ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 287#endif
286 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
478#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
480 492
481/*****************************************************************************/ 493/*****************************************************************************/
482 494
495/* file descriptor info structure */
483typedef struct 496typedef struct
484{ 497{
485 WL head; 498 WL head;
486 unsigned char events; 499 unsigned char events; /* the events watched for */
487 unsigned char reify; 500 unsigned char reify; /* flag set when this ANFD needs reification */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 502 unsigned char unused;
490#if EV_USE_EPOLL 503#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 504 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 505#endif
493#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 507 SOCKET handle;
495#endif 508#endif
496} ANFD; 509} ANFD;
497 510
511/* stores the pending event set for a given watcher */
498typedef struct 512typedef struct
499{ 513{
500 W w; 514 W w;
501 int events; 515 int events; /* the pending event set for the given watcher */
502} ANPENDING; 516} ANPENDING;
503 517
504#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
506typedef struct 520typedef struct
509} ANFS; 523} ANFS;
510#endif 524#endif
511 525
512/* Heap Entry */ 526/* Heap Entry */
513#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
514 typedef struct { 529 typedef struct {
515 ev_tstamp at; 530 ev_tstamp at;
516 WT w; 531 WT w;
517 } ANHE; 532 } ANHE;
518 533
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 537#else
538 /* a heap element */
523 typedef WT ANHE; 539 typedef WT ANHE;
524 540
525 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
553 569
554#endif 570#endif
555 571
556/*****************************************************************************/ 572/*****************************************************************************/
557 573
574#ifndef EV_HAVE_EV_TIME
558ev_tstamp 575ev_tstamp
559ev_time (void) 576ev_time (void)
560{ 577{
561#if EV_USE_REALTIME 578#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 579 if (expect_true (have_realtime))
569 586
570 struct timeval tv; 587 struct timeval tv;
571 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 590}
591#endif
574 592
575ev_tstamp inline_size 593inline_size ev_tstamp
576get_clock (void) 594get_clock (void)
577{ 595{
578#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
580 { 598 {
614 632
615 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 635
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 637 /* somehting not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 638 /* by older ones */
621 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
622#endif 640#endif
623 } 641 }
624} 642}
625 643
626/*****************************************************************************/ 644/*****************************************************************************/
627 645
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 647
630int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
631array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
632{ 652{
633 int ncur = cur + 1; 653 int ncur = cur + 1;
634 654
635 do 655 do
680#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 702
683/*****************************************************************************/ 703/*****************************************************************************/
684 704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
710
685void noinline 711void noinline
686ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
687{ 713{
688 W w_ = (W)w; 714 W w_ = (W)w;
689 int pri = ABSPRI (w_); 715 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
699 } 725 }
700} 726}
701 727
702void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 745{
705 int i; 746 int i;
706 747
707 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
709} 750}
710 751
711/*****************************************************************************/ 752/*****************************************************************************/
712 753
713void inline_speed 754inline_speed void
714fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
715{ 756{
716 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
717 ev_io *w; 758 ev_io *w;
718 759
730{ 771{
731 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
733} 774}
734 775
735void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
736fd_reify (EV_P) 779fd_reify (EV_P)
737{ 780{
738 int i; 781 int i;
739 782
740 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
774 } 817 }
775 818
776 fdchangecnt = 0; 819 fdchangecnt = 0;
777} 820}
778 821
779void inline_size 822/* something about the given fd changed */
823inline_size void
780fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
781{ 825{
782 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
784 828
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
790 } 834 }
791} 835}
792 836
793void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
794fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
795{ 840{
796 ev_io *w; 841 ev_io *w;
797 842
798 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 847 }
803} 848}
804 849
805int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
806fd_valid (int fd) 852fd_valid (int fd)
807{ 853{
808#ifdef _WIN32 854#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
810#else 856#else
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 921#define UPHEAP_DONE(p,k) ((p) == (k))
876 922
877/* away from the root */ 923/* away from the root */
878void inline_speed 924inline_speed void
879downheap (ANHE *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
880{ 926{
881 ANHE he = heap [k]; 927 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 928 ANHE *E = heap + N + HEAP0;
883 929
923#define HEAP0 1 969#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 970#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 971#define UPHEAP_DONE(p,k) (!(p))
926 972
927/* away from the root */ 973/* away from the root */
928void inline_speed 974inline_speed void
929downheap (ANHE *heap, int N, int k) 975downheap (ANHE *heap, int N, int k)
930{ 976{
931 ANHE he = heap [k]; 977 ANHE he = heap [k];
932 978
933 for (;;) 979 for (;;)
953 ev_active (ANHE_w (he)) = k; 999 ev_active (ANHE_w (he)) = k;
954} 1000}
955#endif 1001#endif
956 1002
957/* towards the root */ 1003/* towards the root */
958void inline_speed 1004inline_speed void
959upheap (ANHE *heap, int k) 1005upheap (ANHE *heap, int k)
960{ 1006{
961 ANHE he = heap [k]; 1007 ANHE he = heap [k];
962 1008
963 for (;;) 1009 for (;;)
974 1020
975 heap [k] = he; 1021 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1022 ev_active (ANHE_w (he)) = k;
977} 1023}
978 1024
979void inline_size 1025/* move an element suitably so it is in a correct place */
1026inline_size void
980adjustheap (ANHE *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
981{ 1028{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1030 upheap (heap, k);
984 else 1031 else
985 downheap (heap, N, k); 1032 downheap (heap, N, k);
986} 1033}
987 1034
988/* rebuild the heap: this function is used only once and executed rarely */ 1035/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1036inline_size void
990reheap (ANHE *heap, int N) 1037reheap (ANHE *heap, int N)
991{ 1038{
992 int i; 1039 int i;
993 1040
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1044 upheap (heap, i + HEAP0);
998} 1045}
999 1046
1000/*****************************************************************************/ 1047/*****************************************************************************/
1001 1048
1049/* associate signal watchers to a signal signal */
1002typedef struct 1050typedef struct
1003{ 1051{
1004 WL head; 1052 WL head;
1005 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
1006} ANSIG; 1054} ANSIG;
1010 1058
1011static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
1012 1060
1013/*****************************************************************************/ 1061/*****************************************************************************/
1014 1062
1015void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
1016fd_intern (int fd) 1066fd_intern (int fd)
1017{ 1067{
1018#ifdef _WIN32 1068#ifdef _WIN32
1019 unsigned long arg = 1; 1069 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1075}
1026 1076
1027static void noinline 1077static void noinline
1028evpipe_init (EV_P) 1078evpipe_init (EV_P)
1029{ 1079{
1030 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
1031 { 1081 {
1032#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
1034 { 1084 {
1035 evpipe [0] = -1; 1085 evpipe [0] = -1;
1036 fd_intern (evfd); 1086 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1088 }
1039 else 1089 else
1040#endif 1090#endif
1041 { 1091 {
1042 while (pipe (evpipe)) 1092 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
1044 1094
1045 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1098 }
1049 1099
1050 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1102 }
1053} 1103}
1054 1104
1055void inline_size 1105inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1107{
1058 if (!*flag) 1108 if (!*flag)
1059 { 1109 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
1073 1123
1074 errno = old_errno; 1124 errno = old_errno;
1075 } 1125 }
1076} 1126}
1077 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1078static void 1130static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1132{
1081#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1134 if (evfd >= 0)
1164 1216
1165#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1167#endif 1219#endif
1168 1220
1169void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1171{ 1224{
1172 ev_child *w; 1225 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1227
1187 1240
1188#ifndef WCONTINUED 1241#ifndef WCONTINUED
1189# define WCONTINUED 0 1242# define WCONTINUED 0
1190#endif 1243#endif
1191 1244
1245/* called on sigchld etc., calls waitpid */
1192static void 1246static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1248{
1195 int pid, status; 1249 int pid, status;
1196 1250
1309ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1310{ 1364{
1311 return loop_count; 1365 return loop_count;
1312} 1366}
1313 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1314void 1374void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1376{
1317 io_blocktime = interval; 1377 io_blocktime = interval;
1318} 1378}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1382{
1323 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1324} 1384}
1325 1385
1386/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1387static void noinline
1327loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1328{ 1389{
1329 if (!backend) 1390 if (!backend)
1330 { 1391 {
1390#endif 1451#endif
1391#if EV_USE_SELECT 1452#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1454#endif
1394 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1395 ev_init (&pipeev, pipecb); 1458 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1460 }
1398} 1461}
1399 1462
1463/* free up a loop structure */
1400static void noinline 1464static void noinline
1401loop_destroy (EV_P) 1465loop_destroy (EV_P)
1402{ 1466{
1403 int i; 1467 int i;
1404 1468
1405 if (ev_is_active (&pipeev)) 1469 if (ev_is_active (&pipe_w))
1406 { 1470 {
1407 ev_ref (EV_A); /* signal watcher */ 1471 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev); 1472 ev_io_stop (EV_A_ &pipe_w);
1409 1473
1410#if EV_USE_EVENTFD 1474#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1475 if (evfd >= 0)
1412 close (evfd); 1476 close (evfd);
1413#endif 1477#endif
1452 } 1516 }
1453 1517
1454 ev_free (anfds); anfdmax = 0; 1518 ev_free (anfds); anfdmax = 0;
1455 1519
1456 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1522 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1523 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1525 array_free (periodic, EMPTY);
1461#endif 1526#endif
1470 1535
1471 backend = 0; 1536 backend = 0;
1472} 1537}
1473 1538
1474#if EV_USE_INOTIFY 1539#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1476#endif 1541#endif
1477 1542
1478void inline_size 1543inline_size void
1479loop_fork (EV_P) 1544loop_fork (EV_P)
1480{ 1545{
1481#if EV_USE_PORT 1546#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1548#endif
1489#endif 1554#endif
1490#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1556 infy_fork (EV_A);
1492#endif 1557#endif
1493 1558
1494 if (ev_is_active (&pipeev)) 1559 if (ev_is_active (&pipe_w))
1495 { 1560 {
1496 /* this "locks" the handlers against writing to the pipe */ 1561 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1562 /* while we modify the fd vars */
1498 gotsig = 1; 1563 gotsig = 1;
1499#if EV_ASYNC_ENABLE 1564#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1565 gotasync = 1;
1501#endif 1566#endif
1502 1567
1503 ev_ref (EV_A); 1568 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1569 ev_io_stop (EV_A_ &pipe_w);
1505 1570
1506#if EV_USE_EVENTFD 1571#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1572 if (evfd >= 0)
1508 close (evfd); 1573 close (evfd);
1509#endif 1574#endif
1514 close (evpipe [1]); 1579 close (evpipe [1]);
1515 } 1580 }
1516 1581
1517 evpipe_init (EV_A); 1582 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1583 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1584 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1585 }
1521 1586
1522 postfork = 0; 1587 postfork = 0;
1523} 1588}
1524 1589
1720ev_invoke (EV_P_ void *w, int revents) 1785ev_invoke (EV_P_ void *w, int revents)
1721{ 1786{
1722 EV_CB_INVOKE ((W)w, revents); 1787 EV_CB_INVOKE ((W)w, revents);
1723} 1788}
1724 1789
1725void inline_speed 1790inline_speed void
1726call_pending (EV_P) 1791call_pending (EV_P)
1727{ 1792{
1728 int pri; 1793 int pri;
1729 1794
1730 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1732 { 1797 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1799
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1738 1802
1739 p->w->pending = 0; 1803 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1805 EV_FREQUENT_CHECK;
1742 }
1743 } 1806 }
1744} 1807}
1745 1808
1746#if EV_IDLE_ENABLE 1809#if EV_IDLE_ENABLE
1747void inline_size 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1748idle_reify (EV_P) 1813idle_reify (EV_P)
1749{ 1814{
1750 if (expect_false (idleall)) 1815 if (expect_false (idleall))
1751 { 1816 {
1752 int pri; 1817 int pri;
1764 } 1829 }
1765 } 1830 }
1766} 1831}
1767#endif 1832#endif
1768 1833
1769void inline_size 1834/* make timers pending */
1835inline_size void
1770timers_reify (EV_P) 1836timers_reify (EV_P)
1771{ 1837{
1772 EV_FREQUENT_CHECK; 1838 EV_FREQUENT_CHECK;
1773 1839
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 1841 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1842 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1783 ev_at (w) += w->repeat; 1851 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 1852 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 1853 ev_at (w) = mn_now;
1786 1854
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 1856
1789 ANHE_at_cache (timers [HEAP0]); 1857 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1791 } 1865 }
1792 else 1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 1867
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 1869 }
1798} 1870}
1799 1871
1800#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1801void inline_size 1873/* make periodics pending */
1874inline_size void
1802periodics_reify (EV_P) 1875periodics_reify (EV_P)
1803{ 1876{
1804 EV_FREQUENT_CHECK; 1877 EV_FREQUENT_CHECK;
1805 1878
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 1880 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1881 int feed_count = 0;
1809 1882
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1883 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 1893
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 1895
1819 ANHE_at_cache (periodics [HEAP0]); 1896 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1821 } 1923 }
1822 else if (w->interval) 1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 1925
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 1927 }
1847} 1928}
1848 1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 1932static void noinline
1850periodics_reschedule (EV_P) 1933periodics_reschedule (EV_P)
1851{ 1934{
1852 int i; 1935 int i;
1853 1936
1866 1949
1867 reheap (periodics, periodiccnt); 1950 reheap (periodics, periodiccnt);
1868} 1951}
1869#endif 1952#endif
1870 1953
1871void inline_speed 1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 1971time_update (EV_P_ ev_tstamp max_block)
1873{ 1972{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
1878 { 1975 {
1976 int i;
1879 ev_tstamp odiff = rtmn_diff; 1977 ev_tstamp odiff = rtmn_diff;
1880 1978
1881 mn_now = get_clock (); 1979 mn_now = get_clock ();
1882 1980
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2008 mn_now = get_clock ();
1911 now_floor = mn_now; 2009 now_floor = mn_now;
1912 } 2010 }
1913 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1916# endif 2016# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2017 }
1920 else 2018 else
1921#endif 2019#endif
1922 { 2020 {
1923 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1924 2022
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1929#endif 2029#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2030 }
1938 2031
1939 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1940 } 2033 }
1941} 2034}
1942 2035
1943void 2036void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1965{ 2038{
2039 ++loop_depth;
2040
1966 loop_done = EVUNLOOP_CANCEL; 2041 loop_done = EVUNLOOP_CANCEL;
1967 2042
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969 2044
1970 do 2045 do
2011 ev_tstamp waittime = 0.; 2086 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2087 ev_tstamp sleeptime = 0.;
2013 2088
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
2016 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100); 2095 time_update (EV_A_ 1e100);
2018 2096
2019 waittime = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
2020 2098
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2109 if (waittime > to) waittime = to;
2032 } 2110 }
2033#endif 2111#endif
2034 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2114 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2115 waittime = timeout_blocktime;
2037 2116
2038 sleeptime = waittime - backend_fudge; 2117 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2118 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2045 ev_sleep (sleeptime); 2127 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2128 waittime -= sleeptime;
2129 }
2047 } 2130 }
2048 } 2131 }
2049 2132
2050 ++loop_count; 2133 ++loop_count;
2051 backend_poll (EV_A_ waittime); 2134 backend_poll (EV_A_ waittime);
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 )); 2161 ));
2079 2162
2080 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
2082} 2167}
2083 2168
2084void 2169void
2085ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
2086{ 2171{
2087 loop_done = how; 2172 loop_done = how;
2088} 2173}
2089 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
2090/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
2091 2214
2092void inline_size 2215inline_size void
2093wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
2094{ 2217{
2095 elem->next = *head; 2218 elem->next = *head;
2096 *head = elem; 2219 *head = elem;
2097} 2220}
2098 2221
2099void inline_size 2222inline_size void
2100wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
2101{ 2224{
2102 while (*head) 2225 while (*head)
2103 { 2226 {
2104 if (*head == elem) 2227 if (*head == elem)
2109 2232
2110 head = &(*head)->next; 2233 head = &(*head)->next;
2111 } 2234 }
2112} 2235}
2113 2236
2114void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
2115clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
2116{ 2240{
2117 if (w->pending) 2241 if (w->pending)
2118 { 2242 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2244 w->pending = 0;
2121 } 2245 }
2122} 2246}
2123 2247
2124int 2248int
2128 int pending = w_->pending; 2252 int pending = w_->pending;
2129 2253
2130 if (expect_true (pending)) 2254 if (expect_true (pending))
2131 { 2255 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2133 w_->pending = 0; 2258 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2259 return p->events;
2136 } 2260 }
2137 else 2261 else
2138 return 0; 2262 return 0;
2139} 2263}
2140 2264
2141void inline_size 2265inline_size void
2142pri_adjust (EV_P_ W w) 2266pri_adjust (EV_P_ W w)
2143{ 2267{
2144 int pri = w->priority; 2268 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2271 ev_set_priority (w, pri);
2148} 2272}
2149 2273
2150void inline_speed 2274inline_speed void
2151ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
2152{ 2276{
2153 pri_adjust (EV_A_ w); 2277 pri_adjust (EV_A_ w);
2154 w->active = active; 2278 w->active = active;
2155 ev_ref (EV_A); 2279 ev_ref (EV_A);
2156} 2280}
2157 2281
2158void inline_size 2282inline_size void
2159ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
2160{ 2284{
2161 ev_unref (EV_A); 2285 ev_unref (EV_A);
2162 w->active = 0; 2286 w->active = 0;
2163} 2287}
2588 2712
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591} 2715}
2592 2716
2593void inline_size 2717inline_size void
2594check_2625 (EV_P) 2718check_2625 (EV_P)
2595{ 2719{
2596 /* kernels < 2.6.25 are borked 2720 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 2722 */
2611 return; 2735 return;
2612 2736
2613 fs_2625 = 1; 2737 fs_2625 = 1;
2614} 2738}
2615 2739
2616void inline_size 2740inline_size void
2617infy_init (EV_P) 2741infy_init (EV_P)
2618{ 2742{
2619 if (fs_fd != -2) 2743 if (fs_fd != -2)
2620 return; 2744 return;
2621 2745
2631 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
2633 } 2757 }
2634} 2758}
2635 2759
2636void inline_size 2760inline_size void
2637infy_fork (EV_P) 2761infy_fork (EV_P)
2638{ 2762{
2639 int slot; 2763 int slot;
2640 2764
2641 if (fs_fd < 0) 2765 if (fs_fd < 0)
3145 } 3269 }
3146} 3270}
3147 3271
3148/*****************************************************************************/ 3272/*****************************************************************************/
3149 3273
3150#if 0 3274#if EV_WALK_ENABLE
3151void 3275void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3277{
3154 int i, j; 3278 int i, j;
3155 ev_watcher_list *wl, *wn; 3279 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3295#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3297 ;
3174 else 3298 else
3175#endif 3299#endif
3176 if ((ev_io *)wl != &pipeev) 3300 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3301 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3302 cb (EV_A_ EV_IO, wl);
3179 3303
3180 wl = wn; 3304 wl = wn;
3181 } 3305 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines