ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.493 by root, Sun Jun 23 02:02:24 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
112# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
114# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
122# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# else
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
126# endif 136# endif
127 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
134# endif 145# endif
135 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
137# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
142# endif 172# endif
143 173
144#endif 174#endif
145 175
146#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
147#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
148#include <fcntl.h> 188#include <fcntl.h>
149#include <stddef.h> 189#include <stddef.h>
150 190
151#include <stdio.h> 191#include <stdio.h>
152 192
153#include <assert.h> 193#include <assert.h>
154#include <errno.h> 194#include <errno.h>
155#include <sys/types.h> 195#include <sys/types.h>
156#include <time.h> 196#include <time.h>
197#include <limits.h>
157 198
158#include <signal.h> 199#include <signal.h>
159 200
160#ifdef EV_H 201#ifdef EV_H
161# include EV_H 202# include EV_H
162#else 203#else
163# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
164#endif 216#endif
165 217
166#ifndef _WIN32 218#ifndef _WIN32
167# include <sys/time.h> 219# include <sys/time.h>
168# include <sys/wait.h> 220# include <sys/wait.h>
169# include <unistd.h> 221# include <unistd.h>
170#else 222#else
171# include <io.h> 223# include <io.h>
172# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
173# include <windows.h> 226# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
176# endif 229# endif
230# undef EV_AVOID_STDIO
177#endif 231#endif
178 232
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
180 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
181#ifndef EV_USE_CLOCK_SYSCALL 264#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 267# else
185# define EV_USE_CLOCK_SYSCALL 0 268# define EV_USE_CLOCK_SYSCALL 0
186# endif 269# endif
187#endif 270#endif
188 271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
189#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 284# else
193# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
194# endif 286# endif
195#endif 287#endif
196 288
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 291#endif
200 292
201#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 296# else
205# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
206# endif 298# endif
207#endif 299#endif
208 300
209#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 303#endif
212 304
213#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
214# ifdef _WIN32 306# ifdef _WIN32
215# define EV_USE_POLL 0 307# define EV_USE_POLL 0
216# else 308# else
217# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 310# endif
219#endif 311#endif
220 312
221#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 316# else
225# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
226# endif 318# endif
227#endif 319#endif
228 320
232 324
233#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
234# define EV_USE_PORT 0 326# define EV_USE_PORT 0
235#endif 327#endif
236 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
237#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 339# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 340# else
241# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
242# endif 342# endif
243#endif 343#endif
244 344
245#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 347#endif
252 348
253#ifndef EV_INOTIFY_HASHSIZE 349#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 351#endif
260 352
261#ifndef EV_USE_EVENTFD 353#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 355# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 356# else
265# define EV_USE_EVENTFD 0 357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
266# endif 366# endif
267#endif 367#endif
268 368
269#if 0 /* debugging */ 369#if 0 /* debugging */
270# define EV_VERIFY 3 370# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 371# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 372# define EV_HEAP_CACHE_AT 1
273#endif 373#endif
274 374
275#ifndef EV_VERIFY 375#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 377#endif
278 378
279#ifndef EV_USE_4HEAP 379#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 380# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 381#endif
282 382
283#ifndef EV_HEAP_CACHE_AT 383#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
285#endif 415#endif
286 416
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 418
289#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
302#endif 432#endif
303 433
304#if !EV_USE_NANOSLEEP 434#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 437# include <sys/select.h>
307# endif 438# endif
308#endif 439#endif
309 440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
310#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 450# include <sys/statfs.h>
313# include <sys/inotify.h> 451# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 453# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 454# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 455# define EV_USE_INOTIFY 0
318# endif 456# endif
319#endif 457#endif
320 458
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 459#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 461# include <stdint.h>
337# ifdef __cplusplus 462# ifndef EFD_NONBLOCK
338extern "C" { 463# define EFD_NONBLOCK O_NONBLOCK
339# endif 464# endif
340int eventfd (unsigned int initval, int flags); 465# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 466# ifdef O_CLOEXEC
342} 467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
343# endif 471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
344#endif 495#endif
345 496
346/**/ 497/**/
347 498
348#if EV_VERIFY >= 3 499#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 500# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 501#else
351# define EV_FREQUENT_CHECK do { } while (0) 502# define EV_FREQUENT_CHECK do { } while (0)
352#endif 503#endif
353 504
354/* 505/*
355 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 508 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 511
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
369# define expect(expr,value) __builtin_expect ((expr),(value)) 870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline))
371#else 871#else
372# define expect(expr,value) (expr) 872 #define ecb_expect(expr,value) (expr)
373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif 873#endif
377#endif
378 874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
381#define inline_size static inline 1557#define inline_size ecb_inline
382 1558
383#if EV_MINIMAL 1559#if EV_FEATURE_CODE
384# define inline_speed static noinline
385#else
386# define inline_speed static inline 1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
387#endif 1563#endif
388 1564
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
391 1572
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394 1574
395typedef ev_watcher *W; 1575typedef ev_watcher *W;
396typedef ev_watcher_list *WL; 1576typedef ev_watcher_list *WL;
397typedef ev_watcher_time *WT; 1577typedef ev_watcher_time *WT;
398 1578
399#define ev_active(w) ((W)(w))->active 1579#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1580#define ev_at(w) ((WT)(w))->at
401 1581
402#if EV_USE_REALTIME 1582#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1584/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1586#endif
407 1587
408#if EV_USE_MONOTONIC 1588#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1590#endif
411 1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
1601
412#ifdef _WIN32 1602#ifdef _WIN32
413# include "ev_win32.c" 1603# include "ev_win32.c"
414#endif 1604#endif
415 1605
416/*****************************************************************************/ 1606/*****************************************************************************/
417 1607
1608#if EV_USE_LINUXAIO
1609# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610#endif
1611
1612/* define a suitable floor function (only used by periodics atm) */
1613
1614#if EV_USE_FLOOR
1615# include <math.h>
1616# define ev_floor(v) floor (v)
1617#else
1618
1619#include <float.h>
1620
1621/* a floor() replacement function, should be independent of ev_tstamp type */
1622noinline
1623static ev_tstamp
1624ev_floor (ev_tstamp v)
1625{
1626 /* the choice of shift factor is not terribly important */
1627#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629#else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631#endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655}
1656
1657#endif
1658
1659/*****************************************************************************/
1660
1661#ifdef __linux
1662# include <sys/utsname.h>
1663#endif
1664
1665noinline ecb_cold
1666static unsigned int
1667ev_linux_version (void)
1668{
1669#ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697#else
1698 return 0;
1699#endif
1700}
1701
1702/*****************************************************************************/
1703
1704#if EV_AVOID_STDIO
1705noinline ecb_cold
1706static void
1707ev_printerr (const char *msg)
1708{
1709 write (STDERR_FILENO, msg, strlen (msg));
1710}
1711#endif
1712
418static void (*syserr_cb)(const char *msg); 1713static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
419 1714
1715ecb_cold
420void 1716void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1717ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
422{ 1718{
423 syserr_cb = cb; 1719 syserr_cb = cb;
424} 1720}
425 1721
426static void noinline 1722noinline ecb_cold
1723static void
427ev_syserr (const char *msg) 1724ev_syserr (const char *msg)
428{ 1725{
429 if (!msg) 1726 if (!msg)
430 msg = "(libev) system error"; 1727 msg = "(libev) system error";
431 1728
432 if (syserr_cb) 1729 if (syserr_cb)
433 syserr_cb (msg); 1730 syserr_cb (msg);
434 else 1731 else
435 { 1732 {
1733#if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738#else
436 perror (msg); 1739 perror (msg);
1740#endif
437 abort (); 1741 abort ();
438 } 1742 }
439} 1743}
440 1744
441static void * 1745static void *
442ev_realloc_emul (void *ptr, long size) 1746ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
443{ 1747{
444 /* some systems, notably openbsd and darwin, fail to properly 1748 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1749 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
447 */ 1753 */
448 1754
449 if (size) 1755 if (size)
450 return realloc (ptr, size); 1756 return realloc (ptr, size);
451 1757
452 free (ptr); 1758 free (ptr);
453 return 0; 1759 return 0;
454} 1760}
455 1761
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1762static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
457 1763
1764ecb_cold
458void 1765void
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1766ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
460{ 1767{
461 alloc = cb; 1768 alloc = cb;
462} 1769}
463 1770
464inline_speed void * 1771inline_speed void *
466{ 1773{
467 ptr = alloc (ptr, size); 1774 ptr = alloc (ptr, size);
468 1775
469 if (!ptr && size) 1776 if (!ptr && size)
470 { 1777 {
1778#if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782#endif
472 abort (); 1783 abort ();
473 } 1784 }
474 1785
475 return ptr; 1786 return ptr;
476} 1787}
478#define ev_malloc(size) ev_realloc (0, (size)) 1789#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1790#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1791
481/*****************************************************************************/ 1792/*****************************************************************************/
482 1793
1794/* set in reify when reification needed */
1795#define EV_ANFD_REIFY 1
1796
1797/* file descriptor info structure */
483typedef struct 1798typedef struct
484{ 1799{
485 WL head; 1800 WL head;
486 unsigned char events; 1801 unsigned char events; /* the events watched for */
487 unsigned char reify; 1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1803 unsigned char emask; /* some backends store the actual kernel mask in here */
489 unsigned char unused; 1804 unsigned char unused;
490#if EV_USE_EPOLL 1805#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1806 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1807#endif
493#if EV_SELECT_IS_WINSOCKET 1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1809 SOCKET handle;
495#endif 1810#endif
1811#if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813#endif
496} ANFD; 1814} ANFD;
497 1815
1816/* stores the pending event set for a given watcher */
498typedef struct 1817typedef struct
499{ 1818{
500 W w; 1819 W w;
501 int events; 1820 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1821} ANPENDING;
503 1822
504#if EV_USE_INOTIFY 1823#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1824/* hash table entry per inotify-id */
506typedef struct 1825typedef struct
509} ANFS; 1828} ANFS;
510#endif 1829#endif
511 1830
512/* Heap Entry */ 1831/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1832#if EV_HEAP_CACHE_AT
1833 /* a heap element */
514 typedef struct { 1834 typedef struct {
515 ev_tstamp at; 1835 ev_tstamp at;
516 WT w; 1836 WT w;
517 } ANHE; 1837 } ANHE;
518 1838
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1842#else
1843 /* a heap element */
523 typedef WT ANHE; 1844 typedef WT ANHE;
524 1845
525 #define ANHE_w(he) (he) 1846 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1847 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1848 #define ANHE_at_cache(he)
538 #undef VAR 1859 #undef VAR
539 }; 1860 };
540 #include "ev_wrap.h" 1861 #include "ev_wrap.h"
541 1862
542 static struct ev_loop default_loop_struct; 1863 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1865
545#else 1866#else
546 1867
547 ev_tstamp ev_rt_now; 1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1869 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1870 #include "ev_vars.h"
550 #undef VAR 1871 #undef VAR
551 1872
552 static int ev_default_loop_ptr; 1873 static int ev_default_loop_ptr;
553 1874
554#endif 1875#endif
555 1876
1877#if EV_FEATURE_API
1878# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880# define EV_INVOKE_PENDING invoke_cb (EV_A)
1881#else
1882# define EV_RELEASE_CB (void)0
1883# define EV_ACQUIRE_CB (void)0
1884# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885#endif
1886
1887#define EVBREAK_RECURSE 0x80
1888
556/*****************************************************************************/ 1889/*****************************************************************************/
557 1890
1891#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1892ev_tstamp
559ev_time (void) 1893ev_time (void) EV_NOEXCEPT
560{ 1894{
561#if EV_USE_REALTIME 1895#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1896 if (expect_true (have_realtime))
563 { 1897 {
564 struct timespec ts; 1898 struct timespec ts;
569 1903
570 struct timeval tv; 1904 struct timeval tv;
571 gettimeofday (&tv, 0); 1905 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1906 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1907}
1908#endif
574 1909
575ev_tstamp inline_size 1910inline_size ev_tstamp
576get_clock (void) 1911get_clock (void)
577{ 1912{
578#if EV_USE_MONOTONIC 1913#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1914 if (expect_true (have_monotonic))
580 { 1915 {
587 return ev_time (); 1922 return ev_time ();
588} 1923}
589 1924
590#if EV_MULTIPLICITY 1925#if EV_MULTIPLICITY
591ev_tstamp 1926ev_tstamp
592ev_now (EV_P) 1927ev_now (EV_P) EV_NOEXCEPT
593{ 1928{
594 return ev_rt_now; 1929 return ev_rt_now;
595} 1930}
596#endif 1931#endif
597 1932
598void 1933void
599ev_sleep (ev_tstamp delay) 1934ev_sleep (ev_tstamp delay) EV_NOEXCEPT
600{ 1935{
601 if (delay > 0.) 1936 if (delay > 0.)
602 { 1937 {
603#if EV_USE_NANOSLEEP 1938#if EV_USE_NANOSLEEP
604 struct timespec ts; 1939 struct timespec ts;
605 1940
606 ts.tv_sec = (time_t)delay; 1941 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1942 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1943#elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
611 Sleep ((unsigned long)(delay * 1e3)); 1946 Sleep ((unsigned long)(delay * 1e3));
612#else 1947#else
613 struct timeval tv; 1948 struct timeval tv;
614 1949
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1951 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1954 select (0, 0, 0, 0, &tv);
622#endif 1955#endif
623 } 1956 }
624} 1957}
625 1958
626/*****************************************************************************/ 1959/*****************************************************************************/
627 1960
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1961#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1962
630int inline_size 1963/* find a suitable new size for the given array, */
1964/* hopefully by rounding to a nice-to-malloc size */
1965inline_size int
631array_nextsize (int elem, int cur, int cnt) 1966array_nextsize (int elem, int cur, int cnt)
632{ 1967{
633 int ncur = cur + 1; 1968 int ncur = cur + 1;
634 1969
635 do 1970 do
636 ncur <<= 1; 1971 ncur <<= 1;
637 while (cnt > ncur); 1972 while (cnt > ncur);
638 1973
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1976 {
642 ncur *= elem; 1977 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1979 ncur = ncur - sizeof (void *) * 4;
646 } 1981 }
647 1982
648 return ncur; 1983 return ncur;
649} 1984}
650 1985
651static noinline void * 1986noinline ecb_cold
1987static void *
652array_realloc (int elem, void *base, int *cur, int cnt) 1988array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1989{
654 *cur = array_nextsize (elem, *cur, cnt); 1990 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1991 return ev_realloc (base, elem * *cur);
656} 1992}
657 1993
1994#define array_needsize_noinit(base,count)
1995
658#define array_init_zero(base,count) \ 1996#define array_needsize_zerofill(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1997 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1998
661#define array_needsize(type,base,cur,cnt,init) \ 1999#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 2000 if (expect_false ((cnt) > (cur))) \
663 { \ 2001 { \
664 int ocur_ = (cur); \ 2002 ecb_unused int ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 2003 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 2004 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 2005 init ((base) + (ocur_), (cur) - ocur_); \
668 } 2006 }
669 2007
680#define array_free(stem, idx) \ 2018#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 2020
683/*****************************************************************************/ 2021/*****************************************************************************/
684 2022
2023/* dummy callback for pending events */
685void noinline 2024noinline
2025static void
2026pendingcb (EV_P_ ev_prepare *w, int revents)
2027{
2028}
2029
2030noinline
2031void
686ev_feed_event (EV_P_ void *w, int revents) 2032ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
687{ 2033{
688 W w_ = (W)w; 2034 W w_ = (W)w;
689 int pri = ABSPRI (w_); 2035 int pri = ABSPRI (w_);
690 2036
691 if (expect_false (w_->pending)) 2037 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents; 2038 pendings [pri][w_->pending - 1].events |= revents;
693 else 2039 else
694 { 2040 {
695 w_->pending = ++pendingcnt [pri]; 2041 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
697 pendings [pri][w_->pending - 1].w = w_; 2043 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 2044 pendings [pri][w_->pending - 1].events = revents;
699 } 2045 }
700}
701 2046
702void inline_speed 2047 pendingpri = NUMPRI - 1;
2048}
2049
2050inline_speed void
2051feed_reverse (EV_P_ W w)
2052{
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055}
2056
2057inline_size void
2058feed_reverse_done (EV_P_ int revents)
2059{
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063}
2064
2065inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 2066queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 2067{
705 int i; 2068 int i;
706 2069
707 for (i = 0; i < eventcnt; ++i) 2070 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 2071 ev_feed_event (EV_A_ events [i], type);
709} 2072}
710 2073
711/*****************************************************************************/ 2074/*****************************************************************************/
712 2075
713void inline_speed 2076inline_speed void
714fd_event (EV_P_ int fd, int revents) 2077fd_event_nocheck (EV_P_ int fd, int revents)
715{ 2078{
716 ANFD *anfd = anfds + fd; 2079 ANFD *anfd = anfds + fd;
717 ev_io *w; 2080 ev_io *w;
718 2081
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 2086 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 2087 ev_feed_event (EV_A_ (W)w, ev);
725 } 2088 }
726} 2089}
727 2090
728void 2091/* do not submit kernel events for fds that have reify set */
2092/* because that means they changed while we were polling for new events */
2093inline_speed void
729ev_feed_fd_event (EV_P_ int fd, int revents) 2094fd_event (EV_P_ int fd, int revents)
2095{
2096 ANFD *anfd = anfds + fd;
2097
2098 if (expect_true (!anfd->reify))
2099 fd_event_nocheck (EV_A_ fd, revents);
2100}
2101
2102void
2103ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
730{ 2104{
731 if (fd >= 0 && fd < anfdmax) 2105 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 2106 fd_event_nocheck (EV_A_ fd, revents);
733} 2107}
734 2108
735void inline_size 2109/* make sure the external fd watch events are in-sync */
2110/* with the kernel/libev internal state */
2111inline_size void
736fd_reify (EV_P) 2112fd_reify (EV_P)
737{ 2113{
738 int i; 2114 int i;
2115
2116#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2117 for (i = 0; i < fdchangecnt; ++i)
2118 {
2119 int fd = fdchanges [i];
2120 ANFD *anfd = anfds + fd;
2121
2122 if (anfd->reify & EV__IOFDSET && anfd->head)
2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
2128 unsigned long arg;
2129
2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
2133 backend_modify (EV_A_ fd, anfd->events, 0);
2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
2137 }
2138 }
2139#endif
739 2140
740 for (i = 0; i < fdchangecnt; ++i) 2141 for (i = 0; i < fdchangecnt; ++i)
741 { 2142 {
742 int fd = fdchanges [i]; 2143 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 2144 ANFD *anfd = anfds + fd;
744 ev_io *w; 2145 ev_io *w;
745 2146
746 unsigned char events = 0; 2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
747 2149
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2150 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 2151
751#if EV_SELECT_IS_WINSOCKET 2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 2153 {
754 unsigned long arg; 2154 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 2155
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 2157 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 2158
759 #endif 2159 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2160 o_reify = EV__IOFDSET; /* actually |= */
761 } 2161 }
762#endif
763 2162
764 { 2163 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 2164 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 2165 }
775 2166
776 fdchangecnt = 0; 2167 fdchangecnt = 0;
777} 2168}
778 2169
2170/* something about the given fd changed */
779void inline_size 2171inline_size
2172void
780fd_change (EV_P_ int fd, int flags) 2173fd_change (EV_P_ int fd, int flags)
781{ 2174{
782 unsigned char reify = anfds [fd].reify; 2175 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 2176 anfds [fd].reify |= flags;
784 2177
785 if (expect_true (!reify)) 2178 if (expect_true (!reify))
786 { 2179 {
787 ++fdchangecnt; 2180 ++fdchangecnt;
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
789 fdchanges [fdchangecnt - 1] = fd; 2182 fdchanges [fdchangecnt - 1] = fd;
790 } 2183 }
791} 2184}
792 2185
793void inline_speed 2186/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187inline_speed ecb_cold void
794fd_kill (EV_P_ int fd) 2188fd_kill (EV_P_ int fd)
795{ 2189{
796 ev_io *w; 2190 ev_io *w;
797 2191
798 while ((w = (ev_io *)anfds [fd].head)) 2192 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 2194 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 2196 }
803} 2197}
804 2198
805int inline_size 2199/* check whether the given fd is actually valid, for error recovery */
2200inline_size ecb_cold int
806fd_valid (int fd) 2201fd_valid (int fd)
807{ 2202{
808#ifdef _WIN32 2203#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 2205#else
811 return fcntl (fd, F_GETFD) != -1; 2206 return fcntl (fd, F_GETFD) != -1;
812#endif 2207#endif
813} 2208}
814 2209
815/* called on EBADF to verify fds */ 2210/* called on EBADF to verify fds */
816static void noinline 2211noinline ecb_cold
2212static void
817fd_ebadf (EV_P) 2213fd_ebadf (EV_P)
818{ 2214{
819 int fd; 2215 int fd;
820 2216
821 for (fd = 0; fd < anfdmax; ++fd) 2217 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 2219 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 2220 fd_kill (EV_A_ fd);
825} 2221}
826 2222
827/* called on ENOMEM in select/poll to kill some fds and retry */ 2223/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 2224noinline ecb_cold
2225static void
829fd_enomem (EV_P) 2226fd_enomem (EV_P)
830{ 2227{
831 int fd; 2228 int fd;
832 2229
833 for (fd = anfdmax; fd--; ) 2230 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 2231 if (anfds [fd].events)
835 { 2232 {
836 fd_kill (EV_A_ fd); 2233 fd_kill (EV_A_ fd);
837 return; 2234 break;
838 } 2235 }
839} 2236}
840 2237
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 2238/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 2239noinline
2240static void
843fd_rearm_all (EV_P) 2241fd_rearm_all (EV_P)
844{ 2242{
845 int fd; 2243 int fd;
846 2244
847 for (fd = 0; fd < anfdmax; ++fd) 2245 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 2246 if (anfds [fd].events)
849 { 2247 {
850 anfds [fd].events = 0; 2248 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 2249 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 2251 }
854} 2252}
855 2253
2254/* used to prepare libev internal fd's */
2255/* this is not fork-safe */
2256inline_speed void
2257fd_intern (int fd)
2258{
2259#ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262#else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265#endif
2266}
2267
856/*****************************************************************************/ 2268/*****************************************************************************/
857 2269
858/* 2270/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2271 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2273 * the branching factor of the d-tree.
862 */ 2274 */
863 2275
864/* 2276/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2287#define UPHEAP_DONE(p,k) ((p) == (k))
876 2288
877/* away from the root */ 2289/* away from the root */
878void inline_speed 2290inline_speed void
879downheap (ANHE *heap, int N, int k) 2291downheap (ANHE *heap, int N, int k)
880{ 2292{
881 ANHE he = heap [k]; 2293 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2294 ANHE *E = heap + N + HEAP0;
883 2295
923#define HEAP0 1 2335#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2336#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2337#define UPHEAP_DONE(p,k) (!(p))
926 2338
927/* away from the root */ 2339/* away from the root */
928void inline_speed 2340inline_speed void
929downheap (ANHE *heap, int N, int k) 2341downheap (ANHE *heap, int N, int k)
930{ 2342{
931 ANHE he = heap [k]; 2343 ANHE he = heap [k];
932 2344
933 for (;;) 2345 for (;;)
934 { 2346 {
935 int c = k << 1; 2347 int c = k << 1;
936 2348
937 if (c > N + HEAP0 - 1) 2349 if (c >= N + HEAP0)
938 break; 2350 break;
939 2351
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2353 ? 1 : 0;
942 2354
953 ev_active (ANHE_w (he)) = k; 2365 ev_active (ANHE_w (he)) = k;
954} 2366}
955#endif 2367#endif
956 2368
957/* towards the root */ 2369/* towards the root */
958void inline_speed 2370inline_speed void
959upheap (ANHE *heap, int k) 2371upheap (ANHE *heap, int k)
960{ 2372{
961 ANHE he = heap [k]; 2373 ANHE he = heap [k];
962 2374
963 for (;;) 2375 for (;;)
974 2386
975 heap [k] = he; 2387 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2388 ev_active (ANHE_w (he)) = k;
977} 2389}
978 2390
979void inline_size 2391/* move an element suitably so it is in a correct place */
2392inline_size void
980adjustheap (ANHE *heap, int N, int k) 2393adjustheap (ANHE *heap, int N, int k)
981{ 2394{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2396 upheap (heap, k);
984 else 2397 else
985 downheap (heap, N, k); 2398 downheap (heap, N, k);
986} 2399}
987 2400
988/* rebuild the heap: this function is used only once and executed rarely */ 2401/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2402inline_size void
990reheap (ANHE *heap, int N) 2403reheap (ANHE *heap, int N)
991{ 2404{
992 int i; 2405 int i;
993 2406
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2410 upheap (heap, i + HEAP0);
998} 2411}
999 2412
1000/*****************************************************************************/ 2413/*****************************************************************************/
1001 2414
2415/* associate signal watchers to a signal signal */
1002typedef struct 2416typedef struct
1003{ 2417{
2418 EV_ATOMIC_T pending;
2419#if EV_MULTIPLICITY
2420 EV_P;
2421#endif
1004 WL head; 2422 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2423} ANSIG;
1007 2424
1008static ANSIG *signals; 2425static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2426
1013/*****************************************************************************/ 2427/*****************************************************************************/
1014 2428
1015void inline_speed 2429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2430
1027static void noinline 2431noinline ecb_cold
2432static void
1028evpipe_init (EV_P) 2433evpipe_init (EV_P)
1029{ 2434{
1030 if (!ev_is_active (&pipeev)) 2435 if (!ev_is_active (&pipe_w))
2436 {
2437 int fds [2];
2438
2439# if EV_USE_EVENTFD
2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
2444
2445 if (fds [1] < 0)
2446# endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
2450
2451 fd_intern (fds [0]);
2452 }
2453
2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2474 }
2475}
2476
2477inline_speed void
2478evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479{
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
2494 int old_errno;
2495
2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
1032#if EV_USE_EVENTFD 2501#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2502 if (evpipe [0] < 0)
1034 { 2503 {
1035 evpipe [0] = -1; 2504 uint64_t counter = 1;
1036 fd_intern (evfd); 2505 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2506 }
1039 else 2507 else
1040#endif 2508#endif
1041 { 2509 {
1042 while (pipe (evpipe)) 2510#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2511 WSABUF buf;
1044 2512 DWORD sent;
1045 fd_intern (evpipe [0]); 2513 buf.buf = (char *)&buf;
1046 fd_intern (evpipe [1]); 2514 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516#else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518#endif
1048 } 2519 }
1049 2520
1050 ev_io_start (EV_A_ &pipeev); 2521 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2522 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2523}
1061 2524
1062 *flag = 1; 2525/* called whenever the libev signal pipe */
2526/* got some events (signal, async) */
2527static void
2528pipecb (EV_P_ ev_io *iow, int revents)
2529{
2530 int i;
1063 2531
2532 if (revents & EV_READ)
2533 {
1064#if EV_USE_EVENTFD 2534#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2535 if (evpipe [0] < 0)
1066 { 2536 {
1067 uint64_t counter = 1; 2537 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2538 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2539 }
1070 else 2540 else
1071#endif 2541#endif
1072 write (evpipe [1], &old_errno, 1); 2542 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2543 char dummy[4];
2544#ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551#else
1091 read (evpipe [0], &dummy, 1); 2552 read (evpipe [0], &dummy, sizeof (dummy));
2553#endif
2554 }
2555 }
2556
2557 pipe_write_skipped = 0;
2558
2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560
2561#if EV_SIGNAL_ENABLE
2562 if (sig_pending)
1092 } 2563 {
2564 sig_pending = 0;
1093 2565
1094 if (gotsig && ev_is_default_loop (EV_A)) 2566 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2567
1099 for (signum = signalmax; signum--; ) 2568 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2569 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2570 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2571 }
2572#endif
1103 2573
1104#if EV_ASYNC_ENABLE 2574#if EV_ASYNC_ENABLE
1105 if (gotasync) 2575 if (async_pending)
1106 { 2576 {
1107 int i; 2577 async_pending = 0;
1108 gotasync = 0; 2578
2579 ECB_MEMORY_FENCE;
1109 2580
1110 for (i = asynccnt; i--; ) 2581 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2582 if (asyncs [i]->sent)
1112 { 2583 {
1113 asyncs [i]->sent = 0; 2584 asyncs [i]->sent = 0;
2585 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2587 }
1116 } 2588 }
1117#endif 2589#endif
1118} 2590}
1119 2591
1120/*****************************************************************************/ 2592/*****************************************************************************/
1121 2593
2594void
2595ev_feed_signal (int signum) EV_NOEXCEPT
2596{
2597#if EV_MULTIPLICITY
2598 EV_P;
2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
2601
2602 if (!EV_A)
2603 return;
2604#endif
2605
2606 signals [signum - 1].pending = 1;
2607 evpipe_write (EV_A_ &sig_pending);
2608}
2609
1122static void 2610static void
1123ev_sighandler (int signum) 2611ev_sighandler (int signum)
1124{ 2612{
2613#ifdef _WIN32
2614 signal (signum, ev_sighandler);
2615#endif
2616
2617 ev_feed_signal (signum);
2618}
2619
2620noinline
2621void
2622ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2623{
2624 WL w;
2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
1125#if EV_MULTIPLICITY 2631#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2632 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2633 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2634
1129#if _WIN32 2635 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2636 return;
2637#endif
1150 2638
1151 signals [signum].gotsig = 0; 2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
1152 2641
1153 for (w = signals [signum].head; w; w = w->next) 2642 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2644}
1156 2645
2646#if EV_USE_SIGNALFD
2647static void
2648sigfdcb (EV_P_ ev_io *iow, int revents)
2649{
2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2651
2652 for (;;)
2653 {
2654 ssize_t res = read (sigfd, si, sizeof (si));
2655
2656 /* not ISO-C, as res might be -1, but works with SuS */
2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2659
2660 if (res < (ssize_t)sizeof (si))
2661 break;
2662 }
2663}
2664#endif
2665
2666#endif
2667
1157/*****************************************************************************/ 2668/*****************************************************************************/
1158 2669
2670#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2671static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2672
1163static ev_signal childev; 2673static ev_signal childev;
1164 2674
1165#ifndef WIFCONTINUED 2675#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2676# define WIFCONTINUED(status) 0
1167#endif 2677#endif
1168 2678
1169void inline_speed 2679/* handle a single child status event */
2680inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2681child_reap (EV_P_ int chain, int pid, int status)
1171{ 2682{
1172 ev_child *w; 2683 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2685
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2687 {
1177 if ((w->pid == pid || !w->pid) 2688 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2689 && (!traced || (w->flags & 1)))
1179 { 2690 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2698
1188#ifndef WCONTINUED 2699#ifndef WCONTINUED
1189# define WCONTINUED 0 2700# define WCONTINUED 0
1190#endif 2701#endif
1191 2702
2703/* called on sigchld etc., calls waitpid */
1192static void 2704static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2705childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2706{
1195 int pid, status; 2707 int pid, status;
1196 2708
1204 /* make sure we are called again until all children have been reaped */ 2716 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2717 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2719
1208 child_reap (EV_A_ pid, pid, status); 2720 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2721 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2723}
1212 2724
1213#endif 2725#endif
1214 2726
1215/*****************************************************************************/ 2727/*****************************************************************************/
1216 2728
2729#if EV_USE_IOCP
2730# include "ev_iocp.c"
2731#endif
1217#if EV_USE_PORT 2732#if EV_USE_PORT
1218# include "ev_port.c" 2733# include "ev_port.c"
1219#endif 2734#endif
1220#if EV_USE_KQUEUE 2735#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2736# include "ev_kqueue.c"
1222#endif 2737#endif
1223#if EV_USE_EPOLL 2738#if EV_USE_EPOLL
1224# include "ev_epoll.c" 2739# include "ev_epoll.c"
1225#endif 2740#endif
2741#if EV_USE_LINUXAIO
2742# include "ev_linuxaio.c"
2743#endif
1226#if EV_USE_POLL 2744#if EV_USE_POLL
1227# include "ev_poll.c" 2745# include "ev_poll.c"
1228#endif 2746#endif
1229#if EV_USE_SELECT 2747#if EV_USE_SELECT
1230# include "ev_select.c" 2748# include "ev_select.c"
1231#endif 2749#endif
1232 2750
1233int 2751ecb_cold int
1234ev_version_major (void) 2752ev_version_major (void) EV_NOEXCEPT
1235{ 2753{
1236 return EV_VERSION_MAJOR; 2754 return EV_VERSION_MAJOR;
1237} 2755}
1238 2756
1239int 2757ecb_cold int
1240ev_version_minor (void) 2758ev_version_minor (void) EV_NOEXCEPT
1241{ 2759{
1242 return EV_VERSION_MINOR; 2760 return EV_VERSION_MINOR;
1243} 2761}
1244 2762
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2763/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2764inline_size ecb_cold int
1247enable_secure (void) 2765enable_secure (void)
1248{ 2766{
1249#ifdef _WIN32 2767#ifdef _WIN32
1250 return 0; 2768 return 0;
1251#else 2769#else
1252 return getuid () != geteuid () 2770 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2771 || getgid () != getegid ();
1254#endif 2772#endif
1255} 2773}
1256 2774
2775ecb_cold
1257unsigned int 2776unsigned int
1258ev_supported_backends (void) 2777ev_supported_backends (void) EV_NOEXCEPT
1259{ 2778{
1260 unsigned int flags = 0; 2779 unsigned int flags = 0;
1261 2780
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1267 2787
1268 return flags; 2788 return flags;
1269} 2789}
1270 2790
2791ecb_cold
1271unsigned int 2792unsigned int
1272ev_recommended_backends (void) 2793ev_recommended_backends (void) EV_NOEXCEPT
1273{ 2794{
1274 unsigned int flags = ev_supported_backends (); 2795 unsigned int flags = ev_supported_backends ();
1275 2796
1276#ifndef __NetBSD__ 2797#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2798 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2802#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2803 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2806#endif
2807#ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809#endif
2810
2811 /* TODO: linuxaio is very experimental */
2812 flags &= ~EVBACKEND_LINUXAIO;
1286 2813
1287 return flags; 2814 return flags;
1288} 2815}
1289 2816
2817ecb_cold
1290unsigned int 2818unsigned int
1291ev_embeddable_backends (void) 2819ev_embeddable_backends (void) EV_NOEXCEPT
1292{ 2820{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294 2822
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 2825 flags &= ~EVBACKEND_EPOLL;
1298 2826
1299 return flags; 2827 return flags;
1300} 2828}
1301 2829
1302unsigned int 2830unsigned int
1303ev_backend (EV_P) 2831ev_backend (EV_P) EV_NOEXCEPT
1304{ 2832{
1305 return backend; 2833 return backend;
1306} 2834}
1307 2835
2836#if EV_FEATURE_API
1308unsigned int 2837unsigned int
1309ev_loop_count (EV_P) 2838ev_iteration (EV_P) EV_NOEXCEPT
1310{ 2839{
1311 return loop_count; 2840 return loop_count;
1312} 2841}
1313 2842
2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
1314void 2849void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1316{ 2851{
1317 io_blocktime = interval; 2852 io_blocktime = interval;
1318} 2853}
1319 2854
1320void 2855void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1322{ 2857{
1323 timeout_blocktime = interval; 2858 timeout_blocktime = interval;
1324} 2859}
1325 2860
1326static void noinline 2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888noinline ecb_cold
2889static void
1327loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1328{ 2891{
1329 if (!backend) 2892 if (!backend)
1330 { 2893 {
2894 origflags = flags;
2895
1331#if EV_USE_REALTIME 2896#if EV_USE_REALTIME
1332 if (!have_realtime) 2897 if (!have_realtime)
1333 { 2898 {
1334 struct timespec ts; 2899 struct timespec ts;
1335 2900
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2912 have_monotonic = 1;
1348 } 2913 }
1349#endif 2914#endif
1350 2915
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2916 /* pid check not overridable via env */
1366#ifndef _WIN32 2917#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2918 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2919 curpid = getpid ();
1369#endif 2920#endif
1371 if (!(flags & EVFLAG_NOENV) 2922 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2923 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2924 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2926
1376 if (!(flags & 0x0000ffffU)) 2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2955 flags |= ev_recommended_backends ();
1378 2956
2957#if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959#endif
1379#if EV_USE_PORT 2960#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2962#endif
1382#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1384#endif 2968#endif
1385#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif 2971#endif
1388#if EV_USE_POLL 2972#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif 2974#endif
1391#if EV_USE_SELECT 2975#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1393#endif 2977#endif
1394 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2982 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
1397 } 2985 }
1398} 2986}
1399 2987
1400static void noinline 2988/* free up a loop structure */
2989ecb_cold
2990void
1401loop_destroy (EV_P) 2991ev_loop_destroy (EV_P)
1402{ 2992{
1403 int i; 2993 int i;
1404 2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
1405 if (ev_is_active (&pipeev)) 3018 if (ev_is_active (&pipe_w))
1406 { 3019 {
1407 ev_ref (EV_A); /* signal watcher */ 3020 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 3021 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
1410#if EV_USE_EVENTFD 3027#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 3028 if (ev_is_active (&sigfd_w))
1412 close (evfd); 3029 close (sigfd);
1413#endif 3030#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 3031
1422#if EV_USE_INOTIFY 3032#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 3033 if (fs_fd >= 0)
1424 close (fs_fd); 3034 close (fs_fd);
1425#endif 3035#endif
1426 3036
1427 if (backend_fd >= 0) 3037 if (backend_fd >= 0)
1428 close (backend_fd); 3038 close (backend_fd);
1429 3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
1430#if EV_USE_PORT 3043#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 3045#endif
1433#if EV_USE_KQUEUE 3046#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1435#endif 3051#endif
1436#if EV_USE_EPOLL 3052#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif 3054#endif
1439#if EV_USE_POLL 3055#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif 3057#endif
1442#if EV_USE_SELECT 3058#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1444#endif 3060#endif
1445 3061
1446 for (i = NUMPRI; i--; ) 3062 for (i = NUMPRI; i--; )
1447 { 3063 {
1448 array_free (pending, [i]); 3064 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE 3065#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 3066 array_free (idle, [i]);
1451#endif 3067#endif
1452 } 3068 }
1453 3069
1454 ev_free (anfds); anfdmax = 0; 3070 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 3071
1456 /* have to use the microsoft-never-gets-it-right macro */ 3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 3074 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 3075 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 3076#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 3077 array_free (periodic, EMPTY);
1461#endif 3078#endif
1462#if EV_FORK_ENABLE 3079#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 3080 array_free (fork, EMPTY);
1464#endif 3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
1465 array_free (prepare, EMPTY); 3085 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 3086 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 3087#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 3088 array_free (async, EMPTY);
1469#endif 3089#endif
1470 3090
1471 backend = 0; 3091 backend = 0;
3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
1472} 3101}
1473 3102
1474#if EV_USE_INOTIFY 3103#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 3104inline_size void infy_fork (EV_P);
1476#endif 3105#endif
1477 3106
1478void inline_size 3107inline_size void
1479loop_fork (EV_P) 3108loop_fork (EV_P)
1480{ 3109{
1481#if EV_USE_PORT 3110#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 3112#endif
1484#if EV_USE_KQUEUE 3113#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1486#endif 3118#endif
1487#if EV_USE_EPOLL 3119#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif 3121#endif
1490#if EV_USE_INOTIFY 3122#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 3123 infy_fork (EV_A);
1492#endif 3124#endif
1493 3125
1494 if (ev_is_active (&pipeev)) 3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
1495 { 3128 {
1496 /* this "locks" the handlers against writing to the pipe */ 3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 3130
1503 ev_ref (EV_A); 3131 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 3132 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 3133
1511 if (evpipe [0] >= 0) 3134 if (evpipe [0] >= 0)
1512 { 3135 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 3136
1517 evpipe_init (EV_A); 3137 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 3138 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 3140 }
3141#endif
1521 3142
1522 postfork = 0; 3143 postfork = 0;
1523} 3144}
1524 3145
1525#if EV_MULTIPLICITY 3146#if EV_MULTIPLICITY
1526 3147
3148ecb_cold
1527struct ev_loop * 3149struct ev_loop *
1528ev_loop_new (unsigned int flags) 3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
1529{ 3151{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 3153
1532 memset (loop, 0, sizeof (struct ev_loop)); 3154 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 3155 loop_init (EV_A_ flags);
1535 3156
1536 if (ev_backend (EV_A)) 3157 if (ev_backend (EV_A))
1537 return loop; 3158 return EV_A;
1538 3159
3160 ev_free (EV_A);
1539 return 0; 3161 return 0;
1540} 3162}
1541 3163
1542void 3164#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 3165
1555#if EV_VERIFY 3166#if EV_VERIFY
1556static void noinline 3167noinline ecb_cold
3168static void
1557verify_watcher (EV_P_ W w) 3169verify_watcher (EV_P_ W w)
1558{ 3170{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 3172
1561 if (w->pending) 3173 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 3175}
1564 3176
1565static void noinline 3177noinline ecb_cold
3178static void
1566verify_heap (EV_P_ ANHE *heap, int N) 3179verify_heap (EV_P_ ANHE *heap, int N)
1567{ 3180{
1568 int i; 3181 int i;
1569 3182
1570 for (i = HEAP0; i < N + HEAP0; ++i) 3183 for (i = HEAP0; i < N + HEAP0; ++i)
1575 3188
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 3190 }
1578} 3191}
1579 3192
1580static void noinline 3193noinline ecb_cold
3194static void
1581array_verify (EV_P_ W *ws, int cnt) 3195array_verify (EV_P_ W *ws, int cnt)
1582{ 3196{
1583 while (cnt--) 3197 while (cnt--)
1584 { 3198 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 3200 verify_watcher (EV_A_ ws [cnt]);
1587 } 3201 }
1588} 3202}
1589#endif 3203#endif
1590 3204
1591void 3205#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
1593{ 3208{
1594#if EV_VERIFY 3209#if EV_VERIFY
1595 int i; 3210 int i;
1596 WL w; 3211 WL w, w2;
1597 3212
1598 assert (activecnt >= -1); 3213 assert (activecnt >= -1);
1599 3214
1600 assert (fdchangemax >= fdchangecnt); 3215 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 3216 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 3218
1604 assert (anfdmax >= 0); 3219 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
1606 for (w = anfds [i].head; w; w = w->next) 3224 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 3225 {
1608 verify_watcher (EV_A_ (W)w); 3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 3236 }
3237 }
1612 3238
1613 assert (timermax >= timercnt); 3239 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 3240 verify_heap (EV_A_ timers, timercnt);
1615 3241
1616#if EV_PERIODIC_ENABLE 3242#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 3257#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 3258 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 3259 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 3260#endif
1635 3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
1636#if EV_ASYNC_ENABLE 3267#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 3268 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 3270#endif
1640 3271
3272#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 3273 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
1643 3276
3277#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 3278 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
1646 3281
1647# if 0 3282# if 0
3283#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
1650# endif 3287# endif
1651#endif 3288#endif
1652} 3289}
1653 3290#endif
1654#endif /* multiplicity */
1655 3291
1656#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
1657struct ev_loop * 3294struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 3295#else
1660int 3296int
3297#endif
1661ev_default_loop (unsigned int flags) 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
1662#endif
1663{ 3299{
1664 if (!ev_default_loop_ptr) 3300 if (!ev_default_loop_ptr)
1665 { 3301 {
1666#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3304#else
1669 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
1670#endif 3306#endif
1671 3307
1672 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
1673 3309
1674 if (ev_backend (EV_A)) 3310 if (ev_backend (EV_A))
1675 { 3311 {
1676#ifndef _WIN32 3312#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3317#endif
1686 3322
1687 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
1688} 3324}
1689 3325
1690void 3326void
1691ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
1692{ 3328{
1693#if EV_MULTIPLICITY 3329 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3330}
1716 3331
1717/*****************************************************************************/ 3332/*****************************************************************************/
1718 3333
1719void 3334void
1720ev_invoke (EV_P_ void *w, int revents) 3335ev_invoke (EV_P_ void *w, int revents)
1721{ 3336{
1722 EV_CB_INVOKE ((W)w, revents); 3337 EV_CB_INVOKE ((W)w, revents);
1723} 3338}
1724 3339
1725void inline_speed 3340unsigned int
1726call_pending (EV_P) 3341ev_pending_count (EV_P) EV_NOEXCEPT
1727{ 3342{
1728 int pri; 3343 int pri;
3344 unsigned int count = 0;
1729 3345
1730 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1731 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3364 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3366
1739 p->w->pending = 0; 3367 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3368 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3369 EV_FREQUENT_CHECK;
1742 } 3370 }
1743 } 3371 }
3372 while (pendingpri);
1744} 3373}
1745 3374
1746#if EV_IDLE_ENABLE 3375#if EV_IDLE_ENABLE
1747void inline_size 3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
1748idle_reify (EV_P) 3379idle_reify (EV_P)
1749{ 3380{
1750 if (expect_false (idleall)) 3381 if (expect_false (idleall))
1751 { 3382 {
1752 int pri; 3383 int pri;
1764 } 3395 }
1765 } 3396 }
1766} 3397}
1767#endif 3398#endif
1768 3399
1769void inline_size 3400/* make timers pending */
3401inline_size void
1770timers_reify (EV_P) 3402timers_reify (EV_P)
1771{ 3403{
1772 EV_FREQUENT_CHECK; 3404 EV_FREQUENT_CHECK;
1773 3405
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3407 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3408 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
1783 ev_at (w) += w->repeat; 3417 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3418 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3419 ev_at (w) = mn_now;
1786 3420
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 3422
1789 ANHE_at_cache (timers [HEAP0]); 3423 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
1791 } 3431 }
1792 else 3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3433
1795 EV_FREQUENT_CHECK; 3434 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3435 }
1798} 3436}
1799 3437
1800#if EV_PERIODIC_ENABLE 3438#if EV_PERIODIC_ENABLE
1801void inline_size 3439
3440noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
1802periodics_reify (EV_P) 3467periodics_reify (EV_P)
1803{ 3468{
1804 EV_FREQUENT_CHECK; 3469 EV_FREQUENT_CHECK;
1805 3470
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3472 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3473 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3483
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3485
1819 ANHE_at_cache (periodics [HEAP0]); 3486 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
1821 } 3500 }
1822 else if (w->interval) 3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3502
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3503 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3504 }
1847} 3505}
1848 3506
1849static void noinline 3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509noinline ecb_cold
3510static void
1850periodics_reschedule (EV_P) 3511periodics_reschedule (EV_P)
1851{ 3512{
1852 int i; 3513 int i;
1853 3514
1854 /* adjust periodics after time jump */ 3515 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3519
1859 if (w->reschedule_cb) 3520 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3522 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3523 periodic_recalc (EV_A_ w);
1863 3524
1864 ANHE_at_cache (periodics [i]); 3525 ANHE_at_cache (periodics [i]);
1865 } 3526 }
1866 3527
1867 reheap (periodics, periodiccnt); 3528 reheap (periodics, periodiccnt);
1868} 3529}
1869#endif 3530#endif
1870 3531
1871void inline_speed 3532/* adjust all timers by a given offset */
3533noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3550time_update (EV_P_ ev_tstamp max_block)
1873{ 3551{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3553 if (expect_true (have_monotonic))
1878 { 3554 {
3555 int i;
1879 ev_tstamp odiff = rtmn_diff; 3556 ev_tstamp odiff = rtmn_diff;
1880 3557
1881 mn_now = get_clock (); 3558 mn_now = get_clock ();
1882 3559
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 3576 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3577 * in the unlikely event of having been preempted here.
1901 */ 3578 */
1902 for (i = 4; --i; ) 3579 for (i = 4; --i; )
1903 { 3580 {
3581 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1905 3583
3584 diff = odiff - rtmn_diff;
3585
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3586 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 3587 return; /* all is well */
1908 3588
1909 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3590 mn_now = get_clock ();
1911 now_floor = mn_now; 3591 now_floor = mn_now;
1912 } 3592 }
1913 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 3596# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 3597 periodics_reschedule (EV_A);
1916# endif 3598# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 3599 }
1920 else 3600 else
1921#endif 3601#endif
1922 { 3602 {
1923 ev_rt_now = ev_time (); 3603 ev_rt_now = ev_time ();
1924 3604
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3605 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3609#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1929#endif 3611#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3612 }
1938 3613
1939 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1940 } 3615 }
1941} 3616}
1942 3617
1943void 3618int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1965{ 3620{
3621#if EV_FEATURE_API
3622 ++loop_depth;
3623#endif
3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
1966 loop_done = EVUNLOOP_CANCEL; 3627 loop_done = EVBREAK_CANCEL;
1967 3628
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3630
1970 do 3631 do
1971 { 3632 {
1972#if EV_VERIFY >= 2 3633#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3634 ev_verify (EV_A);
1974#endif 3635#endif
1975 3636
1976#ifndef _WIN32 3637#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3638 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3639 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3647 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3648 if (expect_false (postfork))
1988 if (forkcnt) 3649 if (forkcnt)
1989 { 3650 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3652 EV_INVOKE_PENDING;
1992 } 3653 }
1993#endif 3654#endif
1994 3655
3656#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3658 if (expect_false (preparecnt))
1997 { 3659 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
2000 } 3662 }
3663#endif
3664
3665 if (expect_false (loop_done))
3666 break;
2001 3667
2002 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 3669 if (expect_false (postfork))
2004 loop_fork (EV_A); 3670 loop_fork (EV_A);
2005 3671
2009 /* calculate blocking time */ 3675 /* calculate blocking time */
2010 { 3676 {
2011 ev_tstamp waittime = 0.; 3677 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 3678 ev_tstamp sleeptime = 0.;
2013 3679
3680 /* remember old timestamp for io_blocktime calculation */
3681 ev_tstamp prev_mn_now = mn_now;
3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3691 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2015 { 3692 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
2020 3694
2021 if (timercnt) 3695 if (timercnt)
2022 { 3696 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2024 if (waittime > to) waittime = to; 3698 if (waittime > to) waittime = to;
2025 } 3699 }
2026 3700
2027#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
2028 if (periodiccnt) 3702 if (periodiccnt)
2029 { 3703 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2031 if (waittime > to) waittime = to; 3705 if (waittime > to) waittime = to;
2032 } 3706 }
2033#endif 3707#endif
2034 3708
3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 3710 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 3711 waittime = timeout_blocktime;
2037 3712
2038 sleeptime = waittime - backend_fudge; 3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
2039 3717
3718 /* extra check because io_blocktime is commonly 0 */
2040 if (expect_true (sleeptime > io_blocktime)) 3719 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (expect_true (sleeptime > 0.))
3727 {
2045 ev_sleep (sleeptime); 3728 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 3729 waittime -= sleeptime;
3730 }
2047 } 3731 }
2048 } 3732 }
2049 3733
3734#if EV_FEATURE_API
2050 ++loop_count; 3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
3749
2052 3750
2053 /* update ev_rt_now, do magic */ 3751 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 3752 time_update (EV_A_ waittime + sleeptime);
2055 } 3753 }
2056 3754
2063#if EV_IDLE_ENABLE 3761#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 3762 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 3763 idle_reify (EV_A);
2066#endif 3764#endif
2067 3765
3766#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 3767 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 3768 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3769 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3770#endif
2071 3771
2072 call_pending (EV_A); 3772 EV_INVOKE_PENDING;
2073 } 3773 }
2074 while (expect_true ( 3774 while (expect_true (
2075 activecnt 3775 activecnt
2076 && !loop_done 3776 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3777 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 3778 ));
2079 3779
2080 if (loop_done == EVUNLOOP_ONE) 3780 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 3781 loop_done = EVBREAK_CANCEL;
2082}
2083 3782
3783#if EV_FEATURE_API
3784 --loop_depth;
3785#endif
3786
3787 return activecnt;
3788}
3789
2084void 3790void
2085ev_unloop (EV_P_ int how) 3791ev_break (EV_P_ int how) EV_NOEXCEPT
2086{ 3792{
2087 loop_done = how; 3793 loop_done = how;
2088} 3794}
2089 3795
3796void
3797ev_ref (EV_P) EV_NOEXCEPT
3798{
3799 ++activecnt;
3800}
3801
3802void
3803ev_unref (EV_P) EV_NOEXCEPT
3804{
3805 --activecnt;
3806}
3807
3808void
3809ev_now_update (EV_P) EV_NOEXCEPT
3810{
3811 time_update (EV_A_ 1e100);
3812}
3813
3814void
3815ev_suspend (EV_P) EV_NOEXCEPT
3816{
3817 ev_now_update (EV_A);
3818}
3819
3820void
3821ev_resume (EV_P) EV_NOEXCEPT
3822{
3823 ev_tstamp mn_prev = mn_now;
3824
3825 ev_now_update (EV_A);
3826 timers_reschedule (EV_A_ mn_now - mn_prev);
3827#if EV_PERIODIC_ENABLE
3828 /* TODO: really do this? */
3829 periodics_reschedule (EV_A);
3830#endif
3831}
3832
2090/*****************************************************************************/ 3833/*****************************************************************************/
3834/* singly-linked list management, used when the expected list length is short */
2091 3835
2092void inline_size 3836inline_size void
2093wlist_add (WL *head, WL elem) 3837wlist_add (WL *head, WL elem)
2094{ 3838{
2095 elem->next = *head; 3839 elem->next = *head;
2096 *head = elem; 3840 *head = elem;
2097} 3841}
2098 3842
2099void inline_size 3843inline_size void
2100wlist_del (WL *head, WL elem) 3844wlist_del (WL *head, WL elem)
2101{ 3845{
2102 while (*head) 3846 while (*head)
2103 { 3847 {
2104 if (*head == elem) 3848 if (expect_true (*head == elem))
2105 { 3849 {
2106 *head = elem->next; 3850 *head = elem->next;
2107 return; 3851 break;
2108 } 3852 }
2109 3853
2110 head = &(*head)->next; 3854 head = &(*head)->next;
2111 } 3855 }
2112} 3856}
2113 3857
2114void inline_speed 3858/* internal, faster, version of ev_clear_pending */
3859inline_speed void
2115clear_pending (EV_P_ W w) 3860clear_pending (EV_P_ W w)
2116{ 3861{
2117 if (w->pending) 3862 if (w->pending)
2118 { 3863 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3864 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 3865 w->pending = 0;
2121 } 3866 }
2122} 3867}
2123 3868
2124int 3869int
2125ev_clear_pending (EV_P_ void *w) 3870ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2126{ 3871{
2127 W w_ = (W)w; 3872 W w_ = (W)w;
2128 int pending = w_->pending; 3873 int pending = w_->pending;
2129 3874
2130 if (expect_true (pending)) 3875 if (expect_true (pending))
2131 { 3876 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3877 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3878 p->w = (W)&pending_w;
2133 w_->pending = 0; 3879 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 3880 return p->events;
2136 } 3881 }
2137 else 3882 else
2138 return 0; 3883 return 0;
2139} 3884}
2140 3885
2141void inline_size 3886inline_size void
2142pri_adjust (EV_P_ W w) 3887pri_adjust (EV_P_ W w)
2143{ 3888{
2144 int pri = w->priority; 3889 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3890 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3891 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 3892 ev_set_priority (w, pri);
2148} 3893}
2149 3894
2150void inline_speed 3895inline_speed void
2151ev_start (EV_P_ W w, int active) 3896ev_start (EV_P_ W w, int active)
2152{ 3897{
2153 pri_adjust (EV_A_ w); 3898 pri_adjust (EV_A_ w);
2154 w->active = active; 3899 w->active = active;
2155 ev_ref (EV_A); 3900 ev_ref (EV_A);
2156} 3901}
2157 3902
2158void inline_size 3903inline_size void
2159ev_stop (EV_P_ W w) 3904ev_stop (EV_P_ W w)
2160{ 3905{
2161 ev_unref (EV_A); 3906 ev_unref (EV_A);
2162 w->active = 0; 3907 w->active = 0;
2163} 3908}
2164 3909
2165/*****************************************************************************/ 3910/*****************************************************************************/
2166 3911
2167void noinline 3912noinline
3913void
2168ev_io_start (EV_P_ ev_io *w) 3914ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2169{ 3915{
2170 int fd = w->fd; 3916 int fd = w->fd;
2171 3917
2172 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
2173 return; 3919 return;
2174 3920
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3921 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3922 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 3923
2178 EV_FREQUENT_CHECK; 3924 EV_FREQUENT_CHECK;
2179 3925
2180 ev_start (EV_A_ (W)w, 1); 3926 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3927 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2182 wlist_add (&anfds[fd].head, (WL)w); 3928 wlist_add (&anfds[fd].head, (WL)w);
2183 3929
3930 /* common bug, apparently */
3931 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3932
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3933 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 3934 w->events &= ~EV__IOFDSET;
2186 3935
2187 EV_FREQUENT_CHECK; 3936 EV_FREQUENT_CHECK;
2188} 3937}
2189 3938
2190void noinline 3939noinline
3940void
2191ev_io_stop (EV_P_ ev_io *w) 3941ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2192{ 3942{
2193 clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3944 if (expect_false (!ev_is_active (w)))
2195 return; 3945 return;
2196 3946
2199 EV_FREQUENT_CHECK; 3949 EV_FREQUENT_CHECK;
2200 3950
2201 wlist_del (&anfds[w->fd].head, (WL)w); 3951 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 3952 ev_stop (EV_A_ (W)w);
2203 3953
2204 fd_change (EV_A_ w->fd, 1); 3954 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 3955
2206 EV_FREQUENT_CHECK; 3956 EV_FREQUENT_CHECK;
2207} 3957}
2208 3958
2209void noinline 3959noinline
3960void
2210ev_timer_start (EV_P_ ev_timer *w) 3961ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2211{ 3962{
2212 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2213 return; 3964 return;
2214 3965
2215 ev_at (w) += mn_now; 3966 ev_at (w) += mn_now;
2218 3969
2219 EV_FREQUENT_CHECK; 3970 EV_FREQUENT_CHECK;
2220 3971
2221 ++timercnt; 3972 ++timercnt;
2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3973 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3974 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2224 ANHE_w (timers [ev_active (w)]) = (WT)w; 3975 ANHE_w (timers [ev_active (w)]) = (WT)w;
2225 ANHE_at_cache (timers [ev_active (w)]); 3976 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w)); 3977 upheap (timers, ev_active (w));
2227 3978
2228 EV_FREQUENT_CHECK; 3979 EV_FREQUENT_CHECK;
2229 3980
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3981 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231} 3982}
2232 3983
2233void noinline 3984noinline
3985void
2234ev_timer_stop (EV_P_ ev_timer *w) 3986ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2235{ 3987{
2236 clear_pending (EV_A_ (W)w); 3988 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w))) 3989 if (expect_false (!ev_is_active (w)))
2238 return; 3990 return;
2239 3991
2251 timers [active] = timers [timercnt + HEAP0]; 4003 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 4004 adjustheap (timers, timercnt, active);
2253 } 4005 }
2254 } 4006 }
2255 4007
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 4008 ev_at (w) -= mn_now;
2259 4009
2260 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
2261}
2262 4011
4012 EV_FREQUENT_CHECK;
4013}
4014
2263void noinline 4015noinline
4016void
2264ev_timer_again (EV_P_ ev_timer *w) 4017ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2265{ 4018{
2266 EV_FREQUENT_CHECK; 4019 EV_FREQUENT_CHECK;
4020
4021 clear_pending (EV_A_ (W)w);
2267 4022
2268 if (ev_is_active (w)) 4023 if (ev_is_active (w))
2269 { 4024 {
2270 if (w->repeat) 4025 if (w->repeat)
2271 { 4026 {
2283 } 4038 }
2284 4039
2285 EV_FREQUENT_CHECK; 4040 EV_FREQUENT_CHECK;
2286} 4041}
2287 4042
4043ev_tstamp
4044ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4045{
4046 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4047}
4048
2288#if EV_PERIODIC_ENABLE 4049#if EV_PERIODIC_ENABLE
2289void noinline 4050noinline
4051void
2290ev_periodic_start (EV_P_ ev_periodic *w) 4052ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2291{ 4053{
2292 if (expect_false (ev_is_active (w))) 4054 if (expect_false (ev_is_active (w)))
2293 return; 4055 return;
2294 4056
2295 if (w->reschedule_cb) 4057 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4058 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval) 4059 else if (w->interval)
2298 { 4060 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4061 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */ 4062 periodic_recalc (EV_A_ w);
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 } 4063 }
2303 else 4064 else
2304 ev_at (w) = w->offset; 4065 ev_at (w) = w->offset;
2305 4066
2306 EV_FREQUENT_CHECK; 4067 EV_FREQUENT_CHECK;
2307 4068
2308 ++periodiccnt; 4069 ++periodiccnt;
2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4070 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4071 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2311 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4072 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2312 ANHE_at_cache (periodics [ev_active (w)]); 4073 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w)); 4074 upheap (periodics, ev_active (w));
2314 4075
2315 EV_FREQUENT_CHECK; 4076 EV_FREQUENT_CHECK;
2316 4077
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4078 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318} 4079}
2319 4080
2320void noinline 4081noinline
4082void
2321ev_periodic_stop (EV_P_ ev_periodic *w) 4083ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2322{ 4084{
2323 clear_pending (EV_A_ (W)w); 4085 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w))) 4086 if (expect_false (!ev_is_active (w)))
2325 return; 4087 return;
2326 4088
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 4100 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 4101 adjustheap (periodics, periodiccnt, active);
2340 } 4102 }
2341 } 4103 }
2342 4104
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
2346}
2347 4106
4107 EV_FREQUENT_CHECK;
4108}
4109
2348void noinline 4110noinline
4111void
2349ev_periodic_again (EV_P_ ev_periodic *w) 4112ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2350{ 4113{
2351 /* TODO: use adjustheap and recalculation */ 4114 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w); 4115 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w); 4116 ev_periodic_start (EV_A_ w);
2354} 4117}
2356 4119
2357#ifndef SA_RESTART 4120#ifndef SA_RESTART
2358# define SA_RESTART 0 4121# define SA_RESTART 0
2359#endif 4122#endif
2360 4123
4124#if EV_SIGNAL_ENABLE
4125
2361void noinline 4126noinline
4127void
2362ev_signal_start (EV_P_ ev_signal *w) 4128ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2363{ 4129{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 4130 if (expect_false (ev_is_active (w)))
2368 return; 4131 return;
2369 4132
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4133 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 4134
2372 evpipe_init (EV_A); 4135#if EV_MULTIPLICITY
4136 assert (("libev: a signal must not be attached to two different loops",
4137 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 4138
2374 EV_FREQUENT_CHECK; 4139 signals [w->signum - 1].loop = EV_A;
4140 ECB_MEMORY_FENCE_RELEASE;
4141#endif
2375 4142
4143 EV_FREQUENT_CHECK;
4144
4145#if EV_USE_SIGNALFD
4146 if (sigfd == -2)
2376 { 4147 {
2377#ifndef _WIN32 4148 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 4149 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 4150 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 4151
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4152 if (sigfd >= 0)
4153 {
4154 fd_intern (sigfd); /* doing it twice will not hurt */
2384 4155
2385#ifndef _WIN32 4156 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 4157
2387#endif 4158 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4159 ev_set_priority (&sigfd_w, EV_MAXPRI);
4160 ev_io_start (EV_A_ &sigfd_w);
4161 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4162 }
2388 } 4163 }
4164
4165 if (sigfd >= 0)
4166 {
4167 /* TODO: check .head */
4168 sigaddset (&sigfd_set, w->signum);
4169 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4170
4171 signalfd (sigfd, &sigfd_set, 0);
4172 }
4173#endif
2389 4174
2390 ev_start (EV_A_ (W)w, 1); 4175 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 4176 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 4177
2393 if (!((WL)w)->next) 4178 if (!((WL)w)->next)
4179# if EV_USE_SIGNALFD
4180 if (sigfd < 0) /*TODO*/
4181# endif
2394 { 4182 {
2395#if _WIN32 4183# ifdef _WIN32
4184 evpipe_init (EV_A);
4185
2396 signal (w->signum, ev_sighandler); 4186 signal (w->signum, ev_sighandler);
2397#else 4187# else
2398 struct sigaction sa; 4188 struct sigaction sa;
4189
4190 evpipe_init (EV_A);
4191
2399 sa.sa_handler = ev_sighandler; 4192 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 4193 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4194 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 4195 sigaction (w->signum, &sa, 0);
4196
4197 if (origflags & EVFLAG_NOSIGMASK)
4198 {
4199 sigemptyset (&sa.sa_mask);
4200 sigaddset (&sa.sa_mask, w->signum);
4201 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4202 }
2403#endif 4203#endif
2404 } 4204 }
2405 4205
2406 EV_FREQUENT_CHECK; 4206 EV_FREQUENT_CHECK;
2407} 4207}
2408 4208
2409void noinline 4209noinline
4210void
2410ev_signal_stop (EV_P_ ev_signal *w) 4211ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2411{ 4212{
2412 clear_pending (EV_A_ (W)w); 4213 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w))) 4214 if (expect_false (!ev_is_active (w)))
2414 return; 4215 return;
2415 4216
2417 4218
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 4219 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 4220 ev_stop (EV_A_ (W)w);
2420 4221
2421 if (!signals [w->signum - 1].head) 4222 if (!signals [w->signum - 1].head)
4223 {
4224#if EV_MULTIPLICITY
4225 signals [w->signum - 1].loop = 0; /* unattach from signal */
4226#endif
4227#if EV_USE_SIGNALFD
4228 if (sigfd >= 0)
4229 {
4230 sigset_t ss;
4231
4232 sigemptyset (&ss);
4233 sigaddset (&ss, w->signum);
4234 sigdelset (&sigfd_set, w->signum);
4235
4236 signalfd (sigfd, &sigfd_set, 0);
4237 sigprocmask (SIG_UNBLOCK, &ss, 0);
4238 }
4239 else
4240#endif
2422 signal (w->signum, SIG_DFL); 4241 signal (w->signum, SIG_DFL);
4242 }
2423 4243
2424 EV_FREQUENT_CHECK; 4244 EV_FREQUENT_CHECK;
2425} 4245}
2426 4246
4247#endif
4248
4249#if EV_CHILD_ENABLE
4250
2427void 4251void
2428ev_child_start (EV_P_ ev_child *w) 4252ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2429{ 4253{
2430#if EV_MULTIPLICITY 4254#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4255 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif 4256#endif
2433 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
2434 return; 4258 return;
2435 4259
2436 EV_FREQUENT_CHECK; 4260 EV_FREQUENT_CHECK;
2437 4261
2438 ev_start (EV_A_ (W)w, 1); 4262 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4263 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 4264
2441 EV_FREQUENT_CHECK; 4265 EV_FREQUENT_CHECK;
2442} 4266}
2443 4267
2444void 4268void
2445ev_child_stop (EV_P_ ev_child *w) 4269ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2446{ 4270{
2447 clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w))) 4272 if (expect_false (!ev_is_active (w)))
2449 return; 4273 return;
2450 4274
2451 EV_FREQUENT_CHECK; 4275 EV_FREQUENT_CHECK;
2452 4276
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4277 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 4278 ev_stop (EV_A_ (W)w);
2455 4279
2456 EV_FREQUENT_CHECK; 4280 EV_FREQUENT_CHECK;
2457} 4281}
4282
4283#endif
2458 4284
2459#if EV_STAT_ENABLE 4285#if EV_STAT_ENABLE
2460 4286
2461# ifdef _WIN32 4287# ifdef _WIN32
2462# undef lstat 4288# undef lstat
2465 4291
2466#define DEF_STAT_INTERVAL 5.0074891 4292#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4293#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468#define MIN_STAT_INTERVAL 0.1074891 4294#define MIN_STAT_INTERVAL 0.1074891
2469 4295
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4296noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 4297
2472#if EV_USE_INOTIFY 4298#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192
2474 4299
2475static void noinline 4300/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4301# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4302
4303noinline
4304static void
2476infy_add (EV_P_ ev_stat *w) 4305infy_add (EV_P_ ev_stat *w)
2477{ 4306{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4307 w->wd = inotify_add_watch (fs_fd, w->path,
4308 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4309 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4310 | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 4311
2480 if (w->wd < 0) 4312 if (w->wd >= 0)
4313 {
4314 struct statfs sfs;
4315
4316 /* now local changes will be tracked by inotify, but remote changes won't */
4317 /* unless the filesystem is known to be local, we therefore still poll */
4318 /* also do poll on <2.6.25, but with normal frequency */
4319
4320 if (!fs_2625)
4321 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4322 else if (!statfs (w->path, &sfs)
4323 && (sfs.f_type == 0x1373 /* devfs */
4324 || sfs.f_type == 0x4006 /* fat */
4325 || sfs.f_type == 0x4d44 /* msdos */
4326 || sfs.f_type == 0xEF53 /* ext2/3 */
4327 || sfs.f_type == 0x72b6 /* jffs2 */
4328 || sfs.f_type == 0x858458f6 /* ramfs */
4329 || sfs.f_type == 0x5346544e /* ntfs */
4330 || sfs.f_type == 0x3153464a /* jfs */
4331 || sfs.f_type == 0x9123683e /* btrfs */
4332 || sfs.f_type == 0x52654973 /* reiser3 */
4333 || sfs.f_type == 0x01021994 /* tmpfs */
4334 || sfs.f_type == 0x58465342 /* xfs */))
4335 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4336 else
4337 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 4338 }
4339 else
4340 {
4341 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4342 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 4343
2485 /* monitor some parent directory for speedup hints */ 4344 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4345 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 4346 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4347 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 4348 {
2490 char path [4096]; 4349 char path [4096];
2500 if (!pend || pend == path) 4359 if (!pend || pend == path)
2501 break; 4360 break;
2502 4361
2503 *pend = 0; 4362 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask); 4363 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 } 4364 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4365 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 4366 }
2508 } 4367 }
2509 4368
2510 if (w->wd >= 0) 4369 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4370 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 4371
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 4372 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 4373 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 4374 ev_timer_again (EV_A_ &w->timer);
2530 } 4375 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 4376}
2532 4377
2533static void noinline 4378noinline
4379static void
2534infy_del (EV_P_ ev_stat *w) 4380infy_del (EV_P_ ev_stat *w)
2535{ 4381{
2536 int slot; 4382 int slot;
2537 int wd = w->wd; 4383 int wd = w->wd;
2538 4384
2539 if (wd < 0) 4385 if (wd < 0)
2540 return; 4386 return;
2541 4387
2542 w->wd = -2; 4388 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4389 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 4390 wlist_del (&fs_hash [slot].head, (WL)w);
2545 4391
2546 /* remove this watcher, if others are watching it, they will rearm */ 4392 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 4393 inotify_rm_watch (fs_fd, wd);
2548} 4394}
2549 4395
2550static void noinline 4396noinline
4397static void
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4398infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 4399{
2553 if (slot < 0) 4400 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 4401 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4402 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 4403 infy_wd (EV_A_ slot, wd, ev);
2557 else 4404 else
2558 { 4405 {
2559 WL w_; 4406 WL w_;
2560 4407
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4408 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 4409 {
2563 ev_stat *w = (ev_stat *)w_; 4410 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 4411 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 4412
2566 if (w->wd == wd || wd == -1) 4413 if (w->wd == wd || wd == -1)
2567 { 4414 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4415 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 4416 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4417 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 4418 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 4419 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 4420 }
2574 4421
2575 stat_timer_cb (EV_A_ &w->timer, 0); 4422 stat_timer_cb (EV_A_ &w->timer, 0);
2580 4427
2581static void 4428static void
2582infy_cb (EV_P_ ev_io *w, int revents) 4429infy_cb (EV_P_ ev_io *w, int revents)
2583{ 4430{
2584 char buf [EV_INOTIFY_BUFSIZE]; 4431 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 4432 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 4433 int len = read (fs_fd, buf, sizeof (buf));
2588 4434
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4435 for (ofs = 0; ofs < len; )
4436 {
4437 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4438 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4439 ofs += sizeof (struct inotify_event) + ev->len;
4440 }
2591} 4441}
2592 4442
2593void inline_size 4443inline_size ecb_cold
4444void
2594check_2625 (EV_P) 4445ev_check_2625 (EV_P)
2595{ 4446{
2596 /* kernels < 2.6.25 are borked 4447 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4448 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 4449 */
2599 struct utsname buf; 4450 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 4451 return;
2604 4452
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 4453 fs_2625 = 1;
2614} 4454}
2615 4455
2616void inline_size 4456inline_size int
4457infy_newfd (void)
4458{
4459#if defined IN_CLOEXEC && defined IN_NONBLOCK
4460 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4461 if (fd >= 0)
4462 return fd;
4463#endif
4464 return inotify_init ();
4465}
4466
4467inline_size void
2617infy_init (EV_P) 4468infy_init (EV_P)
2618{ 4469{
2619 if (fs_fd != -2) 4470 if (fs_fd != -2)
2620 return; 4471 return;
2621 4472
2622 fs_fd = -1; 4473 fs_fd = -1;
2623 4474
2624 check_2625 (EV_A); 4475 ev_check_2625 (EV_A);
2625 4476
2626 fs_fd = inotify_init (); 4477 fs_fd = infy_newfd ();
2627 4478
2628 if (fs_fd >= 0) 4479 if (fs_fd >= 0)
2629 { 4480 {
4481 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4482 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 4483 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 4484 ev_io_start (EV_A_ &fs_w);
4485 ev_unref (EV_A);
2633 } 4486 }
2634} 4487}
2635 4488
2636void inline_size 4489inline_size void
2637infy_fork (EV_P) 4490infy_fork (EV_P)
2638{ 4491{
2639 int slot; 4492 int slot;
2640 4493
2641 if (fs_fd < 0) 4494 if (fs_fd < 0)
2642 return; 4495 return;
2643 4496
4497 ev_ref (EV_A);
4498 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 4499 close (fs_fd);
2645 fs_fd = inotify_init (); 4500 fs_fd = infy_newfd ();
2646 4501
4502 if (fs_fd >= 0)
4503 {
4504 fd_intern (fs_fd);
4505 ev_io_set (&fs_w, fs_fd, EV_READ);
4506 ev_io_start (EV_A_ &fs_w);
4507 ev_unref (EV_A);
4508 }
4509
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4510 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 4511 {
2649 WL w_ = fs_hash [slot].head; 4512 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 4513 fs_hash [slot].head = 0;
2651 4514
2652 while (w_) 4515 while (w_)
2657 w->wd = -1; 4520 w->wd = -1;
2658 4521
2659 if (fs_fd >= 0) 4522 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 4523 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 4524 else
4525 {
4526 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4527 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 4528 ev_timer_again (EV_A_ &w->timer);
4529 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4530 }
2663 } 4531 }
2664 } 4532 }
2665} 4533}
2666 4534
2667#endif 4535#endif
2671#else 4539#else
2672# define EV_LSTAT(p,b) lstat (p, b) 4540# define EV_LSTAT(p,b) lstat (p, b)
2673#endif 4541#endif
2674 4542
2675void 4543void
2676ev_stat_stat (EV_P_ ev_stat *w) 4544ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2677{ 4545{
2678 if (lstat (w->path, &w->attr) < 0) 4546 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0; 4547 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink) 4548 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1; 4549 w->attr.st_nlink = 1;
2682} 4550}
2683 4551
2684static void noinline 4552noinline
4553static void
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4554stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 4555{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4556 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 4557
2689 /* we copy this here each the time so that */ 4558 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 4559 ev_stat_stat (EV_A_ w);
2693 4560
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4561 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 4562 if (
2696 w->prev.st_dev != w->attr.st_dev 4563 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 4564 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 4565 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 4566 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 4567 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 4568 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 4569 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 4570 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 4571 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 4572 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 4573 || prev.st_ctime != w->attr.st_ctime
2707 ) { 4574 ) {
4575 /* we only update w->prev on actual differences */
4576 /* in case we test more often than invoke the callback, */
4577 /* to ensure that prev is always different to attr */
4578 w->prev = prev;
4579
2708 #if EV_USE_INOTIFY 4580 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 4581 if (fs_fd >= 0)
2710 { 4582 {
2711 infy_del (EV_A_ w); 4583 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 4584 infy_add (EV_A_ w);
2717 ev_feed_event (EV_A_ w, EV_STAT); 4589 ev_feed_event (EV_A_ w, EV_STAT);
2718 } 4590 }
2719} 4591}
2720 4592
2721void 4593void
2722ev_stat_start (EV_P_ ev_stat *w) 4594ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2723{ 4595{
2724 if (expect_false (ev_is_active (w))) 4596 if (expect_false (ev_is_active (w)))
2725 return; 4597 return;
2726 4598
2727 ev_stat_stat (EV_A_ w); 4599 ev_stat_stat (EV_A_ w);
2737 4609
2738 if (fs_fd >= 0) 4610 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 4611 infy_add (EV_A_ w);
2740 else 4612 else
2741#endif 4613#endif
4614 {
2742 ev_timer_again (EV_A_ &w->timer); 4615 ev_timer_again (EV_A_ &w->timer);
4616 ev_unref (EV_A);
4617 }
2743 4618
2744 ev_start (EV_A_ (W)w, 1); 4619 ev_start (EV_A_ (W)w, 1);
2745 4620
2746 EV_FREQUENT_CHECK; 4621 EV_FREQUENT_CHECK;
2747} 4622}
2748 4623
2749void 4624void
2750ev_stat_stop (EV_P_ ev_stat *w) 4625ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2751{ 4626{
2752 clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w))) 4628 if (expect_false (!ev_is_active (w)))
2754 return; 4629 return;
2755 4630
2756 EV_FREQUENT_CHECK; 4631 EV_FREQUENT_CHECK;
2757 4632
2758#if EV_USE_INOTIFY 4633#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 4634 infy_del (EV_A_ w);
2760#endif 4635#endif
4636
4637 if (ev_is_active (&w->timer))
4638 {
4639 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 4640 ev_timer_stop (EV_A_ &w->timer);
4641 }
2762 4642
2763 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
2764 4644
2765 EV_FREQUENT_CHECK; 4645 EV_FREQUENT_CHECK;
2766} 4646}
2767#endif 4647#endif
2768 4648
2769#if EV_IDLE_ENABLE 4649#if EV_IDLE_ENABLE
2770void 4650void
2771ev_idle_start (EV_P_ ev_idle *w) 4651ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2772{ 4652{
2773 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2774 return; 4654 return;
2775 4655
2776 pri_adjust (EV_A_ (W)w); 4656 pri_adjust (EV_A_ (W)w);
2781 int active = ++idlecnt [ABSPRI (w)]; 4661 int active = ++idlecnt [ABSPRI (w)];
2782 4662
2783 ++idleall; 4663 ++idleall;
2784 ev_start (EV_A_ (W)w, active); 4664 ev_start (EV_A_ (W)w, active);
2785 4665
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4666 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2787 idles [ABSPRI (w)][active - 1] = w; 4667 idles [ABSPRI (w)][active - 1] = w;
2788 } 4668 }
2789 4669
2790 EV_FREQUENT_CHECK; 4670 EV_FREQUENT_CHECK;
2791} 4671}
2792 4672
2793void 4673void
2794ev_idle_stop (EV_P_ ev_idle *w) 4674ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2795{ 4675{
2796 clear_pending (EV_A_ (W)w); 4676 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4677 if (expect_false (!ev_is_active (w)))
2798 return; 4678 return;
2799 4679
2811 4691
2812 EV_FREQUENT_CHECK; 4692 EV_FREQUENT_CHECK;
2813} 4693}
2814#endif 4694#endif
2815 4695
4696#if EV_PREPARE_ENABLE
2816void 4697void
2817ev_prepare_start (EV_P_ ev_prepare *w) 4698ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2818{ 4699{
2819 if (expect_false (ev_is_active (w))) 4700 if (expect_false (ev_is_active (w)))
2820 return; 4701 return;
2821 4702
2822 EV_FREQUENT_CHECK; 4703 EV_FREQUENT_CHECK;
2823 4704
2824 ev_start (EV_A_ (W)w, ++preparecnt); 4705 ev_start (EV_A_ (W)w, ++preparecnt);
2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4706 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2826 prepares [preparecnt - 1] = w; 4707 prepares [preparecnt - 1] = w;
2827 4708
2828 EV_FREQUENT_CHECK; 4709 EV_FREQUENT_CHECK;
2829} 4710}
2830 4711
2831void 4712void
2832ev_prepare_stop (EV_P_ ev_prepare *w) 4713ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2833{ 4714{
2834 clear_pending (EV_A_ (W)w); 4715 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w))) 4716 if (expect_false (!ev_is_active (w)))
2836 return; 4717 return;
2837 4718
2846 4727
2847 ev_stop (EV_A_ (W)w); 4728 ev_stop (EV_A_ (W)w);
2848 4729
2849 EV_FREQUENT_CHECK; 4730 EV_FREQUENT_CHECK;
2850} 4731}
4732#endif
2851 4733
4734#if EV_CHECK_ENABLE
2852void 4735void
2853ev_check_start (EV_P_ ev_check *w) 4736ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2854{ 4737{
2855 if (expect_false (ev_is_active (w))) 4738 if (expect_false (ev_is_active (w)))
2856 return; 4739 return;
2857 4740
2858 EV_FREQUENT_CHECK; 4741 EV_FREQUENT_CHECK;
2859 4742
2860 ev_start (EV_A_ (W)w, ++checkcnt); 4743 ev_start (EV_A_ (W)w, ++checkcnt);
2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4744 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2862 checks [checkcnt - 1] = w; 4745 checks [checkcnt - 1] = w;
2863 4746
2864 EV_FREQUENT_CHECK; 4747 EV_FREQUENT_CHECK;
2865} 4748}
2866 4749
2867void 4750void
2868ev_check_stop (EV_P_ ev_check *w) 4751ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2869{ 4752{
2870 clear_pending (EV_A_ (W)w); 4753 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w))) 4754 if (expect_false (!ev_is_active (w)))
2872 return; 4755 return;
2873 4756
2882 4765
2883 ev_stop (EV_A_ (W)w); 4766 ev_stop (EV_A_ (W)w);
2884 4767
2885 EV_FREQUENT_CHECK; 4768 EV_FREQUENT_CHECK;
2886} 4769}
4770#endif
2887 4771
2888#if EV_EMBED_ENABLE 4772#if EV_EMBED_ENABLE
2889void noinline 4773noinline
4774void
2890ev_embed_sweep (EV_P_ ev_embed *w) 4775ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2891{ 4776{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 4777 ev_run (w->other, EVRUN_NOWAIT);
2893} 4778}
2894 4779
2895static void 4780static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 4781embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 4782{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4783 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 4784
2900 if (ev_cb (w)) 4785 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4786 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 4787 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 4788 ev_run (w->other, EVRUN_NOWAIT);
2904} 4789}
2905 4790
2906static void 4791static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4792embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 4793{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4794 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 4795
2911 { 4796 {
2912 struct ev_loop *loop = w->other; 4797 EV_P = w->other;
2913 4798
2914 while (fdchangecnt) 4799 while (fdchangecnt)
2915 { 4800 {
2916 fd_reify (EV_A); 4801 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4802 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4803 }
2919 } 4804 }
2920} 4805}
2921 4806
2922static void 4807static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4810 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 4811
2927 ev_embed_stop (EV_A_ w); 4812 ev_embed_stop (EV_A_ w);
2928 4813
2929 { 4814 {
2930 struct ev_loop *loop = w->other; 4815 EV_P = w->other;
2931 4816
2932 ev_loop_fork (EV_A); 4817 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4818 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 4819 }
2935 4820
2936 ev_embed_start (EV_A_ w); 4821 ev_embed_start (EV_A_ w);
2937} 4822}
2938 4823
2943 ev_idle_stop (EV_A_ idle); 4828 ev_idle_stop (EV_A_ idle);
2944} 4829}
2945#endif 4830#endif
2946 4831
2947void 4832void
2948ev_embed_start (EV_P_ ev_embed *w) 4833ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2949{ 4834{
2950 if (expect_false (ev_is_active (w))) 4835 if (expect_false (ev_is_active (w)))
2951 return; 4836 return;
2952 4837
2953 { 4838 {
2954 struct ev_loop *loop = w->other; 4839 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4840 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4841 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 4842 }
2958 4843
2959 EV_FREQUENT_CHECK; 4844 EV_FREQUENT_CHECK;
2974 4859
2975 EV_FREQUENT_CHECK; 4860 EV_FREQUENT_CHECK;
2976} 4861}
2977 4862
2978void 4863void
2979ev_embed_stop (EV_P_ ev_embed *w) 4864ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2980{ 4865{
2981 clear_pending (EV_A_ (W)w); 4866 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w))) 4867 if (expect_false (!ev_is_active (w)))
2983 return; 4868 return;
2984 4869
2986 4871
2987 ev_io_stop (EV_A_ &w->io); 4872 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 4873 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 4874 ev_fork_stop (EV_A_ &w->fork);
2990 4875
4876 ev_stop (EV_A_ (W)w);
4877
2991 EV_FREQUENT_CHECK; 4878 EV_FREQUENT_CHECK;
2992} 4879}
2993#endif 4880#endif
2994 4881
2995#if EV_FORK_ENABLE 4882#if EV_FORK_ENABLE
2996void 4883void
2997ev_fork_start (EV_P_ ev_fork *w) 4884ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2998{ 4885{
2999 if (expect_false (ev_is_active (w))) 4886 if (expect_false (ev_is_active (w)))
3000 return; 4887 return;
3001 4888
3002 EV_FREQUENT_CHECK; 4889 EV_FREQUENT_CHECK;
3003 4890
3004 ev_start (EV_A_ (W)w, ++forkcnt); 4891 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4892 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3006 forks [forkcnt - 1] = w; 4893 forks [forkcnt - 1] = w;
3007 4894
3008 EV_FREQUENT_CHECK; 4895 EV_FREQUENT_CHECK;
3009} 4896}
3010 4897
3011void 4898void
3012ev_fork_stop (EV_P_ ev_fork *w) 4899ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3013{ 4900{
3014 clear_pending (EV_A_ (W)w); 4901 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w))) 4902 if (expect_false (!ev_is_active (w)))
3016 return; 4903 return;
3017 4904
3028 4915
3029 EV_FREQUENT_CHECK; 4916 EV_FREQUENT_CHECK;
3030} 4917}
3031#endif 4918#endif
3032 4919
3033#if EV_ASYNC_ENABLE 4920#if EV_CLEANUP_ENABLE
3034void 4921void
3035ev_async_start (EV_P_ ev_async *w) 4922ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
3036{ 4923{
3037 if (expect_false (ev_is_active (w))) 4924 if (expect_false (ev_is_active (w)))
3038 return; 4925 return;
3039 4926
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK; 4927 EV_FREQUENT_CHECK;
3043 4928
3044 ev_start (EV_A_ (W)w, ++asynccnt); 4929 ev_start (EV_A_ (W)w, ++cleanupcnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4930 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
3046 asyncs [asynccnt - 1] = w; 4931 cleanups [cleanupcnt - 1] = w;
3047 4932
4933 /* cleanup watchers should never keep a refcount on the loop */
4934 ev_unref (EV_A);
3048 EV_FREQUENT_CHECK; 4935 EV_FREQUENT_CHECK;
3049} 4936}
3050 4937
3051void 4938void
3052ev_async_stop (EV_P_ ev_async *w) 4939ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
3053{ 4940{
3054 clear_pending (EV_A_ (W)w); 4941 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w))) 4942 if (expect_false (!ev_is_active (w)))
3056 return; 4943 return;
3057 4944
3058 EV_FREQUENT_CHECK; 4945 EV_FREQUENT_CHECK;
4946 ev_ref (EV_A);
4947
4948 {
4949 int active = ev_active (w);
4950
4951 cleanups [active - 1] = cleanups [--cleanupcnt];
4952 ev_active (cleanups [active - 1]) = active;
4953 }
4954
4955 ev_stop (EV_A_ (W)w);
4956
4957 EV_FREQUENT_CHECK;
4958}
4959#endif
4960
4961#if EV_ASYNC_ENABLE
4962void
4963ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4964{
4965 if (expect_false (ev_is_active (w)))
4966 return;
4967
4968 w->sent = 0;
4969
4970 evpipe_init (EV_A);
4971
4972 EV_FREQUENT_CHECK;
4973
4974 ev_start (EV_A_ (W)w, ++asynccnt);
4975 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4976 asyncs [asynccnt - 1] = w;
4977
4978 EV_FREQUENT_CHECK;
4979}
4980
4981void
4982ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4983{
4984 clear_pending (EV_A_ (W)w);
4985 if (expect_false (!ev_is_active (w)))
4986 return;
4987
4988 EV_FREQUENT_CHECK;
3059 4989
3060 { 4990 {
3061 int active = ev_active (w); 4991 int active = ev_active (w);
3062 4992
3063 asyncs [active - 1] = asyncs [--asynccnt]; 4993 asyncs [active - 1] = asyncs [--asynccnt];
3068 4998
3069 EV_FREQUENT_CHECK; 4999 EV_FREQUENT_CHECK;
3070} 5000}
3071 5001
3072void 5002void
3073ev_async_send (EV_P_ ev_async *w) 5003ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3074{ 5004{
3075 w->sent = 1; 5005 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 5006 evpipe_write (EV_A_ &async_pending);
3077} 5007}
3078#endif 5008#endif
3079 5009
3080/*****************************************************************************/ 5010/*****************************************************************************/
3081 5011
3115 5045
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5046 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117} 5047}
3118 5048
3119void 5049void
3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5050ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3121{ 5051{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5052 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123
3124 if (expect_false (!once))
3125 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3127 return;
3128 }
3129 5053
3130 once->cb = cb; 5054 once->cb = cb;
3131 once->arg = arg; 5055 once->arg = arg;
3132 5056
3133 ev_init (&once->io, once_cb_io); 5057 ev_init (&once->io, once_cb_io);
3145 } 5069 }
3146} 5070}
3147 5071
3148/*****************************************************************************/ 5072/*****************************************************************************/
3149 5073
3150#if 0 5074#if EV_WALK_ENABLE
5075ecb_cold
3151void 5076void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5077ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3153{ 5078{
3154 int i, j; 5079 int i, j;
3155 ev_watcher_list *wl, *wn; 5080 ev_watcher_list *wl, *wn;
3156 5081
3157 if (types & (EV_IO | EV_EMBED)) 5082 if (types & (EV_IO | EV_EMBED))
3171#if EV_USE_INOTIFY 5096#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 5097 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 5098 ;
3174 else 5099 else
3175#endif 5100#endif
3176 if ((ev_io *)wl != &pipeev) 5101 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 5102 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 5103 cb (EV_A_ EV_IO, wl);
3179 5104
3180 wl = wn; 5105 wl = wn;
3181 } 5106 }
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5125 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif 5126#endif
3202 5127
3203#if EV_IDLE_ENABLE 5128#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE) 5129 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; ) 5130 for (j = NUMPRI; j--; )
3206 for (i = idlecnt [j]; i--; ) 5131 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]); 5132 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif 5133#endif
3209 5134
3210#if EV_FORK_ENABLE 5135#if EV_FORK_ENABLE
3218 if (types & EV_ASYNC) 5143 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 5144 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 5145 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 5146#endif
3222 5147
5148#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 5149 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 5150 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 5151# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 5152 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 5153# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 5154 cb (EV_A_ EV_PREPARE, prepares [i]);
5155#endif
3229 5156
5157#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 5158 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 5159 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 5160 cb (EV_A_ EV_CHECK, checks [i]);
5161#endif
3233 5162
5163#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 5164 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 5165 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 5166 for (wl = signals [i].head; wl; )
3237 { 5167 {
3238 wn = wl->next; 5168 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 5169 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 5170 wl = wn;
3241 } 5171 }
5172#endif
3242 5173
5174#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 5175 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 5176 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 5177 for (wl = childs [i]; wl; )
3246 { 5178 {
3247 wn = wl->next; 5179 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 5180 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 5181 wl = wn;
3250 } 5182 }
5183#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 5184/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5185/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 5186}
3254#endif 5187#endif
3255 5188
3256#if EV_MULTIPLICITY 5189#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 5190 #include "ev_wrap.h"
3258#endif 5191#endif
3259 5192
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines