ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC vs.
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 123# else
95# define EV_USE_PORT 0 124# define EV_USE_PORT 0
96# endif 125# endif
97# endif 126# endif
98 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
99#endif 144#endif
100 145
101#include <math.h> 146#include <math.h>
102#include <stdlib.h> 147#include <stdlib.h>
103#include <fcntl.h> 148#include <fcntl.h>
110#include <sys/types.h> 155#include <sys/types.h>
111#include <time.h> 156#include <time.h>
112 157
113#include <signal.h> 158#include <signal.h>
114 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
115#ifndef _WIN32 166#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 167# include <sys/time.h>
118# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
119#else 170#else
171# include <io.h>
120# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 173# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
124# endif 176# endif
125#endif 177#endif
126 178
127/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
128 188
129#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
130# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
131#endif 195#endif
132 196
133#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
135#endif 207#endif
136 208
137#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
139#endif 211#endif
145# define EV_USE_POLL 1 217# define EV_USE_POLL 1
146# endif 218# endif
147#endif 219#endif
148 220
149#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
150# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
151#endif 227#endif
152 228
153#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
155#endif 231#endif
156 232
157#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 234# define EV_USE_PORT 0
159#endif 235#endif
160 236
161/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 288
163#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
166#endif 292#endif
168#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
171#endif 297#endif
172 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
173#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 322# include <winsock.h>
175#endif 323#endif
176 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
177/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 363
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 367
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 368#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 370# define noinline __attribute__ ((noinline))
193#else 371#else
194# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
195# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
196#endif 377#endif
197 378
198#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
200 388
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 391
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
206 394
207typedef ev_watcher *W; 395typedef ev_watcher *W;
208typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
209typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
210 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
212 411
213#ifdef _WIN32 412#ifdef _WIN32
214# include "ev_win32.c" 413# include "ev_win32.c"
215#endif 414#endif
216 415
217/*****************************************************************************/ 416/*****************************************************************************/
218 417
219static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
220 419
420void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 422{
223 syserr_cb = cb; 423 syserr_cb = cb;
224} 424}
225 425
226static void 426static void noinline
227syserr (const char *msg) 427ev_syserr (const char *msg)
228{ 428{
229 if (!msg) 429 if (!msg)
230 msg = "(libev) system error"; 430 msg = "(libev) system error";
231 431
232 if (syserr_cb) 432 if (syserr_cb)
236 perror (msg); 436 perror (msg);
237 abort (); 437 abort ();
238 } 438 }
239} 439}
240 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
241static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 457
458void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 460{
245 alloc = cb; 461 alloc = cb;
246} 462}
247 463
248static void * 464inline_speed void *
249ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
250{ 466{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
252 468
253 if (!ptr && size) 469 if (!ptr && size)
254 { 470 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 472 abort ();
267typedef struct 483typedef struct
268{ 484{
269 WL head; 485 WL head;
270 unsigned char events; 486 unsigned char events;
271 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
272#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 494 SOCKET handle;
274#endif 495#endif
275} ANFD; 496} ANFD;
276 497
277typedef struct 498typedef struct
278{ 499{
279 W w; 500 W w;
280 int events; 501 int events;
281} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
282 529
283#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
284 531
285 struct ev_loop 532 struct ev_loop
286 { 533 {
310 557
311ev_tstamp 558ev_tstamp
312ev_time (void) 559ev_time (void)
313{ 560{
314#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
315 struct timespec ts; 564 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 567 }
568#endif
569
319 struct timeval tv; 570 struct timeval tv;
320 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 573}
324 574
325inline ev_tstamp 575ev_tstamp inline_size
326get_clock (void) 576get_clock (void)
327{ 577{
328#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
330 { 580 {
343{ 593{
344 return ev_rt_now; 594 return ev_rt_now;
345} 595}
346#endif 596#endif
347 597
348#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 660
350#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
352 { \ 663 { \
353 int newcnt = cur; \ 664 int ocur_ = (cur); \
354 do \ 665 (base) = (type *)array_realloc \
355 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 668 }
364 669
670#if 0
365#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 673 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 677 }
678#endif
372 679
373#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 682
376/*****************************************************************************/ 683/*****************************************************************************/
377 684
378static void 685void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
393{ 687{
394 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
395 690
396 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
397 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 699 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 700}
407 701
408static void 702void inline_speed
409queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 704{
411 int i; 705 int i;
412 706
413 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
415} 709}
416 710
417inline void 711/*****************************************************************************/
712
713void inline_speed
418fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
419{ 715{
420 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
421 ev_io *w; 717 ev_io *w;
422 718
430} 726}
431 727
432void 728void
433ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 730{
731 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
436} 733}
437 734
438/*****************************************************************************/ 735void inline_size
439
440inline void
441fd_reify (EV_P) 736fd_reify (EV_P)
442{ 737{
443 int i; 738 int i;
444 739
445 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
446 { 741 {
447 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
449 ev_io *w; 744 ev_io *w;
450 745
451 int events = 0; 746 unsigned char events = 0;
452 747
453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 749 events |= (unsigned char)w->events;
455 750
456#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
457 if (events) 752 if (events)
458 { 753 {
459 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
460 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
462 } 761 }
463#endif 762#endif
464 763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
465 anfd->reify = 0; 768 anfd->reify = 0;
466
467 backend_modify (EV_A_ fd, anfd->events, events);
468 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
469 } 774 }
470 775
471 fdchangecnt = 0; 776 fdchangecnt = 0;
472} 777}
473 778
474static void 779void inline_size
475fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
476{ 781{
477 if (expect_false (anfds [fd].reify)) 782 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
481 784
785 if (expect_true (!reify))
786 {
482 ++fdchangecnt; 787 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
485} 791}
486 792
487static void 793void inline_speed
488fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
489{ 795{
490 ev_io *w; 796 ev_io *w;
491 797
492 while ((w = (ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
494 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 802 }
497} 803}
498 804
499inline int 805int inline_size
500fd_valid (int fd) 806fd_valid (int fd)
501{ 807{
502#ifdef _WIN32 808#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 809 return _get_osfhandle (fd) != -1;
504#else 810#else
505 return fcntl (fd, F_GETFD) != -1; 811 return fcntl (fd, F_GETFD) != -1;
506#endif 812#endif
507} 813}
508 814
509/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
510static void 816static void noinline
511fd_ebadf (EV_P) 817fd_ebadf (EV_P)
512{ 818{
513 int fd; 819 int fd;
514 820
515 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 822 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
519} 825}
520 826
521/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 828static void noinline
523fd_enomem (EV_P) 829fd_enomem (EV_P)
524{ 830{
525 int fd; 831 int fd;
526 832
527 for (fd = anfdmax; fd--; ) 833 for (fd = anfdmax; fd--; )
531 return; 837 return;
532 } 838 }
533} 839}
534 840
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 842static void noinline
537fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
538{ 844{
539 int fd; 845 int fd;
540 846
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 848 if (anfds [fd].events)
544 { 849 {
545 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
546 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
547 } 853 }
548} 854}
549 855
550/*****************************************************************************/ 856/*****************************************************************************/
551 857
552static void 858/*
553upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
554{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
555 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
556 863
557 while (k && heap [k >> 1]->at > w->at) 864/*
558 { 865 * at the moment we allow libev the luxury of two heaps,
559 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
560 ((W)heap [k])->active = k + 1; 867 * which is more cache-efficient.
561 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
562 } 869 */
870#if EV_USE_4HEAP
563 871
564 heap [k] = w; 872#define DHEAP 4
565 ((W)heap [k])->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
566 876
567} 877/* away from the root */
568 878void inline_speed
569static void
570downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
571{ 880{
572 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
573 883
574 while (k < (N >> 1)) 884 for (;;)
575 { 885 {
576 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
577 889
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
579 ++j; 892 {
580 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
581 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
582 break; 906 break;
583 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
584 heap [k] = heap [j]; 946 heap [k] = heap [c];
585 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
586 k = j; 949 k = c;
587 } 950 }
588 951
589 heap [k] = w; 952 heap [k] = he;
590 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
591} 954}
955#endif
592 956
593inline void 957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
978
979void inline_size
594adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
595{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
596 upheap (heap, k); 983 upheap (heap, k);
984 else
597 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
598} 998}
599 999
600/*****************************************************************************/ 1000/*****************************************************************************/
601 1001
602typedef struct 1002typedef struct
603{ 1003{
604 WL head; 1004 WL head;
605 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
606} ANSIG; 1006} ANSIG;
607 1007
608static ANSIG *signals; 1008static ANSIG *signals;
609static int signalmax; 1009static int signalmax;
610 1010
611static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
612static sig_atomic_t volatile gotsig;
613static ev_io sigev;
614 1012
615static void 1013/*****************************************************************************/
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622 1014
623 ++base; 1015void inline_speed
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1016fd_intern (int fd)
680{ 1017{
681#ifdef _WIN32 1018#ifdef _WIN32
682 int arg = 1; 1019 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else 1021#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1024#endif
688} 1025}
689 1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
690static void 1078static void
691siginit (EV_P) 1079pipecb (EV_P_ ev_io *iow, int revents)
692{ 1080{
693 fd_intern (sigpipe [0]); 1081#if EV_USE_EVENTFD
694 fd_intern (sigpipe [1]); 1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
695 1093
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1094 if (gotsig && ev_is_default_loop (EV_A))
697 ev_io_start (EV_A_ &sigev); 1095 {
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
699} 1118}
700 1119
701/*****************************************************************************/ 1120/*****************************************************************************/
702 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
703static ev_child *childs [PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
704 1160
705#ifndef _WIN32 1161#ifndef _WIN32
706 1162
707static ev_signal childev; 1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
708 1187
709#ifndef WCONTINUED 1188#ifndef WCONTINUED
710# define WCONTINUED 0 1189# define WCONTINUED 0
711#endif 1190#endif
712 1191
713static void 1192static void
714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{
716 ev_child *w;
717
718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
730{ 1194{
731 int pid, status; 1195 int pid, status;
732 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
735 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1207
739 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1211}
743 1212
744#endif 1213#endif
745 1214
746/*****************************************************************************/ 1215/*****************************************************************************/
772{ 1241{
773 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
774} 1243}
775 1244
776/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1246int inline_size
778enable_secure (void) 1247enable_secure (void)
779{ 1248{
780#ifdef _WIN32 1249#ifdef _WIN32
781 return 0; 1250 return 0;
782#else 1251#else
808 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
811#endif 1280#endif
812#ifdef __APPLE__ 1281#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
815#endif 1285#endif
816 1286
817 return flags; 1287 return flags;
818} 1288}
819 1289
820unsigned int 1290unsigned int
821ev_embeddable_backends (void) 1291ev_embeddable_backends (void)
822{ 1292{
823 return EVBACKEND_EPOLL 1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
824 | EVBACKEND_KQUEUE 1294
825 | EVBACKEND_PORT; 1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
826} 1300}
827 1301
828unsigned int 1302unsigned int
829ev_backend (EV_P) 1303ev_backend (EV_P)
830{ 1304{
831 return backend; 1305 return backend;
832} 1306}
833 1307
834static void 1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
835loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
836{ 1328{
837 if (!backend) 1329 if (!backend)
838 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
839#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
840 { 1343 {
841 struct timespec ts; 1344 struct timespec ts;
1345
842 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
843 have_monotonic = 1; 1347 have_monotonic = 1;
844 } 1348 }
845#endif 1349#endif
846 1350
847 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
848 mn_now = get_clock (); 1352 mn_now = get_clock ();
849 now_floor = mn_now; 1353 now_floor = mn_now;
850 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
851 1370
852 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
853 && !enable_secure () 1372 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
855 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
856 1375
857 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
858 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
859 1378
860 backend = 0;
861#if EV_USE_PORT 1379#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif 1381#endif
864#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
872#endif 1390#endif
873#if EV_USE_SELECT 1391#if EV_USE_SELECT
874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
875#endif 1393#endif
876 1394
877 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
878 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
879 } 1397 }
880} 1398}
881 1399
882static void 1400static void noinline
883loop_destroy (EV_P) 1401loop_destroy (EV_P)
884{ 1402{
885 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
886 1429
887#if EV_USE_PORT 1430#if EV_USE_PORT
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
889#endif 1432#endif
890#if EV_USE_KQUEUE 1433#if EV_USE_KQUEUE
899#if EV_USE_SELECT 1442#if EV_USE_SELECT
900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
901#endif 1444#endif
902 1445
903 for (i = NUMPRI; i--; ) 1446 for (i = NUMPRI; i--; )
1447 {
904 array_free (pending, [i]); 1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
905 1455
906 /* have to use the microsoft-never-gets-it-right macro */ 1456 /* have to use the microsoft-never-gets-it-right macro */
907 array_free (fdchange, EMPTY0); 1457 array_free (fdchange, EMPTY);
908 array_free (timer, EMPTY0); 1458 array_free (timer, EMPTY);
909#if EV_PERIODICS 1459#if EV_PERIODIC_ENABLE
910 array_free (periodic, EMPTY0); 1460 array_free (periodic, EMPTY);
911#endif 1461#endif
1462#if EV_FORK_ENABLE
912 array_free (idle, EMPTY0); 1463 array_free (fork, EMPTY);
1464#endif
913 array_free (prepare, EMPTY0); 1465 array_free (prepare, EMPTY);
914 array_free (check, EMPTY0); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
915 1470
916 backend = 0; 1471 backend = 0;
917} 1472}
918 1473
919static void 1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
920loop_fork (EV_P) 1479loop_fork (EV_P)
921{ 1480{
922#if EV_USE_PORT 1481#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif 1483#endif
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif 1486#endif
928#if EV_USE_EPOLL 1487#if EV_USE_EPOLL
929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
930#endif 1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
931 1493
932 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
933 { 1495 {
934 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
935 1502
936 ev_ref (EV_A); 1503 ev_ref (EV_A);
937 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
938 close (sigpipe [0]); 1513 close (evpipe [0]);
939 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
940 1516
941 while (pipe (sigpipe))
942 syserr ("(libev) error creating pipe");
943
944 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
945 } 1520 }
946 1521
947 postfork = 0; 1522 postfork = 0;
948} 1523}
949 1524
950#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
951struct ev_loop * 1527struct ev_loop *
952ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
953{ 1529{
954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
955 1531
971} 1547}
972 1548
973void 1549void
974ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
975{ 1551{
976 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
977} 1553}
978 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
979#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
980 1655
981#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
982struct ev_loop * 1657struct ev_loop *
983ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
984#else 1659#else
985int 1660int
986ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
987#endif 1662#endif
988{ 1663{
989 if (sigpipe [0] == sigpipe [1])
990 if (pipe (sigpipe))
991 return 0;
992
993 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
994 { 1665 {
995#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
997#else 1668#else
1000 1671
1001 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1002 1673
1003 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1004 { 1675 {
1005 siginit (EV_A);
1006
1007#ifndef _WIN32 1676#ifndef _WIN32
1008 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1009 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1010 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1011 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1023{ 1692{
1024#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1025 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1026#endif 1695#endif
1027 1696
1697 ev_default_loop_ptr = 0;
1698
1028#ifndef _WIN32 1699#ifndef _WIN32
1029 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1030 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1031#endif 1702#endif
1032 1703
1033 ev_ref (EV_A); /* signal watcher */
1034 ev_io_stop (EV_A_ &sigev);
1035
1036 close (sigpipe [0]); sigpipe [0] = 0;
1037 close (sigpipe [1]); sigpipe [1] = 0;
1038
1039 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1040} 1705}
1041 1706
1042void 1707void
1043ev_default_fork (void) 1708ev_default_fork (void)
1044{ 1709{
1045#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1046 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1047#endif 1712#endif
1048 1713
1049 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1050 postfork = 1;
1051} 1715}
1052 1716
1053/*****************************************************************************/ 1717/*****************************************************************************/
1054 1718
1055static int 1719void
1056any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
1057{ 1721{
1058 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
1059
1060 for (pri = NUMPRI; pri--; )
1061 if (pendingcnt [pri])
1062 return 1;
1063
1064 return 0;
1065} 1723}
1066 1724
1067inline void 1725void inline_speed
1068call_pending (EV_P) 1726call_pending (EV_P)
1069{ 1727{
1070 int pri; 1728 int pri;
1071 1729
1072 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
1074 { 1732 {
1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1076 1734
1077 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1078 { 1736 {
1079 assert (("non-pending watcher on pending list", p->w->pending)); 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1080 1738
1081 p->w->pending = 0; 1739 p->w->pending = 0;
1082 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1083 } 1742 }
1084 } 1743 }
1085} 1744}
1086 1745
1087inline void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
1088timers_reify (EV_P) 1770timers_reify (EV_P)
1089{ 1771{
1772 EV_FREQUENT_CHECK;
1773
1090 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1091 { 1775 {
1092 ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1093 1777
1094 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1095 1779
1096 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
1097 if (w->repeat) 1781 if (w->repeat)
1098 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1099 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1100 1788
1101 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
1102 if (((WT)w)->at < mn_now)
1103 ((WT)w)->at = mn_now;
1104
1105 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1106 } 1791 }
1107 else 1792 else
1108 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1109 1794
1795 EV_FREQUENT_CHECK;
1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1111 } 1797 }
1112} 1798}
1113 1799
1114#if EV_PERIODICS 1800#if EV_PERIODIC_ENABLE
1115inline void 1801void inline_size
1116periodics_reify (EV_P) 1802periodics_reify (EV_P)
1117{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1119 { 1807 {
1120 ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1121 1809
1122 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1123 1811
1124 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1125 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1126 { 1814 {
1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1129 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1130 } 1821 }
1131 else if (w->interval) 1822 else if (w->interval)
1132 { 1823 {
1133 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1134 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1135 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1136 } 1840 }
1137 else 1841 else
1138 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1139 1843
1844 EV_FREQUENT_CHECK;
1140 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1141 } 1846 }
1142} 1847}
1143 1848
1144static void 1849static void noinline
1145periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1146{ 1851{
1147 int i; 1852 int i;
1148 1853
1149 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1150 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1151 { 1856 {
1152 ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1153 1858
1154 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1156 else if (w->interval) 1861 else if (w->interval)
1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1158 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1159 1880
1160 /* now rebuild the heap */
1161 for (i = periodiccnt >> 1; i--; )
1162 downheap ((WT *)periodics, periodiccnt, i);
1163}
1164#endif
1165
1166inline int
1167time_update_monotonic (EV_P)
1168{
1169 mn_now = get_clock (); 1881 mn_now = get_clock ();
1170 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1171 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1172 { 1886 {
1173 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1174 return 0; 1888 return;
1175 } 1889 }
1176 else 1890
1177 {
1178 now_floor = mn_now; 1891 now_floor = mn_now;
1179 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1180 return 1;
1181 }
1182}
1183 1893
1184inline void 1894 /* loop a few times, before making important decisions.
1185time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1186{ 1896 * in case we get preempted during the calls to
1187 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1188 1898 * to succeed in that case, though. and looping a few more times
1189#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1190 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1191 { 1901 */
1192 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1193 { 1903 {
1194 ev_tstamp odiff = rtmn_diff; 1904 rtmn_diff = ev_rt_now - mn_now;
1195 1905
1196 /* loop a few times, before making important decisions. 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1197 * on the choice of "4": one iteration isn't enough, 1907 return; /* all is well */
1198 * in case we get preempted during the calls to 1908
1199 * ev_time and get_clock. a second call is almost guarenteed 1909 ev_rt_now = ev_time ();
1200 * to succeed in that case, though. and looping a few more times 1910 mn_now = get_clock ();
1201 * doesn't hurt either as we only do this on time-jumps or 1911 now_floor = mn_now;
1202 * in the unlikely event of getting preempted here. 1912 }
1203 */ 1913
1204 for (i = 4; --i; ) 1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1205 { 1932 {
1206 rtmn_diff = ev_rt_now - mn_now; 1933 ANHE *he = timers + i + HEAP0;
1207 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1935 ANHE_at_cache (*he);
1209 return; /* all is well */
1210
1211 ev_rt_now = ev_time ();
1212 mn_now = get_clock ();
1213 now_floor = mn_now;
1214 } 1936 }
1215
1216# if EV_PERIODICS
1217 periodics_reschedule (EV_A);
1218# endif
1219 /* no timer adjustment, as the monotonic clock doesn't jump */
1220 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1221 } 1937 }
1222 }
1223 else
1224#endif
1225 {
1226 ev_rt_now = ev_time ();
1227
1228 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1229 {
1230#if EV_PERIODICS
1231 periodics_reschedule (EV_A);
1232#endif
1233
1234 /* adjust timers. this is easy, as the offset is the same for all */
1235 for (i = 0; i < timercnt; ++i)
1236 ((WT)timers [i])->at += ev_rt_now - mn_now;
1237 }
1238 1938
1239 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1240 } 1940 }
1241} 1941}
1242 1942
1250ev_unref (EV_P) 1950ev_unref (EV_P)
1251{ 1951{
1252 --activecnt; 1952 --activecnt;
1253} 1953}
1254 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1255static int loop_done; 1961static int loop_done;
1256 1962
1257void 1963void
1258ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1259{ 1965{
1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1261 ? EVUNLOOP_ONE
1262 : EVUNLOOP_CANCEL;
1263 1967
1264 while (activecnt) 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969
1970 do
1265 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
1266 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1267 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1268 { 1997 {
1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1270 call_pending (EV_A); 1999 call_pending (EV_A);
1271 } 2000 }
1277 /* update fd-related kernel structures */ 2006 /* update fd-related kernel structures */
1278 fd_reify (EV_A); 2007 fd_reify (EV_A);
1279 2008
1280 /* calculate blocking time */ 2009 /* calculate blocking time */
1281 { 2010 {
1282 double block; 2011 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.;
1283 2013
1284 if (flags & EVLOOP_NONBLOCK || idlecnt) 2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1285 block = 0.; /* do not block at all */
1286 else
1287 { 2015 {
1288 /* update time to cancel out callback processing overhead */ 2016 /* update time to cancel out callback processing overhead */
1289#if EV_USE_MONOTONIC
1290 if (expect_true (have_monotonic))
1291 time_update_monotonic (EV_A); 2017 time_update (EV_A_ 1e100);
1292 else
1293#endif
1294 {
1295 ev_rt_now = ev_time ();
1296 mn_now = ev_rt_now;
1297 }
1298 2018
1299 block = MAX_BLOCKTIME; 2019 waittime = MAX_BLOCKTIME;
1300 2020
1301 if (timercnt) 2021 if (timercnt)
1302 { 2022 {
1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1304 if (block > to) block = to; 2024 if (waittime > to) waittime = to;
1305 } 2025 }
1306 2026
1307#if EV_PERIODICS 2027#if EV_PERIODIC_ENABLE
1308 if (periodiccnt) 2028 if (periodiccnt)
1309 { 2029 {
1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1311 if (block > to) block = to; 2031 if (waittime > to) waittime = to;
1312 } 2032 }
1313#endif 2033#endif
1314 2034
1315 if (expect_false (block < 0.)) block = 0.; 2035 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime;
2037
2038 sleeptime = waittime - backend_fudge;
2039
2040 if (expect_true (sleeptime > io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 {
2045 ev_sleep (sleeptime);
2046 waittime -= sleeptime;
2047 }
1316 } 2048 }
1317 2049
2050 ++loop_count;
1318 backend_poll (EV_A_ block); 2051 backend_poll (EV_A_ waittime);
2052
2053 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime);
1319 } 2055 }
1320
1321 /* update ev_rt_now, do magic */
1322 time_update (EV_A);
1323 2056
1324 /* queue pending timers and reschedule them */ 2057 /* queue pending timers and reschedule them */
1325 timers_reify (EV_A); /* relative timers called last */ 2058 timers_reify (EV_A); /* relative timers called last */
1326#if EV_PERIODICS 2059#if EV_PERIODIC_ENABLE
1327 periodics_reify (EV_A); /* absolute timers called first */ 2060 periodics_reify (EV_A); /* absolute timers called first */
1328#endif 2061#endif
1329 2062
2063#if EV_IDLE_ENABLE
1330 /* queue idle watchers unless other events are pending */ 2064 /* queue idle watchers unless other events are pending */
1331 if (idlecnt && !any_pending (EV_A)) 2065 idle_reify (EV_A);
1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2066#endif
1333 2067
1334 /* queue check watchers, to be executed first */ 2068 /* queue check watchers, to be executed first */
1335 if (expect_false (checkcnt)) 2069 if (expect_false (checkcnt))
1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1337 2071
1338 call_pending (EV_A); 2072 call_pending (EV_A);
1339
1340 if (expect_false (loop_done))
1341 break;
1342 } 2073 }
2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
1343 2079
1344 if (loop_done == EVUNLOOP_ONE) 2080 if (loop_done == EVUNLOOP_ONE)
1345 loop_done = EVUNLOOP_CANCEL; 2081 loop_done = EVUNLOOP_CANCEL;
1346} 2082}
1347 2083
1351 loop_done = how; 2087 loop_done = how;
1352} 2088}
1353 2089
1354/*****************************************************************************/ 2090/*****************************************************************************/
1355 2091
1356inline void 2092void inline_size
1357wlist_add (WL *head, WL elem) 2093wlist_add (WL *head, WL elem)
1358{ 2094{
1359 elem->next = *head; 2095 elem->next = *head;
1360 *head = elem; 2096 *head = elem;
1361} 2097}
1362 2098
1363inline void 2099void inline_size
1364wlist_del (WL *head, WL elem) 2100wlist_del (WL *head, WL elem)
1365{ 2101{
1366 while (*head) 2102 while (*head)
1367 { 2103 {
1368 if (*head == elem) 2104 if (*head == elem)
1373 2109
1374 head = &(*head)->next; 2110 head = &(*head)->next;
1375 } 2111 }
1376} 2112}
1377 2113
1378inline void 2114void inline_speed
1379ev_clear_pending (EV_P_ W w) 2115clear_pending (EV_P_ W w)
1380{ 2116{
1381 if (w->pending) 2117 if (w->pending)
1382 { 2118 {
1383 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2119 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1384 w->pending = 0; 2120 w->pending = 0;
1385 } 2121 }
1386} 2122}
1387 2123
1388inline void 2124int
2125ev_clear_pending (EV_P_ void *w)
2126{
2127 W w_ = (W)w;
2128 int pending = w_->pending;
2129
2130 if (expect_true (pending))
2131 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2133 w_->pending = 0;
2134 p->w = 0;
2135 return p->events;
2136 }
2137 else
2138 return 0;
2139}
2140
2141void inline_size
2142pri_adjust (EV_P_ W w)
2143{
2144 int pri = w->priority;
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri;
2148}
2149
2150void inline_speed
1389ev_start (EV_P_ W w, int active) 2151ev_start (EV_P_ W w, int active)
1390{ 2152{
1391 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2153 pri_adjust (EV_A_ w);
1392 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1393
1394 w->active = active; 2154 w->active = active;
1395 ev_ref (EV_A); 2155 ev_ref (EV_A);
1396} 2156}
1397 2157
1398inline void 2158void inline_size
1399ev_stop (EV_P_ W w) 2159ev_stop (EV_P_ W w)
1400{ 2160{
1401 ev_unref (EV_A); 2161 ev_unref (EV_A);
1402 w->active = 0; 2162 w->active = 0;
1403} 2163}
1404 2164
1405/*****************************************************************************/ 2165/*****************************************************************************/
1406 2166
1407void 2167void noinline
1408ev_io_start (EV_P_ ev_io *w) 2168ev_io_start (EV_P_ ev_io *w)
1409{ 2169{
1410 int fd = w->fd; 2170 int fd = w->fd;
1411 2171
1412 if (expect_false (ev_is_active (w))) 2172 if (expect_false (ev_is_active (w)))
1413 return; 2173 return;
1414 2174
1415 assert (("ev_io_start called with negative fd", fd >= 0)); 2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
1416 2179
1417 ev_start (EV_A_ (W)w, 1); 2180 ev_start (EV_A_ (W)w, 1);
1418 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1419 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2182 wlist_add (&anfds[fd].head, (WL)w);
1420 2183
1421 fd_change (EV_A_ fd); 2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1422} 2185 w->events &= ~EV__IOFDSET;
1423 2186
1424void 2187 EV_FREQUENT_CHECK;
2188}
2189
2190void noinline
1425ev_io_stop (EV_P_ ev_io *w) 2191ev_io_stop (EV_P_ ev_io *w)
1426{ 2192{
1427 ev_clear_pending (EV_A_ (W)w); 2193 clear_pending (EV_A_ (W)w);
1428 if (expect_false (!ev_is_active (w))) 2194 if (expect_false (!ev_is_active (w)))
1429 return; 2195 return;
1430 2196
1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1432 2198
2199 EV_FREQUENT_CHECK;
2200
1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2201 wlist_del (&anfds[w->fd].head, (WL)w);
1434 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1435 2203
1436 fd_change (EV_A_ w->fd); 2204 fd_change (EV_A_ w->fd, 1);
1437}
1438 2205
1439void 2206 EV_FREQUENT_CHECK;
2207}
2208
2209void noinline
1440ev_timer_start (EV_P_ ev_timer *w) 2210ev_timer_start (EV_P_ ev_timer *w)
1441{ 2211{
1442 if (expect_false (ev_is_active (w))) 2212 if (expect_false (ev_is_active (w)))
1443 return; 2213 return;
1444 2214
1445 ((WT)w)->at += mn_now; 2215 ev_at (w) += mn_now;
1446 2216
1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1448 2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
1449 ev_start (EV_A_ (W)w, ++timercnt); 2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1451 timers [timercnt - 1] = w; 2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)timers, timercnt - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
1453 2227
2228 EV_FREQUENT_CHECK;
2229
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1455} 2231}
1456 2232
1457void 2233void noinline
1458ev_timer_stop (EV_P_ ev_timer *w) 2234ev_timer_stop (EV_P_ ev_timer *w)
1459{ 2235{
1460 ev_clear_pending (EV_A_ (W)w); 2236 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2237 if (expect_false (!ev_is_active (w)))
1462 return; 2238 return;
1463 2239
2240 EV_FREQUENT_CHECK;
2241
2242 {
2243 int active = ev_active (w);
2244
1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1465 2246
2247 --timercnt;
2248
1466 if (expect_true (((W)w)->active < timercnt--)) 2249 if (expect_true (active < timercnt + HEAP0))
1467 { 2250 {
1468 timers [((W)w)->active - 1] = timers [timercnt]; 2251 timers [active] = timers [timercnt + HEAP0];
1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2252 adjustheap (timers, timercnt, active);
1470 } 2253 }
2254 }
1471 2255
1472 ((WT)w)->at -= mn_now; 2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
1473 2259
1474 ev_stop (EV_A_ (W)w); 2260 ev_stop (EV_A_ (W)w);
1475} 2261}
1476 2262
1477void 2263void noinline
1478ev_timer_again (EV_P_ ev_timer *w) 2264ev_timer_again (EV_P_ ev_timer *w)
1479{ 2265{
2266 EV_FREQUENT_CHECK;
2267
1480 if (ev_is_active (w)) 2268 if (ev_is_active (w))
1481 { 2269 {
1482 if (w->repeat) 2270 if (w->repeat)
1483 { 2271 {
1484 ((WT)w)->at = mn_now + w->repeat; 2272 ev_at (w) = mn_now + w->repeat;
2273 ANHE_at_cache (timers [ev_active (w)]);
1485 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2274 adjustheap (timers, timercnt, ev_active (w));
1486 } 2275 }
1487 else 2276 else
1488 ev_timer_stop (EV_A_ w); 2277 ev_timer_stop (EV_A_ w);
1489 } 2278 }
1490 else if (w->repeat) 2279 else if (w->repeat)
1491 { 2280 {
1492 w->at = w->repeat; 2281 ev_at (w) = w->repeat;
1493 ev_timer_start (EV_A_ w); 2282 ev_timer_start (EV_A_ w);
1494 } 2283 }
1495}
1496 2284
2285 EV_FREQUENT_CHECK;
2286}
2287
1497#if EV_PERIODICS 2288#if EV_PERIODIC_ENABLE
1498void 2289void noinline
1499ev_periodic_start (EV_P_ ev_periodic *w) 2290ev_periodic_start (EV_P_ ev_periodic *w)
1500{ 2291{
1501 if (expect_false (ev_is_active (w))) 2292 if (expect_false (ev_is_active (w)))
1502 return; 2293 return;
1503 2294
1504 if (w->reschedule_cb) 2295 if (w->reschedule_cb)
1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1506 else if (w->interval) 2297 else if (w->interval)
1507 { 2298 {
1508 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1509 /* this formula differs from the one in periodic_reify because we do not always round up */ 2300 /* this formula differs from the one in periodic_reify because we do not always round up */
1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 } 2302 }
2303 else
2304 ev_at (w) = w->offset;
1512 2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
1513 ev_start (EV_A_ (W)w, ++periodiccnt); 2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1515 periodics [periodiccnt - 1] = w; 2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1516 upheap ((WT *)periodics, periodiccnt - 1); 2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
1517 2314
2315 EV_FREQUENT_CHECK;
2316
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1519} 2318}
1520 2319
1521void 2320void noinline
1522ev_periodic_stop (EV_P_ ev_periodic *w) 2321ev_periodic_stop (EV_P_ ev_periodic *w)
1523{ 2322{
1524 ev_clear_pending (EV_A_ (W)w); 2323 clear_pending (EV_A_ (W)w);
1525 if (expect_false (!ev_is_active (w))) 2324 if (expect_false (!ev_is_active (w)))
1526 return; 2325 return;
1527 2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330 int active = ev_active (w);
2331
1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1529 2333
2334 --periodiccnt;
2335
1530 if (expect_true (((W)w)->active < periodiccnt--)) 2336 if (expect_true (active < periodiccnt + HEAP0))
1531 { 2337 {
1532 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2338 periodics [active] = periodics [periodiccnt + HEAP0];
1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2339 adjustheap (periodics, periodiccnt, active);
1534 } 2340 }
2341 }
2342
2343 EV_FREQUENT_CHECK;
1535 2344
1536 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1537} 2346}
1538 2347
1539void 2348void noinline
1540ev_periodic_again (EV_P_ ev_periodic *w) 2349ev_periodic_again (EV_P_ ev_periodic *w)
1541{ 2350{
1542 /* TODO: use adjustheap and recalculation */ 2351 /* TODO: use adjustheap and recalculation */
1543 ev_periodic_stop (EV_A_ w); 2352 ev_periodic_stop (EV_A_ w);
1544 ev_periodic_start (EV_A_ w); 2353 ev_periodic_start (EV_A_ w);
1545} 2354}
1546#endif 2355#endif
1547 2356
1548void 2357#ifndef SA_RESTART
2358# define SA_RESTART 0
2359#endif
2360
2361void noinline
1549ev_idle_start (EV_P_ ev_idle *w) 2362ev_signal_start (EV_P_ ev_signal *w)
1550{ 2363{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
1551 if (expect_false (ev_is_active (w))) 2367 if (expect_false (ev_is_active (w)))
1552 return; 2368 return;
1553 2369
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
2375
2376 {
2377#ifndef _WIN32
2378 sigset_t full, prev;
2379 sigfillset (&full);
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2384
2385#ifndef _WIN32
2386 sigprocmask (SIG_SETMASK, &prev, 0);
2387#endif
2388 }
2389
1554 ev_start (EV_A_ (W)w, ++idlecnt); 2390 ev_start (EV_A_ (W)w, 1);
1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
1556 idles [idlecnt - 1] = w;
1557}
1558 2392
1559void 2393 if (!((WL)w)->next)
2394 {
2395#if _WIN32
2396 signal (w->signum, ev_sighandler);
2397#else
2398 struct sigaction sa;
2399 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0);
2403#endif
2404 }
2405
2406 EV_FREQUENT_CHECK;
2407}
2408
2409void noinline
1560ev_idle_stop (EV_P_ ev_idle *w) 2410ev_signal_stop (EV_P_ ev_signal *w)
1561{ 2411{
1562 ev_clear_pending (EV_A_ (W)w); 2412 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2413 if (expect_false (!ev_is_active (w)))
1564 return; 2414 return;
1565 2415
1566 { 2416 EV_FREQUENT_CHECK;
1567 int active = ((W)w)->active;
1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571 2417
2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
1572 ev_stop (EV_A_ (W)w); 2419 ev_stop (EV_A_ (W)w);
1573}
1574 2420
2421 if (!signals [w->signum - 1].head)
2422 signal (w->signum, SIG_DFL);
2423
2424 EV_FREQUENT_CHECK;
2425}
2426
1575void 2427void
1576ev_prepare_start (EV_P_ ev_prepare *w) 2428ev_child_start (EV_P_ ev_child *w)
1577{ 2429{
2430#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif
1578 if (expect_false (ev_is_active (w))) 2433 if (expect_false (ev_is_active (w)))
1579 return; 2434 return;
2435
2436 EV_FREQUENT_CHECK;
2437
2438 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2440
2441 EV_FREQUENT_CHECK;
2442}
2443
2444void
2445ev_child_stop (EV_P_ ev_child *w)
2446{
2447 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w)))
2449 return;
2450
2451 EV_FREQUENT_CHECK;
2452
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
2457}
2458
2459#if EV_STAT_ENABLE
2460
2461# ifdef _WIN32
2462# undef lstat
2463# define lstat(a,b) _stati64 (a,b)
2464# endif
2465
2466#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468#define MIN_STAT_INTERVAL 0.1074891
2469
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471
2472#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192
2474
2475static void noinline
2476infy_add (EV_P_ ev_stat *w)
2477{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479
2480 if (w->wd < 0)
2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484
2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 {
2490 char path [4096];
2491 strcpy (path, w->path);
2492
2493 do
2494 {
2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2497
2498 char *pend = strrchr (path, '/');
2499
2500 if (!pend || pend == path)
2501 break;
2502
2503 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 }
2508 }
2509
2510 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
2531}
2532
2533static void noinline
2534infy_del (EV_P_ ev_stat *w)
2535{
2536 int slot;
2537 int wd = w->wd;
2538
2539 if (wd < 0)
2540 return;
2541
2542 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w);
2545
2546 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd);
2548}
2549
2550static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{
2553 if (slot < 0)
2554 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2556 infy_wd (EV_A_ slot, wd, ev);
2557 else
2558 {
2559 WL w_;
2560
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2562 {
2563 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */
2565
2566 if (w->wd == wd || wd == -1)
2567 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2571 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */
2573 }
2574
2575 stat_timer_cb (EV_A_ &w->timer, 0);
2576 }
2577 }
2578 }
2579}
2580
2581static void
2582infy_cb (EV_P_ ev_io *w, int revents)
2583{
2584 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf));
2588
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591}
2592
2593void inline_size
2594check_2625 (EV_P)
2595{
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614}
2615
2616void inline_size
2617infy_init (EV_P)
2618{
2619 if (fs_fd != -2)
2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
2625
2626 fs_fd = inotify_init ();
2627
2628 if (fs_fd >= 0)
2629 {
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w);
2633 }
2634}
2635
2636void inline_size
2637infy_fork (EV_P)
2638{
2639 int slot;
2640
2641 if (fs_fd < 0)
2642 return;
2643
2644 close (fs_fd);
2645 fs_fd = inotify_init ();
2646
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2648 {
2649 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0;
2651
2652 while (w_)
2653 {
2654 ev_stat *w = (ev_stat *)w_;
2655 w_ = w_->next; /* lets us add this watcher */
2656
2657 w->wd = -1;
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else
2662 ev_timer_again (EV_A_ &w->timer);
2663 }
2664 }
2665}
2666
2667#endif
2668
2669#ifdef _WIN32
2670# define EV_LSTAT(p,b) _stati64 (p, b)
2671#else
2672# define EV_LSTAT(p,b) lstat (p, b)
2673#endif
2674
2675void
2676ev_stat_stat (EV_P_ ev_stat *w)
2677{
2678 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1;
2682}
2683
2684static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688
2689 /* we copy this here each the time so that */
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w);
2693
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if (
2696 w->prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime
2707 ) {
2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
2711 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w);
2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
2715 #endif
2716
2717 ev_feed_event (EV_A_ w, EV_STAT);
2718 }
2719}
2720
2721void
2722ev_stat_start (EV_P_ ev_stat *w)
2723{
2724 if (expect_false (ev_is_active (w)))
2725 return;
2726
2727 ev_stat_stat (EV_A_ w);
2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2730 w->interval = MIN_STAT_INTERVAL;
2731
2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2733 ev_set_priority (&w->timer, ev_priority (w));
2734
2735#if EV_USE_INOTIFY
2736 infy_init (EV_A);
2737
2738 if (fs_fd >= 0)
2739 infy_add (EV_A_ w);
2740 else
2741#endif
2742 ev_timer_again (EV_A_ &w->timer);
2743
2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
2747}
2748
2749void
2750ev_stat_stop (EV_P_ ev_stat *w)
2751{
2752 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w)))
2754 return;
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w);
2760#endif
2761 ev_timer_stop (EV_A_ &w->timer);
2762
2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2766}
2767#endif
2768
2769#if EV_IDLE_ENABLE
2770void
2771ev_idle_start (EV_P_ ev_idle *w)
2772{
2773 if (expect_false (ev_is_active (w)))
2774 return;
2775
2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779
2780 {
2781 int active = ++idlecnt [ABSPRI (w)];
2782
2783 ++idleall;
2784 ev_start (EV_A_ (W)w, active);
2785
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2787 idles [ABSPRI (w)][active - 1] = w;
2788 }
2789
2790 EV_FREQUENT_CHECK;
2791}
2792
2793void
2794ev_idle_stop (EV_P_ ev_idle *w)
2795{
2796 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w)))
2798 return;
2799
2800 EV_FREQUENT_CHECK;
2801
2802 {
2803 int active = ev_active (w);
2804
2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2807
2808 ev_stop (EV_A_ (W)w);
2809 --idleall;
2810 }
2811
2812 EV_FREQUENT_CHECK;
2813}
2814#endif
2815
2816void
2817ev_prepare_start (EV_P_ ev_prepare *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
1580 2823
1581 ev_start (EV_A_ (W)w, ++preparecnt); 2824 ev_start (EV_A_ (W)w, ++preparecnt);
1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1583 prepares [preparecnt - 1] = w; 2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
1584} 2829}
1585 2830
1586void 2831void
1587ev_prepare_stop (EV_P_ ev_prepare *w) 2832ev_prepare_stop (EV_P_ ev_prepare *w)
1588{ 2833{
1589 ev_clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
1590 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
1591 return; 2836 return;
1592 2837
2838 EV_FREQUENT_CHECK;
2839
1593 { 2840 {
1594 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
1595 prepares [active - 1] = prepares [--preparecnt]; 2843 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active; 2844 ev_active (prepares [active - 1]) = active;
1597 } 2845 }
1598 2846
1599 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
1600} 2850}
1601 2851
1602void 2852void
1603ev_check_start (EV_P_ ev_check *w) 2853ev_check_start (EV_P_ ev_check *w)
1604{ 2854{
1605 if (expect_false (ev_is_active (w))) 2855 if (expect_false (ev_is_active (w)))
1606 return; 2856 return;
2857
2858 EV_FREQUENT_CHECK;
1607 2859
1608 ev_start (EV_A_ (W)w, ++checkcnt); 2860 ev_start (EV_A_ (W)w, ++checkcnt);
1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1610 checks [checkcnt - 1] = w; 2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
1611} 2865}
1612 2866
1613void 2867void
1614ev_check_stop (EV_P_ ev_check *w) 2868ev_check_stop (EV_P_ ev_check *w)
1615{ 2869{
1616 ev_clear_pending (EV_A_ (W)w); 2870 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2871 if (expect_false (!ev_is_active (w)))
1618 return; 2872 return;
1619 2873
2874 EV_FREQUENT_CHECK;
2875
1620 { 2876 {
1621 int active = ((W)w)->active; 2877 int active = ev_active (w);
2878
1622 checks [active - 1] = checks [--checkcnt]; 2879 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active; 2880 ev_active (checks [active - 1]) = active;
1624 } 2881 }
1625 2882
1626 ev_stop (EV_A_ (W)w); 2883 ev_stop (EV_A_ (W)w);
1627}
1628 2884
1629#ifndef SA_RESTART 2885 EV_FREQUENT_CHECK;
1630# define SA_RESTART 0
1631#endif
1632
1633void
1634ev_signal_start (EV_P_ ev_signal *w)
1635{
1636#if EV_MULTIPLICITY
1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1638#endif
1639 if (expect_false (ev_is_active (w)))
1640 return;
1641
1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1643
1644 ev_start (EV_A_ (W)w, 1);
1645 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1646 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1647
1648 if (!((WL)w)->next)
1649 {
1650#if _WIN32
1651 signal (w->signum, sighandler);
1652#else
1653 struct sigaction sa;
1654 sa.sa_handler = sighandler;
1655 sigfillset (&sa.sa_mask);
1656 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1657 sigaction (w->signum, &sa, 0);
1658#endif
1659 }
1660} 2886}
1661 2887
1662void 2888#if EV_EMBED_ENABLE
1663ev_signal_stop (EV_P_ ev_signal *w) 2889void noinline
1664{
1665 ev_clear_pending (EV_A_ (W)w);
1666 if (expect_false (!ev_is_active (w)))
1667 return;
1668
1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1670 ev_stop (EV_A_ (W)w);
1671
1672 if (!signals [w->signum - 1].head)
1673 signal (w->signum, SIG_DFL);
1674}
1675
1676void
1677ev_child_start (EV_P_ ev_child *w)
1678{
1679#if EV_MULTIPLICITY
1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1681#endif
1682 if (expect_false (ev_is_active (w)))
1683 return;
1684
1685 ev_start (EV_A_ (W)w, 1);
1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1687}
1688
1689void
1690ev_child_stop (EV_P_ ev_child *w)
1691{
1692 ev_clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w)))
1694 return;
1695
1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1697 ev_stop (EV_A_ (W)w);
1698}
1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w) 2890ev_embed_sweep (EV_P_ ev_embed *w)
1703{ 2891{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK); 2892 ev_loop (w->other, EVLOOP_NONBLOCK);
1705} 2893}
1706 2894
1707static void 2895static void
1708embed_cb (EV_P_ ev_io *io, int revents) 2896embed_io_cb (EV_P_ ev_io *io, int revents)
1709{ 2897{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711 2899
1712 if (ev_cb (w)) 2900 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2901 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else 2902 else
1715 ev_embed_sweep (loop, w); 2903 ev_loop (w->other, EVLOOP_NONBLOCK);
1716} 2904}
2905
2906static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910
2911 {
2912 struct ev_loop *loop = w->other;
2913
2914 while (fdchangecnt)
2915 {
2916 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919 }
2920}
2921
2922static void
2923embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924{
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937}
2938
2939#if 0
2940static void
2941embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2942{
2943 ev_idle_stop (EV_A_ idle);
2944}
2945#endif
1717 2946
1718void 2947void
1719ev_embed_start (EV_P_ ev_embed *w) 2948ev_embed_start (EV_P_ ev_embed *w)
1720{ 2949{
1721 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
1722 return; 2951 return;
1723 2952
1724 { 2953 {
1725 struct ev_loop *loop = w->loop; 2954 struct ev_loop *loop = w->other;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1728 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
1729 2960
1730 ev_set_priority (&w->io, ev_priority (w)); 2961 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io); 2962 ev_io_start (EV_A_ &w->io);
2963
2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2965 ev_set_priority (&w->prepare, EV_MINPRI);
2966 ev_prepare_start (EV_A_ &w->prepare);
2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2972
1732 ev_start (EV_A_ (W)w, 1); 2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
1733} 2976}
1734 2977
1735void 2978void
1736ev_embed_stop (EV_P_ ev_embed *w) 2979ev_embed_stop (EV_P_ ev_embed *w)
1737{ 2980{
1738 ev_clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
1740 return; 2983 return;
1741 2984
2985 EV_FREQUENT_CHECK;
2986
1742 ev_io_stop (EV_A_ &w->io); 2987 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2990
2991 EV_FREQUENT_CHECK;
2992}
2993#endif
2994
2995#if EV_FORK_ENABLE
2996void
2997ev_fork_start (EV_P_ ev_fork *w)
2998{
2999 if (expect_false (ev_is_active (w)))
3000 return;
3001
3002 EV_FREQUENT_CHECK;
3003
3004 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
3009}
3010
3011void
3012ev_fork_stop (EV_P_ ev_fork *w)
3013{
3014 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w)))
3016 return;
3017
3018 EV_FREQUENT_CHECK;
3019
3020 {
3021 int active = ev_active (w);
3022
3023 forks [active - 1] = forks [--forkcnt];
3024 ev_active (forks [active - 1]) = active;
3025 }
3026
1743 ev_stop (EV_A_ (W)w); 3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
3030}
3031#endif
3032
3033#if EV_ASYNC_ENABLE
3034void
3035ev_async_start (EV_P_ ev_async *w)
3036{
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
3043
3044 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
3049}
3050
3051void
3052ev_async_stop (EV_P_ ev_async *w)
3053{
3054 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 {
3061 int active = ev_active (w);
3062
3063 asyncs [active - 1] = asyncs [--asynccnt];
3064 ev_active (asyncs [active - 1]) = active;
3065 }
3066
3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
3070}
3071
3072void
3073ev_async_send (EV_P_ ev_async *w)
3074{
3075 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync);
1744} 3077}
1745#endif 3078#endif
1746 3079
1747/*****************************************************************************/ 3080/*****************************************************************************/
1748 3081
1758once_cb (EV_P_ struct ev_once *once, int revents) 3091once_cb (EV_P_ struct ev_once *once, int revents)
1759{ 3092{
1760 void (*cb)(int revents, void *arg) = once->cb; 3093 void (*cb)(int revents, void *arg) = once->cb;
1761 void *arg = once->arg; 3094 void *arg = once->arg;
1762 3095
1763 ev_io_stop (EV_A_ &once->io); 3096 ev_io_stop (EV_A_ &once->io);
1764 ev_timer_stop (EV_A_ &once->to); 3097 ev_timer_stop (EV_A_ &once->to);
1765 ev_free (once); 3098 ev_free (once);
1766 3099
1767 cb (revents, arg); 3100 cb (revents, arg);
1768} 3101}
1769 3102
1770static void 3103static void
1771once_cb_io (EV_P_ ev_io *w, int revents) 3104once_cb_io (EV_P_ ev_io *w, int revents)
1772{ 3105{
1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1774} 3109}
1775 3110
1776static void 3111static void
1777once_cb_to (EV_P_ ev_timer *w, int revents) 3112once_cb_to (EV_P_ ev_timer *w, int revents)
1778{ 3113{
1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1780} 3117}
1781 3118
1782void 3119void
1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1784{ 3121{
1806 ev_timer_set (&once->to, timeout, 0.); 3143 ev_timer_set (&once->to, timeout, 0.);
1807 ev_timer_start (EV_A_ &once->to); 3144 ev_timer_start (EV_A_ &once->to);
1808 } 3145 }
1809} 3146}
1810 3147
3148/*****************************************************************************/
3149
3150#if 0
3151void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
3160 {
3161 wn = wl->next;
3162
3163#if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170#endif
3171#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175#endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
3181 }
3182
3183 if (types & (EV_TIMER | EV_STAT))
3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185#if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3188 {
3189 if (types & EV_STAT)
3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3191 }
3192 else
3193#endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3196
3197#if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif
3202
3203#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif
3209
3210#if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215#endif
3216
3217#if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253}
3254#endif
3255
3256#if EV_MULTIPLICITY
3257 #include "ev_wrap.h"
3258#endif
3259
1811#ifdef __cplusplus 3260#ifdef __cplusplus
1812} 3261}
1813#endif 3262#endif
1814 3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines