ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
176# endif 186# endif
177#endif 187#endif
178 188
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
180 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
181#ifndef EV_USE_CLOCK_SYSCALL 218#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 219# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 220# define EV_USE_CLOCK_SYSCALL 1
184# else 221# else
185# define EV_USE_CLOCK_SYSCALL 0 222# define EV_USE_CLOCK_SYSCALL 0
264# else 301# else
265# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
266# endif 303# endif
267#endif 304#endif
268 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
269#if 0 /* debugging */ 314#if 0 /* debugging */
270# define EV_VERIFY 3 315# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 316# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 317# define EV_HEAP_CACHE_AT 1
273#endif 318#endif
280# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
281#endif 326#endif
282 327
283#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
285#endif 344#endif
286 345
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 347
289#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
320 379
321#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 381# include <winsock.h>
323#endif 382#endif
324 383
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
337# ifdef __cplusplus 397# ifdef __cplusplus
338extern "C" { 398extern "C" {
339# endif 399# endif
340int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 401# ifdef __cplusplus
342} 402}
343# endif 403# endif
344#endif 404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
345 434
346/**/ 435/**/
347 436
348#if EV_VERIFY >= 3 437#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
361 */ 450 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 452
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 455
368#if __GNUC__ >= 4 456#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
371#else 459#else
384# define inline_speed static noinline 472# define inline_speed static noinline
385#else 473#else
386# define inline_speed static inline 474# define inline_speed static inline
387#endif 475#endif
388 476
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
391 484
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
394 487
395typedef ev_watcher *W; 488typedef ev_watcher *W;
407 500
408#if EV_USE_MONOTONIC 501#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 503#endif
411 504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
514
412#ifdef _WIN32 515#ifdef _WIN32
413# include "ev_win32.c" 516# include "ev_win32.c"
414#endif 517#endif
415 518
416/*****************************************************************************/ 519/*****************************************************************************/
478#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
480 583
481/*****************************************************************************/ 584/*****************************************************************************/
482 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
483typedef struct 590typedef struct
484{ 591{
485 WL head; 592 WL head;
486 unsigned char events; 593 unsigned char events; /* the events watched for */
487 unsigned char reify; 594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 596 unsigned char unused;
490#if EV_USE_EPOLL 597#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 598 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 599#endif
493#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 601 SOCKET handle;
495#endif 602#endif
496} ANFD; 603} ANFD;
497 604
605/* stores the pending event set for a given watcher */
498typedef struct 606typedef struct
499{ 607{
500 W w; 608 W w;
501 int events; 609 int events; /* the pending event set for the given watcher */
502} ANPENDING; 610} ANPENDING;
503 611
504#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
506typedef struct 614typedef struct
509} ANFS; 617} ANFS;
510#endif 618#endif
511 619
512/* Heap Entry */ 620/* Heap Entry */
513#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
514 typedef struct { 623 typedef struct {
515 ev_tstamp at; 624 ev_tstamp at;
516 WT w; 625 WT w;
517 } ANHE; 626 } ANHE;
518 627
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 631#else
632 /* a heap element */
523 typedef WT ANHE; 633 typedef WT ANHE;
524 634
525 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 637 #define ANHE_at_cache(he)
551 661
552 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
553 663
554#endif 664#endif
555 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
556/*****************************************************************************/ 678/*****************************************************************************/
557 679
680#ifndef EV_HAVE_EV_TIME
558ev_tstamp 681ev_tstamp
559ev_time (void) 682ev_time (void)
560{ 683{
561#if EV_USE_REALTIME 684#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 685 if (expect_true (have_realtime))
569 692
570 struct timeval tv; 693 struct timeval tv;
571 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 696}
697#endif
574 698
575ev_tstamp inline_size 699inline_size ev_tstamp
576get_clock (void) 700get_clock (void)
577{ 701{
578#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
580 { 704 {
614 738
615 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 741
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 743 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 744 /* by older ones */
621 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
622#endif 746#endif
623 } 747 }
624} 748}
625 749
626/*****************************************************************************/ 750/*****************************************************************************/
627 751
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 753
630int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
631array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
632{ 758{
633 int ncur = cur + 1; 759 int ncur = cur + 1;
634 760
635 do 761 do
680#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 808
683/*****************************************************************************/ 809/*****************************************************************************/
684 810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
816
685void noinline 817void noinline
686ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
687{ 819{
688 W w_ = (W)w; 820 W w_ = (W)w;
689 int pri = ABSPRI (w_); 821 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
699 } 831 }
700} 832}
701 833
702void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 851{
705 int i; 852 int i;
706 853
707 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
709} 856}
710 857
711/*****************************************************************************/ 858/*****************************************************************************/
712 859
713void inline_speed 860inline_speed void
714fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
715{ 862{
716 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
717 ev_io *w; 864 ev_io *w;
718 865
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 870 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
725 } 872 }
726} 873}
727 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
728void 886void
729ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 888{
731 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
733} 891}
734 892
735void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
736fd_reify (EV_P) 896fd_reify (EV_P)
737{ 897{
738 int i; 898 int i;
739 899
740 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
750 910
751#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
752 if (events) 912 if (events)
753 { 913 {
754 unsigned long arg; 914 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 } 917 }
762#endif 918#endif
763 919
764 { 920 {
774 } 930 }
775 931
776 fdchangecnt = 0; 932 fdchangecnt = 0;
777} 933}
778 934
779void inline_size 935/* something about the given fd changed */
936inline_size void
780fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
781{ 938{
782 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
784 941
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
790 } 947 }
791} 948}
792 949
793void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
794fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
795{ 953{
796 ev_io *w; 954 ev_io *w;
797 955
798 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 960 }
803} 961}
804 962
805int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
806fd_valid (int fd) 965fd_valid (int fd)
807{ 966{
808#ifdef _WIN32 967#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
810#else 969#else
832 991
833 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 993 if (anfds [fd].events)
835 { 994 {
836 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
837 return; 996 break;
838 } 997 }
839} 998}
840 999
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1001static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1007 if (anfds [fd].events)
849 { 1008 {
850 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1010 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1012 }
854} 1013}
855 1014
856/*****************************************************************************/ 1015/*****************************************************************************/
857 1016
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1034#define UPHEAP_DONE(p,k) ((p) == (k))
876 1035
877/* away from the root */ 1036/* away from the root */
878void inline_speed 1037inline_speed void
879downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
880{ 1039{
881 ANHE he = heap [k]; 1040 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
883 1042
923#define HEAP0 1 1082#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1083#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1084#define UPHEAP_DONE(p,k) (!(p))
926 1085
927/* away from the root */ 1086/* away from the root */
928void inline_speed 1087inline_speed void
929downheap (ANHE *heap, int N, int k) 1088downheap (ANHE *heap, int N, int k)
930{ 1089{
931 ANHE he = heap [k]; 1090 ANHE he = heap [k];
932 1091
933 for (;;) 1092 for (;;)
934 { 1093 {
935 int c = k << 1; 1094 int c = k << 1;
936 1095
937 if (c > N + HEAP0 - 1) 1096 if (c >= N + HEAP0)
938 break; 1097 break;
939 1098
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1100 ? 1 : 0;
942 1101
953 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
954} 1113}
955#endif 1114#endif
956 1115
957/* towards the root */ 1116/* towards the root */
958void inline_speed 1117inline_speed void
959upheap (ANHE *heap, int k) 1118upheap (ANHE *heap, int k)
960{ 1119{
961 ANHE he = heap [k]; 1120 ANHE he = heap [k];
962 1121
963 for (;;) 1122 for (;;)
974 1133
975 heap [k] = he; 1134 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1135 ev_active (ANHE_w (he)) = k;
977} 1136}
978 1137
979void inline_size 1138/* move an element suitably so it is in a correct place */
1139inline_size void
980adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
981{ 1141{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1143 upheap (heap, k);
984 else 1144 else
985 downheap (heap, N, k); 1145 downheap (heap, N, k);
986} 1146}
987 1147
988/* rebuild the heap: this function is used only once and executed rarely */ 1148/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1149inline_size void
990reheap (ANHE *heap, int N) 1150reheap (ANHE *heap, int N)
991{ 1151{
992 int i; 1152 int i;
993 1153
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1157 upheap (heap, i + HEAP0);
998} 1158}
999 1159
1000/*****************************************************************************/ 1160/*****************************************************************************/
1001 1161
1162/* associate signal watchers to a signal signal */
1002typedef struct 1163typedef struct
1003{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
1004 WL head; 1169 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1170} ANSIG;
1007 1171
1008static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1173
1013/*****************************************************************************/ 1174/*****************************************************************************/
1014 1175
1015void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
1016fd_intern (int fd) 1179fd_intern (int fd)
1017{ 1180{
1018#ifdef _WIN32 1181#ifdef _WIN32
1019 unsigned long arg = 1; 1182 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1188}
1026 1189
1027static void noinline 1190static void noinline
1028evpipe_init (EV_P) 1191evpipe_init (EV_P)
1029{ 1192{
1030 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
1031 { 1194 {
1032#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1034 { 1201 {
1035 evpipe [0] = -1; 1202 evpipe [0] = -1;
1036 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1205 }
1039 else 1206 else
1040#endif 1207#endif
1041 { 1208 {
1042 while (pipe (evpipe)) 1209 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
1044 1211
1045 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1215 }
1049 1216
1050 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1219 }
1053} 1220}
1054 1221
1055void inline_size 1222inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1224{
1058 if (!*flag) 1225 if (!*flag)
1059 { 1226 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1073 1240
1074 errno = old_errno; 1241 errno = old_errno;
1075 } 1242 }
1076} 1243}
1077 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1078static void 1247static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1249{
1250 int i;
1251
1081#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1253 if (evfd >= 0)
1083 { 1254 {
1084 uint64_t counter; 1255 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1089 { 1260 {
1090 char dummy; 1261 char dummy;
1091 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1092 } 1263 }
1093 1264
1094 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1095 { 1266 {
1096 int signum; 1267 sig_pending = 0;
1097 gotsig = 0;
1098 1268
1099 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1272 }
1103 1273
1104#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1105 if (gotasync) 1275 if (async_pending)
1106 { 1276 {
1107 int i; 1277 async_pending = 0;
1108 gotasync = 0;
1109 1278
1110 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1112 { 1281 {
1113 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1121 1290
1122static void 1291static void
1123ev_sighandler (int signum) 1292ev_sighandler (int signum)
1124{ 1293{
1125#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1127#endif 1296#endif
1128 1297
1129#if _WIN32 1298#if _WIN32
1130 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1131#endif 1300#endif
1132 1301
1133 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1135} 1304}
1136 1305
1137void noinline 1306void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1139{ 1308{
1140 WL w; 1309 WL w;
1141 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1142#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1319
1146 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1321 return;
1322#endif
1150 1323
1151 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1152 1325
1153 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1328}
1156 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1157/*****************************************************************************/ 1350/*****************************************************************************/
1158 1351
1159static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1160 1353
1161#ifndef _WIN32 1354#ifndef _WIN32
1164 1357
1165#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1167#endif 1360#endif
1168 1361
1169void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1171{ 1365{
1172 ev_child *w; 1366 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1368
1187 1381
1188#ifndef WCONTINUED 1382#ifndef WCONTINUED
1189# define WCONTINUED 0 1383# define WCONTINUED 0
1190#endif 1384#endif
1191 1385
1386/* called on sigchld etc., calls waitpid */
1192static void 1387static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1389{
1195 int pid, status; 1390 int pid, status;
1196 1391
1303ev_backend (EV_P) 1498ev_backend (EV_P)
1304{ 1499{
1305 return backend; 1500 return backend;
1306} 1501}
1307 1502
1503#if EV_MINIMAL < 2
1308unsigned int 1504unsigned int
1309ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1310{ 1506{
1311 return loop_count; 1507 return loop_count;
1312} 1508}
1313 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1314void 1516void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1518{
1317 io_blocktime = interval; 1519 io_blocktime = interval;
1318} 1520}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1524{
1323 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1324} 1526}
1325 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1553static void noinline
1327loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1328{ 1555{
1329 if (!backend) 1556 if (!backend)
1330 { 1557 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1574 have_monotonic = 1;
1348 } 1575 }
1349#endif 1576#endif
1350 1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1588
1351 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1590 mn_now = get_clock ();
1353 now_floor = mn_now; 1591 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1355 1596
1356 io_blocktime = 0.; 1597 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1358 backend = 0; 1599 backend = 0;
1359 backend_fd = -1; 1600 backend_fd = -1;
1360 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1361#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1362 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1607#endif
1364 1608#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1610#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1611
1376 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1378 1614
1379#if EV_USE_PORT 1615#if EV_USE_PORT
1390#endif 1626#endif
1391#if EV_USE_SELECT 1627#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1629#endif
1394 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1395 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1635 }
1398} 1636}
1399 1637
1638/* free up a loop structure */
1400static void noinline 1639static void noinline
1401loop_destroy (EV_P) 1640loop_destroy (EV_P)
1402{ 1641{
1403 int i; 1642 int i;
1404 1643
1405 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1406 { 1645 {
1407 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1648
1410#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1650 if (evfd >= 0)
1412 close (evfd); 1651 close (evfd);
1413#endif 1652#endif
1414 1653
1415 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1416 { 1655 {
1417 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1658 }
1420 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1421 1670
1422#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1424 close (fs_fd); 1673 close (fs_fd);
1425#endif 1674#endif
1449#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1699 array_free (idle, [i]);
1451#endif 1700#endif
1452 } 1701 }
1453 1702
1454 ev_free (anfds); anfdmax = 0; 1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1704
1456 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1461#endif 1711#endif
1470 1720
1471 backend = 0; 1721 backend = 0;
1472} 1722}
1473 1723
1474#if EV_USE_INOTIFY 1724#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1476#endif 1726#endif
1477 1727
1478void inline_size 1728inline_size void
1479loop_fork (EV_P) 1729loop_fork (EV_P)
1480{ 1730{
1481#if EV_USE_PORT 1731#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1733#endif
1489#endif 1739#endif
1490#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1741 infy_fork (EV_A);
1492#endif 1742#endif
1493 1743
1494 if (ev_is_active (&pipeev)) 1744 if (ev_is_active (&pipe_w))
1495 { 1745 {
1496 /* this "locks" the handlers against writing to the pipe */ 1746 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1747 /* while we modify the fd vars */
1498 gotsig = 1; 1748 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1749#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1750 async_pending = 1;
1501#endif 1751#endif
1502 1752
1503 ev_ref (EV_A); 1753 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1754 ev_io_stop (EV_A_ &pipe_w);
1505 1755
1506#if EV_USE_EVENTFD 1756#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1757 if (evfd >= 0)
1508 close (evfd); 1758 close (evfd);
1509#endif 1759#endif
1510 1760
1511 if (evpipe [0] >= 0) 1761 if (evpipe [0] >= 0)
1512 { 1762 {
1513 close (evpipe [0]); 1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1765 }
1516 1766
1517 evpipe_init (EV_A); 1767 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1768 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1769 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1770 }
1521 1771
1522 postfork = 0; 1772 postfork = 0;
1523} 1773}
1524 1774
1525#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1526 1776
1527struct ev_loop * 1777struct ev_loop *
1528ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1529{ 1779{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1781
1532 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1535 1784
1536 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1537 return loop; 1786 return EV_A;
1538 1787
1539 return 0; 1788 return 0;
1540} 1789}
1541 1790
1542void 1791void
1549void 1798void
1550ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1551{ 1800{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1801 postfork = 1; /* must be in line with ev_default_fork */
1553} 1802}
1803#endif /* multiplicity */
1554 1804
1555#if EV_VERIFY 1805#if EV_VERIFY
1556static void noinline 1806static void noinline
1557verify_watcher (EV_P_ W w) 1807verify_watcher (EV_P_ W w)
1558{ 1808{
1586 verify_watcher (EV_A_ ws [cnt]); 1836 verify_watcher (EV_A_ ws [cnt]);
1587 } 1837 }
1588} 1838}
1589#endif 1839#endif
1590 1840
1841#if EV_MINIMAL < 2
1591void 1842void
1592ev_loop_verify (EV_P) 1843ev_loop_verify (EV_P)
1593{ 1844{
1594#if EV_VERIFY 1845#if EV_VERIFY
1595 int i; 1846 int i;
1644 assert (checkmax >= checkcnt); 1895 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1896 array_verify (EV_A_ (W *)checks, checkcnt);
1646 1897
1647# if 0 1898# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1650# endif
1651#endif 1901# endif
1902#endif
1652} 1903}
1653 1904#endif
1654#endif /* multiplicity */
1655 1905
1656#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1657struct ev_loop * 1907struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1908ev_default_loop_init (unsigned int flags)
1659#else 1909#else
1662#endif 1912#endif
1663{ 1913{
1664 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1665 { 1915 {
1666#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1918#else
1669 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1670#endif 1920#endif
1671 1921
1672 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1689 1939
1690void 1940void
1691ev_default_destroy (void) 1941ev_default_destroy (void)
1692{ 1942{
1693#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1695#endif 1945#endif
1696 1946
1697 ev_default_loop_ptr = 0; 1947 ev_default_loop_ptr = 0;
1698 1948
1699#ifndef _WIN32 1949#ifndef _WIN32
1706 1956
1707void 1957void
1708ev_default_fork (void) 1958ev_default_fork (void)
1709{ 1959{
1710#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1712#endif 1962#endif
1713 1963
1714 postfork = 1; /* must be in line with ev_loop_fork */ 1964 postfork = 1; /* must be in line with ev_loop_fork */
1715} 1965}
1716 1966
1720ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1721{ 1971{
1722 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1723} 1973}
1724 1974
1725void inline_speed 1975unsigned int
1726call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1727{ 1989{
1728 int pri; 1990 int pri;
1729 1991
1730 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1732 { 1994 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1996
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1738 1999
1739 p->w->pending = 0; 2000 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2002 EV_FREQUENT_CHECK;
1742 }
1743 } 2003 }
1744} 2004}
1745 2005
1746#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1747void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1748idle_reify (EV_P) 2010idle_reify (EV_P)
1749{ 2011{
1750 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1751 { 2013 {
1752 int pri; 2014 int pri;
1764 } 2026 }
1765 } 2027 }
1766} 2028}
1767#endif 2029#endif
1768 2030
1769void inline_size 2031/* make timers pending */
2032inline_size void
1770timers_reify (EV_P) 2033timers_reify (EV_P)
1771{ 2034{
1772 EV_FREQUENT_CHECK; 2035 EV_FREQUENT_CHECK;
1773 2036
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2038 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2039 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
1783 ev_at (w) += w->repeat; 2048 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2049 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2050 ev_at (w) = mn_now;
1786 2051
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2053
1789 ANHE_at_cache (timers [HEAP0]); 2054 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
1791 } 2062 }
1792 else 2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2064
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 2066 }
1798} 2067}
1799 2068
1800#if EV_PERIODIC_ENABLE 2069#if EV_PERIODIC_ENABLE
1801void inline_size 2070/* make periodics pending */
2071inline_size void
1802periodics_reify (EV_P) 2072periodics_reify (EV_P)
1803{ 2073{
1804 EV_FREQUENT_CHECK; 2074 EV_FREQUENT_CHECK;
1805 2075
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2077 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2078 int feed_count = 0;
1809 2079
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2080 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2090
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2092
1819 ANHE_at_cache (periodics [HEAP0]); 2093 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
1821 } 2120 }
1822 else if (w->interval) 2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2122
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2123 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2124 }
1847} 2125}
1848 2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 2129static void noinline
1850periodics_reschedule (EV_P) 2130periodics_reschedule (EV_P)
1851{ 2131{
1852 int i; 2132 int i;
1853 2133
1866 2146
1867 reheap (periodics, periodiccnt); 2147 reheap (periodics, periodiccnt);
1868} 2148}
1869#endif 2149#endif
1870 2150
1871void inline_speed 2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163}
2164
2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1873{ 2169{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1878 { 2172 {
2173 int i;
1879 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1880 2175
1881 mn_now = get_clock (); 2176 mn_now = get_clock ();
1882 2177
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2205 mn_now = get_clock ();
1911 now_floor = mn_now; 2206 now_floor = mn_now;
1912 } 2207 }
1913 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1916# endif 2213# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2214 }
1920 else 2215 else
1921#endif 2216#endif
1922 { 2217 {
1923 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1924 2219
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1929#endif 2226#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2227 }
1938 2228
1939 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1940 } 2230 }
1941} 2231}
1942 2232
1943void 2233void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1965{ 2235{
2236#if EV_MINIMAL < 2
2237 ++loop_depth;
2238#endif
2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
1966 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
1967 2243
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2245
1970 do 2246 do
1971 { 2247 {
1972#if EV_VERIFY >= 2 2248#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2249 ev_loop_verify (EV_A);
1986 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1988 if (forkcnt) 2264 if (forkcnt)
1989 { 2265 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1992 } 2268 }
1993#endif 2269#endif
1994 2270
1995 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1997 { 2273 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
2000 } 2276 }
2277
2278 if (expect_false (loop_done))
2279 break;
2001 2280
2002 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2282 if (expect_false (postfork))
2004 loop_fork (EV_A); 2283 loop_fork (EV_A);
2005 2284
2011 ev_tstamp waittime = 0.; 2290 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2291 ev_tstamp sleeptime = 0.;
2013 2292
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
2016 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
2018 2300
2019 waittime = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
2020 2302
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2313 if (waittime > to) waittime = to;
2032 } 2314 }
2033#endif 2315#endif
2034 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2318 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2319 waittime = timeout_blocktime;
2037 2320
2038 sleeptime = waittime - backend_fudge; 2321 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2322 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
2045 ev_sleep (sleeptime); 2331 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2332 waittime -= sleeptime;
2333 }
2047 } 2334 }
2048 } 2335 }
2049 2336
2337#if EV_MINIMAL < 2
2050 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2052 2343
2053 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2345 time_update (EV_A_ waittime + sleeptime);
2055 } 2346 }
2056 2347
2067 2358
2068 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2071 2362
2072 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
2073 } 2364 }
2074 while (expect_true ( 2365 while (expect_true (
2075 activecnt 2366 activecnt
2076 && !loop_done 2367 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 )); 2369 ));
2079 2370
2080 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
2082} 2377}
2083 2378
2084void 2379void
2085ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
2086{ 2381{
2087 loop_done = how; 2382 loop_done = how;
2088} 2383}
2089 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
2090/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
2091 2424
2092void inline_size 2425inline_size void
2093wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
2094{ 2427{
2095 elem->next = *head; 2428 elem->next = *head;
2096 *head = elem; 2429 *head = elem;
2097} 2430}
2098 2431
2099void inline_size 2432inline_size void
2100wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
2101{ 2434{
2102 while (*head) 2435 while (*head)
2103 { 2436 {
2104 if (*head == elem) 2437 if (expect_true (*head == elem))
2105 { 2438 {
2106 *head = elem->next; 2439 *head = elem->next;
2107 return; 2440 break;
2108 } 2441 }
2109 2442
2110 head = &(*head)->next; 2443 head = &(*head)->next;
2111 } 2444 }
2112} 2445}
2113 2446
2114void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
2115clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
2116{ 2450{
2117 if (w->pending) 2451 if (w->pending)
2118 { 2452 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2454 w->pending = 0;
2121 } 2455 }
2122} 2456}
2123 2457
2124int 2458int
2128 int pending = w_->pending; 2462 int pending = w_->pending;
2129 2463
2130 if (expect_true (pending)) 2464 if (expect_true (pending))
2131 { 2465 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
2133 w_->pending = 0; 2468 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2469 return p->events;
2136 } 2470 }
2137 else 2471 else
2138 return 0; 2472 return 0;
2139} 2473}
2140 2474
2141void inline_size 2475inline_size void
2142pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
2143{ 2477{
2144 int pri = w->priority; 2478 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2481 ev_set_priority (w, pri);
2148} 2482}
2149 2483
2150void inline_speed 2484inline_speed void
2151ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
2152{ 2486{
2153 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
2154 w->active = active; 2488 w->active = active;
2155 ev_ref (EV_A); 2489 ev_ref (EV_A);
2156} 2490}
2157 2491
2158void inline_size 2492inline_size void
2159ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
2160{ 2494{
2161 ev_unref (EV_A); 2495 ev_unref (EV_A);
2162 w->active = 0; 2496 w->active = 0;
2163} 2497}
2179 2513
2180 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
2183 2517
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 2519 w->events &= ~EV__IOFDSET;
2186 2520
2187 EV_FREQUENT_CHECK; 2521 EV_FREQUENT_CHECK;
2188} 2522}
2189 2523
2283 } 2617 }
2284 2618
2285 EV_FREQUENT_CHECK; 2619 EV_FREQUENT_CHECK;
2286} 2620}
2287 2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2626}
2627
2288#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
2289void noinline 2629void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
2291{ 2631{
2292 if (expect_false (ev_is_active (w))) 2632 if (expect_false (ev_is_active (w)))
2359#endif 2699#endif
2360 2700
2361void noinline 2701void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
2363{ 2703{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2368 return; 2705 return;
2369 2706
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 2708
2372 evpipe_init (EV_A); 2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 2712
2374 EV_FREQUENT_CHECK; 2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2375 2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2376 { 2720 {
2377#ifndef _WIN32 2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 2722 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 2724
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2384 2728
2385#ifndef _WIN32 2729 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 2730
2387#endif 2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2388 } 2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
2389 2747
2390 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 2750
2393 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
2394 { 2755 {
2395#if _WIN32 2756# if _WIN32
2396 signal (w->signum, ev_sighandler); 2757 signal (w->signum, ev_sighandler);
2397#else 2758# else
2398 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
2399 sa.sa_handler = ev_sighandler; 2763 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2403#endif 2771#endif
2404 } 2772 }
2405 2773
2406 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
2407} 2775}
2408 2776
2409void noinline 2777void noinline
2417 2785
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
2420 2788
2421 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
2422 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2423 2807
2424 EV_FREQUENT_CHECK; 2808 EV_FREQUENT_CHECK;
2425} 2809}
2426 2810
2427void 2811void
2507 } 2891 }
2508 } 2892 }
2509 2893
2510 if (w->wd >= 0) 2894 if (w->wd >= 0)
2511 { 2895 {
2896 struct statfs sfs;
2897
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513 2899
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 2900 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 2901 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */ 2902 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518 2903
2519 if (fs_2625 && !statfs (w->path, &sfs)) 2904 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */ 2905 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */ 2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */ 2907 || sfs.f_type == 0x3153464a /* jfs */
2588 2973
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591} 2976}
2592 2977
2593void inline_size 2978inline_size void
2594check_2625 (EV_P) 2979check_2625 (EV_P)
2595{ 2980{
2596 /* kernels < 2.6.25 are borked 2981 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 2983 */
2611 return; 2996 return;
2612 2997
2613 fs_2625 = 1; 2998 fs_2625 = 1;
2614} 2999}
2615 3000
2616void inline_size 3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
2617infy_init (EV_P) 3013infy_init (EV_P)
2618{ 3014{
2619 if (fs_fd != -2) 3015 if (fs_fd != -2)
2620 return; 3016 return;
2621 3017
2622 fs_fd = -1; 3018 fs_fd = -1;
2623 3019
2624 check_2625 (EV_A); 3020 check_2625 (EV_A);
2625 3021
2626 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
2627 3023
2628 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
2629 { 3025 {
3026 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
2633 } 3030 }
2634} 3031}
2635 3032
2636void inline_size 3033inline_size void
2637infy_fork (EV_P) 3034infy_fork (EV_P)
2638{ 3035{
2639 int slot; 3036 int slot;
2640 3037
2641 if (fs_fd < 0) 3038 if (fs_fd < 0)
2642 return; 3039 return;
2643 3040
3041 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 3042 close (fs_fd);
2645 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
2646 3051
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2648 { 3053 {
2649 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 3313{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 3315
2911 { 3316 {
2912 struct ev_loop *loop = w->other; 3317 EV_P = w->other;
2913 3318
2914 while (fdchangecnt) 3319 while (fdchangecnt)
2915 { 3320 {
2916 fd_reify (EV_A); 3321 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 3331
2927 ev_embed_stop (EV_A_ w); 3332 ev_embed_stop (EV_A_ w);
2928 3333
2929 { 3334 {
2930 struct ev_loop *loop = w->other; 3335 EV_P = w->other;
2931 3336
2932 ev_loop_fork (EV_A); 3337 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 } 3339 }
2935 3340
2949{ 3354{
2950 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2951 return; 3356 return;
2952 3357
2953 { 3358 {
2954 struct ev_loop *loop = w->other; 3359 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 3362 }
2958 3363
2959 EV_FREQUENT_CHECK; 3364 EV_FREQUENT_CHECK;
3071 3476
3072void 3477void
3073ev_async_send (EV_P_ ev_async *w) 3478ev_async_send (EV_P_ ev_async *w)
3074{ 3479{
3075 w->sent = 1; 3480 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 3481 evpipe_write (EV_A_ &async_pending);
3077} 3482}
3078#endif 3483#endif
3079 3484
3080/*****************************************************************************/ 3485/*****************************************************************************/
3081 3486
3145 } 3550 }
3146} 3551}
3147 3552
3148/*****************************************************************************/ 3553/*****************************************************************************/
3149 3554
3150#if 0 3555#if EV_WALK_ENABLE
3151void 3556void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3558{
3154 int i, j; 3559 int i, j;
3155 ev_watcher_list *wl, *wn; 3560 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3576#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3578 ;
3174 else 3579 else
3175#endif 3580#endif
3176 if ((ev_io *)wl != &pipeev) 3581 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3582 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3583 cb (EV_A_ EV_IO, wl);
3179 3584
3180 wl = wn; 3585 wl = wn;
3181 } 3586 }
3230 if (types & EV_CHECK) 3635 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 3636 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 3637 cb (EV_A_ EV_CHECK, checks [i]);
3233 3638
3234 if (types & EV_SIGNAL) 3639 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 3640 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 3641 for (wl = signals [i].head; wl; )
3237 { 3642 {
3238 wn = wl->next; 3643 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 3644 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 3645 wl = wn;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines