ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.344 by root, Fri Jul 9 20:55:14 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
77# endif 79# endif
78# endif 80# endif
79 81
82# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
83# else 86# else
87# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
86# endif 98# endif
87 99
100# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 103# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 104# else
105# undef EV_USE_POLL
100# define EV_USE_POLL 0 106# define EV_USE_POLL 0
101# endif
102# endif 107# endif
103 108
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
107# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
110# endif 116# endif
111 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
118# endif 125# endif
119 126
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
123# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
126# endif 134# endif
127 135
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
134# endif 143# endif
135 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
142# endif 161# endif
143 162
144#endif 163#endif
145 164
146#include <math.h> 165#include <math.h>
147#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
148#include <fcntl.h> 168#include <fcntl.h>
149#include <stddef.h> 169#include <stddef.h>
150 170
151#include <stdio.h> 171#include <stdio.h>
152 172
153#include <assert.h> 173#include <assert.h>
154#include <errno.h> 174#include <errno.h>
155#include <sys/types.h> 175#include <sys/types.h>
156#include <time.h> 176#include <time.h>
177#include <limits.h>
157 178
158#include <signal.h> 179#include <signal.h>
159 180
160#ifdef EV_H 181#ifdef EV_H
161# include EV_H 182# include EV_H
172# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 194# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
176# endif 197# endif
198# undef EV_AVOID_STDIO
177#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
178 208
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
180 238
181#ifndef EV_USE_CLOCK_SYSCALL 239#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 240# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 242# else
185# define EV_USE_CLOCK_SYSCALL 0 243# define EV_USE_CLOCK_SYSCALL 0
186# endif 244# endif
187#endif 245#endif
188 246
189#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 250# else
193# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
194# endif 252# endif
195#endif 253#endif
196 254
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 257#endif
200 258
201#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 260# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 261# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 262# else
205# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
206# endif 264# endif
207#endif 265#endif
208 266
209#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 269#endif
212 270
213#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
214# ifdef _WIN32 272# ifdef _WIN32
215# define EV_USE_POLL 0 273# define EV_USE_POLL 0
216# else 274# else
217# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 276# endif
219#endif 277#endif
220 278
221#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 282# else
225# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
226# endif 284# endif
227#endif 285#endif
228 286
234# define EV_USE_PORT 0 292# define EV_USE_PORT 0
235#endif 293#endif
236 294
237#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 298# else
241# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
242# endif 300# endif
243#endif 301#endif
244 302
245#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 305#endif
252 306
253#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 309#endif
260 310
261#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 314# else
265# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
266# endif 324# endif
267#endif 325#endif
268 326
269#if 0 /* debugging */ 327#if 0 /* debugging */
270# define EV_VERIFY 3 328# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 329# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 330# define EV_HEAP_CACHE_AT 1
273#endif 331#endif
274 332
275#ifndef EV_VERIFY 333#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 335#endif
278 336
279#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 339#endif
282 340
283#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
285#endif 357#endif
286 358
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
288 366
289#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
292#endif 370#endif
320 398
321#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 400# include <winsock.h>
323#endif 401#endif
324 402
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
337# ifdef __cplusplus 416# ifdef __cplusplus
338extern "C" { 417extern "C" {
339# endif 418# endif
340int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
341# ifdef __cplusplus 420# ifdef __cplusplus
342} 421}
343# endif 422# endif
344#endif 423#endif
345 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
346/**/ 454/**/
347 455
348#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 458#else
351# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
352#endif 460#endif
353 461
354/* 462/*
361 */ 469 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 471
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 474
368#if __GNUC__ >= 4 475#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
371#else 478#else
378 485
379#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 488#define inline_size static inline
382 489
383#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
384# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
385#else 500#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
391 503
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
394 506
395typedef ev_watcher *W; 507typedef ev_watcher *W;
407 519
408#if EV_USE_MONOTONIC 520#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 522#endif
411 523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
533
412#ifdef _WIN32 534#ifdef _WIN32
413# include "ev_win32.c" 535# include "ev_win32.c"
414#endif 536#endif
415 537
416/*****************************************************************************/ 538/*****************************************************************************/
539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
417 547
418static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
419 549
420void 550void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
431 561
432 if (syserr_cb) 562 if (syserr_cb)
433 syserr_cb (msg); 563 syserr_cb (msg);
434 else 564 else
435 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
436 perror (msg); 574 perror (msg);
575#endif
437 abort (); 576 abort ();
438 } 577 }
439} 578}
440 579
441static void * 580static void *
442ev_realloc_emul (void *ptr, long size) 581ev_realloc_emul (void *ptr, long size)
443{ 582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
444 /* some systems, notably openbsd and darwin, fail to properly 586 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 587 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 588 * the single unix specification, so work around them here.
447 */ 589 */
448 590
449 if (size) 591 if (size)
450 return realloc (ptr, size); 592 return realloc (ptr, size);
451 593
452 free (ptr); 594 free (ptr);
453 return 0; 595 return 0;
596#endif
454} 597}
455 598
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 600
458void 601void
466{ 609{
467 ptr = alloc (ptr, size); 610 ptr = alloc (ptr, size);
468 611
469 if (!ptr && size) 612 if (!ptr && size)
470 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
472 abort (); 619 abort ();
473 } 620 }
474 621
475 return ptr; 622 return ptr;
476} 623}
478#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
480 627
481/*****************************************************************************/ 628/*****************************************************************************/
482 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
483typedef struct 634typedef struct
484{ 635{
485 WL head; 636 WL head;
486 unsigned char events; 637 unsigned char events; /* the events watched for */
487 unsigned char reify; 638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 640 unsigned char unused;
490#if EV_USE_EPOLL 641#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 642 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 643#endif
493#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 645 SOCKET handle;
495#endif 646#endif
496} ANFD; 647} ANFD;
497 648
649/* stores the pending event set for a given watcher */
498typedef struct 650typedef struct
499{ 651{
500 W w; 652 W w;
501 int events; 653 int events; /* the pending event set for the given watcher */
502} ANPENDING; 654} ANPENDING;
503 655
504#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 657/* hash table entry per inotify-id */
506typedef struct 658typedef struct
509} ANFS; 661} ANFS;
510#endif 662#endif
511 663
512/* Heap Entry */ 664/* Heap Entry */
513#if EV_HEAP_CACHE_AT 665#if EV_HEAP_CACHE_AT
666 /* a heap element */
514 typedef struct { 667 typedef struct {
515 ev_tstamp at; 668 ev_tstamp at;
516 WT w; 669 WT w;
517 } ANHE; 670 } ANHE;
518 671
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 672 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 673 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 675#else
676 /* a heap element */
523 typedef WT ANHE; 677 typedef WT ANHE;
524 678
525 #define ANHE_w(he) (he) 679 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 680 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 681 #define ANHE_at_cache(he)
551 705
552 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
553 707
554#endif 708#endif
555 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
556/*****************************************************************************/ 722/*****************************************************************************/
557 723
724#ifndef EV_HAVE_EV_TIME
558ev_tstamp 725ev_tstamp
559ev_time (void) 726ev_time (void)
560{ 727{
561#if EV_USE_REALTIME 728#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 729 if (expect_true (have_realtime))
569 736
570 struct timeval tv; 737 struct timeval tv;
571 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 740}
741#endif
574 742
575ev_tstamp inline_size 743inline_size ev_tstamp
576get_clock (void) 744get_clock (void)
577{ 745{
578#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
580 { 748 {
614 782
615 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 785
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 787 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 788 /* by older ones */
621 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
622#endif 790#endif
623 } 791 }
624} 792}
625 793
626/*****************************************************************************/ 794/*****************************************************************************/
627 795
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 797
630int inline_size 798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a ncie-to-malloc size */
800inline_size int
631array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
632{ 802{
633 int ncur = cur + 1; 803 int ncur = cur + 1;
634 804
635 do 805 do
680#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 852
683/*****************************************************************************/ 853/*****************************************************************************/
684 854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
860
685void noinline 861void noinline
686ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
687{ 863{
688 W w_ = (W)w; 864 W w_ = (W)w;
689 int pri = ABSPRI (w_); 865 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
699 } 875 }
700} 876}
701 877
702void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 895{
705 int i; 896 int i;
706 897
707 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
709} 900}
710 901
711/*****************************************************************************/ 902/*****************************************************************************/
712 903
713void inline_speed 904inline_speed void
714fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
715{ 906{
716 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
717 ev_io *w; 908 ev_io *w;
718 909
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 914 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
725 } 916 }
726} 917}
727 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
728void 930void
729ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 932{
731 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
733} 935}
734 936
735void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
736fd_reify (EV_P) 940fd_reify (EV_P)
737{ 941{
738 int i; 942 int i;
739 943
740 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
750 954
751#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
752 if (events) 956 if (events)
753 { 957 {
754 unsigned long arg; 958 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 } 961 }
762#endif 962#endif
763 963
764 { 964 {
774 } 974 }
775 975
776 fdchangecnt = 0; 976 fdchangecnt = 0;
777} 977}
778 978
779void inline_size 979/* something about the given fd changed */
980inline_size void
780fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
781{ 982{
782 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
784 985
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
790 } 991 }
791} 992}
792 993
793void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
794fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
795{ 997{
796 ev_io *w; 998 ev_io *w;
797 999
798 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1004 }
803} 1005}
804 1006
805int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
806fd_valid (int fd) 1009fd_valid (int fd)
807{ 1010{
808#ifdef _WIN32 1011#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1013#else
811 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
812#endif 1015#endif
813} 1016}
814 1017
832 1035
833 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1037 if (anfds [fd].events)
835 { 1038 {
836 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
837 return; 1040 break;
838 } 1041 }
839} 1042}
840 1043
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1045static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1051 if (anfds [fd].events)
849 { 1052 {
850 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1054 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1056 }
1057}
1058
1059/* used to prepare libev internal fd's */
1060/* this is not fork-safe */
1061inline_speed void
1062fd_intern (int fd)
1063{
1064#ifdef _WIN32
1065 unsigned long arg = 1;
1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1067#else
1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
1069 fcntl (fd, F_SETFL, O_NONBLOCK);
1070#endif
854} 1071}
855 1072
856/*****************************************************************************/ 1073/*****************************************************************************/
857 1074
858/* 1075/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1092#define UPHEAP_DONE(p,k) ((p) == (k))
876 1093
877/* away from the root */ 1094/* away from the root */
878void inline_speed 1095inline_speed void
879downheap (ANHE *heap, int N, int k) 1096downheap (ANHE *heap, int N, int k)
880{ 1097{
881 ANHE he = heap [k]; 1098 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1099 ANHE *E = heap + N + HEAP0;
883 1100
923#define HEAP0 1 1140#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1141#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1142#define UPHEAP_DONE(p,k) (!(p))
926 1143
927/* away from the root */ 1144/* away from the root */
928void inline_speed 1145inline_speed void
929downheap (ANHE *heap, int N, int k) 1146downheap (ANHE *heap, int N, int k)
930{ 1147{
931 ANHE he = heap [k]; 1148 ANHE he = heap [k];
932 1149
933 for (;;) 1150 for (;;)
934 { 1151 {
935 int c = k << 1; 1152 int c = k << 1;
936 1153
937 if (c > N + HEAP0 - 1) 1154 if (c >= N + HEAP0)
938 break; 1155 break;
939 1156
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1158 ? 1 : 0;
942 1159
953 ev_active (ANHE_w (he)) = k; 1170 ev_active (ANHE_w (he)) = k;
954} 1171}
955#endif 1172#endif
956 1173
957/* towards the root */ 1174/* towards the root */
958void inline_speed 1175inline_speed void
959upheap (ANHE *heap, int k) 1176upheap (ANHE *heap, int k)
960{ 1177{
961 ANHE he = heap [k]; 1178 ANHE he = heap [k];
962 1179
963 for (;;) 1180 for (;;)
974 1191
975 heap [k] = he; 1192 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1193 ev_active (ANHE_w (he)) = k;
977} 1194}
978 1195
979void inline_size 1196/* move an element suitably so it is in a correct place */
1197inline_size void
980adjustheap (ANHE *heap, int N, int k) 1198adjustheap (ANHE *heap, int N, int k)
981{ 1199{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1201 upheap (heap, k);
984 else 1202 else
985 downheap (heap, N, k); 1203 downheap (heap, N, k);
986} 1204}
987 1205
988/* rebuild the heap: this function is used only once and executed rarely */ 1206/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1207inline_size void
990reheap (ANHE *heap, int N) 1208reheap (ANHE *heap, int N)
991{ 1209{
992 int i; 1210 int i;
993 1211
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1215 upheap (heap, i + HEAP0);
998} 1216}
999 1217
1000/*****************************************************************************/ 1218/*****************************************************************************/
1001 1219
1220/* associate signal watchers to a signal signal */
1002typedef struct 1221typedef struct
1003{ 1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1004 WL head; 1227 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1228} ANSIG;
1007 1229
1008static ANSIG *signals; 1230static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1231
1013/*****************************************************************************/ 1232/*****************************************************************************/
1014 1233
1015void inline_speed 1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1235
1027static void noinline 1236static void noinline
1028evpipe_init (EV_P) 1237evpipe_init (EV_P)
1029{ 1238{
1030 if (!ev_is_active (&pipeev)) 1239 if (!ev_is_active (&pipe_w))
1031 { 1240 {
1032#if EV_USE_EVENTFD 1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1034 { 1247 {
1035 evpipe [0] = -1; 1248 evpipe [0] = -1;
1036 fd_intern (evfd); 1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1250 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1251 }
1039 else 1252 else
1040#endif 1253# endif
1041 { 1254 {
1042 while (pipe (evpipe)) 1255 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1256 ev_syserr ("(libev) error creating signal/async pipe");
1044 1257
1045 fd_intern (evpipe [0]); 1258 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1259 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1261 }
1049 1262
1050 ev_io_start (EV_A_ &pipeev); 1263 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1265 }
1053} 1266}
1054 1267
1055void inline_size 1268inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1270{
1058 if (!*flag) 1271 if (!*flag)
1059 { 1272 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1061 1275
1062 *flag = 1; 1276 *flag = 1;
1063 1277
1064#if EV_USE_EVENTFD 1278#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1279 if (evfd >= 0)
1067 uint64_t counter = 1; 1281 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1282 write (evfd, &counter, sizeof (uint64_t));
1069 } 1283 }
1070 else 1284 else
1071#endif 1285#endif
1072 write (evpipe [1], &old_errno, 1); 1286 write (evpipe [1], &dummy, 1);
1073 1287
1074 errno = old_errno; 1288 errno = old_errno;
1075 } 1289 }
1076} 1290}
1077 1291
1292/* called whenever the libev signal pipe */
1293/* got some events (signal, async) */
1078static void 1294static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1295pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1296{
1297 int i;
1298
1081#if EV_USE_EVENTFD 1299#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1300 if (evfd >= 0)
1083 { 1301 {
1084 uint64_t counter; 1302 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1303 read (evfd, &counter, sizeof (uint64_t));
1089 { 1307 {
1090 char dummy; 1308 char dummy;
1091 read (evpipe [0], &dummy, 1); 1309 read (evpipe [0], &dummy, 1);
1092 } 1310 }
1093 1311
1094 if (gotsig && ev_is_default_loop (EV_A)) 1312 if (sig_pending)
1095 { 1313 {
1096 int signum; 1314 sig_pending = 0;
1097 gotsig = 0;
1098 1315
1099 for (signum = signalmax; signum--; ) 1316 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1317 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1318 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1319 }
1103 1320
1104#if EV_ASYNC_ENABLE 1321#if EV_ASYNC_ENABLE
1105 if (gotasync) 1322 if (async_pending)
1106 { 1323 {
1107 int i; 1324 async_pending = 0;
1108 gotasync = 0;
1109 1325
1110 for (i = asynccnt; i--; ) 1326 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1327 if (asyncs [i]->sent)
1112 { 1328 {
1113 asyncs [i]->sent = 0; 1329 asyncs [i]->sent = 0;
1121 1337
1122static void 1338static void
1123ev_sighandler (int signum) 1339ev_sighandler (int signum)
1124{ 1340{
1125#if EV_MULTIPLICITY 1341#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1342 EV_P = signals [signum - 1].loop;
1127#endif 1343#endif
1128 1344
1129#if _WIN32 1345#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1346 signal (signum, ev_sighandler);
1131#endif 1347#endif
1132 1348
1133 signals [signum - 1].gotsig = 1; 1349 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1350 evpipe_write (EV_A_ &sig_pending);
1135} 1351}
1136 1352
1137void noinline 1353void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1354ev_feed_signal_event (EV_P_ int signum)
1139{ 1355{
1140 WL w; 1356 WL w;
1141 1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1142#if EV_MULTIPLICITY 1363#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1364 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1366
1146 --signum; 1367 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1368 return;
1369#endif
1150 1370
1151 signals [signum].gotsig = 0; 1371 signals [signum].pending = 0;
1152 1372
1153 for (w = signals [signum].head; w; w = w->next) 1373 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1375}
1156 1376
1377#if EV_USE_SIGNALFD
1378static void
1379sigfdcb (EV_P_ ev_io *iow, int revents)
1380{
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394}
1395#endif
1396
1397#endif
1398
1157/*****************************************************************************/ 1399/*****************************************************************************/
1158 1400
1401#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1402static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1403
1163static ev_signal childev; 1404static ev_signal childev;
1164 1405
1165#ifndef WIFCONTINUED 1406#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1407# define WIFCONTINUED(status) 0
1167#endif 1408#endif
1168 1409
1169void inline_speed 1410/* handle a single child status event */
1411inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1412child_reap (EV_P_ int chain, int pid, int status)
1171{ 1413{
1172 ev_child *w; 1414 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1416
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1418 {
1177 if ((w->pid == pid || !w->pid) 1419 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1420 && (!traced || (w->flags & 1)))
1179 { 1421 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1429
1188#ifndef WCONTINUED 1430#ifndef WCONTINUED
1189# define WCONTINUED 0 1431# define WCONTINUED 0
1190#endif 1432#endif
1191 1433
1434/* called on sigchld etc., calls waitpid */
1192static void 1435static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1436childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1437{
1195 int pid, status; 1438 int pid, status;
1196 1439
1204 /* make sure we are called again until all children have been reaped */ 1447 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1448 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1450
1208 child_reap (EV_A_ pid, pid, status); 1451 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1452 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1454}
1212 1455
1213#endif 1456#endif
1214 1457
1281#ifdef __APPLE__ 1524#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1525 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1528#endif
1529#ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1531#endif
1286 1532
1287 return flags; 1533 return flags;
1288} 1534}
1289 1535
1290unsigned int 1536unsigned int
1303ev_backend (EV_P) 1549ev_backend (EV_P)
1304{ 1550{
1305 return backend; 1551 return backend;
1306} 1552}
1307 1553
1554#if EV_FEATURE_API
1308unsigned int 1555unsigned int
1309ev_loop_count (EV_P) 1556ev_iteration (EV_P)
1310{ 1557{
1311 return loop_count; 1558 return loop_count;
1312} 1559}
1313 1560
1561unsigned int
1562ev_depth (EV_P)
1563{
1564 return loop_depth;
1565}
1566
1314void 1567void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1568ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1569{
1317 io_blocktime = interval; 1570 io_blocktime = interval;
1318} 1571}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1575{
1323 timeout_blocktime = interval; 1576 timeout_blocktime = interval;
1324} 1577}
1325 1578
1579void
1580ev_set_userdata (EV_P_ void *data)
1581{
1582 userdata = data;
1583}
1584
1585void *
1586ev_userdata (EV_P)
1587{
1588 return userdata;
1589}
1590
1591void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592{
1593 invoke_cb = invoke_pending_cb;
1594}
1595
1596void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597{
1598 release_cb = release;
1599 acquire_cb = acquire;
1600}
1601#endif
1602
1603/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1604static void noinline
1327loop_init (EV_P_ unsigned int flags) 1605loop_init (EV_P_ unsigned int flags)
1328{ 1606{
1329 if (!backend) 1607 if (!backend)
1330 { 1608 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1625 have_monotonic = 1;
1348 } 1626 }
1349#endif 1627#endif
1350 1628
1629 /* pid check not overridable via env */
1630#ifndef _WIN32
1631 if (flags & EVFLAG_FORKCHECK)
1632 curpid = getpid ();
1633#endif
1634
1635 if (!(flags & EVFLAG_NOENV)
1636 && !enable_secure ()
1637 && getenv ("LIBEV_FLAGS"))
1638 flags = atoi (getenv ("LIBEV_FLAGS"));
1639
1351 ev_rt_now = ev_time (); 1640 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1641 mn_now = get_clock ();
1353 now_floor = mn_now; 1642 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1643 rtmn_diff = ev_rt_now - mn_now;
1644#if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646#endif
1355 1647
1356 io_blocktime = 0.; 1648 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1649 timeout_blocktime = 0.;
1358 backend = 0; 1650 backend = 0;
1359 backend_fd = -1; 1651 backend_fd = -1;
1360 gotasync = 0; 1652 sig_pending = 0;
1653#if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655#endif
1361#if EV_USE_INOTIFY 1656#if EV_USE_INOTIFY
1362 fs_fd = -2; 1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1658#endif
1364 1659#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1661#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1662
1376 if (!(flags & 0x0000ffffU)) 1663 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1664 flags |= ev_recommended_backends ();
1378 1665
1379#if EV_USE_PORT 1666#if EV_USE_PORT
1390#endif 1677#endif
1391#if EV_USE_SELECT 1678#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1680#endif
1394 1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1685 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687#endif
1397 } 1688 }
1398} 1689}
1399 1690
1691/* free up a loop structure */
1400static void noinline 1692static void noinline
1401loop_destroy (EV_P) 1693loop_destroy (EV_P)
1402{ 1694{
1403 int i; 1695 int i;
1404 1696
1405 if (ev_is_active (&pipeev)) 1697 if (ev_is_active (&pipe_w))
1406 { 1698 {
1407 ev_ref (EV_A); /* signal watcher */ 1699 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1701
1410#if EV_USE_EVENTFD 1702#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1703 if (evfd >= 0)
1412 close (evfd); 1704 close (evfd);
1413#endif 1705#endif
1414 1706
1415 if (evpipe [0] >= 0) 1707 if (evpipe [0] >= 0)
1416 { 1708 {
1417 close (evpipe [0]); 1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1711 }
1420 } 1712 }
1713
1714#if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717#endif
1421 1718
1422#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1720 if (fs_fd >= 0)
1424 close (fs_fd); 1721 close (fs_fd);
1425#endif 1722#endif
1449#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1747 array_free (idle, [i]);
1451#endif 1748#endif
1452 } 1749 }
1453 1750
1454 ev_free (anfds); anfdmax = 0; 1751 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1752
1456 /* have to use the microsoft-never-gets-it-right macro */ 1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1755 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1756 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1757#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1758 array_free (periodic, EMPTY);
1461#endif 1759#endif
1470 1768
1471 backend = 0; 1769 backend = 0;
1472} 1770}
1473 1771
1474#if EV_USE_INOTIFY 1772#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1773inline_size void infy_fork (EV_P);
1476#endif 1774#endif
1477 1775
1478void inline_size 1776inline_size void
1479loop_fork (EV_P) 1777loop_fork (EV_P)
1480{ 1778{
1481#if EV_USE_PORT 1779#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1781#endif
1489#endif 1787#endif
1490#if EV_USE_INOTIFY 1788#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1789 infy_fork (EV_A);
1492#endif 1790#endif
1493 1791
1494 if (ev_is_active (&pipeev)) 1792 if (ev_is_active (&pipe_w))
1495 { 1793 {
1496 /* this "locks" the handlers against writing to the pipe */ 1794 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1795 /* while we modify the fd vars */
1498 gotsig = 1; 1796 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1797#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1798 async_pending = 1;
1501#endif 1799#endif
1502 1800
1503 ev_ref (EV_A); 1801 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1802 ev_io_stop (EV_A_ &pipe_w);
1505 1803
1506#if EV_USE_EVENTFD 1804#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1805 if (evfd >= 0)
1508 close (evfd); 1806 close (evfd);
1509#endif 1807#endif
1510 1808
1511 if (evpipe [0] >= 0) 1809 if (evpipe [0] >= 0)
1512 { 1810 {
1513 close (evpipe [0]); 1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1813 }
1516 1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1816 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1817 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819#endif
1520 } 1820 }
1521 1821
1522 postfork = 0; 1822 postfork = 0;
1523} 1823}
1524 1824
1525#if EV_MULTIPLICITY 1825#if EV_MULTIPLICITY
1526 1826
1527struct ev_loop * 1827struct ev_loop *
1528ev_loop_new (unsigned int flags) 1828ev_loop_new (unsigned int flags)
1529{ 1829{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1831
1532 memset (loop, 0, sizeof (struct ev_loop)); 1832 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1833 loop_init (EV_A_ flags);
1535 1834
1536 if (ev_backend (EV_A)) 1835 if (ev_backend (EV_A))
1537 return loop; 1836 return EV_A;
1538 1837
1539 return 0; 1838 return 0;
1540} 1839}
1541 1840
1542void 1841void
1549void 1848void
1550ev_loop_fork (EV_P) 1849ev_loop_fork (EV_P)
1551{ 1850{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1851 postfork = 1; /* must be in line with ev_default_fork */
1553} 1852}
1853#endif /* multiplicity */
1554 1854
1555#if EV_VERIFY 1855#if EV_VERIFY
1556static void noinline 1856static void noinline
1557verify_watcher (EV_P_ W w) 1857verify_watcher (EV_P_ W w)
1558{ 1858{
1586 verify_watcher (EV_A_ ws [cnt]); 1886 verify_watcher (EV_A_ ws [cnt]);
1587 } 1887 }
1588} 1888}
1589#endif 1889#endif
1590 1890
1891#if EV_FEATURE_API
1591void 1892void
1592ev_loop_verify (EV_P) 1893ev_verify (EV_P)
1593{ 1894{
1594#if EV_VERIFY 1895#if EV_VERIFY
1595 int i; 1896 int i;
1596 WL w; 1897 WL w;
1597 1898
1636#if EV_ASYNC_ENABLE 1937#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 1938 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 1940#endif
1640 1941
1942#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 1943 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945#endif
1643 1946
1947#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 1948 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950#endif
1646 1951
1647# if 0 1952# if 0
1953#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956#endif
1650# endif 1957# endif
1651#endif 1958#endif
1652} 1959}
1653 1960#endif
1654#endif /* multiplicity */
1655 1961
1656#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1657struct ev_loop * 1963struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1964ev_default_loop_init (unsigned int flags)
1659#else 1965#else
1662#endif 1968#endif
1663{ 1969{
1664 if (!ev_default_loop_ptr) 1970 if (!ev_default_loop_ptr)
1665 { 1971 {
1666#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1974#else
1669 ev_default_loop_ptr = 1; 1975 ev_default_loop_ptr = 1;
1670#endif 1976#endif
1671 1977
1672 loop_init (EV_A_ flags); 1978 loop_init (EV_A_ flags);
1673 1979
1674 if (ev_backend (EV_A)) 1980 if (ev_backend (EV_A))
1675 { 1981 {
1676#ifndef _WIN32 1982#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 1983 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 1984 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 1985 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 1987#endif
1689 1995
1690void 1996void
1691ev_default_destroy (void) 1997ev_default_destroy (void)
1692{ 1998{
1693#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1695#endif 2001#endif
1696 2002
1697 ev_default_loop_ptr = 0; 2003 ev_default_loop_ptr = 0;
1698 2004
1699#ifndef _WIN32 2005#if EV_CHILD_ENABLE
1700 ev_ref (EV_A); /* child watcher */ 2006 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev); 2007 ev_signal_stop (EV_A_ &childev);
1702#endif 2008#endif
1703 2009
1704 loop_destroy (EV_A); 2010 loop_destroy (EV_A);
1706 2012
1707void 2013void
1708ev_default_fork (void) 2014ev_default_fork (void)
1709{ 2015{
1710#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 2017 EV_P = ev_default_loop_ptr;
1712#endif 2018#endif
1713 2019
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2020 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2021}
1716 2022
1720ev_invoke (EV_P_ void *w, int revents) 2026ev_invoke (EV_P_ void *w, int revents)
1721{ 2027{
1722 EV_CB_INVOKE ((W)w, revents); 2028 EV_CB_INVOKE ((W)w, revents);
1723} 2029}
1724 2030
1725void inline_speed 2031unsigned int
1726call_pending (EV_P) 2032ev_pending_count (EV_P)
2033{
2034 int pri;
2035 unsigned int count = 0;
2036
2037 for (pri = NUMPRI; pri--; )
2038 count += pendingcnt [pri];
2039
2040 return count;
2041}
2042
2043void noinline
2044ev_invoke_pending (EV_P)
1727{ 2045{
1728 int pri; 2046 int pri;
1729 2047
1730 for (pri = NUMPRI; pri--; ) 2048 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2049 while (pendingcnt [pri])
1732 { 2050 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2052
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2054 /* ^ this is no longer true, as pending_w could be here */
1738 2055
1739 p->w->pending = 0; 2056 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2057 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2058 EV_FREQUENT_CHECK;
1742 }
1743 } 2059 }
1744} 2060}
1745 2061
1746#if EV_IDLE_ENABLE 2062#if EV_IDLE_ENABLE
1747void inline_size 2063/* make idle watchers pending. this handles the "call-idle */
2064/* only when higher priorities are idle" logic */
2065inline_size void
1748idle_reify (EV_P) 2066idle_reify (EV_P)
1749{ 2067{
1750 if (expect_false (idleall)) 2068 if (expect_false (idleall))
1751 { 2069 {
1752 int pri; 2070 int pri;
1764 } 2082 }
1765 } 2083 }
1766} 2084}
1767#endif 2085#endif
1768 2086
1769void inline_size 2087/* make timers pending */
2088inline_size void
1770timers_reify (EV_P) 2089timers_reify (EV_P)
1771{ 2090{
1772 EV_FREQUENT_CHECK; 2091 EV_FREQUENT_CHECK;
1773 2092
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2094 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2095 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
1783 ev_at (w) += w->repeat; 2104 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2105 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2106 ev_at (w) = mn_now;
1786 2107
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2109
1789 ANHE_at_cache (timers [HEAP0]); 2110 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
1791 } 2118 }
1792 else 2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2120
1795 EV_FREQUENT_CHECK; 2121 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2122 }
1798} 2123}
1799 2124
1800#if EV_PERIODIC_ENABLE 2125#if EV_PERIODIC_ENABLE
1801void inline_size 2126/* make periodics pending */
2127inline_size void
1802periodics_reify (EV_P) 2128periodics_reify (EV_P)
1803{ 2129{
1804 EV_FREQUENT_CHECK; 2130 EV_FREQUENT_CHECK;
1805 2131
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2133 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2134 int feed_count = 0;
1809 2135
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2136 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2141
2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2146
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2148
1819 ANHE_at_cache (periodics [HEAP0]); 2149 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
1821 } 2176 }
1822 else if (w->interval) 2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2178
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2179 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2180 }
1847} 2181}
1848 2182
2183/* simply recalculate all periodics */
2184/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 2185static void noinline
1850periodics_reschedule (EV_P) 2186periodics_reschedule (EV_P)
1851{ 2187{
1852 int i; 2188 int i;
1853 2189
1866 2202
1867 reheap (periodics, periodiccnt); 2203 reheap (periodics, periodiccnt);
1868} 2204}
1869#endif 2205#endif
1870 2206
1871void inline_speed 2207/* adjust all timers by a given offset */
2208static void noinline
2209timers_reschedule (EV_P_ ev_tstamp adjust)
2210{
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
2214 {
2215 ANHE *he = timers + i + HEAP0;
2216 ANHE_w (*he)->at += adjust;
2217 ANHE_at_cache (*he);
2218 }
2219}
2220
2221/* fetch new monotonic and realtime times from the kernel */
2222/* also detect if there was a timejump, and act accordingly */
2223inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2224time_update (EV_P_ ev_tstamp max_block)
1873{ 2225{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2226#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2227 if (expect_true (have_monotonic))
1878 { 2228 {
2229 int i;
1879 ev_tstamp odiff = rtmn_diff; 2230 ev_tstamp odiff = rtmn_diff;
1880 2231
1881 mn_now = get_clock (); 2232 mn_now = get_clock ();
1882 2233
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2260 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2261 mn_now = get_clock ();
1911 now_floor = mn_now; 2262 now_floor = mn_now;
1912 } 2263 }
1913 2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2267# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2268 periodics_reschedule (EV_A);
1916# endif 2269# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2270 }
1920 else 2271 else
1921#endif 2272#endif
1922 { 2273 {
1923 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1924 2275
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2280#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2281 periodics_reschedule (EV_A);
1929#endif 2282#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2283 }
1938 2284
1939 mn_now = ev_rt_now; 2285 mn_now = ev_rt_now;
1940 } 2286 }
1941} 2287}
1942 2288
1943void 2289void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2290ev_loop (EV_P_ int flags)
1965{ 2291{
2292#if EV_FEATURE_API
2293 ++loop_depth;
2294#endif
2295
2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
1966 loop_done = EVUNLOOP_CANCEL; 2298 loop_done = EVUNLOOP_CANCEL;
1967 2299
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2301
1970 do 2302 do
1971 { 2303 {
1972#if EV_VERIFY >= 2 2304#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2305 ev_verify (EV_A);
1974#endif 2306#endif
1975 2307
1976#ifndef _WIN32 2308#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2309 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2310 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2318 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2319 if (expect_false (postfork))
1988 if (forkcnt) 2320 if (forkcnt)
1989 { 2321 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2323 EV_INVOKE_PENDING;
1992 } 2324 }
1993#endif 2325#endif
1994 2326
2327#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2328 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2329 if (expect_false (preparecnt))
1997 { 2330 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2332 EV_INVOKE_PENDING;
2000 } 2333 }
2334#endif
2335
2336 if (expect_false (loop_done))
2337 break;
2001 2338
2002 /* we might have forked, so reify kernel state if necessary */ 2339 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2340 if (expect_false (postfork))
2004 loop_fork (EV_A); 2341 loop_fork (EV_A);
2005 2342
2011 ev_tstamp waittime = 0.; 2348 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2349 ev_tstamp sleeptime = 0.;
2013 2350
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 { 2352 {
2353 /* remember old timestamp for io_blocktime calculation */
2354 ev_tstamp prev_mn_now = mn_now;
2355
2016 /* update time to cancel out callback processing overhead */ 2356 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100); 2357 time_update (EV_A_ 1e100);
2018 2358
2019 waittime = MAX_BLOCKTIME; 2359 waittime = MAX_BLOCKTIME;
2020 2360
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2371 if (waittime > to) waittime = to;
2032 } 2372 }
2033#endif 2373#endif
2034 2374
2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2376 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2377 waittime = timeout_blocktime;
2037 2378
2038 sleeptime = waittime - backend_fudge; 2379 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2380 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
2045 ev_sleep (sleeptime); 2389 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2390 waittime -= sleeptime;
2391 }
2047 } 2392 }
2048 } 2393 }
2049 2394
2395#if EV_FEATURE_API
2050 ++loop_count; 2396 ++loop_count;
2397#endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2052 2401
2053 /* update ev_rt_now, do magic */ 2402 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2403 time_update (EV_A_ waittime + sleeptime);
2055 } 2404 }
2056 2405
2063#if EV_IDLE_ENABLE 2412#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 2413 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 2414 idle_reify (EV_A);
2066#endif 2415#endif
2067 2416
2417#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 2418 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2419 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421#endif
2071 2422
2072 call_pending (EV_A); 2423 EV_INVOKE_PENDING;
2073 } 2424 }
2074 while (expect_true ( 2425 while (expect_true (
2075 activecnt 2426 activecnt
2076 && !loop_done 2427 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 )); 2429 ));
2079 2430
2080 if (loop_done == EVUNLOOP_ONE) 2431 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2432 loop_done = EVUNLOOP_CANCEL;
2433
2434#if EV_FEATURE_API
2435 --loop_depth;
2436#endif
2082} 2437}
2083 2438
2084void 2439void
2085ev_unloop (EV_P_ int how) 2440ev_unloop (EV_P_ int how)
2086{ 2441{
2087 loop_done = how; 2442 loop_done = how;
2088} 2443}
2089 2444
2445void
2446ev_ref (EV_P)
2447{
2448 ++activecnt;
2449}
2450
2451void
2452ev_unref (EV_P)
2453{
2454 --activecnt;
2455}
2456
2457void
2458ev_now_update (EV_P)
2459{
2460 time_update (EV_A_ 1e100);
2461}
2462
2463void
2464ev_suspend (EV_P)
2465{
2466 ev_now_update (EV_A);
2467}
2468
2469void
2470ev_resume (EV_P)
2471{
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476#if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479#endif
2480}
2481
2090/*****************************************************************************/ 2482/*****************************************************************************/
2483/* singly-linked list management, used when the expected list length is short */
2091 2484
2092void inline_size 2485inline_size void
2093wlist_add (WL *head, WL elem) 2486wlist_add (WL *head, WL elem)
2094{ 2487{
2095 elem->next = *head; 2488 elem->next = *head;
2096 *head = elem; 2489 *head = elem;
2097} 2490}
2098 2491
2099void inline_size 2492inline_size void
2100wlist_del (WL *head, WL elem) 2493wlist_del (WL *head, WL elem)
2101{ 2494{
2102 while (*head) 2495 while (*head)
2103 { 2496 {
2104 if (*head == elem) 2497 if (expect_true (*head == elem))
2105 { 2498 {
2106 *head = elem->next; 2499 *head = elem->next;
2107 return; 2500 break;
2108 } 2501 }
2109 2502
2110 head = &(*head)->next; 2503 head = &(*head)->next;
2111 } 2504 }
2112} 2505}
2113 2506
2114void inline_speed 2507/* internal, faster, version of ev_clear_pending */
2508inline_speed void
2115clear_pending (EV_P_ W w) 2509clear_pending (EV_P_ W w)
2116{ 2510{
2117 if (w->pending) 2511 if (w->pending)
2118 { 2512 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2514 w->pending = 0;
2121 } 2515 }
2122} 2516}
2123 2517
2124int 2518int
2128 int pending = w_->pending; 2522 int pending = w_->pending;
2129 2523
2130 if (expect_true (pending)) 2524 if (expect_true (pending))
2131 { 2525 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
2133 w_->pending = 0; 2528 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2529 return p->events;
2136 } 2530 }
2137 else 2531 else
2138 return 0; 2532 return 0;
2139} 2533}
2140 2534
2141void inline_size 2535inline_size void
2142pri_adjust (EV_P_ W w) 2536pri_adjust (EV_P_ W w)
2143{ 2537{
2144 int pri = w->priority; 2538 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2541 ev_set_priority (w, pri);
2148} 2542}
2149 2543
2150void inline_speed 2544inline_speed void
2151ev_start (EV_P_ W w, int active) 2545ev_start (EV_P_ W w, int active)
2152{ 2546{
2153 pri_adjust (EV_A_ w); 2547 pri_adjust (EV_A_ w);
2154 w->active = active; 2548 w->active = active;
2155 ev_ref (EV_A); 2549 ev_ref (EV_A);
2156} 2550}
2157 2551
2158void inline_size 2552inline_size void
2159ev_stop (EV_P_ W w) 2553ev_stop (EV_P_ W w)
2160{ 2554{
2161 ev_unref (EV_A); 2555 ev_unref (EV_A);
2162 w->active = 0; 2556 w->active = 0;
2163} 2557}
2171 2565
2172 if (expect_false (ev_is_active (w))) 2566 if (expect_false (ev_is_active (w)))
2173 return; 2567 return;
2174 2568
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 2571
2178 EV_FREQUENT_CHECK; 2572 EV_FREQUENT_CHECK;
2179 2573
2180 ev_start (EV_A_ (W)w, 1); 2574 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 2576 wlist_add (&anfds[fd].head, (WL)w);
2183 2577
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 2579 w->events &= ~EV__IOFDSET;
2186 2580
2187 EV_FREQUENT_CHECK; 2581 EV_FREQUENT_CHECK;
2188} 2582}
2189 2583
2251 timers [active] = timers [timercnt + HEAP0]; 2645 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 2646 adjustheap (timers, timercnt, active);
2253 } 2647 }
2254 } 2648 }
2255 2649
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 2650 ev_at (w) -= mn_now;
2259 2651
2260 ev_stop (EV_A_ (W)w); 2652 ev_stop (EV_A_ (W)w);
2653
2654 EV_FREQUENT_CHECK;
2261} 2655}
2262 2656
2263void noinline 2657void noinline
2264ev_timer_again (EV_P_ ev_timer *w) 2658ev_timer_again (EV_P_ ev_timer *w)
2265{ 2659{
2283 } 2677 }
2284 2678
2285 EV_FREQUENT_CHECK; 2679 EV_FREQUENT_CHECK;
2286} 2680}
2287 2681
2682ev_tstamp
2683ev_timer_remaining (EV_P_ ev_timer *w)
2684{
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2686}
2687
2288#if EV_PERIODIC_ENABLE 2688#if EV_PERIODIC_ENABLE
2289void noinline 2689void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 2690ev_periodic_start (EV_P_ ev_periodic *w)
2291{ 2691{
2292 if (expect_false (ev_is_active (w))) 2692 if (expect_false (ev_is_active (w)))
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 2738 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 2739 adjustheap (periodics, periodiccnt, active);
2340 } 2740 }
2341 } 2741 }
2342 2742
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
2744
2745 EV_FREQUENT_CHECK;
2346} 2746}
2347 2747
2348void noinline 2748void noinline
2349ev_periodic_again (EV_P_ ev_periodic *w) 2749ev_periodic_again (EV_P_ ev_periodic *w)
2350{ 2750{
2356 2756
2357#ifndef SA_RESTART 2757#ifndef SA_RESTART
2358# define SA_RESTART 0 2758# define SA_RESTART 0
2359#endif 2759#endif
2360 2760
2761#if EV_SIGNAL_ENABLE
2762
2361void noinline 2763void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 2764ev_signal_start (EV_P_ ev_signal *w)
2363{ 2765{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
2368 return; 2767 return;
2369 2768
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 2770
2372 evpipe_init (EV_A); 2771#if EV_MULTIPLICITY
2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 2774
2374 EV_FREQUENT_CHECK; 2775 signals [w->signum - 1].loop = EV_A;
2776#endif
2375 2777
2778 EV_FREQUENT_CHECK;
2779
2780#if EV_USE_SIGNALFD
2781 if (sigfd == -2)
2376 { 2782 {
2377#ifndef _WIN32 2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 2784 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 2786
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
2384 2790
2385#ifndef _WIN32 2791 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 2792
2387#endif 2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
2388 } 2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808#endif
2389 2809
2390 ev_start (EV_A_ (W)w, 1); 2810 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 2812
2393 if (!((WL)w)->next) 2813 if (!((WL)w)->next)
2814# if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
2816# endif
2394 { 2817 {
2395#if _WIN32 2818# ifdef _WIN32
2819 evpipe_init (EV_A);
2820
2396 signal (w->signum, ev_sighandler); 2821 signal (w->signum, ev_sighandler);
2397#else 2822# else
2398 struct sigaction sa; 2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
2399 sa.sa_handler = ev_sighandler; 2827 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 2828 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2403#endif 2835#endif
2404 } 2836 }
2405 2837
2406 EV_FREQUENT_CHECK; 2838 EV_FREQUENT_CHECK;
2407} 2839}
2408 2840
2409void noinline 2841void noinline
2417 2849
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 2851 ev_stop (EV_A_ (W)w);
2420 2852
2421 if (!signals [w->signum - 1].head) 2853 if (!signals [w->signum - 1].head)
2854 {
2855#if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857#endif
2858#if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871#endif
2422 signal (w->signum, SIG_DFL); 2872 signal (w->signum, SIG_DFL);
2873 }
2423 2874
2424 EV_FREQUENT_CHECK; 2875 EV_FREQUENT_CHECK;
2425} 2876}
2877
2878#endif
2879
2880#if EV_CHILD_ENABLE
2426 2881
2427void 2882void
2428ev_child_start (EV_P_ ev_child *w) 2883ev_child_start (EV_P_ ev_child *w)
2429{ 2884{
2430#if EV_MULTIPLICITY 2885#if EV_MULTIPLICITY
2434 return; 2889 return;
2435 2890
2436 EV_FREQUENT_CHECK; 2891 EV_FREQUENT_CHECK;
2437 2892
2438 ev_start (EV_A_ (W)w, 1); 2893 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 2895
2441 EV_FREQUENT_CHECK; 2896 EV_FREQUENT_CHECK;
2442} 2897}
2443 2898
2444void 2899void
2448 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2449 return; 2904 return;
2450 2905
2451 EV_FREQUENT_CHECK; 2906 EV_FREQUENT_CHECK;
2452 2907
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2455 2910
2456 EV_FREQUENT_CHECK; 2911 EV_FREQUENT_CHECK;
2457} 2912}
2913
2914#endif
2458 2915
2459#if EV_STAT_ENABLE 2916#if EV_STAT_ENABLE
2460 2917
2461# ifdef _WIN32 2918# ifdef _WIN32
2462# undef lstat 2919# undef lstat
2468#define MIN_STAT_INTERVAL 0.1074891 2925#define MIN_STAT_INTERVAL 0.1074891
2469 2926
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2927static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 2928
2472#if EV_USE_INOTIFY 2929#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192 2930
2931/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2474 2933
2475static void noinline 2934static void noinline
2476infy_add (EV_P_ ev_stat *w) 2935infy_add (EV_P_ ev_stat *w)
2477{ 2936{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 2938
2480 if (w->wd < 0) 2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 2959 }
2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 2964
2485 /* monitor some parent directory for speedup hints */ 2965 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 2967 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 2969 {
2490 char path [4096]; 2970 char path [4096];
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 2987 }
2508 } 2988 }
2509 2989
2510 if (w->wd >= 0) 2990 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 2992
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 2993 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 2995 ev_timer_again (EV_A_ &w->timer);
2530 } 2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 2997}
2532 2998
2533static void noinline 2999static void noinline
2534infy_del (EV_P_ ev_stat *w) 3000infy_del (EV_P_ ev_stat *w)
2535{ 3001{
2538 3004
2539 if (wd < 0) 3005 if (wd < 0)
2540 return; 3006 return;
2541 3007
2542 w->wd = -2; 3008 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 3010 wlist_del (&fs_hash [slot].head, (WL)w);
2545 3011
2546 /* remove this watcher, if others are watching it, they will rearm */ 3012 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 3013 inotify_rm_watch (fs_fd, wd);
2548} 3014}
2550static void noinline 3016static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3017infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 3018{
2553 if (slot < 0) 3019 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 3020 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 3022 infy_wd (EV_A_ slot, wd, ev);
2557 else 3023 else
2558 { 3024 {
2559 WL w_; 3025 WL w_;
2560 3026
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 3028 {
2563 ev_stat *w = (ev_stat *)w_; 3029 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 3030 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 3031
2566 if (w->wd == wd || wd == -1) 3032 if (w->wd == wd || wd == -1)
2567 { 3033 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 3035 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 3037 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 3038 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 3039 }
2574 3040
2575 stat_timer_cb (EV_A_ &w->timer, 0); 3041 stat_timer_cb (EV_A_ &w->timer, 0);
2580 3046
2581static void 3047static void
2582infy_cb (EV_P_ ev_io *w, int revents) 3048infy_cb (EV_P_ ev_io *w, int revents)
2583{ 3049{
2584 char buf [EV_INOTIFY_BUFSIZE]; 3050 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 3051 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 3052 int len = read (fs_fd, buf, sizeof (buf));
2588 3053
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
2591} 3060}
2592 3061
2593void inline_size 3062inline_size unsigned int
3063ev_linux_version (void)
3064{
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092}
3093
3094inline_size void
2594check_2625 (EV_P) 3095ev_check_2625 (EV_P)
2595{ 3096{
2596 /* kernels < 2.6.25 are borked 3097 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 3099 */
2599 struct utsname buf; 3100 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 3101 return;
2604 3102
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 3103 fs_2625 = 1;
2614} 3104}
2615 3105
2616void inline_size 3106inline_size int
3107infy_newfd (void)
3108{
3109#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113#endif
3114 return inotify_init ();
3115}
3116
3117inline_size void
2617infy_init (EV_P) 3118infy_init (EV_P)
2618{ 3119{
2619 if (fs_fd != -2) 3120 if (fs_fd != -2)
2620 return; 3121 return;
2621 3122
2622 fs_fd = -1; 3123 fs_fd = -1;
2623 3124
2624 check_2625 (EV_A); 3125 ev_check_2625 (EV_A);
2625 3126
2626 fs_fd = inotify_init (); 3127 fs_fd = infy_newfd ();
2627 3128
2628 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2629 { 3130 {
3131 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 3133 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
2633 } 3136 }
2634} 3137}
2635 3138
2636void inline_size 3139inline_size void
2637infy_fork (EV_P) 3140infy_fork (EV_P)
2638{ 3141{
2639 int slot; 3142 int slot;
2640 3143
2641 if (fs_fd < 0) 3144 if (fs_fd < 0)
2642 return; 3145 return;
2643 3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 3149 close (fs_fd);
2645 fs_fd = inotify_init (); 3150 fs_fd = infy_newfd ();
2646 3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 3161 {
2649 WL w_ = fs_hash [slot].head; 3162 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 3163 fs_hash [slot].head = 0;
2651 3164
2652 while (w_) 3165 while (w_)
2657 w->wd = -1; 3170 w->wd = -1;
2658 3171
2659 if (fs_fd >= 0) 3172 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 3173 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
2663 } 3181 }
2664 } 3182 }
2665} 3183}
2666 3184
2667#endif 3185#endif
2684static void noinline 3202static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3203stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 3204{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 3206
2689 /* we copy this here each the time so that */ 3207 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 3208 ev_stat_stat (EV_A_ w);
2693 3209
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 3211 if (
2696 w->prev.st_dev != w->attr.st_dev 3212 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 3213 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 3214 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 3215 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 3216 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 3217 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 3218 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 3219 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 3220 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 3221 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 3222 || prev.st_ctime != w->attr.st_ctime
2707 ) { 3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
2708 #if EV_USE_INOTIFY 3229 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 3230 if (fs_fd >= 0)
2710 { 3231 {
2711 infy_del (EV_A_ w); 3232 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 3233 infy_add (EV_A_ w);
2737 3258
2738 if (fs_fd >= 0) 3259 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 3260 infy_add (EV_A_ w);
2740 else 3261 else
2741#endif 3262#endif
3263 {
2742 ev_timer_again (EV_A_ &w->timer); 3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
2743 3267
2744 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
2745 3269
2746 EV_FREQUENT_CHECK; 3270 EV_FREQUENT_CHECK;
2747} 3271}
2756 EV_FREQUENT_CHECK; 3280 EV_FREQUENT_CHECK;
2757 3281
2758#if EV_USE_INOTIFY 3282#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
2760#endif 3284#endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
2762 3291
2763 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
2764 3293
2765 EV_FREQUENT_CHECK; 3294 EV_FREQUENT_CHECK;
2766} 3295}
2811 3340
2812 EV_FREQUENT_CHECK; 3341 EV_FREQUENT_CHECK;
2813} 3342}
2814#endif 3343#endif
2815 3344
3345#if EV_PREPARE_ENABLE
2816void 3346void
2817ev_prepare_start (EV_P_ ev_prepare *w) 3347ev_prepare_start (EV_P_ ev_prepare *w)
2818{ 3348{
2819 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2820 return; 3350 return;
2846 3376
2847 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
2848 3378
2849 EV_FREQUENT_CHECK; 3379 EV_FREQUENT_CHECK;
2850} 3380}
3381#endif
2851 3382
3383#if EV_CHECK_ENABLE
2852void 3384void
2853ev_check_start (EV_P_ ev_check *w) 3385ev_check_start (EV_P_ ev_check *w)
2854{ 3386{
2855 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2856 return; 3388 return;
2882 3414
2883 ev_stop (EV_A_ (W)w); 3415 ev_stop (EV_A_ (W)w);
2884 3416
2885 EV_FREQUENT_CHECK; 3417 EV_FREQUENT_CHECK;
2886} 3418}
3419#endif
2887 3420
2888#if EV_EMBED_ENABLE 3421#if EV_EMBED_ENABLE
2889void noinline 3422void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w) 3423ev_embed_sweep (EV_P_ ev_embed *w)
2891{ 3424{
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3440embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 3441{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 3443
2911 { 3444 {
2912 struct ev_loop *loop = w->other; 3445 EV_P = w->other;
2913 3446
2914 while (fdchangecnt) 3447 while (fdchangecnt)
2915 { 3448 {
2916 fd_reify (EV_A); 3449 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 3459
2927 ev_embed_stop (EV_A_ w); 3460 ev_embed_stop (EV_A_ w);
2928 3461
2929 { 3462 {
2930 struct ev_loop *loop = w->other; 3463 EV_P = w->other;
2931 3464
2932 ev_loop_fork (EV_A); 3465 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 } 3467 }
2935 3468
2949{ 3482{
2950 if (expect_false (ev_is_active (w))) 3483 if (expect_false (ev_is_active (w)))
2951 return; 3484 return;
2952 3485
2953 { 3486 {
2954 struct ev_loop *loop = w->other; 3487 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 3490 }
2958 3491
2959 EV_FREQUENT_CHECK; 3492 EV_FREQUENT_CHECK;
2986 3519
2987 ev_io_stop (EV_A_ &w->io); 3520 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 3521 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 3522 ev_fork_stop (EV_A_ &w->fork);
2990 3523
3524 ev_stop (EV_A_ (W)w);
3525
2991 EV_FREQUENT_CHECK; 3526 EV_FREQUENT_CHECK;
2992} 3527}
2993#endif 3528#endif
2994 3529
2995#if EV_FORK_ENABLE 3530#if EV_FORK_ENABLE
3071 3606
3072void 3607void
3073ev_async_send (EV_P_ ev_async *w) 3608ev_async_send (EV_P_ ev_async *w)
3074{ 3609{
3075 w->sent = 1; 3610 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 3611 evpipe_write (EV_A_ &async_pending);
3077} 3612}
3078#endif 3613#endif
3079 3614
3080/*****************************************************************************/ 3615/*****************************************************************************/
3081 3616
3121{ 3656{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123 3658
3124 if (expect_false (!once)) 3659 if (expect_false (!once))
3125 { 3660 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3127 return; 3662 return;
3128 } 3663 }
3129 3664
3130 once->cb = cb; 3665 once->cb = cb;
3131 once->arg = arg; 3666 once->arg = arg;
3145 } 3680 }
3146} 3681}
3147 3682
3148/*****************************************************************************/ 3683/*****************************************************************************/
3149 3684
3150#if 0 3685#if EV_WALK_ENABLE
3151void 3686void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3687ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3688{
3154 int i, j; 3689 int i, j;
3155 ev_watcher_list *wl, *wn; 3690 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3706#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3708 ;
3174 else 3709 else
3175#endif 3710#endif
3176 if ((ev_io *)wl != &pipeev) 3711 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3712 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3713 cb (EV_A_ EV_IO, wl);
3179 3714
3180 wl = wn; 3715 wl = wn;
3181 } 3716 }
3218 if (types & EV_ASYNC) 3753 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 3754 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 3756#endif
3222 3757
3758#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 3759 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 3760 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 3761# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 3763# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765#endif
3229 3766
3767#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 3768 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 3769 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 3770 cb (EV_A_ EV_CHECK, checks [i]);
3771#endif
3233 3772
3773#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 3774 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 3775 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 3776 for (wl = signals [i].head; wl; )
3237 { 3777 {
3238 wn = wl->next; 3778 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 3779 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 3780 wl = wn;
3241 } 3781 }
3782#endif
3242 3783
3784#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 3785 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 3786 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 3787 for (wl = childs [i]; wl; )
3246 { 3788 {
3247 wn = wl->next; 3789 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 3790 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 3791 wl = wn;
3250 } 3792 }
3793#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 3794/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 3795/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 3796}
3254#endif 3797#endif
3255 3798

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines