ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.438 by root, Tue May 29 21:03:44 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
180 255
181#ifndef EV_USE_CLOCK_SYSCALL 256#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 257# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 259# else
185# define EV_USE_CLOCK_SYSCALL 0 260# define EV_USE_CLOCK_SYSCALL 0
186# endif 261# endif
187#endif 262#endif
188 263
189#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 267# else
193# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
194# endif 269# endif
195#endif 270#endif
196 271
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 274#endif
200 275
201#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 279# else
205# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
206# endif 281# endif
207#endif 282#endif
208 283
209#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 286#endif
212 287
213#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
214# ifdef _WIN32 289# ifdef _WIN32
215# define EV_USE_POLL 0 290# define EV_USE_POLL 0
216# else 291# else
217# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 293# endif
219#endif 294#endif
220 295
221#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 299# else
225# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
226# endif 301# endif
227#endif 302#endif
228 303
234# define EV_USE_PORT 0 309# define EV_USE_PORT 0
235#endif 310#endif
236 311
237#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 315# else
241# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
242# endif 317# endif
243#endif 318#endif
244 319
245#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 322#endif
252 323
253#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 326#endif
260 327
261#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 331# else
265# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
266# endif 341# endif
267#endif 342#endif
268 343
269#if 0 /* debugging */ 344#if 0 /* debugging */
270# define EV_VERIFY 3 345# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
273#endif 348#endif
274 349
275#ifndef EV_VERIFY 350#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 352#endif
278 353
279#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 356#endif
282 357
283#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
285#endif 374#endif
286 375
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
288 383
289#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
292#endif 387#endif
300# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
302#endif 397#endif
303 398
304#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 402# include <sys/select.h>
307# endif 403# endif
308#endif 404#endif
309 405
310#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 407# include <sys/statfs.h>
313# include <sys/inotify.h> 408# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 410# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
318# endif 413# endif
319#endif 414#endif
320 415
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 418# include <stdint.h>
337# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
338extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
339# endif 421# endif
340int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 423# ifdef O_CLOEXEC
342} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
343# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
344#endif 452#endif
345 453
346/**/ 454/**/
347 455
348#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 458#else
351# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
352#endif 460#endif
353 461
354/* 462/*
355 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 465 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 468
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 519 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
371#else 536#else
372# define expect(expr,value) (expr) 537 #include <inttypes.h>
373# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
375# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
376# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
377#endif 557 #endif
558#endif
378 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573# define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
627 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
628 #elif _MSC_VER >= 1400 /* VC++ 2005 */
629 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
630 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
631 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
632 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
633 #elif defined _WIN32
634 #include <WinNT.h>
635 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
636 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
637 #include <mbarrier.h>
638 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
639 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
640 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
641 #elif __xlC__
642 #define ECB_MEMORY_FENCE __sync ()
643 #endif
644#endif
645
646#ifndef ECB_MEMORY_FENCE
647 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
648 /* we assume that these memory fences work on all variables/all memory accesses, */
649 /* not just C11 atomics and atomic accesses */
650 #include <stdatomic.h>
651 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
652 /* simple barrier semantics. That means we need to take out thor's hammer. */
653 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
654 #endif
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
381#define inline_size static inline 1013#define inline_size ecb_inline
382 1014
383#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
384# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
385#else 1025#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
391 1028
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
394 1031
395typedef ev_watcher *W; 1032typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1036#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1037#define ev_at(w) ((WT)(w))->at
401 1038
402#if EV_USE_REALTIME 1039#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1041/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1043#endif
407 1044
408#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1047#endif
411 1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
412#ifdef _WIN32 1059#ifdef _WIN32
413# include "ev_win32.c" 1060# include "ev_win32.c"
414#endif 1061#endif
415 1062
416/*****************************************************************************/ 1063/*****************************************************************************/
417 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
418static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
419 1164
420void 1165void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1167{
423 syserr_cb = cb; 1168 syserr_cb = cb;
424} 1169}
425 1170
426static void noinline 1171static void noinline ecb_cold
427ev_syserr (const char *msg) 1172ev_syserr (const char *msg)
428{ 1173{
429 if (!msg) 1174 if (!msg)
430 msg = "(libev) system error"; 1175 msg = "(libev) system error";
431 1176
432 if (syserr_cb) 1177 if (syserr_cb)
433 syserr_cb (msg); 1178 syserr_cb (msg);
434 else 1179 else
435 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
436 perror (msg); 1187 perror (msg);
1188#endif
437 abort (); 1189 abort ();
438 } 1190 }
439} 1191}
440 1192
441static void * 1193static void *
442ev_realloc_emul (void *ptr, long size) 1194ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
444 /* some systems, notably openbsd and darwin, fail to properly 1199 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1200 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1201 * the single unix specification, so work around them here.
447 */ 1202 */
448 1203
449 if (size) 1204 if (size)
450 return realloc (ptr, size); 1205 return realloc (ptr, size);
451 1206
452 free (ptr); 1207 free (ptr);
453 return 0; 1208 return 0;
1209#endif
454} 1210}
455 1211
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1213
458void 1214void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1216{
461 alloc = cb; 1217 alloc = cb;
462} 1218}
463 1219
464inline_speed void * 1220inline_speed void *
466{ 1222{
467 ptr = alloc (ptr, size); 1223 ptr = alloc (ptr, size);
468 1224
469 if (!ptr && size) 1225 if (!ptr && size)
470 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
472 abort (); 1232 abort ();
473 } 1233 }
474 1234
475 return ptr; 1235 return ptr;
476} 1236}
478#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1240
481/*****************************************************************************/ 1241/*****************************************************************************/
482 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
483typedef struct 1247typedef struct
484{ 1248{
485 WL head; 1249 WL head;
486 unsigned char events; 1250 unsigned char events; /* the events watched for */
487 unsigned char reify; 1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1253 unsigned char unused;
490#if EV_USE_EPOLL 1254#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1255 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1256#endif
493#if EV_SELECT_IS_WINSOCKET 1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1258 SOCKET handle;
495#endif 1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
496} ANFD; 1263} ANFD;
497 1264
1265/* stores the pending event set for a given watcher */
498typedef struct 1266typedef struct
499{ 1267{
500 W w; 1268 W w;
501 int events; 1269 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1270} ANPENDING;
503 1271
504#if EV_USE_INOTIFY 1272#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1273/* hash table entry per inotify-id */
506typedef struct 1274typedef struct
509} ANFS; 1277} ANFS;
510#endif 1278#endif
511 1279
512/* Heap Entry */ 1280/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
514 typedef struct { 1283 typedef struct {
515 ev_tstamp at; 1284 ev_tstamp at;
516 WT w; 1285 WT w;
517 } ANHE; 1286 } ANHE;
518 1287
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1291#else
1292 /* a heap element */
523 typedef WT ANHE; 1293 typedef WT ANHE;
524 1294
525 #define ANHE_w(he) (he) 1295 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1296 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1297 #define ANHE_at_cache(he)
538 #undef VAR 1308 #undef VAR
539 }; 1309 };
540 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
541 1311
542 static struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1314
545#else 1315#else
546 1316
547 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1319 #include "ev_vars.h"
550 #undef VAR 1320 #undef VAR
551 1321
552 static int ev_default_loop_ptr; 1322 static int ev_default_loop_ptr;
553 1323
554#endif 1324#endif
555 1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
556/*****************************************************************************/ 1338/*****************************************************************************/
557 1339
1340#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1341ev_tstamp
559ev_time (void) 1342ev_time (void) EV_THROW
560{ 1343{
561#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1345 if (expect_true (have_realtime))
563 { 1346 {
564 struct timespec ts; 1347 struct timespec ts;
569 1352
570 struct timeval tv; 1353 struct timeval tv;
571 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1356}
1357#endif
574 1358
575ev_tstamp inline_size 1359inline_size ev_tstamp
576get_clock (void) 1360get_clock (void)
577{ 1361{
578#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
580 { 1364 {
587 return ev_time (); 1371 return ev_time ();
588} 1372}
589 1373
590#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
591ev_tstamp 1375ev_tstamp
592ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
593{ 1377{
594 return ev_rt_now; 1378 return ev_rt_now;
595} 1379}
596#endif 1380#endif
597 1381
598void 1382void
599ev_sleep (ev_tstamp delay) 1383ev_sleep (ev_tstamp delay) EV_THROW
600{ 1384{
601 if (delay > 0.) 1385 if (delay > 0.)
602 { 1386 {
603#if EV_USE_NANOSLEEP 1387#if EV_USE_NANOSLEEP
604 struct timespec ts; 1388 struct timespec ts;
605 1389
606 ts.tv_sec = (time_t)delay; 1390 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1391 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1392#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1393 Sleep ((unsigned long)(delay * 1e3));
612#else 1394#else
613 struct timeval tv; 1395 struct timeval tv;
614 1396
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1398 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1401 select (0, 0, 0, 0, &tv);
622#endif 1402#endif
623 } 1403 }
624} 1404}
625 1405
626/*****************************************************************************/ 1406/*****************************************************************************/
627 1407
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1409
630int inline_size 1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
631array_nextsize (int elem, int cur, int cnt) 1413array_nextsize (int elem, int cur, int cnt)
632{ 1414{
633 int ncur = cur + 1; 1415 int ncur = cur + 1;
634 1416
635 do 1417 do
636 ncur <<= 1; 1418 ncur <<= 1;
637 while (cnt > ncur); 1419 while (cnt > ncur);
638 1420
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1423 {
642 ncur *= elem; 1424 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1426 ncur = ncur - sizeof (void *) * 4;
646 } 1428 }
647 1429
648 return ncur; 1430 return ncur;
649} 1431}
650 1432
651static noinline void * 1433static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1434array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1435{
654 *cur = array_nextsize (elem, *cur, cnt); 1436 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1437 return ev_realloc (base, elem * *cur);
656} 1438}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1442
661#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1444 if (expect_false ((cnt) > (cur))) \
663 { \ 1445 { \
664 int ocur_ = (cur); \ 1446 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1447 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1450 }
669 1451
680#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1464
683/*****************************************************************************/ 1465/*****************************************************************************/
684 1466
1467/* dummy callback for pending events */
1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
1470{
1471}
1472
685void noinline 1473void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1475{
688 W w_ = (W)w; 1476 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1477 int pri = ABSPRI (w_);
690 1478
691 if (expect_false (w_->pending)) 1479 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1483 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1485 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1486 pendings [pri][w_->pending - 1].events = revents;
699 } 1487 }
700}
701 1488
702void inline_speed 1489 pendingpri = NUMPRI - 1;
1490}
1491
1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 1509{
705 int i; 1510 int i;
706 1511
707 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
709} 1514}
710 1515
711/*****************************************************************************/ 1516/*****************************************************************************/
712 1517
713void inline_speed 1518inline_speed void
714fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
715{ 1520{
716 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
717 ev_io *w; 1522 ev_io *w;
718 1523
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 1528 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
725 } 1530 }
726} 1531}
727 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
728void 1544void
729ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
730{ 1546{
731 if (fd >= 0 && fd < anfdmax) 1547 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
733} 1549}
734 1550
735void inline_size 1551/* make sure the external fd watch events are in-sync */
1552/* with the kernel/libev internal state */
1553inline_size void
736fd_reify (EV_P) 1554fd_reify (EV_P)
737{ 1555{
738 int i; 1556 int i;
1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559 for (i = 0; i < fdchangecnt; ++i)
1560 {
1561 int fd = fdchanges [i];
1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
739 1582
740 for (i = 0; i < fdchangecnt; ++i) 1583 for (i = 0; i < fdchangecnt; ++i)
741 { 1584 {
742 int fd = fdchanges [i]; 1585 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 1586 ANFD *anfd = anfds + fd;
744 ev_io *w; 1587 ev_io *w;
745 1588
746 unsigned char events = 0; 1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
747 1591
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1592 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 1593
751#if EV_SELECT_IS_WINSOCKET 1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 1595 {
754 unsigned long arg; 1596 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 1597
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 1599 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 1600
759 #endif 1601 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1602 o_reify = EV__IOFDSET; /* actually |= */
761 } 1603 }
762#endif
763 1604
764 { 1605 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1606 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1607 }
775 1608
776 fdchangecnt = 0; 1609 fdchangecnt = 0;
777} 1610}
778 1611
779void inline_size 1612/* something about the given fd changed */
1613inline_size void
780fd_change (EV_P_ int fd, int flags) 1614fd_change (EV_P_ int fd, int flags)
781{ 1615{
782 unsigned char reify = anfds [fd].reify; 1616 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1617 anfds [fd].reify |= flags;
784 1618
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
790 } 1624 }
791} 1625}
792 1626
793void inline_speed 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
794fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
795{ 1630{
796 ev_io *w; 1631 ev_io *w;
797 1632
798 while ((w = (ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1637 }
803} 1638}
804 1639
805int inline_size 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
806fd_valid (int fd) 1642fd_valid (int fd)
807{ 1643{
808#ifdef _WIN32 1644#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1646#else
811 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
812#endif 1648#endif
813} 1649}
814 1650
815/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
816static void noinline 1652static void noinline ecb_cold
817fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
818{ 1654{
819 int fd; 1655 int fd;
820 1656
821 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
825} 1661}
826 1662
827/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 1664static void noinline ecb_cold
829fd_enomem (EV_P) 1665fd_enomem (EV_P)
830{ 1666{
831 int fd; 1667 int fd;
832 1668
833 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1670 if (anfds [fd].events)
835 { 1671 {
836 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
837 return; 1673 break;
838 } 1674 }
839} 1675}
840 1676
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1678static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1684 if (anfds [fd].events)
849 { 1685 {
850 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1687 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1689 }
854} 1690}
855 1691
1692/* used to prepare libev internal fd's */
1693/* this is not fork-safe */
1694inline_speed void
1695fd_intern (int fd)
1696{
1697#ifdef _WIN32
1698 unsigned long arg = 1;
1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1700#else
1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
1702 fcntl (fd, F_SETFL, O_NONBLOCK);
1703#endif
1704}
1705
856/*****************************************************************************/ 1706/*****************************************************************************/
857 1707
858/* 1708/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1709 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1711 * the branching factor of the d-tree.
862 */ 1712 */
863 1713
864/* 1714/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1725#define UPHEAP_DONE(p,k) ((p) == (k))
876 1726
877/* away from the root */ 1727/* away from the root */
878void inline_speed 1728inline_speed void
879downheap (ANHE *heap, int N, int k) 1729downheap (ANHE *heap, int N, int k)
880{ 1730{
881 ANHE he = heap [k]; 1731 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1732 ANHE *E = heap + N + HEAP0;
883 1733
923#define HEAP0 1 1773#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1774#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1775#define UPHEAP_DONE(p,k) (!(p))
926 1776
927/* away from the root */ 1777/* away from the root */
928void inline_speed 1778inline_speed void
929downheap (ANHE *heap, int N, int k) 1779downheap (ANHE *heap, int N, int k)
930{ 1780{
931 ANHE he = heap [k]; 1781 ANHE he = heap [k];
932 1782
933 for (;;) 1783 for (;;)
934 { 1784 {
935 int c = k << 1; 1785 int c = k << 1;
936 1786
937 if (c > N + HEAP0 - 1) 1787 if (c >= N + HEAP0)
938 break; 1788 break;
939 1789
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1791 ? 1 : 0;
942 1792
953 ev_active (ANHE_w (he)) = k; 1803 ev_active (ANHE_w (he)) = k;
954} 1804}
955#endif 1805#endif
956 1806
957/* towards the root */ 1807/* towards the root */
958void inline_speed 1808inline_speed void
959upheap (ANHE *heap, int k) 1809upheap (ANHE *heap, int k)
960{ 1810{
961 ANHE he = heap [k]; 1811 ANHE he = heap [k];
962 1812
963 for (;;) 1813 for (;;)
974 1824
975 heap [k] = he; 1825 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1826 ev_active (ANHE_w (he)) = k;
977} 1827}
978 1828
979void inline_size 1829/* move an element suitably so it is in a correct place */
1830inline_size void
980adjustheap (ANHE *heap, int N, int k) 1831adjustheap (ANHE *heap, int N, int k)
981{ 1832{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1834 upheap (heap, k);
984 else 1835 else
985 downheap (heap, N, k); 1836 downheap (heap, N, k);
986} 1837}
987 1838
988/* rebuild the heap: this function is used only once and executed rarely */ 1839/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1840inline_size void
990reheap (ANHE *heap, int N) 1841reheap (ANHE *heap, int N)
991{ 1842{
992 int i; 1843 int i;
993 1844
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1848 upheap (heap, i + HEAP0);
998} 1849}
999 1850
1000/*****************************************************************************/ 1851/*****************************************************************************/
1001 1852
1853/* associate signal watchers to a signal signal */
1002typedef struct 1854typedef struct
1003{ 1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1004 WL head; 1860 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1861} ANSIG;
1007 1862
1008static ANSIG *signals; 1863static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1864
1013/*****************************************************************************/ 1865/*****************************************************************************/
1014 1866
1015void inline_speed 1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1868
1027static void noinline 1869static void noinline ecb_cold
1028evpipe_init (EV_P) 1870evpipe_init (EV_P)
1029{ 1871{
1030 if (!ev_is_active (&pipeev)) 1872 if (!ev_is_active (&pipe_w))
1031 { 1873 {
1032#if EV_USE_EVENTFD 1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1034 { 1880 {
1035 evpipe [0] = -1; 1881 evpipe [0] = -1;
1036 fd_intern (evfd); 1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1883 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1884 }
1039 else 1885 else
1040#endif 1886# endif
1041 { 1887 {
1042 while (pipe (evpipe)) 1888 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1889 ev_syserr ("(libev) error creating signal/async pipe");
1044 1890
1045 fd_intern (evpipe [0]); 1891 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1892 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1894 }
1049 1895
1050 ev_io_start (EV_A_ &pipeev); 1896 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1897 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1898 }
1053} 1899}
1054 1900
1055void inline_size 1901inline_speed void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1903{
1058 if (!*flag) 1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
1059 { 1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
1060 int old_errno = errno; /* save errno because write might clobber it */ 1923 old_errno = errno; /* save errno because write will clobber it */
1061
1062 *flag = 1;
1063 1924
1064#if EV_USE_EVENTFD 1925#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1926 if (evfd >= 0)
1066 { 1927 {
1067 uint64_t counter = 1; 1928 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1929 write (evfd, &counter, sizeof (uint64_t));
1069 } 1930 }
1070 else 1931 else
1071#endif 1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1072 write (evpipe [1], &old_errno, 1); 1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
1073 1944
1074 errno = old_errno; 1945 errno = old_errno;
1075 } 1946 }
1076} 1947}
1077 1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
1078static void 1951static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1952pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1953{
1954 int i;
1955
1956 if (revents & EV_READ)
1957 {
1081#if EV_USE_EVENTFD 1958#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1959 if (evfd >= 0)
1083 { 1960 {
1084 uint64_t counter; 1961 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1962 read (evfd, &counter, sizeof (uint64_t));
1086 } 1963 }
1087 else 1964 else
1088#endif 1965#endif
1089 { 1966 {
1090 char dummy; 1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
1091 read (evpipe [0], &dummy, 1); 1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
1979 }
1980
1981 pipe_write_skipped = 0;
1982
1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1092 } 1987 {
1988 sig_pending = 0;
1093 1989
1094 if (gotsig && ev_is_default_loop (EV_A)) 1990 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 1991
1099 for (signum = signalmax; signum--; ) 1992 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1993 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1994 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1995 }
1996#endif
1103 1997
1104#if EV_ASYNC_ENABLE 1998#if EV_ASYNC_ENABLE
1105 if (gotasync) 1999 if (async_pending)
1106 { 2000 {
1107 int i; 2001 async_pending = 0;
1108 gotasync = 0; 2002
2003 ECB_MEMORY_FENCE;
1109 2004
1110 for (i = asynccnt; i--; ) 2005 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2006 if (asyncs [i]->sent)
1112 { 2007 {
1113 asyncs [i]->sent = 0; 2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2011 }
1116 } 2012 }
1117#endif 2013#endif
1118} 2014}
1119 2015
1120/*****************************************************************************/ 2016/*****************************************************************************/
1121 2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
2034
1122static void 2035static void
1123ev_sighandler (int signum) 2036ev_sighandler (int signum)
1124{ 2037{
2038#ifdef _WIN32
2039 signal (signum, ev_sighandler);
2040#endif
2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
1125#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2056 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2057 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2058
1129#if _WIN32 2059 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2060 return;
2061#endif
1150 2062
1151 signals [signum].gotsig = 0; 2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
1152 2065
1153 for (w = signals [signum].head; w; w = w->next) 2066 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2068}
1156 2069
2070#if EV_USE_SIGNALFD
2071static void
2072sigfdcb (EV_P_ ev_io *iow, int revents)
2073{
2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075
2076 for (;;)
2077 {
2078 ssize_t res = read (sigfd, si, sizeof (si));
2079
2080 /* not ISO-C, as res might be -1, but works with SuS */
2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083
2084 if (res < (ssize_t)sizeof (si))
2085 break;
2086 }
2087}
2088#endif
2089
2090#endif
2091
1157/*****************************************************************************/ 2092/*****************************************************************************/
1158 2093
2094#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2095static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2096
1163static ev_signal childev; 2097static ev_signal childev;
1164 2098
1165#ifndef WIFCONTINUED 2099#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2100# define WIFCONTINUED(status) 0
1167#endif 2101#endif
1168 2102
1169void inline_speed 2103/* handle a single child status event */
2104inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2105child_reap (EV_P_ int chain, int pid, int status)
1171{ 2106{
1172 ev_child *w; 2107 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2109
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2111 {
1177 if ((w->pid == pid || !w->pid) 2112 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2113 && (!traced || (w->flags & 1)))
1179 { 2114 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2122
1188#ifndef WCONTINUED 2123#ifndef WCONTINUED
1189# define WCONTINUED 0 2124# define WCONTINUED 0
1190#endif 2125#endif
1191 2126
2127/* called on sigchld etc., calls waitpid */
1192static void 2128static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2130{
1195 int pid, status; 2131 int pid, status;
1196 2132
1204 /* make sure we are called again until all children have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2141 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2143
1208 child_reap (EV_A_ pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2145 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2147}
1212 2148
1213#endif 2149#endif
1214 2150
1215/*****************************************************************************/ 2151/*****************************************************************************/
1216 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
1217#if EV_USE_PORT 2156#if EV_USE_PORT
1218# include "ev_port.c" 2157# include "ev_port.c"
1219#endif 2158#endif
1220#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
1228#endif 2167#endif
1229#if EV_USE_SELECT 2168#if EV_USE_SELECT
1230# include "ev_select.c" 2169# include "ev_select.c"
1231#endif 2170#endif
1232 2171
1233int 2172int ecb_cold
1234ev_version_major (void) 2173ev_version_major (void) EV_THROW
1235{ 2174{
1236 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
1237} 2176}
1238 2177
1239int 2178int ecb_cold
1240ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
1241{ 2180{
1242 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
1243} 2182}
1244 2183
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2185int inline_size ecb_cold
1247enable_secure (void) 2186enable_secure (void)
1248{ 2187{
1249#ifdef _WIN32 2188#ifdef _WIN32
1250 return 0; 2189 return 0;
1251#else 2190#else
1252 return getuid () != geteuid () 2191 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2192 || getgid () != getegid ();
1254#endif 2193#endif
1255} 2194}
1256 2195
1257unsigned int 2196unsigned int ecb_cold
1258ev_supported_backends (void) 2197ev_supported_backends (void) EV_THROW
1259{ 2198{
1260 unsigned int flags = 0; 2199 unsigned int flags = 0;
1261 2200
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267 2206
1268 return flags; 2207 return flags;
1269} 2208}
1270 2209
1271unsigned int 2210unsigned int ecb_cold
1272ev_recommended_backends (void) 2211ev_recommended_backends (void) EV_THROW
1273{ 2212{
1274 unsigned int flags = ev_supported_backends (); 2213 unsigned int flags = ev_supported_backends ();
1275 2214
1276#ifndef __NetBSD__ 2215#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2216 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2220#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2221 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2227#endif
1286 2228
1287 return flags; 2229 return flags;
1288} 2230}
1289 2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
1290unsigned int 2244unsigned int
1291ev_embeddable_backends (void) 2245ev_backend (EV_P) EV_THROW
1292{ 2246{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2247 return backend;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300} 2248}
1301 2249
2250#if EV_FEATURE_API
1302unsigned int 2251unsigned int
1303ev_backend (EV_P) 2252ev_iteration (EV_P) EV_THROW
1304{ 2253{
1305 return backend; 2254 return loop_count;
1306} 2255}
1307 2256
1308unsigned int 2257unsigned int
1309ev_loop_count (EV_P) 2258ev_depth (EV_P) EV_THROW
1310{ 2259{
1311 return loop_count; 2260 return loop_depth;
1312} 2261}
1313 2262
1314void 2263void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1316{ 2265{
1317 io_blocktime = interval; 2266 io_blocktime = interval;
1318} 2267}
1319 2268
1320void 2269void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1322{ 2271{
1323 timeout_blocktime = interval; 2272 timeout_blocktime = interval;
1324} 2273}
1325 2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
1326static void noinline 2302static void noinline ecb_cold
1327loop_init (EV_P_ unsigned int flags) 2303loop_init (EV_P_ unsigned int flags) EV_THROW
1328{ 2304{
1329 if (!backend) 2305 if (!backend)
1330 { 2306 {
2307 origflags = flags;
2308
1331#if EV_USE_REALTIME 2309#if EV_USE_REALTIME
1332 if (!have_realtime) 2310 if (!have_realtime)
1333 { 2311 {
1334 struct timespec ts; 2312 struct timespec ts;
1335 2313
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2325 have_monotonic = 1;
1348 } 2326 }
1349#endif 2327#endif
1350 2328
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2329 /* pid check not overridable via env */
1366#ifndef _WIN32 2330#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2331 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2332 curpid = getpid ();
1369#endif 2333#endif
1371 if (!(flags & EVFLAG_NOENV) 2335 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2336 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2337 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2338 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2339
1376 if (!(flags & 0x0000ffffU)) 2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2366 flags |= ev_recommended_backends ();
1378 2367
2368#if EV_USE_IOCP
2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
1379#if EV_USE_PORT 2371#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2373#endif
1382#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 2382#endif
1391#if EV_USE_SELECT 2383#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 2385#endif
1394 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2390 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
1397 } 2393 }
1398} 2394}
1399 2395
1400static void noinline 2396/* free up a loop structure */
2397void ecb_cold
1401loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
1402{ 2399{
1403 int i; 2400 int i;
1404 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
1405 if (ev_is_active (&pipeev)) 2425 if (ev_is_active (&pipe_w))
1406 { 2426 {
1407 ev_ref (EV_A); /* signal watcher */ 2427 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 2428 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 2429
1410#if EV_USE_EVENTFD 2430#if EV_USE_EVENTFD
1411 if (evfd >= 0) 2431 if (evfd >= 0)
1412 close (evfd); 2432 close (evfd);
1413#endif 2433#endif
1414 2434
1415 if (evpipe [0] >= 0) 2435 if (evpipe [0] >= 0)
1416 { 2436 {
1417 close (evpipe [0]); 2437 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 2438 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 2439 }
1420 } 2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
1421 2446
1422#if EV_USE_INOTIFY 2447#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 2448 if (fs_fd >= 0)
1424 close (fs_fd); 2449 close (fs_fd);
1425#endif 2450#endif
1426 2451
1427 if (backend_fd >= 0) 2452 if (backend_fd >= 0)
1428 close (backend_fd); 2453 close (backend_fd);
1429 2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
1430#if EV_USE_PORT 2458#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 2460#endif
1433#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 2477#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 2478 array_free (idle, [i]);
1451#endif 2479#endif
1452 } 2480 }
1453 2481
1454 ev_free (anfds); anfdmax = 0; 2482 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 2483
1456 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 2486 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 2487 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 2488#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 2489 array_free (periodic, EMPTY);
1461#endif 2490#endif
1462#if EV_FORK_ENABLE 2491#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 2492 array_free (fork, EMPTY);
1464#endif 2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
1465 array_free (prepare, EMPTY); 2497 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 2498 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 2499#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 2500 array_free (async, EMPTY);
1469#endif 2501#endif
1470 2502
1471 backend = 0; 2503 backend = 0;
2504
2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
1472} 2513}
1473 2514
1474#if EV_USE_INOTIFY 2515#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 2516inline_size void infy_fork (EV_P);
1476#endif 2517#endif
1477 2518
1478void inline_size 2519inline_size void
1479loop_fork (EV_P) 2520loop_fork (EV_P)
1480{ 2521{
1481#if EV_USE_PORT 2522#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 2524#endif
1489#endif 2530#endif
1490#if EV_USE_INOTIFY 2531#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 2532 infy_fork (EV_A);
1492#endif 2533#endif
1493 2534
1494 if (ev_is_active (&pipeev)) 2535 if (ev_is_active (&pipe_w))
1495 { 2536 {
1496 /* this "locks" the handlers against writing to the pipe */ 2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 2538
1503 ev_ref (EV_A); 2539 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 2540 ev_io_stop (EV_A_ &pipe_w);
1505 2541
1506#if EV_USE_EVENTFD 2542#if EV_USE_EVENTFD
1507 if (evfd >= 0) 2543 if (evfd >= 0)
1508 close (evfd); 2544 close (evfd);
1509#endif 2545#endif
1510 2546
1511 if (evpipe [0] >= 0) 2547 if (evpipe [0] >= 0)
1512 { 2548 {
1513 close (evpipe [0]); 2549 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 2550 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 2551 }
1516 2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 2554 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 2555 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 2556 pipecb (EV_A_ &pipe_w, EV_READ);
2557#endif
1520 } 2558 }
1521 2559
1522 postfork = 0; 2560 postfork = 0;
1523} 2561}
1524 2562
1525#if EV_MULTIPLICITY 2563#if EV_MULTIPLICITY
1526 2564
1527struct ev_loop * 2565struct ev_loop * ecb_cold
1528ev_loop_new (unsigned int flags) 2566ev_loop_new (unsigned int flags) EV_THROW
1529{ 2567{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 2569
1532 memset (loop, 0, sizeof (struct ev_loop)); 2570 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1535 2572
1536 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1537 return loop; 2574 return EV_A;
1538 2575
2576 ev_free (EV_A);
1539 return 0; 2577 return 0;
1540} 2578}
1541 2579
1542void 2580#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 2581
1555#if EV_VERIFY 2582#if EV_VERIFY
1556static void noinline 2583static void noinline ecb_cold
1557verify_watcher (EV_P_ W w) 2584verify_watcher (EV_P_ W w)
1558{ 2585{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 2587
1561 if (w->pending) 2588 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 2590}
1564 2591
1565static void noinline 2592static void noinline ecb_cold
1566verify_heap (EV_P_ ANHE *heap, int N) 2593verify_heap (EV_P_ ANHE *heap, int N)
1567{ 2594{
1568 int i; 2595 int i;
1569 2596
1570 for (i = HEAP0; i < N + HEAP0; ++i) 2597 for (i = HEAP0; i < N + HEAP0; ++i)
1575 2602
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 2604 }
1578} 2605}
1579 2606
1580static void noinline 2607static void noinline ecb_cold
1581array_verify (EV_P_ W *ws, int cnt) 2608array_verify (EV_P_ W *ws, int cnt)
1582{ 2609{
1583 while (cnt--) 2610 while (cnt--)
1584 { 2611 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 2613 verify_watcher (EV_A_ ws [cnt]);
1587 } 2614 }
1588} 2615}
1589#endif 2616#endif
1590 2617
1591void 2618#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
1593{ 2621{
1594#if EV_VERIFY 2622#if EV_VERIFY
1595 int i; 2623 int i;
1596 WL w; 2624 WL w, w2;
1597 2625
1598 assert (activecnt >= -1); 2626 assert (activecnt >= -1);
1599 2627
1600 assert (fdchangemax >= fdchangecnt); 2628 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 2629 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 2631
1604 assert (anfdmax >= 0); 2632 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
1606 for (w = anfds [i].head; w; w = w->next) 2637 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 2638 {
1608 verify_watcher (EV_A_ (W)w); 2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 2649 }
2650 }
1612 2651
1613 assert (timermax >= timercnt); 2652 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 2653 verify_heap (EV_A_ timers, timercnt);
1615 2654
1616#if EV_PERIODIC_ENABLE 2655#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 2670#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2671 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2672 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2673#endif
1635 2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
1636#if EV_ASYNC_ENABLE 2680#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2681 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2683#endif
1640 2684
2685#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2686 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
1643 2689
2690#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2691 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
1646 2694
1647# if 0 2695# if 0
2696#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
1650# endif 2700# endif
1651#endif 2701#endif
1652} 2702}
1653 2703#endif
1654#endif /* multiplicity */
1655 2704
1656#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1657struct ev_loop * 2706struct ev_loop * ecb_cold
1658ev_default_loop_init (unsigned int flags)
1659#else 2707#else
1660int 2708int
2709#endif
1661ev_default_loop (unsigned int flags) 2710ev_default_loop (unsigned int flags) EV_THROW
1662#endif
1663{ 2711{
1664 if (!ev_default_loop_ptr) 2712 if (!ev_default_loop_ptr)
1665 { 2713 {
1666#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 2716#else
1669 ev_default_loop_ptr = 1; 2717 ev_default_loop_ptr = 1;
1670#endif 2718#endif
1671 2719
1672 loop_init (EV_A_ flags); 2720 loop_init (EV_A_ flags);
1673 2721
1674 if (ev_backend (EV_A)) 2722 if (ev_backend (EV_A))
1675 { 2723 {
1676#ifndef _WIN32 2724#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 2729#endif
1686 2734
1687 return ev_default_loop_ptr; 2735 return ev_default_loop_ptr;
1688} 2736}
1689 2737
1690void 2738void
1691ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
1692{ 2740{
1693#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2741 postfork = 1; /* must be in line with ev_default_fork */
1715} 2742}
1716 2743
1717/*****************************************************************************/ 2744/*****************************************************************************/
1718 2745
1719void 2746void
1720ev_invoke (EV_P_ void *w, int revents) 2747ev_invoke (EV_P_ void *w, int revents)
1721{ 2748{
1722 EV_CB_INVOKE ((W)w, revents); 2749 EV_CB_INVOKE ((W)w, revents);
1723} 2750}
1724 2751
1725void inline_speed 2752unsigned int
1726call_pending (EV_P) 2753ev_pending_count (EV_P) EV_THROW
1727{ 2754{
1728 int pri; 2755 int pri;
2756 unsigned int count = 0;
1729 2757
1730 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
2759 count += pendingcnt [pri];
2760
2761 return count;
2762}
2763
2764void noinline
2765ev_invoke_pending (EV_P)
2766{
2767 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1731 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
1732 { 2769 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1734 2771
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1739 p->w->pending = 0; 2772 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2773 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
1742 }
1743 } 2775 }
1744} 2776}
1745 2777
1746#if EV_IDLE_ENABLE 2778#if EV_IDLE_ENABLE
1747void inline_size 2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
2781inline_size void
1748idle_reify (EV_P) 2782idle_reify (EV_P)
1749{ 2783{
1750 if (expect_false (idleall)) 2784 if (expect_false (idleall))
1751 { 2785 {
1752 int pri; 2786 int pri;
1764 } 2798 }
1765 } 2799 }
1766} 2800}
1767#endif 2801#endif
1768 2802
1769void inline_size 2803/* make timers pending */
2804inline_size void
1770timers_reify (EV_P) 2805timers_reify (EV_P)
1771{ 2806{
1772 EV_FREQUENT_CHECK; 2807 EV_FREQUENT_CHECK;
1773 2808
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2810 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2811 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
1783 ev_at (w) += w->repeat; 2820 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2821 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2822 ev_at (w) = mn_now;
1786 2823
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2825
1789 ANHE_at_cache (timers [HEAP0]); 2826 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
1791 } 2834 }
1792 else 2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2836
1795 EV_FREQUENT_CHECK; 2837 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2838 }
1798} 2839}
1799 2840
1800#if EV_PERIODIC_ENABLE 2841#if EV_PERIODIC_ENABLE
1801void inline_size 2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
2851 {
2852 ev_tstamp nat = at + w->interval;
2853
2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
2868inline_size void
1802periodics_reify (EV_P) 2869periodics_reify (EV_P)
1803{ 2870{
1804 EV_FREQUENT_CHECK; 2871 EV_FREQUENT_CHECK;
1805 2872
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2874 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2875 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878
2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880
2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2885
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2887
1819 ANHE_at_cache (periodics [HEAP0]); 2888 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
1821 } 2902 }
1822 else if (w->interval) 2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2904
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2905 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2906 }
1847} 2907}
1848 2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2911static void noinline ecb_cold
1850periodics_reschedule (EV_P) 2912periodics_reschedule (EV_P)
1851{ 2913{
1852 int i; 2914 int i;
1853 2915
1854 /* adjust periodics after time jump */ 2916 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 2920
1859 if (w->reschedule_cb) 2921 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 2923 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2924 periodic_recalc (EV_A_ w);
1863 2925
1864 ANHE_at_cache (periodics [i]); 2926 ANHE_at_cache (periodics [i]);
1865 } 2927 }
1866 2928
1867 reheap (periodics, periodiccnt); 2929 reheap (periodics, periodiccnt);
1868} 2930}
1869#endif 2931#endif
1870 2932
1871void inline_speed 2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2950time_update (EV_P_ ev_tstamp max_block)
1873{ 2951{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2952#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2953 if (expect_true (have_monotonic))
1878 { 2954 {
2955 int i;
1879 ev_tstamp odiff = rtmn_diff; 2956 ev_tstamp odiff = rtmn_diff;
1880 2957
1881 mn_now = get_clock (); 2958 mn_now = get_clock ();
1882 2959
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 2976 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 2977 * in the unlikely event of having been preempted here.
1901 */ 2978 */
1902 for (i = 4; --i; ) 2979 for (i = 4; --i; )
1903 { 2980 {
2981 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1905 2983
2984 diff = odiff - rtmn_diff;
2985
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 2987 return; /* all is well */
1908 2988
1909 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2990 mn_now = get_clock ();
1911 now_floor = mn_now; 2991 now_floor = mn_now;
1912 } 2992 }
1913 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2996# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2997 periodics_reschedule (EV_A);
1916# endif 2998# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2999 }
1920 else 3000 else
1921#endif 3001#endif
1922 { 3002 {
1923 ev_rt_now = ev_time (); 3003 ev_rt_now = ev_time ();
1924 3004
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3009#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1929#endif 3011#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3012 }
1938 3013
1939 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1940 } 3015 }
1941} 3016}
1942 3017
1943void 3018int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1965{ 3020{
3021#if EV_FEATURE_API
3022 ++loop_depth;
3023#endif
3024
3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
1966 loop_done = EVUNLOOP_CANCEL; 3027 loop_done = EVBREAK_CANCEL;
1967 3028
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3030
1970 do 3031 do
1971 { 3032 {
1972#if EV_VERIFY >= 2 3033#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3034 ev_verify (EV_A);
1974#endif 3035#endif
1975 3036
1976#ifndef _WIN32 3037#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3038 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3039 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3047 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3048 if (expect_false (postfork))
1988 if (forkcnt) 3049 if (forkcnt)
1989 { 3050 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3052 EV_INVOKE_PENDING;
1992 } 3053 }
1993#endif 3054#endif
1994 3055
3056#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1997 { 3059 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
2000 } 3062 }
3063#endif
3064
3065 if (expect_false (loop_done))
3066 break;
2001 3067
2002 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 3069 if (expect_false (postfork))
2004 loop_fork (EV_A); 3070 loop_fork (EV_A);
2005 3071
2009 /* calculate blocking time */ 3075 /* calculate blocking time */
2010 { 3076 {
2011 ev_tstamp waittime = 0.; 3077 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 3078 ev_tstamp sleeptime = 0.;
2013 3079
3080 /* remember old timestamp for io_blocktime calculation */
3081 ev_tstamp prev_mn_now = mn_now;
3082
3083 /* update time to cancel out callback processing overhead */
3084 time_update (EV_A_ 1e100);
3085
3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2015 { 3092 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
2020 3094
2021 if (timercnt) 3095 if (timercnt)
2022 { 3096 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2024 if (waittime > to) waittime = to; 3098 if (waittime > to) waittime = to;
2025 } 3099 }
2026 3100
2027#if EV_PERIODIC_ENABLE 3101#if EV_PERIODIC_ENABLE
2028 if (periodiccnt) 3102 if (periodiccnt)
2029 { 3103 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2031 if (waittime > to) waittime = to; 3105 if (waittime > to) waittime = to;
2032 } 3106 }
2033#endif 3107#endif
2034 3108
3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 3110 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 3111 waittime = timeout_blocktime;
2037 3112
2038 sleeptime = waittime - backend_fudge; 3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
2039 3117
3118 /* extra check because io_blocktime is commonly 0 */
2040 if (expect_true (sleeptime > io_blocktime)) 3119 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
2045 ev_sleep (sleeptime); 3128 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 3129 waittime -= sleeptime;
3130 }
2047 } 3131 }
2048 } 3132 }
2049 3133
3134#if EV_FEATURE_API
2050 ++loop_count; 3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 if (pipe_write_skipped)
3144 {
3145 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3146 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3147 }
3148
2052 3149
2053 /* update ev_rt_now, do magic */ 3150 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 3151 time_update (EV_A_ waittime + sleeptime);
2055 } 3152 }
2056 3153
2063#if EV_IDLE_ENABLE 3160#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 3161 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 3162 idle_reify (EV_A);
2066#endif 3163#endif
2067 3164
3165#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 3166 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 3167 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3168 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3169#endif
2071 3170
2072 call_pending (EV_A); 3171 EV_INVOKE_PENDING;
2073 } 3172 }
2074 while (expect_true ( 3173 while (expect_true (
2075 activecnt 3174 activecnt
2076 && !loop_done 3175 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3176 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 3177 ));
2079 3178
2080 if (loop_done == EVUNLOOP_ONE) 3179 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 3180 loop_done = EVBREAK_CANCEL;
3181
3182#if EV_FEATURE_API
3183 --loop_depth;
3184#endif
3185
3186 return activecnt;
2082} 3187}
2083 3188
2084void 3189void
2085ev_unloop (EV_P_ int how) 3190ev_break (EV_P_ int how) EV_THROW
2086{ 3191{
2087 loop_done = how; 3192 loop_done = how;
2088} 3193}
2089 3194
3195void
3196ev_ref (EV_P) EV_THROW
3197{
3198 ++activecnt;
3199}
3200
3201void
3202ev_unref (EV_P) EV_THROW
3203{
3204 --activecnt;
3205}
3206
3207void
3208ev_now_update (EV_P) EV_THROW
3209{
3210 time_update (EV_A_ 1e100);
3211}
3212
3213void
3214ev_suspend (EV_P) EV_THROW
3215{
3216 ev_now_update (EV_A);
3217}
3218
3219void
3220ev_resume (EV_P) EV_THROW
3221{
3222 ev_tstamp mn_prev = mn_now;
3223
3224 ev_now_update (EV_A);
3225 timers_reschedule (EV_A_ mn_now - mn_prev);
3226#if EV_PERIODIC_ENABLE
3227 /* TODO: really do this? */
3228 periodics_reschedule (EV_A);
3229#endif
3230}
3231
2090/*****************************************************************************/ 3232/*****************************************************************************/
3233/* singly-linked list management, used when the expected list length is short */
2091 3234
2092void inline_size 3235inline_size void
2093wlist_add (WL *head, WL elem) 3236wlist_add (WL *head, WL elem)
2094{ 3237{
2095 elem->next = *head; 3238 elem->next = *head;
2096 *head = elem; 3239 *head = elem;
2097} 3240}
2098 3241
2099void inline_size 3242inline_size void
2100wlist_del (WL *head, WL elem) 3243wlist_del (WL *head, WL elem)
2101{ 3244{
2102 while (*head) 3245 while (*head)
2103 { 3246 {
2104 if (*head == elem) 3247 if (expect_true (*head == elem))
2105 { 3248 {
2106 *head = elem->next; 3249 *head = elem->next;
2107 return; 3250 break;
2108 } 3251 }
2109 3252
2110 head = &(*head)->next; 3253 head = &(*head)->next;
2111 } 3254 }
2112} 3255}
2113 3256
2114void inline_speed 3257/* internal, faster, version of ev_clear_pending */
3258inline_speed void
2115clear_pending (EV_P_ W w) 3259clear_pending (EV_P_ W w)
2116{ 3260{
2117 if (w->pending) 3261 if (w->pending)
2118 { 3262 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3263 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 3264 w->pending = 0;
2121 } 3265 }
2122} 3266}
2123 3267
2124int 3268int
2125ev_clear_pending (EV_P_ void *w) 3269ev_clear_pending (EV_P_ void *w) EV_THROW
2126{ 3270{
2127 W w_ = (W)w; 3271 W w_ = (W)w;
2128 int pending = w_->pending; 3272 int pending = w_->pending;
2129 3273
2130 if (expect_true (pending)) 3274 if (expect_true (pending))
2131 { 3275 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3276 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3277 p->w = (W)&pending_w;
2133 w_->pending = 0; 3278 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 3279 return p->events;
2136 } 3280 }
2137 else 3281 else
2138 return 0; 3282 return 0;
2139} 3283}
2140 3284
2141void inline_size 3285inline_size void
2142pri_adjust (EV_P_ W w) 3286pri_adjust (EV_P_ W w)
2143{ 3287{
2144 int pri = w->priority; 3288 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3289 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3290 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 3291 ev_set_priority (w, pri);
2148} 3292}
2149 3293
2150void inline_speed 3294inline_speed void
2151ev_start (EV_P_ W w, int active) 3295ev_start (EV_P_ W w, int active)
2152{ 3296{
2153 pri_adjust (EV_A_ w); 3297 pri_adjust (EV_A_ w);
2154 w->active = active; 3298 w->active = active;
2155 ev_ref (EV_A); 3299 ev_ref (EV_A);
2156} 3300}
2157 3301
2158void inline_size 3302inline_size void
2159ev_stop (EV_P_ W w) 3303ev_stop (EV_P_ W w)
2160{ 3304{
2161 ev_unref (EV_A); 3305 ev_unref (EV_A);
2162 w->active = 0; 3306 w->active = 0;
2163} 3307}
2164 3308
2165/*****************************************************************************/ 3309/*****************************************************************************/
2166 3310
2167void noinline 3311void noinline
2168ev_io_start (EV_P_ ev_io *w) 3312ev_io_start (EV_P_ ev_io *w) EV_THROW
2169{ 3313{
2170 int fd = w->fd; 3314 int fd = w->fd;
2171 3315
2172 if (expect_false (ev_is_active (w))) 3316 if (expect_false (ev_is_active (w)))
2173 return; 3317 return;
2174 3318
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3319 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3320 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 3321
2178 EV_FREQUENT_CHECK; 3322 EV_FREQUENT_CHECK;
2179 3323
2180 ev_start (EV_A_ (W)w, 1); 3324 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3325 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 3326 wlist_add (&anfds[fd].head, (WL)w);
2183 3327
3328 /* common bug, apparently */
3329 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3330
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3331 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 3332 w->events &= ~EV__IOFDSET;
2186 3333
2187 EV_FREQUENT_CHECK; 3334 EV_FREQUENT_CHECK;
2188} 3335}
2189 3336
2190void noinline 3337void noinline
2191ev_io_stop (EV_P_ ev_io *w) 3338ev_io_stop (EV_P_ ev_io *w) EV_THROW
2192{ 3339{
2193 clear_pending (EV_A_ (W)w); 3340 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3341 if (expect_false (!ev_is_active (w)))
2195 return; 3342 return;
2196 3343
2199 EV_FREQUENT_CHECK; 3346 EV_FREQUENT_CHECK;
2200 3347
2201 wlist_del (&anfds[w->fd].head, (WL)w); 3348 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
2203 3350
2204 fd_change (EV_A_ w->fd, 1); 3351 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 3352
2206 EV_FREQUENT_CHECK; 3353 EV_FREQUENT_CHECK;
2207} 3354}
2208 3355
2209void noinline 3356void noinline
2210ev_timer_start (EV_P_ ev_timer *w) 3357ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2211{ 3358{
2212 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
2213 return; 3360 return;
2214 3361
2215 ev_at (w) += mn_now; 3362 ev_at (w) += mn_now;
2229 3376
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3377 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231} 3378}
2232 3379
2233void noinline 3380void noinline
2234ev_timer_stop (EV_P_ ev_timer *w) 3381ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2235{ 3382{
2236 clear_pending (EV_A_ (W)w); 3383 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w))) 3384 if (expect_false (!ev_is_active (w)))
2238 return; 3385 return;
2239 3386
2251 timers [active] = timers [timercnt + HEAP0]; 3398 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 3399 adjustheap (timers, timercnt, active);
2253 } 3400 }
2254 } 3401 }
2255 3402
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 3403 ev_at (w) -= mn_now;
2259 3404
2260 ev_stop (EV_A_ (W)w); 3405 ev_stop (EV_A_ (W)w);
3406
3407 EV_FREQUENT_CHECK;
2261} 3408}
2262 3409
2263void noinline 3410void noinline
2264ev_timer_again (EV_P_ ev_timer *w) 3411ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2265{ 3412{
2266 EV_FREQUENT_CHECK; 3413 EV_FREQUENT_CHECK;
3414
3415 clear_pending (EV_A_ (W)w);
2267 3416
2268 if (ev_is_active (w)) 3417 if (ev_is_active (w))
2269 { 3418 {
2270 if (w->repeat) 3419 if (w->repeat)
2271 { 3420 {
2283 } 3432 }
2284 3433
2285 EV_FREQUENT_CHECK; 3434 EV_FREQUENT_CHECK;
2286} 3435}
2287 3436
3437ev_tstamp
3438ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3439{
3440 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3441}
3442
2288#if EV_PERIODIC_ENABLE 3443#if EV_PERIODIC_ENABLE
2289void noinline 3444void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 3445ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2291{ 3446{
2292 if (expect_false (ev_is_active (w))) 3447 if (expect_false (ev_is_active (w)))
2293 return; 3448 return;
2294 3449
2295 if (w->reschedule_cb) 3450 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3451 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval) 3452 else if (w->interval)
2298 { 3453 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3454 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */ 3455 periodic_recalc (EV_A_ w);
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 } 3456 }
2303 else 3457 else
2304 ev_at (w) = w->offset; 3458 ev_at (w) = w->offset;
2305 3459
2306 EV_FREQUENT_CHECK; 3460 EV_FREQUENT_CHECK;
2316 3470
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3471 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318} 3472}
2319 3473
2320void noinline 3474void noinline
2321ev_periodic_stop (EV_P_ ev_periodic *w) 3475ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2322{ 3476{
2323 clear_pending (EV_A_ (W)w); 3477 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w))) 3478 if (expect_false (!ev_is_active (w)))
2325 return; 3479 return;
2326 3480
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 3492 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 3493 adjustheap (periodics, periodiccnt, active);
2340 } 3494 }
2341 } 3495 }
2342 3496
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
3498
3499 EV_FREQUENT_CHECK;
2346} 3500}
2347 3501
2348void noinline 3502void noinline
2349ev_periodic_again (EV_P_ ev_periodic *w) 3503ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2350{ 3504{
2351 /* TODO: use adjustheap and recalculation */ 3505 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w); 3506 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w); 3507 ev_periodic_start (EV_A_ w);
2354} 3508}
2356 3510
2357#ifndef SA_RESTART 3511#ifndef SA_RESTART
2358# define SA_RESTART 0 3512# define SA_RESTART 0
2359#endif 3513#endif
2360 3514
3515#if EV_SIGNAL_ENABLE
3516
2361void noinline 3517void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 3518ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2363{ 3519{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 3520 if (expect_false (ev_is_active (w)))
2368 return; 3521 return;
2369 3522
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3523 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 3524
2372 evpipe_init (EV_A); 3525#if EV_MULTIPLICITY
3526 assert (("libev: a signal must not be attached to two different loops",
3527 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 3528
2374 EV_FREQUENT_CHECK; 3529 signals [w->signum - 1].loop = EV_A;
3530#endif
2375 3531
3532 EV_FREQUENT_CHECK;
3533
3534#if EV_USE_SIGNALFD
3535 if (sigfd == -2)
2376 { 3536 {
2377#ifndef _WIN32 3537 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 3538 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 3539 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 3540
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3541 if (sigfd >= 0)
3542 {
3543 fd_intern (sigfd); /* doing it twice will not hurt */
2384 3544
2385#ifndef _WIN32 3545 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 3546
2387#endif 3547 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3548 ev_set_priority (&sigfd_w, EV_MAXPRI);
3549 ev_io_start (EV_A_ &sigfd_w);
3550 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3551 }
2388 } 3552 }
3553
3554 if (sigfd >= 0)
3555 {
3556 /* TODO: check .head */
3557 sigaddset (&sigfd_set, w->signum);
3558 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3559
3560 signalfd (sigfd, &sigfd_set, 0);
3561 }
3562#endif
2389 3563
2390 ev_start (EV_A_ (W)w, 1); 3564 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 3565 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 3566
2393 if (!((WL)w)->next) 3567 if (!((WL)w)->next)
3568# if EV_USE_SIGNALFD
3569 if (sigfd < 0) /*TODO*/
3570# endif
2394 { 3571 {
2395#if _WIN32 3572# ifdef _WIN32
3573 evpipe_init (EV_A);
3574
2396 signal (w->signum, ev_sighandler); 3575 signal (w->signum, ev_sighandler);
2397#else 3576# else
2398 struct sigaction sa; 3577 struct sigaction sa;
3578
3579 evpipe_init (EV_A);
3580
2399 sa.sa_handler = ev_sighandler; 3581 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 3582 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3583 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 3584 sigaction (w->signum, &sa, 0);
3585
3586 if (origflags & EVFLAG_NOSIGMASK)
3587 {
3588 sigemptyset (&sa.sa_mask);
3589 sigaddset (&sa.sa_mask, w->signum);
3590 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3591 }
2403#endif 3592#endif
2404 } 3593 }
2405 3594
2406 EV_FREQUENT_CHECK; 3595 EV_FREQUENT_CHECK;
2407} 3596}
2408 3597
2409void noinline 3598void noinline
2410ev_signal_stop (EV_P_ ev_signal *w) 3599ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2411{ 3600{
2412 clear_pending (EV_A_ (W)w); 3601 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w))) 3602 if (expect_false (!ev_is_active (w)))
2414 return; 3603 return;
2415 3604
2417 3606
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 3607 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
2420 3609
2421 if (!signals [w->signum - 1].head) 3610 if (!signals [w->signum - 1].head)
3611 {
3612#if EV_MULTIPLICITY
3613 signals [w->signum - 1].loop = 0; /* unattach from signal */
3614#endif
3615#if EV_USE_SIGNALFD
3616 if (sigfd >= 0)
3617 {
3618 sigset_t ss;
3619
3620 sigemptyset (&ss);
3621 sigaddset (&ss, w->signum);
3622 sigdelset (&sigfd_set, w->signum);
3623
3624 signalfd (sigfd, &sigfd_set, 0);
3625 sigprocmask (SIG_UNBLOCK, &ss, 0);
3626 }
3627 else
3628#endif
2422 signal (w->signum, SIG_DFL); 3629 signal (w->signum, SIG_DFL);
3630 }
2423 3631
2424 EV_FREQUENT_CHECK; 3632 EV_FREQUENT_CHECK;
2425} 3633}
3634
3635#endif
3636
3637#if EV_CHILD_ENABLE
2426 3638
2427void 3639void
2428ev_child_start (EV_P_ ev_child *w) 3640ev_child_start (EV_P_ ev_child *w) EV_THROW
2429{ 3641{
2430#if EV_MULTIPLICITY 3642#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3643 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif 3644#endif
2433 if (expect_false (ev_is_active (w))) 3645 if (expect_false (ev_is_active (w)))
2434 return; 3646 return;
2435 3647
2436 EV_FREQUENT_CHECK; 3648 EV_FREQUENT_CHECK;
2437 3649
2438 ev_start (EV_A_ (W)w, 1); 3650 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3651 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 3652
2441 EV_FREQUENT_CHECK; 3653 EV_FREQUENT_CHECK;
2442} 3654}
2443 3655
2444void 3656void
2445ev_child_stop (EV_P_ ev_child *w) 3657ev_child_stop (EV_P_ ev_child *w) EV_THROW
2446{ 3658{
2447 clear_pending (EV_A_ (W)w); 3659 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w))) 3660 if (expect_false (!ev_is_active (w)))
2449 return; 3661 return;
2450 3662
2451 EV_FREQUENT_CHECK; 3663 EV_FREQUENT_CHECK;
2452 3664
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3665 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
2455 3667
2456 EV_FREQUENT_CHECK; 3668 EV_FREQUENT_CHECK;
2457} 3669}
3670
3671#endif
2458 3672
2459#if EV_STAT_ENABLE 3673#if EV_STAT_ENABLE
2460 3674
2461# ifdef _WIN32 3675# ifdef _WIN32
2462# undef lstat 3676# undef lstat
2468#define MIN_STAT_INTERVAL 0.1074891 3682#define MIN_STAT_INTERVAL 0.1074891
2469 3683
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3684static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 3685
2472#if EV_USE_INOTIFY 3686#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192 3687
3688/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3689# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2474 3690
2475static void noinline 3691static void noinline
2476infy_add (EV_P_ ev_stat *w) 3692infy_add (EV_P_ ev_stat *w)
2477{ 3693{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3694 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 3695
2480 if (w->wd < 0) 3696 if (w->wd >= 0)
3697 {
3698 struct statfs sfs;
3699
3700 /* now local changes will be tracked by inotify, but remote changes won't */
3701 /* unless the filesystem is known to be local, we therefore still poll */
3702 /* also do poll on <2.6.25, but with normal frequency */
3703
3704 if (!fs_2625)
3705 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3706 else if (!statfs (w->path, &sfs)
3707 && (sfs.f_type == 0x1373 /* devfs */
3708 || sfs.f_type == 0xEF53 /* ext2/3 */
3709 || sfs.f_type == 0x3153464a /* jfs */
3710 || sfs.f_type == 0x52654973 /* reiser3 */
3711 || sfs.f_type == 0x01021994 /* tempfs */
3712 || sfs.f_type == 0x58465342 /* xfs */))
3713 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3714 else
3715 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 3716 }
3717 else
3718 {
3719 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3720 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 3721
2485 /* monitor some parent directory for speedup hints */ 3722 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3723 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 3724 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3725 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 3726 {
2490 char path [4096]; 3727 char path [4096];
2500 if (!pend || pend == path) 3737 if (!pend || pend == path)
2501 break; 3738 break;
2502 3739
2503 *pend = 0; 3740 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask); 3741 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 } 3742 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3743 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 3744 }
2508 } 3745 }
2509 3746
2510 if (w->wd >= 0) 3747 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3748 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 3749
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 3750 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 3751 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 3752 ev_timer_again (EV_A_ &w->timer);
2530 } 3753 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 3754}
2532 3755
2533static void noinline 3756static void noinline
2534infy_del (EV_P_ ev_stat *w) 3757infy_del (EV_P_ ev_stat *w)
2535{ 3758{
2538 3761
2539 if (wd < 0) 3762 if (wd < 0)
2540 return; 3763 return;
2541 3764
2542 w->wd = -2; 3765 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3766 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 3767 wlist_del (&fs_hash [slot].head, (WL)w);
2545 3768
2546 /* remove this watcher, if others are watching it, they will rearm */ 3769 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 3770 inotify_rm_watch (fs_fd, wd);
2548} 3771}
2550static void noinline 3773static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3774infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 3775{
2553 if (slot < 0) 3776 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 3777 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3778 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 3779 infy_wd (EV_A_ slot, wd, ev);
2557 else 3780 else
2558 { 3781 {
2559 WL w_; 3782 WL w_;
2560 3783
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3784 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 3785 {
2563 ev_stat *w = (ev_stat *)w_; 3786 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 3787 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 3788
2566 if (w->wd == wd || wd == -1) 3789 if (w->wd == wd || wd == -1)
2567 { 3790 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3791 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 3792 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3793 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 3794 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 3795 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 3796 }
2574 3797
2575 stat_timer_cb (EV_A_ &w->timer, 0); 3798 stat_timer_cb (EV_A_ &w->timer, 0);
2580 3803
2581static void 3804static void
2582infy_cb (EV_P_ ev_io *w, int revents) 3805infy_cb (EV_P_ ev_io *w, int revents)
2583{ 3806{
2584 char buf [EV_INOTIFY_BUFSIZE]; 3807 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 3808 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 3809 int len = read (fs_fd, buf, sizeof (buf));
2588 3810
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3811 for (ofs = 0; ofs < len; )
3812 {
3813 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3814 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3815 ofs += sizeof (struct inotify_event) + ev->len;
3816 }
2591} 3817}
2592 3818
2593void inline_size 3819inline_size void ecb_cold
2594check_2625 (EV_P) 3820ev_check_2625 (EV_P)
2595{ 3821{
2596 /* kernels < 2.6.25 are borked 3822 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3823 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 3824 */
2599 struct utsname buf; 3825 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 3826 return;
2604 3827
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 3828 fs_2625 = 1;
2614} 3829}
2615 3830
2616void inline_size 3831inline_size int
3832infy_newfd (void)
3833{
3834#if defined IN_CLOEXEC && defined IN_NONBLOCK
3835 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3836 if (fd >= 0)
3837 return fd;
3838#endif
3839 return inotify_init ();
3840}
3841
3842inline_size void
2617infy_init (EV_P) 3843infy_init (EV_P)
2618{ 3844{
2619 if (fs_fd != -2) 3845 if (fs_fd != -2)
2620 return; 3846 return;
2621 3847
2622 fs_fd = -1; 3848 fs_fd = -1;
2623 3849
2624 check_2625 (EV_A); 3850 ev_check_2625 (EV_A);
2625 3851
2626 fs_fd = inotify_init (); 3852 fs_fd = infy_newfd ();
2627 3853
2628 if (fs_fd >= 0) 3854 if (fs_fd >= 0)
2629 { 3855 {
3856 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3857 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 3858 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 3859 ev_io_start (EV_A_ &fs_w);
3860 ev_unref (EV_A);
2633 } 3861 }
2634} 3862}
2635 3863
2636void inline_size 3864inline_size void
2637infy_fork (EV_P) 3865infy_fork (EV_P)
2638{ 3866{
2639 int slot; 3867 int slot;
2640 3868
2641 if (fs_fd < 0) 3869 if (fs_fd < 0)
2642 return; 3870 return;
2643 3871
3872 ev_ref (EV_A);
3873 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 3874 close (fs_fd);
2645 fs_fd = inotify_init (); 3875 fs_fd = infy_newfd ();
2646 3876
3877 if (fs_fd >= 0)
3878 {
3879 fd_intern (fs_fd);
3880 ev_io_set (&fs_w, fs_fd, EV_READ);
3881 ev_io_start (EV_A_ &fs_w);
3882 ev_unref (EV_A);
3883 }
3884
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3885 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 3886 {
2649 WL w_ = fs_hash [slot].head; 3887 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 3888 fs_hash [slot].head = 0;
2651 3889
2652 while (w_) 3890 while (w_)
2657 w->wd = -1; 3895 w->wd = -1;
2658 3896
2659 if (fs_fd >= 0) 3897 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 3898 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 3899 else
3900 {
3901 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3902 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 3903 ev_timer_again (EV_A_ &w->timer);
3904 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3905 }
2663 } 3906 }
2664 } 3907 }
2665} 3908}
2666 3909
2667#endif 3910#endif
2671#else 3914#else
2672# define EV_LSTAT(p,b) lstat (p, b) 3915# define EV_LSTAT(p,b) lstat (p, b)
2673#endif 3916#endif
2674 3917
2675void 3918void
2676ev_stat_stat (EV_P_ ev_stat *w) 3919ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2677{ 3920{
2678 if (lstat (w->path, &w->attr) < 0) 3921 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0; 3922 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink) 3923 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1; 3924 w->attr.st_nlink = 1;
2684static void noinline 3927static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3928stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 3929{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3930 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 3931
2689 /* we copy this here each the time so that */ 3932 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 3933 ev_stat_stat (EV_A_ w);
2693 3934
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3935 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 3936 if (
2696 w->prev.st_dev != w->attr.st_dev 3937 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 3938 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 3939 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 3940 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 3941 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 3942 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 3943 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 3944 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 3945 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 3946 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 3947 || prev.st_ctime != w->attr.st_ctime
2707 ) { 3948 ) {
3949 /* we only update w->prev on actual differences */
3950 /* in case we test more often than invoke the callback, */
3951 /* to ensure that prev is always different to attr */
3952 w->prev = prev;
3953
2708 #if EV_USE_INOTIFY 3954 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 3955 if (fs_fd >= 0)
2710 { 3956 {
2711 infy_del (EV_A_ w); 3957 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 3958 infy_add (EV_A_ w);
2717 ev_feed_event (EV_A_ w, EV_STAT); 3963 ev_feed_event (EV_A_ w, EV_STAT);
2718 } 3964 }
2719} 3965}
2720 3966
2721void 3967void
2722ev_stat_start (EV_P_ ev_stat *w) 3968ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2723{ 3969{
2724 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
2725 return; 3971 return;
2726 3972
2727 ev_stat_stat (EV_A_ w); 3973 ev_stat_stat (EV_A_ w);
2737 3983
2738 if (fs_fd >= 0) 3984 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 3985 infy_add (EV_A_ w);
2740 else 3986 else
2741#endif 3987#endif
3988 {
2742 ev_timer_again (EV_A_ &w->timer); 3989 ev_timer_again (EV_A_ &w->timer);
3990 ev_unref (EV_A);
3991 }
2743 3992
2744 ev_start (EV_A_ (W)w, 1); 3993 ev_start (EV_A_ (W)w, 1);
2745 3994
2746 EV_FREQUENT_CHECK; 3995 EV_FREQUENT_CHECK;
2747} 3996}
2748 3997
2749void 3998void
2750ev_stat_stop (EV_P_ ev_stat *w) 3999ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2751{ 4000{
2752 clear_pending (EV_A_ (W)w); 4001 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w))) 4002 if (expect_false (!ev_is_active (w)))
2754 return; 4003 return;
2755 4004
2756 EV_FREQUENT_CHECK; 4005 EV_FREQUENT_CHECK;
2757 4006
2758#if EV_USE_INOTIFY 4007#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 4008 infy_del (EV_A_ w);
2760#endif 4009#endif
4010
4011 if (ev_is_active (&w->timer))
4012 {
4013 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 4014 ev_timer_stop (EV_A_ &w->timer);
4015 }
2762 4016
2763 ev_stop (EV_A_ (W)w); 4017 ev_stop (EV_A_ (W)w);
2764 4018
2765 EV_FREQUENT_CHECK; 4019 EV_FREQUENT_CHECK;
2766} 4020}
2767#endif 4021#endif
2768 4022
2769#if EV_IDLE_ENABLE 4023#if EV_IDLE_ENABLE
2770void 4024void
2771ev_idle_start (EV_P_ ev_idle *w) 4025ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2772{ 4026{
2773 if (expect_false (ev_is_active (w))) 4027 if (expect_false (ev_is_active (w)))
2774 return; 4028 return;
2775 4029
2776 pri_adjust (EV_A_ (W)w); 4030 pri_adjust (EV_A_ (W)w);
2789 4043
2790 EV_FREQUENT_CHECK; 4044 EV_FREQUENT_CHECK;
2791} 4045}
2792 4046
2793void 4047void
2794ev_idle_stop (EV_P_ ev_idle *w) 4048ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2795{ 4049{
2796 clear_pending (EV_A_ (W)w); 4050 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4051 if (expect_false (!ev_is_active (w)))
2798 return; 4052 return;
2799 4053
2811 4065
2812 EV_FREQUENT_CHECK; 4066 EV_FREQUENT_CHECK;
2813} 4067}
2814#endif 4068#endif
2815 4069
4070#if EV_PREPARE_ENABLE
2816void 4071void
2817ev_prepare_start (EV_P_ ev_prepare *w) 4072ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2818{ 4073{
2819 if (expect_false (ev_is_active (w))) 4074 if (expect_false (ev_is_active (w)))
2820 return; 4075 return;
2821 4076
2822 EV_FREQUENT_CHECK; 4077 EV_FREQUENT_CHECK;
2827 4082
2828 EV_FREQUENT_CHECK; 4083 EV_FREQUENT_CHECK;
2829} 4084}
2830 4085
2831void 4086void
2832ev_prepare_stop (EV_P_ ev_prepare *w) 4087ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2833{ 4088{
2834 clear_pending (EV_A_ (W)w); 4089 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w))) 4090 if (expect_false (!ev_is_active (w)))
2836 return; 4091 return;
2837 4092
2846 4101
2847 ev_stop (EV_A_ (W)w); 4102 ev_stop (EV_A_ (W)w);
2848 4103
2849 EV_FREQUENT_CHECK; 4104 EV_FREQUENT_CHECK;
2850} 4105}
4106#endif
2851 4107
4108#if EV_CHECK_ENABLE
2852void 4109void
2853ev_check_start (EV_P_ ev_check *w) 4110ev_check_start (EV_P_ ev_check *w) EV_THROW
2854{ 4111{
2855 if (expect_false (ev_is_active (w))) 4112 if (expect_false (ev_is_active (w)))
2856 return; 4113 return;
2857 4114
2858 EV_FREQUENT_CHECK; 4115 EV_FREQUENT_CHECK;
2863 4120
2864 EV_FREQUENT_CHECK; 4121 EV_FREQUENT_CHECK;
2865} 4122}
2866 4123
2867void 4124void
2868ev_check_stop (EV_P_ ev_check *w) 4125ev_check_stop (EV_P_ ev_check *w) EV_THROW
2869{ 4126{
2870 clear_pending (EV_A_ (W)w); 4127 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w))) 4128 if (expect_false (!ev_is_active (w)))
2872 return; 4129 return;
2873 4130
2882 4139
2883 ev_stop (EV_A_ (W)w); 4140 ev_stop (EV_A_ (W)w);
2884 4141
2885 EV_FREQUENT_CHECK; 4142 EV_FREQUENT_CHECK;
2886} 4143}
4144#endif
2887 4145
2888#if EV_EMBED_ENABLE 4146#if EV_EMBED_ENABLE
2889void noinline 4147void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w) 4148ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2891{ 4149{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 4150 ev_run (w->other, EVRUN_NOWAIT);
2893} 4151}
2894 4152
2895static void 4153static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 4154embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 4155{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4156 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 4157
2900 if (ev_cb (w)) 4158 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4159 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 4160 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 4161 ev_run (w->other, EVRUN_NOWAIT);
2904} 4162}
2905 4163
2906static void 4164static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4165embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 4166{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4167 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 4168
2911 { 4169 {
2912 struct ev_loop *loop = w->other; 4170 EV_P = w->other;
2913 4171
2914 while (fdchangecnt) 4172 while (fdchangecnt)
2915 { 4173 {
2916 fd_reify (EV_A); 4174 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4175 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4176 }
2919 } 4177 }
2920} 4178}
2921 4179
2922static void 4180static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4183 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 4184
2927 ev_embed_stop (EV_A_ w); 4185 ev_embed_stop (EV_A_ w);
2928 4186
2929 { 4187 {
2930 struct ev_loop *loop = w->other; 4188 EV_P = w->other;
2931 4189
2932 ev_loop_fork (EV_A); 4190 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4191 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 4192 }
2935 4193
2936 ev_embed_start (EV_A_ w); 4194 ev_embed_start (EV_A_ w);
2937} 4195}
2938 4196
2943 ev_idle_stop (EV_A_ idle); 4201 ev_idle_stop (EV_A_ idle);
2944} 4202}
2945#endif 4203#endif
2946 4204
2947void 4205void
2948ev_embed_start (EV_P_ ev_embed *w) 4206ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2949{ 4207{
2950 if (expect_false (ev_is_active (w))) 4208 if (expect_false (ev_is_active (w)))
2951 return; 4209 return;
2952 4210
2953 { 4211 {
2954 struct ev_loop *loop = w->other; 4212 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4213 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4214 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 4215 }
2958 4216
2959 EV_FREQUENT_CHECK; 4217 EV_FREQUENT_CHECK;
2974 4232
2975 EV_FREQUENT_CHECK; 4233 EV_FREQUENT_CHECK;
2976} 4234}
2977 4235
2978void 4236void
2979ev_embed_stop (EV_P_ ev_embed *w) 4237ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2980{ 4238{
2981 clear_pending (EV_A_ (W)w); 4239 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w))) 4240 if (expect_false (!ev_is_active (w)))
2983 return; 4241 return;
2984 4242
2986 4244
2987 ev_io_stop (EV_A_ &w->io); 4245 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 4246 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 4247 ev_fork_stop (EV_A_ &w->fork);
2990 4248
4249 ev_stop (EV_A_ (W)w);
4250
2991 EV_FREQUENT_CHECK; 4251 EV_FREQUENT_CHECK;
2992} 4252}
2993#endif 4253#endif
2994 4254
2995#if EV_FORK_ENABLE 4255#if EV_FORK_ENABLE
2996void 4256void
2997ev_fork_start (EV_P_ ev_fork *w) 4257ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2998{ 4258{
2999 if (expect_false (ev_is_active (w))) 4259 if (expect_false (ev_is_active (w)))
3000 return; 4260 return;
3001 4261
3002 EV_FREQUENT_CHECK; 4262 EV_FREQUENT_CHECK;
3007 4267
3008 EV_FREQUENT_CHECK; 4268 EV_FREQUENT_CHECK;
3009} 4269}
3010 4270
3011void 4271void
3012ev_fork_stop (EV_P_ ev_fork *w) 4272ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3013{ 4273{
3014 clear_pending (EV_A_ (W)w); 4274 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w))) 4275 if (expect_false (!ev_is_active (w)))
3016 return; 4276 return;
3017 4277
3028 4288
3029 EV_FREQUENT_CHECK; 4289 EV_FREQUENT_CHECK;
3030} 4290}
3031#endif 4291#endif
3032 4292
4293#if EV_CLEANUP_ENABLE
4294void
4295ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4296{
4297 if (expect_false (ev_is_active (w)))
4298 return;
4299
4300 EV_FREQUENT_CHECK;
4301
4302 ev_start (EV_A_ (W)w, ++cleanupcnt);
4303 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4304 cleanups [cleanupcnt - 1] = w;
4305
4306 /* cleanup watchers should never keep a refcount on the loop */
4307 ev_unref (EV_A);
4308 EV_FREQUENT_CHECK;
4309}
4310
4311void
4312ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4313{
4314 clear_pending (EV_A_ (W)w);
4315 if (expect_false (!ev_is_active (w)))
4316 return;
4317
4318 EV_FREQUENT_CHECK;
4319 ev_ref (EV_A);
4320
4321 {
4322 int active = ev_active (w);
4323
4324 cleanups [active - 1] = cleanups [--cleanupcnt];
4325 ev_active (cleanups [active - 1]) = active;
4326 }
4327
4328 ev_stop (EV_A_ (W)w);
4329
4330 EV_FREQUENT_CHECK;
4331}
4332#endif
4333
3033#if EV_ASYNC_ENABLE 4334#if EV_ASYNC_ENABLE
3034void 4335void
3035ev_async_start (EV_P_ ev_async *w) 4336ev_async_start (EV_P_ ev_async *w) EV_THROW
3036{ 4337{
3037 if (expect_false (ev_is_active (w))) 4338 if (expect_false (ev_is_active (w)))
3038 return; 4339 return;
4340
4341 w->sent = 0;
3039 4342
3040 evpipe_init (EV_A); 4343 evpipe_init (EV_A);
3041 4344
3042 EV_FREQUENT_CHECK; 4345 EV_FREQUENT_CHECK;
3043 4346
3047 4350
3048 EV_FREQUENT_CHECK; 4351 EV_FREQUENT_CHECK;
3049} 4352}
3050 4353
3051void 4354void
3052ev_async_stop (EV_P_ ev_async *w) 4355ev_async_stop (EV_P_ ev_async *w) EV_THROW
3053{ 4356{
3054 clear_pending (EV_A_ (W)w); 4357 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w))) 4358 if (expect_false (!ev_is_active (w)))
3056 return; 4359 return;
3057 4360
3068 4371
3069 EV_FREQUENT_CHECK; 4372 EV_FREQUENT_CHECK;
3070} 4373}
3071 4374
3072void 4375void
3073ev_async_send (EV_P_ ev_async *w) 4376ev_async_send (EV_P_ ev_async *w) EV_THROW
3074{ 4377{
3075 w->sent = 1; 4378 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 4379 evpipe_write (EV_A_ &async_pending);
3077} 4380}
3078#endif 4381#endif
3079 4382
3080/*****************************************************************************/ 4383/*****************************************************************************/
3081 4384
3115 4418
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4419 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117} 4420}
3118 4421
3119void 4422void
3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4423ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3121{ 4424{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4425 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123 4426
3124 if (expect_false (!once)) 4427 if (expect_false (!once))
3125 { 4428 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4429 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3127 return; 4430 return;
3128 } 4431 }
3129 4432
3130 once->cb = cb; 4433 once->cb = cb;
3131 once->arg = arg; 4434 once->arg = arg;
3145 } 4448 }
3146} 4449}
3147 4450
3148/*****************************************************************************/ 4451/*****************************************************************************/
3149 4452
3150#if 0 4453#if EV_WALK_ENABLE
3151void 4454void ecb_cold
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4455ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3153{ 4456{
3154 int i, j; 4457 int i, j;
3155 ev_watcher_list *wl, *wn; 4458 ev_watcher_list *wl, *wn;
3156 4459
3157 if (types & (EV_IO | EV_EMBED)) 4460 if (types & (EV_IO | EV_EMBED))
3171#if EV_USE_INOTIFY 4474#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 4475 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 4476 ;
3174 else 4477 else
3175#endif 4478#endif
3176 if ((ev_io *)wl != &pipeev) 4479 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 4480 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 4481 cb (EV_A_ EV_IO, wl);
3179 4482
3180 wl = wn; 4483 wl = wn;
3181 } 4484 }
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4503 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif 4504#endif
3202 4505
3203#if EV_IDLE_ENABLE 4506#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE) 4507 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; ) 4508 for (j = NUMPRI; j--; )
3206 for (i = idlecnt [j]; i--; ) 4509 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]); 4510 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif 4511#endif
3209 4512
3210#if EV_FORK_ENABLE 4513#if EV_FORK_ENABLE
3218 if (types & EV_ASYNC) 4521 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 4522 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 4523 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 4524#endif
3222 4525
4526#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 4527 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 4528 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 4529# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 4530 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 4531# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 4532 cb (EV_A_ EV_PREPARE, prepares [i]);
4533#endif
3229 4534
4535#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 4536 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 4537 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 4538 cb (EV_A_ EV_CHECK, checks [i]);
4539#endif
3233 4540
4541#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 4542 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 4543 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 4544 for (wl = signals [i].head; wl; )
3237 { 4545 {
3238 wn = wl->next; 4546 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 4547 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 4548 wl = wn;
3241 } 4549 }
4550#endif
3242 4551
4552#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 4553 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 4554 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 4555 for (wl = childs [i]; wl; )
3246 { 4556 {
3247 wn = wl->next; 4557 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 4558 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 4559 wl = wn;
3250 } 4560 }
4561#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 4562/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 4563/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 4564}
3254#endif 4565#endif
3255 4566
3256#if EV_MULTIPLICITY 4567#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 4568 #include "ev_wrap.h"
3258#endif 4569#endif
3259 4570
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines