ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 287#endif
286 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
478#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
480 492
481/*****************************************************************************/ 493/*****************************************************************************/
482 494
495/* file descriptor info structure */
483typedef struct 496typedef struct
484{ 497{
485 WL head; 498 WL head;
486 unsigned char events; 499 unsigned char events; /* the events watched for */
487 unsigned char reify; 500 unsigned char reify; /* flag set when this ANFD needs reification */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 502 unsigned char unused;
490#if EV_USE_EPOLL 503#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 504 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 505#endif
493#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 507 SOCKET handle;
495#endif 508#endif
496} ANFD; 509} ANFD;
497 510
511/* stores the pending event set for a given watcher */
498typedef struct 512typedef struct
499{ 513{
500 W w; 514 W w;
501 int events; 515 int events; /* the pending event set for the given watcher */
502} ANPENDING; 516} ANPENDING;
503 517
504#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
506typedef struct 520typedef struct
509} ANFS; 523} ANFS;
510#endif 524#endif
511 525
512/* Heap Entry */ 526/* Heap Entry */
513#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
514 typedef struct { 529 typedef struct {
515 ev_tstamp at; 530 ev_tstamp at;
516 WT w; 531 WT w;
517 } ANHE; 532 } ANHE;
518 533
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 537#else
538 /* a heap element */
523 typedef WT ANHE; 539 typedef WT ANHE;
524 540
525 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
551 567
552 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
553 569
554#endif 570#endif
555 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
556/*****************************************************************************/ 582/*****************************************************************************/
557 583
584#ifndef EV_HAVE_EV_TIME
558ev_tstamp 585ev_tstamp
559ev_time (void) 586ev_time (void)
560{ 587{
561#if EV_USE_REALTIME 588#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 589 if (expect_true (have_realtime))
569 596
570 struct timeval tv; 597 struct timeval tv;
571 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 600}
601#endif
574 602
575ev_tstamp inline_size 603inline_size ev_tstamp
576get_clock (void) 604get_clock (void)
577{ 605{
578#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
580 { 608 {
614 642
615 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 645
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 647 /* somehting not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 648 /* by older ones */
621 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
622#endif 650#endif
623 } 651 }
624} 652}
625 653
626/*****************************************************************************/ 654/*****************************************************************************/
627 655
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 657
630int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
631array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
632{ 662{
633 int ncur = cur + 1; 663 int ncur = cur + 1;
634 664
635 do 665 do
680#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 712
683/*****************************************************************************/ 713/*****************************************************************************/
684 714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
720
685void noinline 721void noinline
686ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
687{ 723{
688 W w_ = (W)w; 724 W w_ = (W)w;
689 int pri = ABSPRI (w_); 725 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
699 } 735 }
700} 736}
701 737
702void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 755{
705 int i; 756 int i;
706 757
707 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
709} 760}
710 761
711/*****************************************************************************/ 762/*****************************************************************************/
712 763
713void inline_speed 764inline_speed void
714fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
715{ 766{
716 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
717 ev_io *w; 768 ev_io *w;
718 769
730{ 781{
731 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
733} 784}
734 785
735void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
736fd_reify (EV_P) 789fd_reify (EV_P)
737{ 790{
738 int i; 791 int i;
739 792
740 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
774 } 827 }
775 828
776 fdchangecnt = 0; 829 fdchangecnt = 0;
777} 830}
778 831
779void inline_size 832/* something about the given fd changed */
833inline_size void
780fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
781{ 835{
782 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
784 838
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
790 } 844 }
791} 845}
792 846
793void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
794fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
795{ 850{
796 ev_io *w; 851 ev_io *w;
797 852
798 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 857 }
803} 858}
804 859
805int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
806fd_valid (int fd) 862fd_valid (int fd)
807{ 863{
808#ifdef _WIN32 864#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
810#else 866#else
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 931#define UPHEAP_DONE(p,k) ((p) == (k))
876 932
877/* away from the root */ 933/* away from the root */
878void inline_speed 934inline_speed void
879downheap (ANHE *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
880{ 936{
881 ANHE he = heap [k]; 937 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 938 ANHE *E = heap + N + HEAP0;
883 939
923#define HEAP0 1 979#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 980#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 981#define UPHEAP_DONE(p,k) (!(p))
926 982
927/* away from the root */ 983/* away from the root */
928void inline_speed 984inline_speed void
929downheap (ANHE *heap, int N, int k) 985downheap (ANHE *heap, int N, int k)
930{ 986{
931 ANHE he = heap [k]; 987 ANHE he = heap [k];
932 988
933 for (;;) 989 for (;;)
953 ev_active (ANHE_w (he)) = k; 1009 ev_active (ANHE_w (he)) = k;
954} 1010}
955#endif 1011#endif
956 1012
957/* towards the root */ 1013/* towards the root */
958void inline_speed 1014inline_speed void
959upheap (ANHE *heap, int k) 1015upheap (ANHE *heap, int k)
960{ 1016{
961 ANHE he = heap [k]; 1017 ANHE he = heap [k];
962 1018
963 for (;;) 1019 for (;;)
974 1030
975 heap [k] = he; 1031 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1032 ev_active (ANHE_w (he)) = k;
977} 1033}
978 1034
979void inline_size 1035/* move an element suitably so it is in a correct place */
1036inline_size void
980adjustheap (ANHE *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
981{ 1038{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1040 upheap (heap, k);
984 else 1041 else
985 downheap (heap, N, k); 1042 downheap (heap, N, k);
986} 1043}
987 1044
988/* rebuild the heap: this function is used only once and executed rarely */ 1045/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1046inline_size void
990reheap (ANHE *heap, int N) 1047reheap (ANHE *heap, int N)
991{ 1048{
992 int i; 1049 int i;
993 1050
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1054 upheap (heap, i + HEAP0);
998} 1055}
999 1056
1000/*****************************************************************************/ 1057/*****************************************************************************/
1001 1058
1059/* associate signal watchers to a signal signal */
1002typedef struct 1060typedef struct
1003{ 1061{
1004 WL head; 1062 WL head;
1005 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
1006} ANSIG; 1064} ANSIG;
1010 1068
1011static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
1012 1070
1013/*****************************************************************************/ 1071/*****************************************************************************/
1014 1072
1015void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
1016fd_intern (int fd) 1076fd_intern (int fd)
1017{ 1077{
1018#ifdef _WIN32 1078#ifdef _WIN32
1019 unsigned long arg = 1; 1079 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1085}
1026 1086
1027static void noinline 1087static void noinline
1028evpipe_init (EV_P) 1088evpipe_init (EV_P)
1029{ 1089{
1030 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
1031 { 1091 {
1032#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
1034 { 1094 {
1035 evpipe [0] = -1; 1095 evpipe [0] = -1;
1036 fd_intern (evfd); 1096 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1098 }
1039 else 1099 else
1040#endif 1100#endif
1041 { 1101 {
1042 while (pipe (evpipe)) 1102 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
1044 1104
1045 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1108 }
1049 1109
1050 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1112 }
1053} 1113}
1054 1114
1055void inline_size 1115inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1117{
1058 if (!*flag) 1118 if (!*flag)
1059 { 1119 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1073 1133
1074 errno = old_errno; 1134 errno = old_errno;
1075 } 1135 }
1076} 1136}
1077 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1078static void 1140static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1142{
1081#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1144 if (evfd >= 0)
1164 1226
1165#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1167#endif 1229#endif
1168 1230
1169void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1171{ 1234{
1172 ev_child *w; 1235 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1237
1187 1250
1188#ifndef WCONTINUED 1251#ifndef WCONTINUED
1189# define WCONTINUED 0 1252# define WCONTINUED 0
1190#endif 1253#endif
1191 1254
1255/* called on sigchld etc., calls waitpid */
1192static void 1256static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1258{
1195 int pid, status; 1259 int pid, status;
1196 1260
1303ev_backend (EV_P) 1367ev_backend (EV_P)
1304{ 1368{
1305 return backend; 1369 return backend;
1306} 1370}
1307 1371
1372#if EV_MINIMAL < 2
1308unsigned int 1373unsigned int
1309ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1310{ 1375{
1311 return loop_count; 1376 return loop_count;
1312} 1377}
1313 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1314void 1385void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1387{
1317 io_blocktime = interval; 1388 io_blocktime = interval;
1318} 1389}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1393{
1323 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1324} 1395}
1325 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1422static void noinline
1327loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1328{ 1424{
1329 if (!backend) 1425 if (!backend)
1330 { 1426 {
1350 1446
1351 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1448 mn_now = get_clock ();
1353 now_floor = mn_now; 1449 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1355 1454
1356 io_blocktime = 0.; 1455 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1358 backend = 0; 1457 backend = 0;
1359 backend_fd = -1; 1458 backend_fd = -1;
1390#endif 1489#endif
1391#if EV_USE_SELECT 1490#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1492#endif
1394 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1395 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1498 }
1398} 1499}
1399 1500
1501/* free up a loop structure */
1400static void noinline 1502static void noinline
1401loop_destroy (EV_P) 1503loop_destroy (EV_P)
1402{ 1504{
1403 int i; 1505 int i;
1404 1506
1405 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1406 { 1508 {
1407 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1409 1511
1410#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1513 if (evfd >= 0)
1412 close (evfd); 1514 close (evfd);
1413#endif 1515#endif
1452 } 1554 }
1453 1555
1454 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1455 1557
1456 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1461#endif 1564#endif
1470 1573
1471 backend = 0; 1574 backend = 0;
1472} 1575}
1473 1576
1474#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1476#endif 1579#endif
1477 1580
1478void inline_size 1581inline_size void
1479loop_fork (EV_P) 1582loop_fork (EV_P)
1480{ 1583{
1481#if EV_USE_PORT 1584#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1586#endif
1489#endif 1592#endif
1490#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1594 infy_fork (EV_A);
1492#endif 1595#endif
1493 1596
1494 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1495 { 1598 {
1496 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1498 gotsig = 1; 1601 gotsig = 1;
1499#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1603 gotasync = 1;
1501#endif 1604#endif
1502 1605
1503 ev_ref (EV_A); 1606 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1505 1608
1506#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1610 if (evfd >= 0)
1508 close (evfd); 1611 close (evfd);
1509#endif 1612#endif
1514 close (evpipe [1]); 1617 close (evpipe [1]);
1515 } 1618 }
1516 1619
1517 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1623 }
1521 1624
1522 postfork = 0; 1625 postfork = 0;
1523} 1626}
1524 1627
1549void 1652void
1550ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1551{ 1654{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1553} 1656}
1657#endif /* multiplicity */
1554 1658
1555#if EV_VERIFY 1659#if EV_VERIFY
1556static void noinline 1660static void noinline
1557verify_watcher (EV_P_ W w) 1661verify_watcher (EV_P_ W w)
1558{ 1662{
1586 verify_watcher (EV_A_ ws [cnt]); 1690 verify_watcher (EV_A_ ws [cnt]);
1587 } 1691 }
1588} 1692}
1589#endif 1693#endif
1590 1694
1695#if EV_MINIMAL < 2
1591void 1696void
1592ev_loop_verify (EV_P) 1697ev_loop_verify (EV_P)
1593{ 1698{
1594#if EV_VERIFY 1699#if EV_VERIFY
1595 int i; 1700 int i;
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1650# endif 1755# endif
1651#endif 1756#endif
1652} 1757}
1653 1758#endif
1654#endif /* multiplicity */
1655 1759
1656#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1657struct ev_loop * 1761struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1659#else 1763#else
1720ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1721{ 1825{
1722 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1723} 1827}
1724 1828
1725void inline_speed 1829void noinline
1726call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1727{ 1831{
1728 int pri; 1832 int pri;
1729 1833
1730 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1732 { 1836 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1838
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1738 1841
1739 p->w->pending = 0; 1842 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1844 EV_FREQUENT_CHECK;
1742 }
1743 } 1845 }
1744} 1846}
1745 1847
1746#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1747void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1748idle_reify (EV_P) 1852idle_reify (EV_P)
1749{ 1853{
1750 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1751 { 1855 {
1752 int pri; 1856 int pri;
1764 } 1868 }
1765 } 1869 }
1766} 1870}
1767#endif 1871#endif
1768 1872
1769void inline_size 1873/* make timers pending */
1874inline_size void
1770timers_reify (EV_P) 1875timers_reify (EV_P)
1771{ 1876{
1772 EV_FREQUENT_CHECK; 1877 EV_FREQUENT_CHECK;
1773 1878
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 1880 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1881 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1783 ev_at (w) += w->repeat; 1890 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 1891 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 1892 ev_at (w) = mn_now;
1786 1893
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 1895
1789 ANHE_at_cache (timers [HEAP0]); 1896 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1791 } 1904 }
1792 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 1906
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 1908 }
1798} 1909}
1799 1910
1800#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1801void inline_size 1912/* make periodics pending */
1913inline_size void
1802periodics_reify (EV_P) 1914periodics_reify (EV_P)
1803{ 1915{
1804 EV_FREQUENT_CHECK; 1916 EV_FREQUENT_CHECK;
1805 1917
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 1919 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1920 int feed_count = 0;
1809 1921
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 1932
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 1934
1819 ANHE_at_cache (periodics [HEAP0]); 1935 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1821 } 1962 }
1822 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 1964
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 1966 }
1847} 1967}
1848 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 1971static void noinline
1850periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1851{ 1973{
1852 int i; 1974 int i;
1853 1975
1866 1988
1867 reheap (periodics, periodiccnt); 1989 reheap (periodics, periodiccnt);
1868} 1990}
1869#endif 1991#endif
1870 1992
1871void inline_speed 1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1873{ 2011{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1878 { 2014 {
2015 int i;
1879 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1880 2017
1881 mn_now = get_clock (); 2018 mn_now = get_clock ();
1882 2019
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2047 mn_now = get_clock ();
1911 now_floor = mn_now; 2048 now_floor = mn_now;
1912 } 2049 }
1913 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1916# endif 2055# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2056 }
1920 else 2057 else
1921#endif 2058#endif
1922 { 2059 {
1923 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1924 2061
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1929#endif 2068#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2069 }
1938 2070
1939 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1940 } 2072 }
1941} 2073}
1942 2074
1943void 2075void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1965{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1966 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1967 2083
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2085
1970 do 2086 do
1971 { 2087 {
1972#if EV_VERIFY >= 2 2088#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2089 ev_loop_verify (EV_A);
1986 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1988 if (forkcnt) 2104 if (forkcnt)
1989 { 2105 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1992 } 2108 }
1993#endif 2109#endif
1994 2110
1995 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1997 { 2113 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
2000 } 2116 }
2001 2117
2002 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2119 if (expect_false (postfork))
2004 loop_fork (EV_A); 2120 loop_fork (EV_A);
2011 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
2013 2129
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
2016 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
2018 2137
2019 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
2020 2139
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
2032 } 2151 }
2033#endif 2152#endif
2034 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
2037 2157
2038 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
2045 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
2047 } 2171 }
2048 } 2172 }
2049 2173
2174#if EV_MINIMAL < 2
2050 ++loop_count; 2175 ++loop_count;
2176#endif
2051 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
2052 2178
2053 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
2055 } 2181 }
2067 2193
2068 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2071 2197
2072 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
2073 } 2199 }
2074 while (expect_true ( 2200 while (expect_true (
2075 activecnt 2201 activecnt
2076 && !loop_done 2202 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 )); 2204 ));
2079 2205
2080 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
2082} 2212}
2083 2213
2084void 2214void
2085ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
2086{ 2216{
2087 loop_done = how; 2217 loop_done = how;
2088} 2218}
2089 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
2090/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
2091 2259
2092void inline_size 2260inline_size void
2093wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
2094{ 2262{
2095 elem->next = *head; 2263 elem->next = *head;
2096 *head = elem; 2264 *head = elem;
2097} 2265}
2098 2266
2099void inline_size 2267inline_size void
2100wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
2101{ 2269{
2102 while (*head) 2270 while (*head)
2103 { 2271 {
2104 if (*head == elem) 2272 if (*head == elem)
2109 2277
2110 head = &(*head)->next; 2278 head = &(*head)->next;
2111 } 2279 }
2112} 2280}
2113 2281
2114void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
2115clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
2116{ 2285{
2117 if (w->pending) 2286 if (w->pending)
2118 { 2287 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2289 w->pending = 0;
2121 } 2290 }
2122} 2291}
2123 2292
2124int 2293int
2128 int pending = w_->pending; 2297 int pending = w_->pending;
2129 2298
2130 if (expect_true (pending)) 2299 if (expect_true (pending))
2131 { 2300 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2133 w_->pending = 0; 2303 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2304 return p->events;
2136 } 2305 }
2137 else 2306 else
2138 return 0; 2307 return 0;
2139} 2308}
2140 2309
2141void inline_size 2310inline_size void
2142pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
2143{ 2312{
2144 int pri = w->priority; 2313 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2316 ev_set_priority (w, pri);
2148} 2317}
2149 2318
2150void inline_speed 2319inline_speed void
2151ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
2152{ 2321{
2153 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
2154 w->active = active; 2323 w->active = active;
2155 ev_ref (EV_A); 2324 ev_ref (EV_A);
2156} 2325}
2157 2326
2158void inline_size 2327inline_size void
2159ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
2160{ 2329{
2161 ev_unref (EV_A); 2330 ev_unref (EV_A);
2162 w->active = 0; 2331 w->active = 0;
2163} 2332}
2588 2757
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591} 2760}
2592 2761
2593void inline_size 2762inline_size void
2594check_2625 (EV_P) 2763check_2625 (EV_P)
2595{ 2764{
2596 /* kernels < 2.6.25 are borked 2765 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 2767 */
2611 return; 2780 return;
2612 2781
2613 fs_2625 = 1; 2782 fs_2625 = 1;
2614} 2783}
2615 2784
2616void inline_size 2785inline_size void
2617infy_init (EV_P) 2786infy_init (EV_P)
2618{ 2787{
2619 if (fs_fd != -2) 2788 if (fs_fd != -2)
2620 return; 2789 return;
2621 2790
2631 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2633 } 2802 }
2634} 2803}
2635 2804
2636void inline_size 2805inline_size void
2637infy_fork (EV_P) 2806infy_fork (EV_P)
2638{ 2807{
2639 int slot; 2808 int slot;
2640 2809
2641 if (fs_fd < 0) 2810 if (fs_fd < 0)
3145 } 3314 }
3146} 3315}
3147 3316
3148/*****************************************************************************/ 3317/*****************************************************************************/
3149 3318
3150#if 0 3319#if EV_WALK_ENABLE
3151void 3320void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3322{
3154 int i, j; 3323 int i, j;
3155 ev_watcher_list *wl, *wn; 3324 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3340#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3342 ;
3174 else 3343 else
3175#endif 3344#endif
3176 if ((ev_io *)wl != &pipeev) 3345 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3346 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3347 cb (EV_A_ EV_IO, wl);
3179 3348
3180 wl = wn; 3349 wl = wn;
3181 } 3350 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines