ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.186 by root, Sat Dec 15 23:14:38 2007 UTC vs.
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
207#if !EV_STAT_ENABLE 299#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 300# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 301# define EV_USE_INOTIFY 0
210#endif 302#endif
211 303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
212#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
213# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
214#endif 319#endif
215 320
216#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 322# include <winsock.h>
218#endif 323#endif
219 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
220/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
221 353
222/* 354/*
223 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
239#else 371#else
240# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
241# define noinline 373# define noinline
242# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 375# define inline
244# endif 376# endif
245#endif 377#endif
246 378
247#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
262 394
263typedef ev_watcher *W; 395typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
266 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
268 411
269#ifdef _WIN32 412#ifdef _WIN32
270# include "ev_win32.c" 413# include "ev_win32.c"
271#endif 414#endif
272 415
279{ 422{
280 syserr_cb = cb; 423 syserr_cb = cb;
281} 424}
282 425
283static void noinline 426static void noinline
284syserr (const char *msg) 427ev_syserr (const char *msg)
285{ 428{
286 if (!msg) 429 if (!msg)
287 msg = "(libev) system error"; 430 msg = "(libev) system error";
288 431
289 if (syserr_cb) 432 if (syserr_cb)
293 perror (msg); 436 perror (msg);
294 abort (); 437 abort ();
295 } 438 }
296} 439}
297 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
298static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 457
300void 458void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 460{
303 alloc = cb; 461 alloc = cb;
304} 462}
305 463
306inline_speed void * 464inline_speed void *
307ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
308{ 466{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
310 468
311 if (!ptr && size) 469 if (!ptr && size)
312 { 470 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 472 abort ();
325typedef struct 483typedef struct
326{ 484{
327 WL head; 485 WL head;
328 unsigned char events; 486 unsigned char events;
329 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
330#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 494 SOCKET handle;
332#endif 495#endif
333} ANFD; 496} ANFD;
334 497
337 W w; 500 W w;
338 int events; 501 int events;
339} ANPENDING; 502} ANPENDING;
340 503
341#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
342typedef struct 506typedef struct
343{ 507{
344 WL head; 508 WL head;
345} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
346#endif 528#endif
347 529
348#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
349 531
350 struct ev_loop 532 struct ev_loop
375 557
376ev_tstamp 558ev_tstamp
377ev_time (void) 559ev_time (void)
378{ 560{
379#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
380 struct timespec ts; 564 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 567 }
568#endif
569
384 struct timeval tv; 570 struct timeval tv;
385 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 573}
389 574
390ev_tstamp inline_size 575ev_tstamp inline_size
391get_clock (void) 576get_clock (void)
392{ 577{
408{ 593{
409 return ev_rt_now; 594 return ev_rt_now;
410} 595}
411#endif 596#endif
412 597
598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
413int inline_size 630int inline_size
414array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
415{ 632{
416 int ncur = cur + 1; 633 int ncur = cur + 1;
417 634
418 do 635 do
419 ncur <<= 1; 636 ncur <<= 1;
420 while (cnt > ncur); 637 while (cnt > ncur);
421 638
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 641 {
425 ncur *= elem; 642 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 645 ncur /= elem;
429 } 646 }
430 647
431 return ncur; 648 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
436{ 653{
437 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
439} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 660
441#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
443 { \ 663 { \
444 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 677 }
458#endif 678#endif
459 679
460#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 682
463/*****************************************************************************/ 683/*****************************************************************************/
464 684
465void noinline 685void noinline
466ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
488 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
489} 709}
490 710
491/*****************************************************************************/ 711/*****************************************************************************/
492 712
493void inline_size
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed 713void inline_speed
507fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
508{ 715{
509 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
510 ev_io *w; 717 ev_io *w;
542 events |= (unsigned char)w->events; 749 events |= (unsigned char)w->events;
543 750
544#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
545 if (events) 752 if (events)
546 { 753 {
547 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
548 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 761 }
551#endif 762#endif
552 763
553 { 764 {
554 unsigned char o_events = anfd->events; 765 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify; 766 unsigned char o_reify = anfd->reify;
556 767
557 anfd->reify = 0; 768 anfd->reify = 0;
558 anfd->events = events; 769 anfd->events = events;
559 770
560 if (o_events != events || o_reify & EV_IOFDSET) 771 if (o_events != events || o_reify & EV__IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 772 backend_modify (EV_A_ fd, o_events, events);
562 } 773 }
563 } 774 }
564 775
565 fdchangecnt = 0; 776 fdchangecnt = 0;
607{ 818{
608 int fd; 819 int fd;
609 820
610 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 822 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
614} 825}
615 826
616/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 828static void noinline
635 846
636 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 848 if (anfds [fd].events)
638 { 849 {
639 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
641 } 853 }
642} 854}
643 855
644/*****************************************************************************/ 856/*****************************************************************************/
645 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
646void inline_speed 878void inline_speed
647upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
648{ 880{
649 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
650 883
651 while (k) 884 for (;;)
652 { 885 {
653 int p = (k - 1) >> 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
654 889
655 if (heap [p]->at <= w->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
656 break; 906 break;
657 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
946 heap [k] = heap [c];
947 ev_active (ANHE_w (heap [k])) = k;
948
949 k = c;
950 }
951
952 heap [k] = he;
953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
658 heap [k] = heap [p]; 970 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 971 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 972 k = p;
661 } 973 }
662 974
663 heap [k] = w; 975 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 976 ev_active (ANHE_w (he)) = k;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693} 977}
694 978
695void inline_size 979void inline_size
696adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
697{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
698 upheap (heap, k); 983 upheap (heap, k);
984 else
699 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
700} 998}
701 999
702/*****************************************************************************/ 1000/*****************************************************************************/
703 1001
704typedef struct 1002typedef struct
705{ 1003{
706 WL head; 1004 WL head;
707 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
708} ANSIG; 1006} ANSIG;
709 1007
710static ANSIG *signals; 1008static ANSIG *signals;
711static int signalmax; 1009static int signalmax;
712 1010
713static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 1012
717void inline_size 1013/*****************************************************************************/
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779 1014
780void inline_speed 1015void inline_speed
781fd_intern (int fd) 1016fd_intern (int fd)
782{ 1017{
783#ifdef _WIN32 1018#ifdef _WIN32
784 int arg = 1; 1019 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else 1021#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1024#endif
790} 1025}
791 1026
792static void noinline 1027static void noinline
793siginit (EV_P) 1028evpipe_init (EV_P)
794{ 1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
795 fd_intern (sigpipe [0]); 1045 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
797 1049
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1050 ev_io_start (EV_A_ &pipeev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
801} 1118}
802 1119
803/*****************************************************************************/ 1120/*****************************************************************************/
804 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
805static WL childs [EV_PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
806 1160
807#ifndef _WIN32 1161#ifndef _WIN32
808 1162
809static ev_signal childev; 1163static ev_signal childev;
810 1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
811void inline_speed 1169void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1170child_reap (EV_P_ int chain, int pid, int status)
813{ 1171{
814 ev_child *w; 1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1174
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
817 if (w->pid == pid || !w->pid) 1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
818 { 1179 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1181 w->rpid = pid;
821 w->rstatus = status; 1182 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1184 }
1185 }
824} 1186}
825 1187
826#ifndef WCONTINUED 1188#ifndef WCONTINUED
827# define WCONTINUED 0 1189# define WCONTINUED 0
828#endif 1190#endif
837 if (!WCONTINUED 1199 if (!WCONTINUED
838 || errno != EINVAL 1200 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1202 return;
841 1203
842 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1207
846 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1209 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1211}
850 1212
851#endif 1213#endif
852 1214
853/*****************************************************************************/ 1215/*****************************************************************************/
915 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
918#endif 1280#endif
919#ifdef __APPLE__ 1281#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
922#endif 1285#endif
923 1286
924 return flags; 1287 return flags;
925} 1288}
926 1289
927unsigned int 1290unsigned int
928ev_embeddable_backends (void) 1291ev_embeddable_backends (void)
929{ 1292{
930 return EVBACKEND_EPOLL 1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1294
932 | EVBACKEND_PORT; 1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
933} 1300}
934 1301
935unsigned int 1302unsigned int
936ev_backend (EV_P) 1303ev_backend (EV_P)
937{ 1304{
942ev_loop_count (EV_P) 1309ev_loop_count (EV_P)
943{ 1310{
944 return loop_count; 1311 return loop_count;
945} 1312}
946 1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
947static void noinline 1326static void noinline
948loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
949{ 1328{
950 if (!backend) 1329 if (!backend)
951 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
952#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
953 { 1343 {
954 struct timespec ts; 1344 struct timespec ts;
1345
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1347 have_monotonic = 1;
957 } 1348 }
958#endif 1349#endif
959 1350
960 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
961 mn_now = get_clock (); 1352 mn_now = get_clock ();
962 now_floor = mn_now; 1353 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
964 1364
965 /* pid check not overridable via env */ 1365 /* pid check not overridable via env */
966#ifndef _WIN32 1366#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1367 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1368 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1372 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1375
976 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1378
985#if EV_USE_PORT 1379#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1381#endif
988#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
996#endif 1390#endif
997#if EV_USE_SELECT 1391#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1393#endif
1000 1394
1001 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
1003 } 1397 }
1004} 1398}
1005 1399
1006static void noinline 1400static void noinline
1007loop_destroy (EV_P) 1401loop_destroy (EV_P)
1008{ 1402{
1009 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1010 1421
1011#if EV_USE_INOTIFY 1422#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1423 if (fs_fd >= 0)
1013 close (fs_fd); 1424 close (fs_fd);
1014#endif 1425#endif
1046 array_free (fdchange, EMPTY); 1457 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 1458 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 1459#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 1460 array_free (periodic, EMPTY);
1050#endif 1461#endif
1462#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464#endif
1051 array_free (prepare, EMPTY); 1465 array_free (prepare, EMPTY);
1052 array_free (check, EMPTY); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1053 array_free (fork, EMPTY); 1468 array_free (async, EMPTY);
1469#endif
1054 1470
1055 backend = 0; 1471 backend = 0;
1056} 1472}
1057 1473
1474#if EV_USE_INOTIFY
1058void inline_size infy_fork (EV_P); 1475void inline_size infy_fork (EV_P);
1476#endif
1059 1477
1060void inline_size 1478void inline_size
1061loop_fork (EV_P) 1479loop_fork (EV_P)
1062{ 1480{
1063#if EV_USE_PORT 1481#if EV_USE_PORT
1071#endif 1489#endif
1072#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1073 infy_fork (EV_A); 1491 infy_fork (EV_A);
1074#endif 1492#endif
1075 1493
1076 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
1077 { 1495 {
1078 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1079 1502
1080 ev_ref (EV_A); 1503 ev_ref (EV_A);
1081 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1082 close (sigpipe [0]); 1513 close (evpipe [0]);
1083 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
1084 1516
1085 while (pipe (sigpipe))
1086 syserr ("(libev) error creating pipe");
1087
1088 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1089 } 1520 }
1090 1521
1091 postfork = 0; 1522 postfork = 0;
1092} 1523}
1093 1524
1094#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
1095struct ev_loop * 1527struct ev_loop *
1096ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
1097{ 1529{
1098 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1099 1531
1115} 1547}
1116 1548
1117void 1549void
1118ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
1119{ 1551{
1120 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
1121} 1553}
1122 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1123#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
1124 1655
1125#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1126struct ev_loop * 1657struct ev_loop *
1127ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
1128#else 1659#else
1129int 1660int
1130ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
1131#endif 1662#endif
1132{ 1663{
1133 if (sigpipe [0] == sigpipe [1])
1134 if (pipe (sigpipe))
1135 return 0;
1136
1137 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
1138 { 1665 {
1139#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1141#else 1668#else
1144 1671
1145 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1146 1673
1147 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1148 { 1675 {
1149 siginit (EV_A);
1150
1151#ifndef _WIN32 1676#ifndef _WIN32
1152 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1153 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1154 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1155 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1167{ 1692{
1168#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1169 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1170#endif 1695#endif
1171 1696
1697 ev_default_loop_ptr = 0;
1698
1172#ifndef _WIN32 1699#ifndef _WIN32
1173 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1174 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1175#endif 1702#endif
1176 1703
1177 ev_ref (EV_A); /* signal watcher */
1178 ev_io_stop (EV_A_ &sigev);
1179
1180 close (sigpipe [0]); sigpipe [0] = 0;
1181 close (sigpipe [1]); sigpipe [1] = 0;
1182
1183 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1184} 1705}
1185 1706
1186void 1707void
1187ev_default_fork (void) 1708ev_default_fork (void)
1188{ 1709{
1189#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1190 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1191#endif 1712#endif
1192 1713
1193 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1194 postfork = 1;
1195} 1715}
1196 1716
1197/*****************************************************************************/ 1717/*****************************************************************************/
1198 1718
1199void 1719void
1212 { 1732 {
1213 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1214 1734
1215 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1216 { 1736 {
1217 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1218 1738
1219 p->w->pending = 0; 1739 p->w->pending = 0;
1220 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1221 } 1742 }
1222 } 1743 }
1223} 1744}
1224
1225void inline_size
1226timers_reify (EV_P)
1227{
1228 while (timercnt && ((WT)timers [0])->at <= mn_now)
1229 {
1230 ev_timer *w = (ev_timer *)timers [0];
1231
1232 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1233
1234 /* first reschedule or stop timer */
1235 if (w->repeat)
1236 {
1237 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1238
1239 ((WT)w)->at += w->repeat;
1240 if (((WT)w)->at < mn_now)
1241 ((WT)w)->at = mn_now;
1242
1243 downheap (timers, timercnt, 0);
1244 }
1245 else
1246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1249 }
1250}
1251
1252#if EV_PERIODIC_ENABLE
1253void inline_size
1254periodics_reify (EV_P)
1255{
1256 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1257 {
1258 ev_periodic *w = (ev_periodic *)periodics [0];
1259
1260 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1261
1262 /* first reschedule or stop timer */
1263 if (w->reschedule_cb)
1264 {
1265 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1266 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1267 downheap (periodics, periodiccnt, 0);
1268 }
1269 else if (w->interval)
1270 {
1271 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1272 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1273 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1274 downheap (periodics, periodiccnt, 0);
1275 }
1276 else
1277 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1278
1279 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1280 }
1281}
1282
1283static void noinline
1284periodics_reschedule (EV_P)
1285{
1286 int i;
1287
1288 /* adjust periodics after time jump */
1289 for (i = 0; i < periodiccnt; ++i)
1290 {
1291 ev_periodic *w = (ev_periodic *)periodics [i];
1292
1293 if (w->reschedule_cb)
1294 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1295 else if (w->interval)
1296 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1297 }
1298
1299 /* now rebuild the heap */
1300 for (i = periodiccnt >> 1; i--; )
1301 downheap (periodics, periodiccnt, i);
1302}
1303#endif
1304 1745
1305#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1306void inline_size 1747void inline_size
1307idle_reify (EV_P) 1748idle_reify (EV_P)
1308{ 1749{
1320 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1321 break; 1762 break;
1322 } 1763 }
1323 } 1764 }
1324 } 1765 }
1766}
1767#endif
1768
1769void inline_size
1770timers_reify (EV_P)
1771{
1772 EV_FREQUENT_CHECK;
1773
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788
1789 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0);
1791 }
1792 else
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 }
1798}
1799
1800#if EV_PERIODIC_ENABLE
1801void inline_size
1802periodics_reify (EV_P)
1803{
1804 EV_FREQUENT_CHECK;
1805
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1846 }
1847}
1848
1849static void noinline
1850periodics_reschedule (EV_P)
1851{
1852 int i;
1853
1854 /* adjust periodics after time jump */
1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1856 {
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1325} 1868}
1326#endif 1869#endif
1327 1870
1328void inline_speed 1871void inline_speed
1329time_update (EV_P_ ev_tstamp max_block) 1872time_update (EV_P_ ev_tstamp max_block)
1358 */ 1901 */
1359 for (i = 4; --i; ) 1902 for (i = 4; --i; )
1360 { 1903 {
1361 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1362 1905
1363 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1364 return; /* all is well */ 1907 return; /* all is well */
1365 1908
1366 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1367 mn_now = get_clock (); 1910 mn_now = get_clock ();
1368 now_floor = mn_now; 1911 now_floor = mn_now;
1384#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1385 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1386#endif 1929#endif
1387 /* adjust timers. this is easy, as the offset is the same for all of them */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1388 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1389 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1390 } 1937 }
1391 1938
1392 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1393 } 1940 }
1394} 1941}
1403ev_unref (EV_P) 1950ev_unref (EV_P)
1404{ 1951{
1405 --activecnt; 1952 --activecnt;
1406} 1953}
1407 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1408static int loop_done; 1961static int loop_done;
1409 1962
1410void 1963void
1411ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1412{ 1965{
1413 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1414 ? EVUNLOOP_ONE
1415 : EVUNLOOP_CANCEL;
1416 1967
1417 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1418 1969
1419 do 1970 do
1420 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1421#ifndef _WIN32 1976#ifndef _WIN32
1422 if (expect_false (curpid)) /* penalise the forking check even more */ 1977 if (expect_false (curpid)) /* penalise the forking check even more */
1423 if (expect_false (getpid () != curpid)) 1978 if (expect_false (getpid () != curpid))
1424 { 1979 {
1425 curpid = getpid (); 1980 curpid = getpid ();
1442 { 1997 {
1443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1444 call_pending (EV_A); 1999 call_pending (EV_A);
1445 } 2000 }
1446 2001
1447 if (expect_false (!activecnt))
1448 break;
1449
1450 /* we might have forked, so reify kernel state if necessary */ 2002 /* we might have forked, so reify kernel state if necessary */
1451 if (expect_false (postfork)) 2003 if (expect_false (postfork))
1452 loop_fork (EV_A); 2004 loop_fork (EV_A);
1453 2005
1454 /* update fd-related kernel structures */ 2006 /* update fd-related kernel structures */
1455 fd_reify (EV_A); 2007 fd_reify (EV_A);
1456 2008
1457 /* calculate blocking time */ 2009 /* calculate blocking time */
1458 { 2010 {
1459 ev_tstamp block; 2011 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.;
1460 2013
1461 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1462 block = 0.; /* do not block at all */
1463 else
1464 { 2015 {
1465 /* update time to cancel out callback processing overhead */ 2016 /* update time to cancel out callback processing overhead */
1466 time_update (EV_A_ 1e100); 2017 time_update (EV_A_ 1e100);
1467 2018
1468 block = MAX_BLOCKTIME; 2019 waittime = MAX_BLOCKTIME;
1469 2020
1470 if (timercnt) 2021 if (timercnt)
1471 { 2022 {
1472 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1473 if (block > to) block = to; 2024 if (waittime > to) waittime = to;
1474 } 2025 }
1475 2026
1476#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1477 if (periodiccnt) 2028 if (periodiccnt)
1478 { 2029 {
1479 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1480 if (block > to) block = to; 2031 if (waittime > to) waittime = to;
1481 } 2032 }
1482#endif 2033#endif
1483 2034
1484 if (expect_false (block < 0.)) block = 0.; 2035 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime;
2037
2038 sleeptime = waittime - backend_fudge;
2039
2040 if (expect_true (sleeptime > io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 {
2045 ev_sleep (sleeptime);
2046 waittime -= sleeptime;
2047 }
1485 } 2048 }
1486 2049
1487 ++loop_count; 2050 ++loop_count;
1488 backend_poll (EV_A_ block); 2051 backend_poll (EV_A_ waittime);
1489 2052
1490 /* update ev_rt_now, do magic */ 2053 /* update ev_rt_now, do magic */
1491 time_update (EV_A_ block); 2054 time_update (EV_A_ waittime + sleeptime);
1492 } 2055 }
1493 2056
1494 /* queue pending timers and reschedule them */ 2057 /* queue pending timers and reschedule them */
1495 timers_reify (EV_A); /* relative timers called last */ 2058 timers_reify (EV_A); /* relative timers called last */
1496#if EV_PERIODIC_ENABLE 2059#if EV_PERIODIC_ENABLE
1505 /* queue check watchers, to be executed first */ 2068 /* queue check watchers, to be executed first */
1506 if (expect_false (checkcnt)) 2069 if (expect_false (checkcnt))
1507 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1508 2071
1509 call_pending (EV_A); 2072 call_pending (EV_A);
1510
1511 } 2073 }
1512 while (expect_true (activecnt && !loop_done)); 2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
1513 2079
1514 if (loop_done == EVUNLOOP_ONE) 2080 if (loop_done == EVUNLOOP_ONE)
1515 loop_done = EVUNLOOP_CANCEL; 2081 loop_done = EVUNLOOP_CANCEL;
1516} 2082}
1517 2083
1604 int fd = w->fd; 2170 int fd = w->fd;
1605 2171
1606 if (expect_false (ev_is_active (w))) 2172 if (expect_false (ev_is_active (w)))
1607 return; 2173 return;
1608 2174
1609 assert (("ev_io_start called with negative fd", fd >= 0)); 2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
1610 2179
1611 ev_start (EV_A_ (W)w, 1); 2180 ev_start (EV_A_ (W)w, 1);
1612 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1613 wlist_add (&anfds[fd].head, (WL)w); 2182 wlist_add (&anfds[fd].head, (WL)w);
1614 2183
1615 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1616 w->events &= ~EV_IOFDSET; 2185 w->events &= ~EV__IOFDSET;
2186
2187 EV_FREQUENT_CHECK;
1617} 2188}
1618 2189
1619void noinline 2190void noinline
1620ev_io_stop (EV_P_ ev_io *w) 2191ev_io_stop (EV_P_ ev_io *w)
1621{ 2192{
1622 clear_pending (EV_A_ (W)w); 2193 clear_pending (EV_A_ (W)w);
1623 if (expect_false (!ev_is_active (w))) 2194 if (expect_false (!ev_is_active (w)))
1624 return; 2195 return;
1625 2196
1626 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198
2199 EV_FREQUENT_CHECK;
1627 2200
1628 wlist_del (&anfds[w->fd].head, (WL)w); 2201 wlist_del (&anfds[w->fd].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1630 2203
1631 fd_change (EV_A_ w->fd, 1); 2204 fd_change (EV_A_ w->fd, 1);
2205
2206 EV_FREQUENT_CHECK;
1632} 2207}
1633 2208
1634void noinline 2209void noinline
1635ev_timer_start (EV_P_ ev_timer *w) 2210ev_timer_start (EV_P_ ev_timer *w)
1636{ 2211{
1637 if (expect_false (ev_is_active (w))) 2212 if (expect_false (ev_is_active (w)))
1638 return; 2213 return;
1639 2214
1640 ((WT)w)->at += mn_now; 2215 ev_at (w) += mn_now;
1641 2216
1642 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1643 2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
1644 ev_start (EV_A_ (W)w, ++timercnt); 2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1645 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1646 timers [timercnt - 1] = (WT)w; 2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
1647 upheap (timers, timercnt - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
1648 2227
2228 EV_FREQUENT_CHECK;
2229
1649 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1650} 2231}
1651 2232
1652void noinline 2233void noinline
1653ev_timer_stop (EV_P_ ev_timer *w) 2234ev_timer_stop (EV_P_ ev_timer *w)
1654{ 2235{
1655 clear_pending (EV_A_ (W)w); 2236 clear_pending (EV_A_ (W)w);
1656 if (expect_false (!ev_is_active (w))) 2237 if (expect_false (!ev_is_active (w)))
1657 return; 2238 return;
1658 2239
1659 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2240 EV_FREQUENT_CHECK;
1660 2241
1661 { 2242 {
1662 int active = ((W)w)->active; 2243 int active = ev_active (w);
1663 2244
2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2246
2247 --timercnt;
2248
1664 if (expect_true (--active < --timercnt)) 2249 if (expect_true (active < timercnt + HEAP0))
1665 { 2250 {
1666 timers [active] = timers [timercnt]; 2251 timers [active] = timers [timercnt + HEAP0];
1667 adjustheap (timers, timercnt, active); 2252 adjustheap (timers, timercnt, active);
1668 } 2253 }
1669 } 2254 }
1670 2255
1671 ((WT)w)->at -= mn_now; 2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
1672 2259
1673 ev_stop (EV_A_ (W)w); 2260 ev_stop (EV_A_ (W)w);
1674} 2261}
1675 2262
1676void noinline 2263void noinline
1677ev_timer_again (EV_P_ ev_timer *w) 2264ev_timer_again (EV_P_ ev_timer *w)
1678{ 2265{
2266 EV_FREQUENT_CHECK;
2267
1679 if (ev_is_active (w)) 2268 if (ev_is_active (w))
1680 { 2269 {
1681 if (w->repeat) 2270 if (w->repeat)
1682 { 2271 {
1683 ((WT)w)->at = mn_now + w->repeat; 2272 ev_at (w) = mn_now + w->repeat;
2273 ANHE_at_cache (timers [ev_active (w)]);
1684 adjustheap (timers, timercnt, ((W)w)->active - 1); 2274 adjustheap (timers, timercnt, ev_active (w));
1685 } 2275 }
1686 else 2276 else
1687 ev_timer_stop (EV_A_ w); 2277 ev_timer_stop (EV_A_ w);
1688 } 2278 }
1689 else if (w->repeat) 2279 else if (w->repeat)
1690 { 2280 {
1691 w->at = w->repeat; 2281 ev_at (w) = w->repeat;
1692 ev_timer_start (EV_A_ w); 2282 ev_timer_start (EV_A_ w);
1693 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
1694} 2286}
1695 2287
1696#if EV_PERIODIC_ENABLE 2288#if EV_PERIODIC_ENABLE
1697void noinline 2289void noinline
1698ev_periodic_start (EV_P_ ev_periodic *w) 2290ev_periodic_start (EV_P_ ev_periodic *w)
1699{ 2291{
1700 if (expect_false (ev_is_active (w))) 2292 if (expect_false (ev_is_active (w)))
1701 return; 2293 return;
1702 2294
1703 if (w->reschedule_cb) 2295 if (w->reschedule_cb)
1704 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1705 else if (w->interval) 2297 else if (w->interval)
1706 { 2298 {
1707 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1708 /* this formula differs from the one in periodic_reify because we do not always round up */ 2300 /* this formula differs from the one in periodic_reify because we do not always round up */
1709 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1710 } 2302 }
1711 else 2303 else
1712 ((WT)w)->at = w->offset; 2304 ev_at (w) = w->offset;
1713 2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
1714 ev_start (EV_A_ (W)w, ++periodiccnt); 2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1715 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1716 periodics [periodiccnt - 1] = (WT)w; 2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1717 upheap (periodics, periodiccnt - 1); 2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
1718 2314
2315 EV_FREQUENT_CHECK;
2316
1719 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1720} 2318}
1721 2319
1722void noinline 2320void noinline
1723ev_periodic_stop (EV_P_ ev_periodic *w) 2321ev_periodic_stop (EV_P_ ev_periodic *w)
1724{ 2322{
1725 clear_pending (EV_A_ (W)w); 2323 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2324 if (expect_false (!ev_is_active (w)))
1727 return; 2325 return;
1728 2326
1729 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2327 EV_FREQUENT_CHECK;
1730 2328
1731 { 2329 {
1732 int active = ((W)w)->active; 2330 int active = ev_active (w);
1733 2331
2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2333
2334 --periodiccnt;
2335
1734 if (expect_true (--active < --periodiccnt)) 2336 if (expect_true (active < periodiccnt + HEAP0))
1735 { 2337 {
1736 periodics [active] = periodics [periodiccnt]; 2338 periodics [active] = periodics [periodiccnt + HEAP0];
1737 adjustheap (periodics, periodiccnt, active); 2339 adjustheap (periodics, periodiccnt, active);
1738 } 2340 }
1739 } 2341 }
1740 2342
2343 EV_FREQUENT_CHECK;
2344
1741 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1742} 2346}
1743 2347
1744void noinline 2348void noinline
1745ev_periodic_again (EV_P_ ev_periodic *w) 2349ev_periodic_again (EV_P_ ev_periodic *w)
1756 2360
1757void noinline 2361void noinline
1758ev_signal_start (EV_P_ ev_signal *w) 2362ev_signal_start (EV_P_ ev_signal *w)
1759{ 2363{
1760#if EV_MULTIPLICITY 2364#if EV_MULTIPLICITY
1761 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1762#endif 2366#endif
1763 if (expect_false (ev_is_active (w))) 2367 if (expect_false (ev_is_active (w)))
1764 return; 2368 return;
1765 2369
1766 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
1767 2375
1768 { 2376 {
1769#ifndef _WIN32 2377#ifndef _WIN32
1770 sigset_t full, prev; 2378 sigset_t full, prev;
1771 sigfillset (&full); 2379 sigfillset (&full);
1772 sigprocmask (SIG_SETMASK, &full, &prev); 2380 sigprocmask (SIG_SETMASK, &full, &prev);
1773#endif 2381#endif
1774 2382
1775 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1776 2384
1777#ifndef _WIN32 2385#ifndef _WIN32
1778 sigprocmask (SIG_SETMASK, &prev, 0); 2386 sigprocmask (SIG_SETMASK, &prev, 0);
1779#endif 2387#endif
1780 } 2388 }
1783 wlist_add (&signals [w->signum - 1].head, (WL)w); 2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
1784 2392
1785 if (!((WL)w)->next) 2393 if (!((WL)w)->next)
1786 { 2394 {
1787#if _WIN32 2395#if _WIN32
1788 signal (w->signum, sighandler); 2396 signal (w->signum, ev_sighandler);
1789#else 2397#else
1790 struct sigaction sa; 2398 struct sigaction sa;
1791 sa.sa_handler = sighandler; 2399 sa.sa_handler = ev_sighandler;
1792 sigfillset (&sa.sa_mask); 2400 sigfillset (&sa.sa_mask);
1793 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1794 sigaction (w->signum, &sa, 0); 2402 sigaction (w->signum, &sa, 0);
1795#endif 2403#endif
1796 } 2404 }
2405
2406 EV_FREQUENT_CHECK;
1797} 2407}
1798 2408
1799void noinline 2409void noinline
1800ev_signal_stop (EV_P_ ev_signal *w) 2410ev_signal_stop (EV_P_ ev_signal *w)
1801{ 2411{
1802 clear_pending (EV_A_ (W)w); 2412 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2413 if (expect_false (!ev_is_active (w)))
1804 return; 2414 return;
1805 2415
2416 EV_FREQUENT_CHECK;
2417
1806 wlist_del (&signals [w->signum - 1].head, (WL)w); 2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
1807 ev_stop (EV_A_ (W)w); 2419 ev_stop (EV_A_ (W)w);
1808 2420
1809 if (!signals [w->signum - 1].head) 2421 if (!signals [w->signum - 1].head)
1810 signal (w->signum, SIG_DFL); 2422 signal (w->signum, SIG_DFL);
2423
2424 EV_FREQUENT_CHECK;
1811} 2425}
1812 2426
1813void 2427void
1814ev_child_start (EV_P_ ev_child *w) 2428ev_child_start (EV_P_ ev_child *w)
1815{ 2429{
1816#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
1817 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1818#endif 2432#endif
1819 if (expect_false (ev_is_active (w))) 2433 if (expect_false (ev_is_active (w)))
1820 return; 2434 return;
1821 2435
2436 EV_FREQUENT_CHECK;
2437
1822 ev_start (EV_A_ (W)w, 1); 2438 ev_start (EV_A_ (W)w, 1);
1823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2440
2441 EV_FREQUENT_CHECK;
1824} 2442}
1825 2443
1826void 2444void
1827ev_child_stop (EV_P_ ev_child *w) 2445ev_child_stop (EV_P_ ev_child *w)
1828{ 2446{
1829 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1830 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1831 return; 2449 return;
1832 2450
2451 EV_FREQUENT_CHECK;
2452
1833 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1834 ev_stop (EV_A_ (W)w); 2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
1835} 2457}
1836 2458
1837#if EV_STAT_ENABLE 2459#if EV_STAT_ENABLE
1838 2460
1839# ifdef _WIN32 2461# ifdef _WIN32
1840# undef lstat 2462# undef lstat
1841# define lstat(a,b) _stati64 (a,b) 2463# define lstat(a,b) _stati64 (a,b)
1842# endif 2464# endif
1843 2465
1844#define DEF_STAT_INTERVAL 5.0074891 2466#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1845#define MIN_STAT_INTERVAL 0.1074891 2468#define MIN_STAT_INTERVAL 0.1074891
1846 2469
1847static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1848 2471
1849#if EV_USE_INOTIFY 2472#if EV_USE_INOTIFY
1850# define EV_INOTIFY_BUFSIZE 8192 2473# define EV_INOTIFY_BUFSIZE 8192
1854{ 2477{
1855 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1856 2479
1857 if (w->wd < 0) 2480 if (w->wd < 0)
1858 { 2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1859 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1860 2484
1861 /* monitor some parent directory for speedup hints */ 2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
1862 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1863 { 2489 {
1864 char path [4096]; 2490 char path [4096];
1865 strcpy (path, w->path); 2491 strcpy (path, w->path);
1866 2492
1869 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1870 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1871 2497
1872 char *pend = strrchr (path, '/'); 2498 char *pend = strrchr (path, '/');
1873 2499
1874 if (!pend) 2500 if (!pend || pend == path)
1875 break; /* whoops, no '/', complain to your admin */ 2501 break;
1876 2502
1877 *pend = 0; 2503 *pend = 0;
1878 w->wd = inotify_add_watch (fs_fd, path, mask); 2504 w->wd = inotify_add_watch (fs_fd, path, mask);
1879 } 2505 }
1880 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1881 } 2507 }
1882 } 2508 }
1883 else
1884 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1885 2509
1886 if (w->wd >= 0) 2510 if (w->wd >= 0)
2511 {
1887 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
1888} 2531}
1889 2532
1890static void noinline 2533static void noinline
1891infy_del (EV_P_ ev_stat *w) 2534infy_del (EV_P_ ev_stat *w)
1892{ 2535{
1906 2549
1907static void noinline 2550static void noinline
1908infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1909{ 2552{
1910 if (slot < 0) 2553 if (slot < 0)
1911 /* overflow, need to check for all hahs slots */ 2554 /* overflow, need to check for all hash slots */
1912 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1913 infy_wd (EV_A_ slot, wd, ev); 2556 infy_wd (EV_A_ slot, wd, ev);
1914 else 2557 else
1915 { 2558 {
1916 WL w_; 2559 WL w_;
1922 2565
1923 if (w->wd == wd || wd == -1) 2566 if (w->wd == wd || wd == -1)
1924 { 2567 {
1925 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1926 { 2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1927 w->wd = -1; 2571 w->wd = -1;
1928 infy_add (EV_A_ w); /* re-add, no matter what */ 2572 infy_add (EV_A_ w); /* re-add, no matter what */
1929 } 2573 }
1930 2574
1931 stat_timer_cb (EV_A_ &w->timer, 0); 2575 stat_timer_cb (EV_A_ &w->timer, 0);
1945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1946 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1947} 2591}
1948 2592
1949void inline_size 2593void inline_size
2594check_2625 (EV_P)
2595{
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614}
2615
2616void inline_size
1950infy_init (EV_P) 2617infy_init (EV_P)
1951{ 2618{
1952 if (fs_fd != -2) 2619 if (fs_fd != -2)
1953 return; 2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
1954 2625
1955 fs_fd = inotify_init (); 2626 fs_fd = inotify_init ();
1956 2627
1957 if (fs_fd >= 0) 2628 if (fs_fd >= 0)
1958 { 2629 {
1986 w->wd = -1; 2657 w->wd = -1;
1987 2658
1988 if (fs_fd >= 0) 2659 if (fs_fd >= 0)
1989 infy_add (EV_A_ w); /* re-add, no matter what */ 2660 infy_add (EV_A_ w); /* re-add, no matter what */
1990 else 2661 else
1991 ev_timer_start (EV_A_ &w->timer); 2662 ev_timer_again (EV_A_ &w->timer);
1992 } 2663 }
1993
1994 } 2664 }
1995} 2665}
1996 2666
2667#endif
2668
2669#ifdef _WIN32
2670# define EV_LSTAT(p,b) _stati64 (p, b)
2671#else
2672# define EV_LSTAT(p,b) lstat (p, b)
1997#endif 2673#endif
1998 2674
1999void 2675void
2000ev_stat_stat (EV_P_ ev_stat *w) 2676ev_stat_stat (EV_P_ ev_stat *w)
2001{ 2677{
2028 || w->prev.st_atime != w->attr.st_atime 2704 || w->prev.st_atime != w->attr.st_atime
2029 || w->prev.st_mtime != w->attr.st_mtime 2705 || w->prev.st_mtime != w->attr.st_mtime
2030 || w->prev.st_ctime != w->attr.st_ctime 2706 || w->prev.st_ctime != w->attr.st_ctime
2031 ) { 2707 ) {
2032 #if EV_USE_INOTIFY 2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
2033 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2034 infy_add (EV_A_ w); 2712 infy_add (EV_A_ w);
2035 ev_stat_stat (EV_A_ w); /* avoid race... */ 2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
2036 #endif 2715 #endif
2037 2716
2038 ev_feed_event (EV_A_ w, EV_STAT); 2717 ev_feed_event (EV_A_ w, EV_STAT);
2039 } 2718 }
2040} 2719}
2043ev_stat_start (EV_P_ ev_stat *w) 2722ev_stat_start (EV_P_ ev_stat *w)
2044{ 2723{
2045 if (expect_false (ev_is_active (w))) 2724 if (expect_false (ev_is_active (w)))
2046 return; 2725 return;
2047 2726
2048 /* since we use memcmp, we need to clear any padding data etc. */
2049 memset (&w->prev, 0, sizeof (ev_statdata));
2050 memset (&w->attr, 0, sizeof (ev_statdata));
2051
2052 ev_stat_stat (EV_A_ w); 2727 ev_stat_stat (EV_A_ w);
2053 2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2054 if (w->interval < MIN_STAT_INTERVAL) 2730 w->interval = MIN_STAT_INTERVAL;
2055 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2056 2731
2057 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2058 ev_set_priority (&w->timer, ev_priority (w)); 2733 ev_set_priority (&w->timer, ev_priority (w));
2059 2734
2060#if EV_USE_INOTIFY 2735#if EV_USE_INOTIFY
2061 infy_init (EV_A); 2736 infy_init (EV_A);
2062 2737
2063 if (fs_fd >= 0) 2738 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); 2739 infy_add (EV_A_ w);
2065 else 2740 else
2066#endif 2741#endif
2067 ev_timer_start (EV_A_ &w->timer); 2742 ev_timer_again (EV_A_ &w->timer);
2068 2743
2069 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
2070} 2747}
2071 2748
2072void 2749void
2073ev_stat_stop (EV_P_ ev_stat *w) 2750ev_stat_stop (EV_P_ ev_stat *w)
2074{ 2751{
2075 clear_pending (EV_A_ (W)w); 2752 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w))) 2753 if (expect_false (!ev_is_active (w)))
2077 return; 2754 return;
2078 2755
2756 EV_FREQUENT_CHECK;
2757
2079#if EV_USE_INOTIFY 2758#if EV_USE_INOTIFY
2080 infy_del (EV_A_ w); 2759 infy_del (EV_A_ w);
2081#endif 2760#endif
2082 ev_timer_stop (EV_A_ &w->timer); 2761 ev_timer_stop (EV_A_ &w->timer);
2083 2762
2084 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2085} 2766}
2086#endif 2767#endif
2087 2768
2088#if EV_IDLE_ENABLE 2769#if EV_IDLE_ENABLE
2089void 2770void
2091{ 2772{
2092 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2093 return; 2774 return;
2094 2775
2095 pri_adjust (EV_A_ (W)w); 2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2096 2779
2097 { 2780 {
2098 int active = ++idlecnt [ABSPRI (w)]; 2781 int active = ++idlecnt [ABSPRI (w)];
2099 2782
2100 ++idleall; 2783 ++idleall;
2101 ev_start (EV_A_ (W)w, active); 2784 ev_start (EV_A_ (W)w, active);
2102 2785
2103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2104 idles [ABSPRI (w)][active - 1] = w; 2787 idles [ABSPRI (w)][active - 1] = w;
2105 } 2788 }
2789
2790 EV_FREQUENT_CHECK;
2106} 2791}
2107 2792
2108void 2793void
2109ev_idle_stop (EV_P_ ev_idle *w) 2794ev_idle_stop (EV_P_ ev_idle *w)
2110{ 2795{
2111 clear_pending (EV_A_ (W)w); 2796 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2797 if (expect_false (!ev_is_active (w)))
2113 return; 2798 return;
2114 2799
2800 EV_FREQUENT_CHECK;
2801
2115 { 2802 {
2116 int active = ((W)w)->active; 2803 int active = ev_active (w);
2117 2804
2118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2119 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2120 2807
2121 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2122 --idleall; 2809 --idleall;
2123 } 2810 }
2811
2812 EV_FREQUENT_CHECK;
2124} 2813}
2125#endif 2814#endif
2126 2815
2127void 2816void
2128ev_prepare_start (EV_P_ ev_prepare *w) 2817ev_prepare_start (EV_P_ ev_prepare *w)
2129{ 2818{
2130 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2131 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2132 2823
2133 ev_start (EV_A_ (W)w, ++preparecnt); 2824 ev_start (EV_A_ (W)w, ++preparecnt);
2134 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2135 prepares [preparecnt - 1] = w; 2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2136} 2829}
2137 2830
2138void 2831void
2139ev_prepare_stop (EV_P_ ev_prepare *w) 2832ev_prepare_stop (EV_P_ ev_prepare *w)
2140{ 2833{
2141 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2143 return; 2836 return;
2144 2837
2838 EV_FREQUENT_CHECK;
2839
2145 { 2840 {
2146 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2147 prepares [active - 1] = prepares [--preparecnt]; 2843 prepares [active - 1] = prepares [--preparecnt];
2148 ((W)prepares [active - 1])->active = active; 2844 ev_active (prepares [active - 1]) = active;
2149 } 2845 }
2150 2846
2151 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2152} 2850}
2153 2851
2154void 2852void
2155ev_check_start (EV_P_ ev_check *w) 2853ev_check_start (EV_P_ ev_check *w)
2156{ 2854{
2157 if (expect_false (ev_is_active (w))) 2855 if (expect_false (ev_is_active (w)))
2158 return; 2856 return;
2857
2858 EV_FREQUENT_CHECK;
2159 2859
2160 ev_start (EV_A_ (W)w, ++checkcnt); 2860 ev_start (EV_A_ (W)w, ++checkcnt);
2161 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2162 checks [checkcnt - 1] = w; 2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
2163} 2865}
2164 2866
2165void 2867void
2166ev_check_stop (EV_P_ ev_check *w) 2868ev_check_stop (EV_P_ ev_check *w)
2167{ 2869{
2168 clear_pending (EV_A_ (W)w); 2870 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 2871 if (expect_false (!ev_is_active (w)))
2170 return; 2872 return;
2171 2873
2874 EV_FREQUENT_CHECK;
2875
2172 { 2876 {
2173 int active = ((W)w)->active; 2877 int active = ev_active (w);
2878
2174 checks [active - 1] = checks [--checkcnt]; 2879 checks [active - 1] = checks [--checkcnt];
2175 ((W)checks [active - 1])->active = active; 2880 ev_active (checks [active - 1]) = active;
2176 } 2881 }
2177 2882
2178 ev_stop (EV_A_ (W)w); 2883 ev_stop (EV_A_ (W)w);
2884
2885 EV_FREQUENT_CHECK;
2179} 2886}
2180 2887
2181#if EV_EMBED_ENABLE 2888#if EV_EMBED_ENABLE
2182void noinline 2889void noinline
2183ev_embed_sweep (EV_P_ ev_embed *w) 2890ev_embed_sweep (EV_P_ ev_embed *w)
2184{ 2891{
2185 ev_loop (w->loop, EVLOOP_NONBLOCK); 2892 ev_loop (w->other, EVLOOP_NONBLOCK);
2186} 2893}
2187 2894
2188static void 2895static void
2189embed_cb (EV_P_ ev_io *io, int revents) 2896embed_io_cb (EV_P_ ev_io *io, int revents)
2190{ 2897{
2191 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2192 2899
2193 if (ev_cb (w)) 2900 if (ev_cb (w))
2194 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2901 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2195 else 2902 else
2196 ev_embed_sweep (loop, w); 2903 ev_loop (w->other, EVLOOP_NONBLOCK);
2197} 2904}
2905
2906static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910
2911 {
2912 struct ev_loop *loop = w->other;
2913
2914 while (fdchangecnt)
2915 {
2916 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919 }
2920}
2921
2922static void
2923embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924{
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937}
2938
2939#if 0
2940static void
2941embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2942{
2943 ev_idle_stop (EV_A_ idle);
2944}
2945#endif
2198 2946
2199void 2947void
2200ev_embed_start (EV_P_ ev_embed *w) 2948ev_embed_start (EV_P_ ev_embed *w)
2201{ 2949{
2202 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2203 return; 2951 return;
2204 2952
2205 { 2953 {
2206 struct ev_loop *loop = w->loop; 2954 struct ev_loop *loop = w->other;
2207 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2208 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2209 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2210 2960
2211 ev_set_priority (&w->io, ev_priority (w)); 2961 ev_set_priority (&w->io, ev_priority (w));
2212 ev_io_start (EV_A_ &w->io); 2962 ev_io_start (EV_A_ &w->io);
2213 2963
2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2965 ev_set_priority (&w->prepare, EV_MINPRI);
2966 ev_prepare_start (EV_A_ &w->prepare);
2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2972
2214 ev_start (EV_A_ (W)w, 1); 2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
2215} 2976}
2216 2977
2217void 2978void
2218ev_embed_stop (EV_P_ ev_embed *w) 2979ev_embed_stop (EV_P_ ev_embed *w)
2219{ 2980{
2220 clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
2222 return; 2983 return;
2223 2984
2985 EV_FREQUENT_CHECK;
2986
2224 ev_io_stop (EV_A_ &w->io); 2987 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2225 2990
2226 ev_stop (EV_A_ (W)w); 2991 EV_FREQUENT_CHECK;
2227} 2992}
2228#endif 2993#endif
2229 2994
2230#if EV_FORK_ENABLE 2995#if EV_FORK_ENABLE
2231void 2996void
2232ev_fork_start (EV_P_ ev_fork *w) 2997ev_fork_start (EV_P_ ev_fork *w)
2233{ 2998{
2234 if (expect_false (ev_is_active (w))) 2999 if (expect_false (ev_is_active (w)))
2235 return; 3000 return;
3001
3002 EV_FREQUENT_CHECK;
2236 3003
2237 ev_start (EV_A_ (W)w, ++forkcnt); 3004 ev_start (EV_A_ (W)w, ++forkcnt);
2238 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2239 forks [forkcnt - 1] = w; 3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
2240} 3009}
2241 3010
2242void 3011void
2243ev_fork_stop (EV_P_ ev_fork *w) 3012ev_fork_stop (EV_P_ ev_fork *w)
2244{ 3013{
2245 clear_pending (EV_A_ (W)w); 3014 clear_pending (EV_A_ (W)w);
2246 if (expect_false (!ev_is_active (w))) 3015 if (expect_false (!ev_is_active (w)))
2247 return; 3016 return;
2248 3017
3018 EV_FREQUENT_CHECK;
3019
2249 { 3020 {
2250 int active = ((W)w)->active; 3021 int active = ev_active (w);
3022
2251 forks [active - 1] = forks [--forkcnt]; 3023 forks [active - 1] = forks [--forkcnt];
2252 ((W)forks [active - 1])->active = active; 3024 ev_active (forks [active - 1]) = active;
2253 } 3025 }
2254 3026
2255 ev_stop (EV_A_ (W)w); 3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
3030}
3031#endif
3032
3033#if EV_ASYNC_ENABLE
3034void
3035ev_async_start (EV_P_ ev_async *w)
3036{
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
3043
3044 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
3049}
3050
3051void
3052ev_async_stop (EV_P_ ev_async *w)
3053{
3054 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 {
3061 int active = ev_active (w);
3062
3063 asyncs [active - 1] = asyncs [--asynccnt];
3064 ev_active (asyncs [active - 1]) = active;
3065 }
3066
3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
3070}
3071
3072void
3073ev_async_send (EV_P_ ev_async *w)
3074{
3075 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync);
2256} 3077}
2257#endif 3078#endif
2258 3079
2259/*****************************************************************************/ 3080/*****************************************************************************/
2260 3081
2270once_cb (EV_P_ struct ev_once *once, int revents) 3091once_cb (EV_P_ struct ev_once *once, int revents)
2271{ 3092{
2272 void (*cb)(int revents, void *arg) = once->cb; 3093 void (*cb)(int revents, void *arg) = once->cb;
2273 void *arg = once->arg; 3094 void *arg = once->arg;
2274 3095
2275 ev_io_stop (EV_A_ &once->io); 3096 ev_io_stop (EV_A_ &once->io);
2276 ev_timer_stop (EV_A_ &once->to); 3097 ev_timer_stop (EV_A_ &once->to);
2277 ev_free (once); 3098 ev_free (once);
2278 3099
2279 cb (revents, arg); 3100 cb (revents, arg);
2280} 3101}
2281 3102
2282static void 3103static void
2283once_cb_io (EV_P_ ev_io *w, int revents) 3104once_cb_io (EV_P_ ev_io *w, int revents)
2284{ 3105{
2285 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2286} 3109}
2287 3110
2288static void 3111static void
2289once_cb_to (EV_P_ ev_timer *w, int revents) 3112once_cb_to (EV_P_ ev_timer *w, int revents)
2290{ 3113{
2291 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2292} 3117}
2293 3118
2294void 3119void
2295ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2296{ 3121{
2318 ev_timer_set (&once->to, timeout, 0.); 3143 ev_timer_set (&once->to, timeout, 0.);
2319 ev_timer_start (EV_A_ &once->to); 3144 ev_timer_start (EV_A_ &once->to);
2320 } 3145 }
2321} 3146}
2322 3147
3148/*****************************************************************************/
3149
3150#if 0
3151void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
3160 {
3161 wn = wl->next;
3162
3163#if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170#endif
3171#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175#endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
3181 }
3182
3183 if (types & (EV_TIMER | EV_STAT))
3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185#if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3188 {
3189 if (types & EV_STAT)
3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3191 }
3192 else
3193#endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3196
3197#if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif
3202
3203#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif
3209
3210#if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215#endif
3216
3217#if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253}
3254#endif
3255
3256#if EV_MULTIPLICITY
3257 #include "ev_wrap.h"
3258#endif
3259
2323#ifdef __cplusplus 3260#ifdef __cplusplus
2324} 3261}
2325#endif 3262#endif
2326 3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines