EV_FREQUENT_CHECK; 4234 EV_FREQUENT_CHECK;
2979} 4235}
2980 4236
2981void 4237void
2982ev_embed_stop (EV_P_ ev_embed *w) 4238ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2983{ 4239{
2984 clear_pending (EV_A_ (W)w); 4240 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w))) 4241 if (expect_false (!ev_is_active (w)))
2986 return; 4242 return;
2987 4243
2989 4245
2990 ev_io_stop (EV_A_ &w->io); 4246 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 4247 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 4248 ev_fork_stop (EV_A_ &w->fork);
2993 4249
4250 ev_stop (EV_A_ (W)w);
4251
2994 EV_FREQUENT_CHECK; 4252 EV_FREQUENT_CHECK;
2995} 4253}
2996#endif 4254#endif
2997 4255
2998#if EV_FORK_ENABLE 4256#if EV_FORK_ENABLE
2999void 4257void
3000ev_fork_start (EV_P_ ev_fork *w) 4258ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3001{ 4259{
3002 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
3003 return; 4261 return;
3004 4262
3005 EV_FREQUENT_CHECK; 4263 EV_FREQUENT_CHECK;
3010 4268
3011 EV_FREQUENT_CHECK; 4269 EV_FREQUENT_CHECK;
3012} 4270}
3013 4271
3014void 4272void
3015ev_fork_stop (EV_P_ ev_fork *w) 4273ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3016{ 4274{
3017 clear_pending (EV_A_ (W)w); 4275 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w))) 4276 if (expect_false (!ev_is_active (w)))
3019 return; 4277 return;
3020 4278
3031 4289
3032 EV_FREQUENT_CHECK; 4290 EV_FREQUENT_CHECK;
3033} 4291}
3034#endif 4292#endif
3035 4293
4294#if EV_CLEANUP_ENABLE
4295void
4296ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4297{
4298 if (expect_false (ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 ev_start (EV_A_ (W)w, ++cleanupcnt);
4304 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4305 cleanups [cleanupcnt - 1] = w;
4306
4307 /* cleanup watchers should never keep a refcount on the loop */
4308 ev_unref (EV_A);
4309 EV_FREQUENT_CHECK;
4310}
4311
4312void
4313ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4314{
4315 clear_pending (EV_A_ (W)w);
4316 if (expect_false (!ev_is_active (w)))
4317 return;
4318
4319 EV_FREQUENT_CHECK;
4320 ev_ref (EV_A);
4321
4322 {
4323 int active = ev_active (w);
4324
4325 cleanups [active - 1] = cleanups [--cleanupcnt];
4326 ev_active (cleanups [active - 1]) = active;
4327 }
4328
4329 ev_stop (EV_A_ (W)w);
4330
4331 EV_FREQUENT_CHECK;
4332}
4333#endif
4334
3036#if EV_ASYNC_ENABLE 4335#if EV_ASYNC_ENABLE
3037void 4336void
3038ev_async_start (EV_P_ ev_async *w) 4337ev_async_start (EV_P_ ev_async *w) EV_THROW
3039{ 4338{
3040 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
3041 return; 4340 return;
4341
4342 w->sent = 0;
3042 4343
3043 evpipe_init (EV_A); 4344 evpipe_init (EV_A);
3044 4345
3045 EV_FREQUENT_CHECK; 4346 EV_FREQUENT_CHECK;
3046 4347
3050 4351
3051 EV_FREQUENT_CHECK; 4352 EV_FREQUENT_CHECK;
3052} 4353}
3053 4354
3054void 4355void
3055ev_async_stop (EV_P_ ev_async *w) 4356ev_async_stop (EV_P_ ev_async *w) EV_THROW
3056{ 4357{
3057 clear_pending (EV_A_ (W)w); 4358 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w))) 4359 if (expect_false (!ev_is_active (w)))
3059 return; 4360 return;
3060 4361
3071 4372
3072 EV_FREQUENT_CHECK; 4373 EV_FREQUENT_CHECK;
3073} 4374}
3074 4375
3075void 4376void
3076ev_async_send (EV_P_ ev_async *w) 4377ev_async_send (EV_P_ ev_async *w) EV_THROW
3077{ 4378{
3078 w->sent = 1; 4379 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 4380 evpipe_write (EV_A_ &async_pending);
3080} 4381}
3081#endif 4382#endif
3082 4383
3083/*****************************************************************************/ 4384/*****************************************************************************/
3084 4385
3118 4419
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4420 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3120} 4421}
3121 4422
3122void 4423void
3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4424ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3124{ 4425{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4426 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 4427
3127 if (expect_false (!once)) 4428 if (expect_false (!once))
3128 { 4429 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4430 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 4431 return;
3131 } 4432 }
3132 4433
3133 once->cb = cb; 4434 once->cb = cb;
3134 once->arg = arg; 4435 once->arg = arg;
3148 } 4449 }
3149} 4450}
3150 4451
3151/*****************************************************************************/ 4452/*****************************************************************************/
3152 4453
3153#if 0 4454#if EV_WALK_ENABLE
3154void 4455void ecb_cold
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4456ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3156{ 4457{
3157 int i, j; 4458 int i, j;
3158 ev_watcher_list *wl, *wn; 4459 ev_watcher_list *wl, *wn;
3159 4460
3160 if (types & (EV_IO | EV_EMBED)) 4461 if (types & (EV_IO | EV_EMBED))
3174#if EV_USE_INOTIFY 4475#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb) 4476 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ; 4477 ;
3177 else 4478 else
3178#endif 4479#endif
3179 if ((ev_io *)wl != &pipeev) 4480 if ((ev_io *)wl != &pipe_w)
3180 if (types & EV_IO) 4481 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl); 4482 cb (EV_A_ EV_IO, wl);
3182 4483
3183 wl = wn; 4484 wl = wn;
3184 } 4485 }
3203 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4504 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3204#endif 4505#endif
3205 4506
3206#if EV_IDLE_ENABLE 4507#if EV_IDLE_ENABLE
3207 if (types & EV_IDLE) 4508 if (types & EV_IDLE)
3208 for (j = NUMPRI; i--; ) 4509 for (j = NUMPRI; j--; )
3209 for (i = idlecnt [j]; i--; ) 4510 for (i = idlecnt [j]; i--; )
3210 cb (EV_A_ EV_IDLE, idles [j][i]); 4511 cb (EV_A_ EV_IDLE, idles [j][i]);
3211#endif 4512#endif
3212 4513
3213#if EV_FORK_ENABLE 4514#if EV_FORK_ENABLE
3221 if (types & EV_ASYNC) 4522 if (types & EV_ASYNC)
3222 for (i = asynccnt; i--; ) 4523 for (i = asynccnt; i--; )
3223 cb (EV_A_ EV_ASYNC, asyncs [i]); 4524 cb (EV_A_ EV_ASYNC, asyncs [i]);
3224#endif 4525#endif
3225 4526
4527#if EV_PREPARE_ENABLE
3226 if (types & EV_PREPARE) 4528 if (types & EV_PREPARE)
3227 for (i = preparecnt; i--; ) 4529 for (i = preparecnt; i--; )
3228#if EV_EMBED_ENABLE 4530# if EV_EMBED_ENABLE
3229 if (ev_cb (prepares [i]) != embed_prepare_cb) 4531 if (ev_cb (prepares [i]) != embed_prepare_cb)
3230#endif 4532# endif
3231 cb (EV_A_ EV_PREPARE, prepares [i]); 4533 cb (EV_A_ EV_PREPARE, prepares [i]);
4534#endif
3232 4535
4536#if EV_CHECK_ENABLE
3233 if (types & EV_CHECK) 4537 if (types & EV_CHECK)
3234 for (i = checkcnt; i--; ) 4538 for (i = checkcnt; i--; )
3235 cb (EV_A_ EV_CHECK, checks [i]); 4539 cb (EV_A_ EV_CHECK, checks [i]);
4540#endif
3236 4541
4542#if EV_SIGNAL_ENABLE
3237 if (types & EV_SIGNAL) 4543 if (types & EV_SIGNAL)
3238 for (i = 0; i < signalmax; ++i) 4544 for (i = 0; i < EV_NSIG - 1; ++i)
3239 for (wl = signals [i].head; wl; ) 4545 for (wl = signals [i].head; wl; )
3240 { 4546 {
3241 wn = wl->next; 4547 wn = wl->next;
3242 cb (EV_A_ EV_SIGNAL, wl); 4548 cb (EV_A_ EV_SIGNAL, wl);
3243 wl = wn; 4549 wl = wn;
3244 } 4550 }
4551#endif
3245 4552
4553#if EV_CHILD_ENABLE
3246 if (types & EV_CHILD) 4554 if (types & EV_CHILD)
3247 for (i = EV_PID_HASHSIZE; i--; ) 4555 for (i = (EV_PID_HASHSIZE); i--; )
3248 for (wl = childs [i]; wl; ) 4556 for (wl = childs [i]; wl; )
3249 { 4557 {
3250 wn = wl->next; 4558 wn = wl->next;
3251 cb (EV_A_ EV_CHILD, wl); 4559 cb (EV_A_ EV_CHILD, wl);
3252 wl = wn; 4560 wl = wn;
3253 } 4561 }
4562#endif
3254/* EV_STAT 0x00001000 /* stat data changed */ 4563/* EV_STAT 0x00001000 /* stat data changed */
3255/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 4564/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3256} 4565}
3257#endif 4566#endif
3258 4567
3259#if EV_MULTIPLICITY 4568#if EV_MULTIPLICITY
3260 #include "ev_wrap.h" 4569 #include "ev_wrap.h"
3261#endif 4570#endif
3262 4571
3263#ifdef __cplusplus
3264}
3265#endif
3266

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines