ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.499 by root, Wed Jun 26 07:50:27 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
112# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
114# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
122# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# else
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
126# endif 136# endif
127 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
134# endif 145# endif
135 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
137# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
142# endif 172# endif
143 173
144#endif 174#endif
145 175
146#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
147#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
148#include <fcntl.h> 188#include <fcntl.h>
149#include <stddef.h> 189#include <stddef.h>
150 190
151#include <stdio.h> 191#include <stdio.h>
152 192
153#include <assert.h> 193#include <assert.h>
154#include <errno.h> 194#include <errno.h>
155#include <sys/types.h> 195#include <sys/types.h>
156#include <time.h> 196#include <time.h>
197#include <limits.h>
157 198
158#include <signal.h> 199#include <signal.h>
159 200
160#ifdef EV_H 201#ifdef EV_H
161# include EV_H 202# include EV_H
162#else 203#else
163# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
164#endif 216#endif
165 217
166#ifndef _WIN32 218#ifndef _WIN32
167# include <sys/time.h> 219# include <sys/time.h>
168# include <sys/wait.h> 220# include <sys/wait.h>
169# include <unistd.h> 221# include <unistd.h>
170#else 222#else
171# include <io.h> 223# include <io.h>
172# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
173# include <windows.h> 226# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
176# endif 229# endif
230# undef EV_AVOID_STDIO
177#endif 231#endif
178 232
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
180 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
181#ifndef EV_USE_CLOCK_SYSCALL 264#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 267# else
185# define EV_USE_CLOCK_SYSCALL 0 268# define EV_USE_CLOCK_SYSCALL 0
186# endif 269# endif
187#endif 270#endif
188 271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
189#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 284# else
193# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
194# endif 286# endif
195#endif 287#endif
196 288
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 291#endif
200 292
201#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 296# else
205# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
206# endif 298# endif
207#endif 299#endif
208 300
209#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 303#endif
212 304
213#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
214# ifdef _WIN32 306# ifdef _WIN32
215# define EV_USE_POLL 0 307# define EV_USE_POLL 0
216# else 308# else
217# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 310# endif
219#endif 311#endif
220 312
221#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 316# else
225# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
226# endif 318# endif
227#endif 319#endif
228 320
232 324
233#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
234# define EV_USE_PORT 0 326# define EV_USE_PORT 0
235#endif 327#endif
236 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
237#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 339# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 340# else
241# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
242# endif 342# endif
243#endif 343#endif
244 344
245#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 347#endif
252 348
253#ifndef EV_INOTIFY_HASHSIZE 349#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 351#endif
260 352
261#ifndef EV_USE_EVENTFD 353#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 355# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 356# else
265# define EV_USE_EVENTFD 0 357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
266# endif 366# endif
267#endif 367#endif
268 368
269#if 0 /* debugging */ 369#if 0 /* debugging */
270# define EV_VERIFY 3 370# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 371# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 372# define EV_HEAP_CACHE_AT 1
273#endif 373#endif
274 374
275#ifndef EV_VERIFY 375#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 377#endif
278 378
279#ifndef EV_USE_4HEAP 379#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 380# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 381#endif
282 382
283#ifndef EV_HEAP_CACHE_AT 383#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
285#endif 415#endif
286 416
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 418
289#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
302#endif 432#endif
303 433
304#if !EV_USE_NANOSLEEP 434#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 437# include <sys/select.h>
307# endif 438# endif
308#endif 439#endif
309 440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
310#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 450# include <sys/statfs.h>
313# include <sys/inotify.h> 451# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 453# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 454# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 455# define EV_USE_INOTIFY 0
318# endif 456# endif
319#endif 457#endif
320 458
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 459#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 461# include <stdint.h>
337# ifdef __cplusplus 462# ifndef EFD_NONBLOCK
338extern "C" { 463# define EFD_NONBLOCK O_NONBLOCK
339# endif 464# endif
340int eventfd (unsigned int initval, int flags); 465# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 466# ifdef O_CLOEXEC
342} 467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
343# endif 471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
344#endif 495#endif
345 496
346/**/ 497/**/
347 498
348#if EV_VERIFY >= 3 499#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 500# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 501#else
351# define EV_FREQUENT_CHECK do { } while (0) 502# define EV_FREQUENT_CHECK do { } while (0)
352#endif 503#endif
353 504
354/* 505/*
355 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 508 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 511
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 573 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 574 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
371#else 589#else
372# define expect(expr,value) (expr) 590 #include <inttypes.h>
373# define noinline 591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 592 #define ECB_PTRSIZE 8
375# define inline 593 #else
594 #define ECB_PTRSIZE 4
595 #endif
376# endif 596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
377#endif 607 #endif
608#endif
378 609
379#define expect_false(expr) expect ((expr) != 0, 0) 610/* many compilers define _GNUC_ to some versions but then only implement
380#define expect_true(expr) expect ((expr) != 0, 1) 611 * what their idiot authors think are the "more important" extensions,
381#define inline_size static inline 612 * causing enormous grief in return for some better fake benchmark numbers.
382 613 * or so.
383#if EV_MINIMAL 614 * we try to detect these and simply assume they are not gcc - if they have
384# define inline_speed static noinline 615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
385#else 619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873#else
874 #define ecb_expect(expr,value) (expr)
875#endif
876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
1555#define expect_false(cond) ecb_expect_false (cond)
1556#define expect_true(cond) ecb_expect_true (cond)
1557#define noinline ecb_noinline
1558
1559#define inline_size ecb_inline
1560
1561#if EV_FEATURE_CODE
386# define inline_speed static inline 1562# define inline_speed ecb_inline
1563#else
1564# define inline_speed noinline static
387#endif 1565#endif
388 1566
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1567#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569#if EV_MINPRI == EV_MAXPRI
1570# define ABSPRI(w) (((W)w), 0)
1571#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1572# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573#endif
391 1574
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1575#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394 1576
395typedef ev_watcher *W; 1577typedef ev_watcher *W;
396typedef ev_watcher_list *WL; 1578typedef ev_watcher_list *WL;
397typedef ev_watcher_time *WT; 1579typedef ev_watcher_time *WT;
398 1580
399#define ev_active(w) ((W)(w))->active 1581#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1582#define ev_at(w) ((WT)(w))->at
401 1583
402#if EV_USE_REALTIME 1584#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1585/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1586/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1587static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1588#endif
407 1589
408#if EV_USE_MONOTONIC 1590#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1591static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1592#endif
411 1593
1594#ifndef EV_FD_TO_WIN32_HANDLE
1595# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596#endif
1597#ifndef EV_WIN32_HANDLE_TO_FD
1598# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599#endif
1600#ifndef EV_WIN32_CLOSE_FD
1601# define EV_WIN32_CLOSE_FD(fd) close (fd)
1602#endif
1603
412#ifdef _WIN32 1604#ifdef _WIN32
413# include "ev_win32.c" 1605# include "ev_win32.c"
414#endif 1606#endif
415 1607
416/*****************************************************************************/ 1608/*****************************************************************************/
417 1609
1610#if EV_USE_LINUXAIO
1611# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612#endif
1613
1614/* define a suitable floor function (only used by periodics atm) */
1615
1616#if EV_USE_FLOOR
1617# include <math.h>
1618# define ev_floor(v) floor (v)
1619#else
1620
1621#include <float.h>
1622
1623/* a floor() replacement function, should be independent of ev_tstamp type */
1624noinline
1625static ev_tstamp
1626ev_floor (ev_tstamp v)
1627{
1628 /* the choice of shift factor is not terribly important */
1629#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631#else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633#endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657}
1658
1659#endif
1660
1661/*****************************************************************************/
1662
1663#ifdef __linux
1664# include <sys/utsname.h>
1665#endif
1666
1667noinline ecb_cold
1668static unsigned int
1669ev_linux_version (void)
1670{
1671#ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699#else
1700 return 0;
1701#endif
1702}
1703
1704/*****************************************************************************/
1705
1706#if EV_AVOID_STDIO
1707noinline ecb_cold
1708static void
1709ev_printerr (const char *msg)
1710{
1711 write (STDERR_FILENO, msg, strlen (msg));
1712}
1713#endif
1714
418static void (*syserr_cb)(const char *msg); 1715static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
419 1716
1717ecb_cold
420void 1718void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1719ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
422{ 1720{
423 syserr_cb = cb; 1721 syserr_cb = cb;
424} 1722}
425 1723
426static void noinline 1724noinline ecb_cold
1725static void
427ev_syserr (const char *msg) 1726ev_syserr (const char *msg)
428{ 1727{
429 if (!msg) 1728 if (!msg)
430 msg = "(libev) system error"; 1729 msg = "(libev) system error";
431 1730
432 if (syserr_cb) 1731 if (syserr_cb)
433 syserr_cb (msg); 1732 syserr_cb (msg);
434 else 1733 else
435 { 1734 {
1735#if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740#else
436 perror (msg); 1741 perror (msg);
1742#endif
437 abort (); 1743 abort ();
438 } 1744 }
439} 1745}
440 1746
441static void * 1747static void *
442ev_realloc_emul (void *ptr, long size) 1748ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
443{ 1749{
444 /* some systems, notably openbsd and darwin, fail to properly 1750 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1751 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
447 */ 1755 */
448 1756
449 if (size) 1757 if (size)
450 return realloc (ptr, size); 1758 return realloc (ptr, size);
451 1759
452 free (ptr); 1760 free (ptr);
453 return 0; 1761 return 0;
454} 1762}
455 1763
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1764static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
457 1765
1766ecb_cold
458void 1767void
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1768ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
460{ 1769{
461 alloc = cb; 1770 alloc = cb;
462} 1771}
463 1772
464inline_speed void * 1773inline_speed void *
466{ 1775{
467 ptr = alloc (ptr, size); 1776 ptr = alloc (ptr, size);
468 1777
469 if (!ptr && size) 1778 if (!ptr && size)
470 { 1779 {
1780#if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784#endif
472 abort (); 1785 abort ();
473 } 1786 }
474 1787
475 return ptr; 1788 return ptr;
476} 1789}
478#define ev_malloc(size) ev_realloc (0, (size)) 1791#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1792#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1793
481/*****************************************************************************/ 1794/*****************************************************************************/
482 1795
1796/* set in reify when reification needed */
1797#define EV_ANFD_REIFY 1
1798
1799/* file descriptor info structure */
483typedef struct 1800typedef struct
484{ 1801{
485 WL head; 1802 WL head;
486 unsigned char events; 1803 unsigned char events; /* the events watched for */
487 unsigned char reify; 1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1805 unsigned char emask; /* some backends store the actual kernel mask in here */
489 unsigned char unused; 1806 unsigned char unused;
490#if EV_USE_EPOLL 1807#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1808 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1809#endif
493#if EV_SELECT_IS_WINSOCKET 1810#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1811 SOCKET handle;
495#endif 1812#endif
1813#if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815#endif
496} ANFD; 1816} ANFD;
497 1817
1818/* stores the pending event set for a given watcher */
498typedef struct 1819typedef struct
499{ 1820{
500 W w; 1821 W w;
501 int events; 1822 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1823} ANPENDING;
503 1824
504#if EV_USE_INOTIFY 1825#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1826/* hash table entry per inotify-id */
506typedef struct 1827typedef struct
509} ANFS; 1830} ANFS;
510#endif 1831#endif
511 1832
512/* Heap Entry */ 1833/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1834#if EV_HEAP_CACHE_AT
1835 /* a heap element */
514 typedef struct { 1836 typedef struct {
515 ev_tstamp at; 1837 ev_tstamp at;
516 WT w; 1838 WT w;
517 } ANHE; 1839 } ANHE;
518 1840
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1844#else
1845 /* a heap element */
523 typedef WT ANHE; 1846 typedef WT ANHE;
524 1847
525 #define ANHE_w(he) (he) 1848 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1849 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1850 #define ANHE_at_cache(he)
538 #undef VAR 1861 #undef VAR
539 }; 1862 };
540 #include "ev_wrap.h" 1863 #include "ev_wrap.h"
541 1864
542 static struct ev_loop default_loop_struct; 1865 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1867
545#else 1868#else
546 1869
547 ev_tstamp ev_rt_now; 1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1871 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1872 #include "ev_vars.h"
550 #undef VAR 1873 #undef VAR
551 1874
552 static int ev_default_loop_ptr; 1875 static int ev_default_loop_ptr;
553 1876
554#endif 1877#endif
555 1878
1879#if EV_FEATURE_API
1880# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882# define EV_INVOKE_PENDING invoke_cb (EV_A)
1883#else
1884# define EV_RELEASE_CB (void)0
1885# define EV_ACQUIRE_CB (void)0
1886# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887#endif
1888
1889#define EVBREAK_RECURSE 0x80
1890
556/*****************************************************************************/ 1891/*****************************************************************************/
557 1892
1893#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1894ev_tstamp
559ev_time (void) 1895ev_time (void) EV_NOEXCEPT
560{ 1896{
561#if EV_USE_REALTIME 1897#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1898 if (expect_true (have_realtime))
563 { 1899 {
564 struct timespec ts; 1900 struct timespec ts;
569 1905
570 struct timeval tv; 1906 struct timeval tv;
571 gettimeofday (&tv, 0); 1907 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1908 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1909}
1910#endif
574 1911
575ev_tstamp inline_size 1912inline_size ev_tstamp
576get_clock (void) 1913get_clock (void)
577{ 1914{
578#if EV_USE_MONOTONIC 1915#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1916 if (expect_true (have_monotonic))
580 { 1917 {
587 return ev_time (); 1924 return ev_time ();
588} 1925}
589 1926
590#if EV_MULTIPLICITY 1927#if EV_MULTIPLICITY
591ev_tstamp 1928ev_tstamp
592ev_now (EV_P) 1929ev_now (EV_P) EV_NOEXCEPT
593{ 1930{
594 return ev_rt_now; 1931 return ev_rt_now;
595} 1932}
596#endif 1933#endif
597 1934
598void 1935void
599ev_sleep (ev_tstamp delay) 1936ev_sleep (ev_tstamp delay) EV_NOEXCEPT
600{ 1937{
601 if (delay > 0.) 1938 if (delay > 0.)
602 { 1939 {
603#if EV_USE_NANOSLEEP 1940#if EV_USE_NANOSLEEP
604 struct timespec ts; 1941 struct timespec ts;
605 1942
606 ts.tv_sec = (time_t)delay; 1943 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1944 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1945#elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
611 Sleep ((unsigned long)(delay * 1e3)); 1948 Sleep ((unsigned long)(delay * 1e3));
612#else 1949#else
613 struct timeval tv; 1950 struct timeval tv;
614 1951
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1953 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1956 select (0, 0, 0, 0, &tv);
622#endif 1957#endif
623 } 1958 }
624} 1959}
625 1960
626/*****************************************************************************/ 1961/*****************************************************************************/
627 1962
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1963#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1964
630int inline_size 1965/* find a suitable new size for the given array, */
1966/* hopefully by rounding to a nice-to-malloc size */
1967inline_size int
631array_nextsize (int elem, int cur, int cnt) 1968array_nextsize (int elem, int cur, int cnt)
632{ 1969{
633 int ncur = cur + 1; 1970 int ncur = cur + 1;
634 1971
635 do 1972 do
636 ncur <<= 1; 1973 ncur <<= 1;
637 while (cnt > ncur); 1974 while (cnt > ncur);
638 1975
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1978 {
642 ncur *= elem; 1979 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1981 ncur = ncur - sizeof (void *) * 4;
646 } 1983 }
647 1984
648 return ncur; 1985 return ncur;
649} 1986}
650 1987
651static noinline void * 1988noinline ecb_cold
1989static void *
652array_realloc (int elem, void *base, int *cur, int cnt) 1990array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1991{
654 *cur = array_nextsize (elem, *cur, cnt); 1992 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1993 return ev_realloc (base, elem * *cur);
656} 1994}
657 1995
1996#define array_needsize_noinit(base,offset,count)
1997
658#define array_init_zero(base,count) \ 1998#define array_needsize_zerofill(base,offset,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
660 2000
661#define array_needsize(type,base,cur,cnt,init) \ 2001#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 2002 if (expect_false ((cnt) > (cur))) \
663 { \ 2003 { \
664 int ocur_ = (cur); \ 2004 ecb_unused int ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 2005 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 2006 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 2007 init ((base), ocur_, ((cur) - ocur_)); \
668 } 2008 }
669 2009
670#if 0 2010#if 0
671#define array_slim(type,stem) \ 2011#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
680#define array_free(stem, idx) \ 2020#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 2022
683/*****************************************************************************/ 2023/*****************************************************************************/
684 2024
2025/* dummy callback for pending events */
685void noinline 2026noinline
2027static void
2028pendingcb (EV_P_ ev_prepare *w, int revents)
2029{
2030}
2031
2032noinline
2033void
686ev_feed_event (EV_P_ void *w, int revents) 2034ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
687{ 2035{
688 W w_ = (W)w; 2036 W w_ = (W)w;
689 int pri = ABSPRI (w_); 2037 int pri = ABSPRI (w_);
690 2038
691 if (expect_false (w_->pending)) 2039 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents; 2040 pendings [pri][w_->pending - 1].events |= revents;
693 else 2041 else
694 { 2042 {
695 w_->pending = ++pendingcnt [pri]; 2043 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
697 pendings [pri][w_->pending - 1].w = w_; 2045 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 2046 pendings [pri][w_->pending - 1].events = revents;
699 } 2047 }
700}
701 2048
702void inline_speed 2049 pendingpri = NUMPRI - 1;
2050}
2051
2052inline_speed void
2053feed_reverse (EV_P_ W w)
2054{
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057}
2058
2059inline_size void
2060feed_reverse_done (EV_P_ int revents)
2061{
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065}
2066
2067inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 2068queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 2069{
705 int i; 2070 int i;
706 2071
707 for (i = 0; i < eventcnt; ++i) 2072 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 2073 ev_feed_event (EV_A_ events [i], type);
709} 2074}
710 2075
711/*****************************************************************************/ 2076/*****************************************************************************/
712 2077
713void inline_speed 2078inline_speed void
714fd_event (EV_P_ int fd, int revents) 2079fd_event_nocheck (EV_P_ int fd, int revents)
715{ 2080{
716 ANFD *anfd = anfds + fd; 2081 ANFD *anfd = anfds + fd;
717 ev_io *w; 2082 ev_io *w;
718 2083
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 2088 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 2089 ev_feed_event (EV_A_ (W)w, ev);
725 } 2090 }
726} 2091}
727 2092
728void 2093/* do not submit kernel events for fds that have reify set */
2094/* because that means they changed while we were polling for new events */
2095inline_speed void
729ev_feed_fd_event (EV_P_ int fd, int revents) 2096fd_event (EV_P_ int fd, int revents)
2097{
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
2101 fd_event_nocheck (EV_A_ fd, revents);
2102}
2103
2104void
2105ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
730{ 2106{
731 if (fd >= 0 && fd < anfdmax) 2107 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 2108 fd_event_nocheck (EV_A_ fd, revents);
733} 2109}
734 2110
735void inline_size 2111/* make sure the external fd watch events are in-sync */
2112/* with the kernel/libev internal state */
2113inline_size void
736fd_reify (EV_P) 2114fd_reify (EV_P)
737{ 2115{
738 int i; 2116 int i;
2117
2118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2119 for (i = 0; i < fdchangecnt; ++i)
2120 {
2121 int fd = fdchanges [i];
2122 ANFD *anfd = anfds + fd;
2123
2124 if (anfd->reify & EV__IOFDSET && anfd->head)
2125 {
2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
2139 }
2140 }
2141#endif
739 2142
740 for (i = 0; i < fdchangecnt; ++i) 2143 for (i = 0; i < fdchangecnt; ++i)
741 { 2144 {
742 int fd = fdchanges [i]; 2145 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 2146 ANFD *anfd = anfds + fd;
744 ev_io *w; 2147 ev_io *w;
745 2148
746 unsigned char events = 0; 2149 unsigned char o_events = anfd->events;
2150 unsigned char o_reify = anfd->reify;
747 2151
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2152 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 2153
751#if EV_SELECT_IS_WINSOCKET 2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 2155 {
754 unsigned long arg; 2156 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 2157
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 2159 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 2160
759 #endif 2161 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2162 o_reify = EV__IOFDSET; /* actually |= */
761 } 2163 }
762#endif
763 2164
764 { 2165 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 2166 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 2167 }
775 2168
776 fdchangecnt = 0; 2169 fdchangecnt = 0;
777} 2170}
778 2171
2172/* something about the given fd changed */
779void inline_size 2173inline_size
2174void
780fd_change (EV_P_ int fd, int flags) 2175fd_change (EV_P_ int fd, int flags)
781{ 2176{
782 unsigned char reify = anfds [fd].reify; 2177 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 2178 anfds [fd].reify |= flags;
784 2179
785 if (expect_true (!reify)) 2180 if (expect_true (!reify))
786 { 2181 {
787 ++fdchangecnt; 2182 ++fdchangecnt;
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
789 fdchanges [fdchangecnt - 1] = fd; 2184 fdchanges [fdchangecnt - 1] = fd;
790 } 2185 }
791} 2186}
792 2187
793void inline_speed 2188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189inline_speed ecb_cold void
794fd_kill (EV_P_ int fd) 2190fd_kill (EV_P_ int fd)
795{ 2191{
796 ev_io *w; 2192 ev_io *w;
797 2193
798 while ((w = (ev_io *)anfds [fd].head)) 2194 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 2196 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 2198 }
803} 2199}
804 2200
805int inline_size 2201/* check whether the given fd is actually valid, for error recovery */
2202inline_size ecb_cold int
806fd_valid (int fd) 2203fd_valid (int fd)
807{ 2204{
808#ifdef _WIN32 2205#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 2207#else
811 return fcntl (fd, F_GETFD) != -1; 2208 return fcntl (fd, F_GETFD) != -1;
812#endif 2209#endif
813} 2210}
814 2211
815/* called on EBADF to verify fds */ 2212/* called on EBADF to verify fds */
816static void noinline 2213noinline ecb_cold
2214static void
817fd_ebadf (EV_P) 2215fd_ebadf (EV_P)
818{ 2216{
819 int fd; 2217 int fd;
820 2218
821 for (fd = 0; fd < anfdmax; ++fd) 2219 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 2221 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 2222 fd_kill (EV_A_ fd);
825} 2223}
826 2224
827/* called on ENOMEM in select/poll to kill some fds and retry */ 2225/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 2226noinline ecb_cold
2227static void
829fd_enomem (EV_P) 2228fd_enomem (EV_P)
830{ 2229{
831 int fd; 2230 int fd;
832 2231
833 for (fd = anfdmax; fd--; ) 2232 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 2233 if (anfds [fd].events)
835 { 2234 {
836 fd_kill (EV_A_ fd); 2235 fd_kill (EV_A_ fd);
837 return; 2236 break;
838 } 2237 }
839} 2238}
840 2239
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 2240/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 2241noinline
2242static void
843fd_rearm_all (EV_P) 2243fd_rearm_all (EV_P)
844{ 2244{
845 int fd; 2245 int fd;
846 2246
847 for (fd = 0; fd < anfdmax; ++fd) 2247 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 2248 if (anfds [fd].events)
849 { 2249 {
850 anfds [fd].events = 0; 2250 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 2251 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 2253 }
854} 2254}
855 2255
2256/* used to prepare libev internal fd's */
2257/* this is not fork-safe */
2258inline_speed void
2259fd_intern (int fd)
2260{
2261#ifdef _WIN32
2262 unsigned long arg = 1;
2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2264#else
2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
2266 fcntl (fd, F_SETFL, O_NONBLOCK);
2267#endif
2268}
2269
856/*****************************************************************************/ 2270/*****************************************************************************/
857 2271
858/* 2272/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2273 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2275 * the branching factor of the d-tree.
862 */ 2276 */
863 2277
864/* 2278/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2287#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2288#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2289#define UPHEAP_DONE(p,k) ((p) == (k))
876 2290
877/* away from the root */ 2291/* away from the root */
878void inline_speed 2292inline_speed void
879downheap (ANHE *heap, int N, int k) 2293downheap (ANHE *heap, int N, int k)
880{ 2294{
881 ANHE he = heap [k]; 2295 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2296 ANHE *E = heap + N + HEAP0;
883 2297
923#define HEAP0 1 2337#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2338#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2339#define UPHEAP_DONE(p,k) (!(p))
926 2340
927/* away from the root */ 2341/* away from the root */
928void inline_speed 2342inline_speed void
929downheap (ANHE *heap, int N, int k) 2343downheap (ANHE *heap, int N, int k)
930{ 2344{
931 ANHE he = heap [k]; 2345 ANHE he = heap [k];
932 2346
933 for (;;) 2347 for (;;)
934 { 2348 {
935 int c = k << 1; 2349 int c = k << 1;
936 2350
937 if (c > N + HEAP0 - 1) 2351 if (c >= N + HEAP0)
938 break; 2352 break;
939 2353
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2355 ? 1 : 0;
942 2356
953 ev_active (ANHE_w (he)) = k; 2367 ev_active (ANHE_w (he)) = k;
954} 2368}
955#endif 2369#endif
956 2370
957/* towards the root */ 2371/* towards the root */
958void inline_speed 2372inline_speed void
959upheap (ANHE *heap, int k) 2373upheap (ANHE *heap, int k)
960{ 2374{
961 ANHE he = heap [k]; 2375 ANHE he = heap [k];
962 2376
963 for (;;) 2377 for (;;)
974 2388
975 heap [k] = he; 2389 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2390 ev_active (ANHE_w (he)) = k;
977} 2391}
978 2392
979void inline_size 2393/* move an element suitably so it is in a correct place */
2394inline_size void
980adjustheap (ANHE *heap, int N, int k) 2395adjustheap (ANHE *heap, int N, int k)
981{ 2396{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2398 upheap (heap, k);
984 else 2399 else
985 downheap (heap, N, k); 2400 downheap (heap, N, k);
986} 2401}
987 2402
988/* rebuild the heap: this function is used only once and executed rarely */ 2403/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2404inline_size void
990reheap (ANHE *heap, int N) 2405reheap (ANHE *heap, int N)
991{ 2406{
992 int i; 2407 int i;
993 2408
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2412 upheap (heap, i + HEAP0);
998} 2413}
999 2414
1000/*****************************************************************************/ 2415/*****************************************************************************/
1001 2416
2417/* associate signal watchers to a signal signal */
1002typedef struct 2418typedef struct
1003{ 2419{
2420 EV_ATOMIC_T pending;
2421#if EV_MULTIPLICITY
2422 EV_P;
2423#endif
1004 WL head; 2424 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2425} ANSIG;
1007 2426
1008static ANSIG *signals; 2427static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2428
1013/*****************************************************************************/ 2429/*****************************************************************************/
1014 2430
1015void inline_speed 2431#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2432
1027static void noinline 2433noinline ecb_cold
2434static void
1028evpipe_init (EV_P) 2435evpipe_init (EV_P)
1029{ 2436{
1030 if (!ev_is_active (&pipeev)) 2437 if (!ev_is_active (&pipe_w))
2438 {
2439 int fds [2];
2440
2441# if EV_USE_EVENTFD
2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
2446
2447 if (fds [1] < 0)
2448# endif
2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2476 }
2477}
2478
2479inline_speed void
2480evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481{
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
1032#if EV_USE_EVENTFD 2503#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2504 if (evpipe [0] < 0)
1034 { 2505 {
1035 evpipe [0] = -1; 2506 uint64_t counter = 1;
1036 fd_intern (evfd); 2507 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2508 }
1039 else 2509 else
1040#endif 2510#endif
1041 { 2511 {
1042 while (pipe (evpipe)) 2512#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2513 WSABUF buf;
1044 2514 DWORD sent;
1045 fd_intern (evpipe [0]); 2515 buf.buf = (char *)&buf;
1046 fd_intern (evpipe [1]); 2516 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518#else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520#endif
1048 } 2521 }
1049 2522
1050 ev_io_start (EV_A_ &pipeev); 2523 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2524 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2525}
1061 2526
1062 *flag = 1; 2527/* called whenever the libev signal pipe */
2528/* got some events (signal, async) */
2529static void
2530pipecb (EV_P_ ev_io *iow, int revents)
2531{
2532 int i;
1063 2533
2534 if (revents & EV_READ)
2535 {
1064#if EV_USE_EVENTFD 2536#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2537 if (evpipe [0] < 0)
1066 { 2538 {
1067 uint64_t counter = 1; 2539 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2540 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2541 }
1070 else 2542 else
1071#endif 2543#endif
1072 write (evpipe [1], &old_errno, 1); 2544 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2545 char dummy[4];
2546#ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553#else
1091 read (evpipe [0], &dummy, 1); 2554 read (evpipe [0], &dummy, sizeof (dummy));
2555#endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563#if EV_SIGNAL_ENABLE
2564 if (sig_pending)
1092 } 2565 {
2566 sig_pending = 0;
1093 2567
1094 if (gotsig && ev_is_default_loop (EV_A)) 2568 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2569
1099 for (signum = signalmax; signum--; ) 2570 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2571 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2572 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2573 }
2574#endif
1103 2575
1104#if EV_ASYNC_ENABLE 2576#if EV_ASYNC_ENABLE
1105 if (gotasync) 2577 if (async_pending)
1106 { 2578 {
1107 int i; 2579 async_pending = 0;
1108 gotasync = 0; 2580
2581 ECB_MEMORY_FENCE;
1109 2582
1110 for (i = asynccnt; i--; ) 2583 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2584 if (asyncs [i]->sent)
1112 { 2585 {
1113 asyncs [i]->sent = 0; 2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2589 }
1116 } 2590 }
1117#endif 2591#endif
1118} 2592}
1119 2593
1120/*****************************************************************************/ 2594/*****************************************************************************/
1121 2595
2596void
2597ev_feed_signal (int signum) EV_NOEXCEPT
2598{
2599#if EV_MULTIPLICITY
2600 EV_P;
2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
2603
2604 if (!EV_A)
2605 return;
2606#endif
2607
2608 signals [signum - 1].pending = 1;
2609 evpipe_write (EV_A_ &sig_pending);
2610}
2611
1122static void 2612static void
1123ev_sighandler (int signum) 2613ev_sighandler (int signum)
1124{ 2614{
2615#ifdef _WIN32
2616 signal (signum, ev_sighandler);
2617#endif
2618
2619 ev_feed_signal (signum);
2620}
2621
2622noinline
2623void
2624ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2625{
2626 WL w;
2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
1125#if EV_MULTIPLICITY 2633#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2634 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2635 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2636
1129#if _WIN32 2637 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2638 return;
2639#endif
1150 2640
1151 signals [signum].gotsig = 0; 2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
1152 2643
1153 for (w = signals [signum].head; w; w = w->next) 2644 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2646}
1156 2647
2648#if EV_USE_SIGNALFD
2649static void
2650sigfdcb (EV_P_ ev_io *iow, int revents)
2651{
2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2653
2654 for (;;)
2655 {
2656 ssize_t res = read (sigfd, si, sizeof (si));
2657
2658 /* not ISO-C, as res might be -1, but works with SuS */
2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2661
2662 if (res < (ssize_t)sizeof (si))
2663 break;
2664 }
2665}
2666#endif
2667
2668#endif
2669
1157/*****************************************************************************/ 2670/*****************************************************************************/
1158 2671
2672#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2673static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2674
1163static ev_signal childev; 2675static ev_signal childev;
1164 2676
1165#ifndef WIFCONTINUED 2677#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2678# define WIFCONTINUED(status) 0
1167#endif 2679#endif
1168 2680
1169void inline_speed 2681/* handle a single child status event */
2682inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2683child_reap (EV_P_ int chain, int pid, int status)
1171{ 2684{
1172 ev_child *w; 2685 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2687
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2689 {
1177 if ((w->pid == pid || !w->pid) 2690 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2691 && (!traced || (w->flags & 1)))
1179 { 2692 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2700
1188#ifndef WCONTINUED 2701#ifndef WCONTINUED
1189# define WCONTINUED 0 2702# define WCONTINUED 0
1190#endif 2703#endif
1191 2704
2705/* called on sigchld etc., calls waitpid */
1192static void 2706static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2707childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2708{
1195 int pid, status; 2709 int pid, status;
1196 2710
1204 /* make sure we are called again until all children have been reaped */ 2718 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2719 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2721
1208 child_reap (EV_A_ pid, pid, status); 2722 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2723 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2725}
1212 2726
1213#endif 2727#endif
1214 2728
1215/*****************************************************************************/ 2729/*****************************************************************************/
1216 2730
2731#if EV_USE_IOCP
2732# include "ev_iocp.c"
2733#endif
1217#if EV_USE_PORT 2734#if EV_USE_PORT
1218# include "ev_port.c" 2735# include "ev_port.c"
1219#endif 2736#endif
1220#if EV_USE_KQUEUE 2737#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2738# include "ev_kqueue.c"
1222#endif 2739#endif
1223#if EV_USE_EPOLL 2740#if EV_USE_EPOLL
1224# include "ev_epoll.c" 2741# include "ev_epoll.c"
1225#endif 2742#endif
2743#if EV_USE_LINUXAIO
2744# include "ev_linuxaio.c"
2745#endif
1226#if EV_USE_POLL 2746#if EV_USE_POLL
1227# include "ev_poll.c" 2747# include "ev_poll.c"
1228#endif 2748#endif
1229#if EV_USE_SELECT 2749#if EV_USE_SELECT
1230# include "ev_select.c" 2750# include "ev_select.c"
1231#endif 2751#endif
1232 2752
1233int 2753ecb_cold int
1234ev_version_major (void) 2754ev_version_major (void) EV_NOEXCEPT
1235{ 2755{
1236 return EV_VERSION_MAJOR; 2756 return EV_VERSION_MAJOR;
1237} 2757}
1238 2758
1239int 2759ecb_cold int
1240ev_version_minor (void) 2760ev_version_minor (void) EV_NOEXCEPT
1241{ 2761{
1242 return EV_VERSION_MINOR; 2762 return EV_VERSION_MINOR;
1243} 2763}
1244 2764
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2765/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2766inline_size ecb_cold int
1247enable_secure (void) 2767enable_secure (void)
1248{ 2768{
1249#ifdef _WIN32 2769#ifdef _WIN32
1250 return 0; 2770 return 0;
1251#else 2771#else
1252 return getuid () != geteuid () 2772 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2773 || getgid () != getegid ();
1254#endif 2774#endif
1255} 2775}
1256 2776
2777ecb_cold
1257unsigned int 2778unsigned int
1258ev_supported_backends (void) 2779ev_supported_backends (void) EV_NOEXCEPT
1259{ 2780{
1260 unsigned int flags = 0; 2781 unsigned int flags = 0;
1261 2782
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1267 2789
1268 return flags; 2790 return flags;
1269} 2791}
1270 2792
2793ecb_cold
1271unsigned int 2794unsigned int
1272ev_recommended_backends (void) 2795ev_recommended_backends (void) EV_NOEXCEPT
1273{ 2796{
1274 unsigned int flags = ev_supported_backends (); 2797 unsigned int flags = ev_supported_backends ();
1275 2798
1276#ifndef __NetBSD__ 2799#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2800 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2804#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2805 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2808#endif
2809#ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811#endif
2812
2813 /* TODO: linuxaio is very experimental */
2814#if !EV_RECOMMEND_LINUXAIO
2815 flags &= ~EVBACKEND_LINUXAIO;
2816#endif
1286 2817
1287 return flags; 2818 return flags;
1288} 2819}
1289 2820
2821ecb_cold
1290unsigned int 2822unsigned int
1291ev_embeddable_backends (void) 2823ev_embeddable_backends (void) EV_NOEXCEPT
1292{ 2824{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294 2826
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 2829 flags &= ~EVBACKEND_EPOLL;
1298 2830
1299 return flags; 2831 return flags;
1300} 2832}
1301 2833
1302unsigned int 2834unsigned int
1303ev_backend (EV_P) 2835ev_backend (EV_P) EV_NOEXCEPT
1304{ 2836{
1305 return backend; 2837 return backend;
1306} 2838}
1307 2839
2840#if EV_FEATURE_API
1308unsigned int 2841unsigned int
1309ev_loop_count (EV_P) 2842ev_iteration (EV_P) EV_NOEXCEPT
1310{ 2843{
1311 return loop_count; 2844 return loop_count;
1312} 2845}
1313 2846
2847unsigned int
2848ev_depth (EV_P) EV_NOEXCEPT
2849{
2850 return loop_depth;
2851}
2852
1314void 2853void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2854ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1316{ 2855{
1317 io_blocktime = interval; 2856 io_blocktime = interval;
1318} 2857}
1319 2858
1320void 2859void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2860ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1322{ 2861{
1323 timeout_blocktime = interval; 2862 timeout_blocktime = interval;
1324} 2863}
1325 2864
1326static void noinline 2865void
2866ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867{
2868 userdata = data;
2869}
2870
2871void *
2872ev_userdata (EV_P) EV_NOEXCEPT
2873{
2874 return userdata;
2875}
2876
2877void
2878ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879{
2880 invoke_cb = invoke_pending_cb;
2881}
2882
2883void
2884ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885{
2886 release_cb = release;
2887 acquire_cb = acquire;
2888}
2889#endif
2890
2891/* initialise a loop structure, must be zero-initialised */
2892noinline ecb_cold
2893static void
1327loop_init (EV_P_ unsigned int flags) 2894loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1328{ 2895{
1329 if (!backend) 2896 if (!backend)
1330 { 2897 {
2898 origflags = flags;
2899
1331#if EV_USE_REALTIME 2900#if EV_USE_REALTIME
1332 if (!have_realtime) 2901 if (!have_realtime)
1333 { 2902 {
1334 struct timespec ts; 2903 struct timespec ts;
1335 2904
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2916 have_monotonic = 1;
1348 } 2917 }
1349#endif 2918#endif
1350 2919
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2920 /* pid check not overridable via env */
1366#ifndef _WIN32 2921#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2922 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2923 curpid = getpid ();
1369#endif 2924#endif
1371 if (!(flags & EVFLAG_NOENV) 2926 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2927 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2928 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2929 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2930
1376 if (!(flags & 0x0000ffffU)) 2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 rtmn_diff = ev_rt_now - mn_now;
2935#if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937#endif
2938
2939 io_blocktime = 0.;
2940 timeout_blocktime = 0.;
2941 backend = 0;
2942 backend_fd = -1;
2943 sig_pending = 0;
2944#if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946#endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951#if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953#endif
2954#if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956#endif
2957
2958 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2959 flags |= ev_recommended_backends ();
1378 2960
2961#if EV_USE_IOCP
2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2963#endif
1379#if EV_USE_PORT 2964#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2966#endif
1382#if EV_USE_KQUEUE 2967#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969#endif
2970#if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1384#endif 2972#endif
1385#if EV_USE_EPOLL 2973#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif 2975#endif
1388#if EV_USE_POLL 2976#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif 2978#endif
1391#if EV_USE_SELECT 2979#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1393#endif 2981#endif
1394 2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2986 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988#endif
1397 } 2989 }
1398} 2990}
1399 2991
1400static void noinline 2992/* free up a loop structure */
2993ecb_cold
2994void
1401loop_destroy (EV_P) 2995ev_loop_destroy (EV_P)
1402{ 2996{
1403 int i; 2997 int i;
1404 2998
2999#if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003#endif
3004
3005#if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012#endif
3013
3014#if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020#endif
3021
1405 if (ev_is_active (&pipeev)) 3022 if (ev_is_active (&pipe_w))
1406 { 3023 {
1407 ev_ref (EV_A); /* signal watcher */ 3024 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 3025 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
1410#if EV_USE_EVENTFD 3031#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 3032 if (ev_is_active (&sigfd_w))
1412 close (evfd); 3033 close (sigfd);
1413#endif 3034#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 3035
1422#if EV_USE_INOTIFY 3036#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
1424 close (fs_fd); 3038 close (fs_fd);
1425#endif 3039#endif
1426 3040
1427 if (backend_fd >= 0) 3041 if (backend_fd >= 0)
1428 close (backend_fd); 3042 close (backend_fd);
1429 3043
3044#if EV_USE_IOCP
3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046#endif
1430#if EV_USE_PORT 3047#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 3049#endif
1433#if EV_USE_KQUEUE 3050#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052#endif
3053#if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1435#endif 3055#endif
1436#if EV_USE_EPOLL 3056#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif 3058#endif
1439#if EV_USE_POLL 3059#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif 3061#endif
1442#if EV_USE_SELECT 3062#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1444#endif 3064#endif
1445 3065
1446 for (i = NUMPRI; i--; ) 3066 for (i = NUMPRI; i--; )
1447 { 3067 {
1448 array_free (pending, [i]); 3068 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE 3069#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 3070 array_free (idle, [i]);
1451#endif 3071#endif
1452 } 3072 }
1453 3073
1454 ev_free (anfds); anfdmax = 0; 3074 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 3075
1456 /* have to use the microsoft-never-gets-it-right macro */ 3076 /* have to use the microsoft-never-gets-it-right macro */
3077 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 3078 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 3079 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 3080#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 3081 array_free (periodic, EMPTY);
1461#endif 3082#endif
1462#if EV_FORK_ENABLE 3083#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 3084 array_free (fork, EMPTY);
1464#endif 3085#endif
3086#if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088#endif
1465 array_free (prepare, EMPTY); 3089 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 3090 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 3091#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 3092 array_free (async, EMPTY);
1469#endif 3093#endif
1470 3094
1471 backend = 0; 3095 backend = 0;
3096
3097#if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099#endif
3100 ev_default_loop_ptr = 0;
3101#if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104#endif
1472} 3105}
1473 3106
1474#if EV_USE_INOTIFY 3107#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 3108inline_size void infy_fork (EV_P);
1476#endif 3109#endif
1477 3110
1478void inline_size 3111inline_size void
1479loop_fork (EV_P) 3112loop_fork (EV_P)
1480{ 3113{
1481#if EV_USE_PORT 3114#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 3116#endif
1484#if EV_USE_KQUEUE 3117#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119#endif
3120#if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1486#endif 3122#endif
1487#if EV_USE_EPOLL 3123#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif 3125#endif
1490#if EV_USE_INOTIFY 3126#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 3127 infy_fork (EV_A);
1492#endif 3128#endif
1493 3129
1494 if (ev_is_active (&pipeev)) 3130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
1495 { 3132 {
1496 /* this "locks" the handlers against writing to the pipe */ 3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 3134
1503 ev_ref (EV_A); 3135 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 3136 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 3137
1511 if (evpipe [0] >= 0) 3138 if (evpipe [0] >= 0)
1512 { 3139 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 3140
1517 evpipe_init (EV_A); 3141 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 3142 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 3144 }
3145#endif
1521 3146
1522 postfork = 0; 3147 postfork = 0;
1523} 3148}
1524 3149
1525#if EV_MULTIPLICITY 3150#if EV_MULTIPLICITY
1526 3151
3152ecb_cold
1527struct ev_loop * 3153struct ev_loop *
1528ev_loop_new (unsigned int flags) 3154ev_loop_new (unsigned int flags) EV_NOEXCEPT
1529{ 3155{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 3157
1532 memset (loop, 0, sizeof (struct ev_loop)); 3158 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 3159 loop_init (EV_A_ flags);
1535 3160
1536 if (ev_backend (EV_A)) 3161 if (ev_backend (EV_A))
1537 return loop; 3162 return EV_A;
1538 3163
3164 ev_free (EV_A);
1539 return 0; 3165 return 0;
1540} 3166}
1541 3167
1542void 3168#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 3169
1555#if EV_VERIFY 3170#if EV_VERIFY
1556static void noinline 3171noinline ecb_cold
3172static void
1557verify_watcher (EV_P_ W w) 3173verify_watcher (EV_P_ W w)
1558{ 3174{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 3176
1561 if (w->pending) 3177 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 3179}
1564 3180
1565static void noinline 3181noinline ecb_cold
3182static void
1566verify_heap (EV_P_ ANHE *heap, int N) 3183verify_heap (EV_P_ ANHE *heap, int N)
1567{ 3184{
1568 int i; 3185 int i;
1569 3186
1570 for (i = HEAP0; i < N + HEAP0; ++i) 3187 for (i = HEAP0; i < N + HEAP0; ++i)
1575 3192
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 3194 }
1578} 3195}
1579 3196
1580static void noinline 3197noinline ecb_cold
3198static void
1581array_verify (EV_P_ W *ws, int cnt) 3199array_verify (EV_P_ W *ws, int cnt)
1582{ 3200{
1583 while (cnt--) 3201 while (cnt--)
1584 { 3202 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 3204 verify_watcher (EV_A_ ws [cnt]);
1587 } 3205 }
1588} 3206}
1589#endif 3207#endif
1590 3208
1591void 3209#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 3210void ecb_cold
3211ev_verify (EV_P) EV_NOEXCEPT
1593{ 3212{
1594#if EV_VERIFY 3213#if EV_VERIFY
1595 int i; 3214 int i;
1596 WL w; 3215 WL w, w2;
1597 3216
1598 assert (activecnt >= -1); 3217 assert (activecnt >= -1);
1599 3218
1600 assert (fdchangemax >= fdchangecnt); 3219 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 3220 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 3222
1604 assert (anfdmax >= 0); 3223 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
1606 for (w = anfds [i].head; w; w = w->next) 3228 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 3229 {
1608 verify_watcher (EV_A_ (W)w); 3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 3240 }
3241 }
1612 3242
1613 assert (timermax >= timercnt); 3243 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 3244 verify_heap (EV_A_ timers, timercnt);
1615 3245
1616#if EV_PERIODIC_ENABLE 3246#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 3261#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 3262 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 3263 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 3264#endif
1635 3265
3266#if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269#endif
3270
1636#if EV_ASYNC_ENABLE 3271#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 3272 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 3274#endif
1640 3275
3276#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 3277 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279#endif
1643 3280
3281#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 3282 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284#endif
1646 3285
1647# if 0 3286# if 0
3287#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290#endif
1650# endif 3291# endif
1651#endif 3292#endif
1652} 3293}
1653 3294#endif
1654#endif /* multiplicity */
1655 3295
1656#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
3297ecb_cold
1657struct ev_loop * 3298struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 3299#else
1660int 3300int
3301#endif
1661ev_default_loop (unsigned int flags) 3302ev_default_loop (unsigned int flags) EV_NOEXCEPT
1662#endif
1663{ 3303{
1664 if (!ev_default_loop_ptr) 3304 if (!ev_default_loop_ptr)
1665 { 3305 {
1666#if EV_MULTIPLICITY 3306#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3308#else
1669 ev_default_loop_ptr = 1; 3309 ev_default_loop_ptr = 1;
1670#endif 3310#endif
1671 3311
1672 loop_init (EV_A_ flags); 3312 loop_init (EV_A_ flags);
1673 3313
1674 if (ev_backend (EV_A)) 3314 if (ev_backend (EV_A))
1675 { 3315 {
1676#ifndef _WIN32 3316#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3317 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3318 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3319 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3321#endif
1686 3326
1687 return ev_default_loop_ptr; 3327 return ev_default_loop_ptr;
1688} 3328}
1689 3329
1690void 3330void
1691ev_default_destroy (void) 3331ev_loop_fork (EV_P) EV_NOEXCEPT
1692{ 3332{
1693#if EV_MULTIPLICITY 3333 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3334}
1716 3335
1717/*****************************************************************************/ 3336/*****************************************************************************/
1718 3337
1719void 3338void
1720ev_invoke (EV_P_ void *w, int revents) 3339ev_invoke (EV_P_ void *w, int revents)
1721{ 3340{
1722 EV_CB_INVOKE ((W)w, revents); 3341 EV_CB_INVOKE ((W)w, revents);
1723} 3342}
1724 3343
1725void inline_speed 3344unsigned int
1726call_pending (EV_P) 3345ev_pending_count (EV_P) EV_NOEXCEPT
1727{ 3346{
1728 int pri; 3347 int pri;
3348 unsigned int count = 0;
1729 3349
1730 for (pri = NUMPRI; pri--; ) 3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354}
3355
3356noinline
3357void
3358ev_invoke_pending (EV_P)
3359{
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
1731 while (pendingcnt [pri]) 3367 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3368 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3370
1739 p->w->pending = 0; 3371 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3372 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3373 EV_FREQUENT_CHECK;
1742 } 3374 }
1743 } 3375 }
3376 while (pendingpri);
1744} 3377}
1745 3378
1746#if EV_IDLE_ENABLE 3379#if EV_IDLE_ENABLE
1747void inline_size 3380/* make idle watchers pending. this handles the "call-idle */
3381/* only when higher priorities are idle" logic */
3382inline_size void
1748idle_reify (EV_P) 3383idle_reify (EV_P)
1749{ 3384{
1750 if (expect_false (idleall)) 3385 if (expect_false (idleall))
1751 { 3386 {
1752 int pri; 3387 int pri;
1764 } 3399 }
1765 } 3400 }
1766} 3401}
1767#endif 3402#endif
1768 3403
1769void inline_size 3404/* make timers pending */
3405inline_size void
1770timers_reify (EV_P) 3406timers_reify (EV_P)
1771{ 3407{
1772 EV_FREQUENT_CHECK; 3408 EV_FREQUENT_CHECK;
1773 3409
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3411 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3412 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
1783 ev_at (w) += w->repeat; 3421 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3422 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3423 ev_at (w) = mn_now;
1786 3424
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 3426
1789 ANHE_at_cache (timers [HEAP0]); 3427 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
1791 } 3435 }
1792 else 3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3437
1795 EV_FREQUENT_CHECK; 3438 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3439 }
1798} 3440}
1799 3441
1800#if EV_PERIODIC_ENABLE 3442#if EV_PERIODIC_ENABLE
1801void inline_size 3443
3444noinline
3445static void
3446periodic_recalc (EV_P_ ev_periodic *w)
3447{
3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3450
3451 /* the above almost always errs on the low side */
3452 while (at <= ev_rt_now)
3453 {
3454 ev_tstamp nat = at + w->interval;
3455
3456 /* when resolution fails us, we use ev_rt_now */
3457 if (expect_false (nat == at))
3458 {
3459 at = ev_rt_now;
3460 break;
3461 }
3462
3463 at = nat;
3464 }
3465
3466 ev_at (w) = at;
3467}
3468
3469/* make periodics pending */
3470inline_size void
1802periodics_reify (EV_P) 3471periodics_reify (EV_P)
1803{ 3472{
1804 EV_FREQUENT_CHECK; 3473 EV_FREQUENT_CHECK;
1805 3474
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3476 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3477 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3487
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3489
1819 ANHE_at_cache (periodics [HEAP0]); 3490 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
1821 } 3504 }
1822 else if (w->interval) 3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3506
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3507 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3508 }
1847} 3509}
1848 3510
1849static void noinline 3511/* simply recalculate all periodics */
3512/* TODO: maybe ensure that at least one event happens when jumping forward? */
3513noinline ecb_cold
3514static void
1850periodics_reschedule (EV_P) 3515periodics_reschedule (EV_P)
1851{ 3516{
1852 int i; 3517 int i;
1853 3518
1854 /* adjust periodics after time jump */ 3519 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3523
1859 if (w->reschedule_cb) 3524 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3526 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3527 periodic_recalc (EV_A_ w);
1863 3528
1864 ANHE_at_cache (periodics [i]); 3529 ANHE_at_cache (periodics [i]);
1865 } 3530 }
1866 3531
1867 reheap (periodics, periodiccnt); 3532 reheap (periodics, periodiccnt);
1868} 3533}
1869#endif 3534#endif
1870 3535
1871void inline_speed 3536/* adjust all timers by a given offset */
3537noinline ecb_cold
3538static void
3539timers_reschedule (EV_P_ ev_tstamp adjust)
3540{
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
3544 {
3545 ANHE *he = timers + i + HEAP0;
3546 ANHE_w (*he)->at += adjust;
3547 ANHE_at_cache (*he);
3548 }
3549}
3550
3551/* fetch new monotonic and realtime times from the kernel */
3552/* also detect if there was a timejump, and act accordingly */
3553inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3554time_update (EV_P_ ev_tstamp max_block)
1873{ 3555{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3556#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3557 if (expect_true (have_monotonic))
1878 { 3558 {
3559 int i;
1879 ev_tstamp odiff = rtmn_diff; 3560 ev_tstamp odiff = rtmn_diff;
1880 3561
1881 mn_now = get_clock (); 3562 mn_now = get_clock ();
1882 3563
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 3580 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3581 * in the unlikely event of having been preempted here.
1901 */ 3582 */
1902 for (i = 4; --i; ) 3583 for (i = 4; --i; )
1903 { 3584 {
3585 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3586 rtmn_diff = ev_rt_now - mn_now;
1905 3587
3588 diff = odiff - rtmn_diff;
3589
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 3591 return; /* all is well */
1908 3592
1909 ev_rt_now = ev_time (); 3593 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3594 mn_now = get_clock ();
1911 now_floor = mn_now; 3595 now_floor = mn_now;
1912 } 3596 }
1913 3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 3600# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 3601 periodics_reschedule (EV_A);
1916# endif 3602# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 3603 }
1920 else 3604 else
1921#endif 3605#endif
1922 { 3606 {
1923 ev_rt_now = ev_time (); 3607 ev_rt_now = ev_time ();
1924 3608
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3613#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3614 periodics_reschedule (EV_A);
1929#endif 3615#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3616 }
1938 3617
1939 mn_now = ev_rt_now; 3618 mn_now = ev_rt_now;
1940 } 3619 }
1941} 3620}
1942 3621
1943void 3622int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3623ev_run (EV_P_ int flags)
1965{ 3624{
3625#if EV_FEATURE_API
3626 ++loop_depth;
3627#endif
3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
1966 loop_done = EVUNLOOP_CANCEL; 3631 loop_done = EVBREAK_CANCEL;
1967 3632
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3634
1970 do 3635 do
1971 { 3636 {
1972#if EV_VERIFY >= 2 3637#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3638 ev_verify (EV_A);
1974#endif 3639#endif
1975 3640
1976#ifndef _WIN32 3641#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3642 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3643 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3651 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3652 if (expect_false (postfork))
1988 if (forkcnt) 3653 if (forkcnt)
1989 { 3654 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3656 EV_INVOKE_PENDING;
1992 } 3657 }
1993#endif 3658#endif
1994 3659
3660#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3661 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3662 if (expect_false (preparecnt))
1997 { 3663 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3665 EV_INVOKE_PENDING;
2000 } 3666 }
3667#endif
3668
3669 if (expect_false (loop_done))
3670 break;
2001 3671
2002 /* we might have forked, so reify kernel state if necessary */ 3672 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 3673 if (expect_false (postfork))
2004 loop_fork (EV_A); 3674 loop_fork (EV_A);
2005 3675
2009 /* calculate blocking time */ 3679 /* calculate blocking time */
2010 { 3680 {
2011 ev_tstamp waittime = 0.; 3681 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 3682 ev_tstamp sleeptime = 0.;
2013 3683
3684 /* remember old timestamp for io_blocktime calculation */
3685 ev_tstamp prev_mn_now = mn_now;
3686
3687 /* update time to cancel out callback processing overhead */
3688 time_update (EV_A_ 1e100);
3689
3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2015 { 3696 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 3697 waittime = MAX_BLOCKTIME;
2020 3698
2021 if (timercnt) 3699 if (timercnt)
2022 { 3700 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2024 if (waittime > to) waittime = to; 3702 if (waittime > to) waittime = to;
2025 } 3703 }
2026 3704
2027#if EV_PERIODIC_ENABLE 3705#if EV_PERIODIC_ENABLE
2028 if (periodiccnt) 3706 if (periodiccnt)
2029 { 3707 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2031 if (waittime > to) waittime = to; 3709 if (waittime > to) waittime = to;
2032 } 3710 }
2033#endif 3711#endif
2034 3712
3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 3714 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 3715 waittime = timeout_blocktime;
2037 3716
2038 sleeptime = waittime - backend_fudge; 3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
2039 3721
3722 /* extra check because io_blocktime is commonly 0 */
2040 if (expect_true (sleeptime > io_blocktime)) 3723 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
2045 ev_sleep (sleeptime); 3732 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 3733 waittime -= sleeptime;
3734 }
2047 } 3735 }
2048 } 3736 }
2049 3737
3738#if EV_FEATURE_API
2050 ++loop_count; 3739 ++loop_count;
3740#endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
2052 3753
2053 /* update ev_rt_now, do magic */ 3754 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 3755 time_update (EV_A_ waittime + sleeptime);
2055 } 3756 }
2056 3757
2063#if EV_IDLE_ENABLE 3764#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 3765 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 3766 idle_reify (EV_A);
2066#endif 3767#endif
2067 3768
3769#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 3770 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 3771 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3772 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3773#endif
2071 3774
2072 call_pending (EV_A); 3775 EV_INVOKE_PENDING;
2073 } 3776 }
2074 while (expect_true ( 3777 while (expect_true (
2075 activecnt 3778 activecnt
2076 && !loop_done 3779 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3780 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 3781 ));
2079 3782
2080 if (loop_done == EVUNLOOP_ONE) 3783 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 3784 loop_done = EVBREAK_CANCEL;
2082}
2083 3785
3786#if EV_FEATURE_API
3787 --loop_depth;
3788#endif
3789
3790 return activecnt;
3791}
3792
2084void 3793void
2085ev_unloop (EV_P_ int how) 3794ev_break (EV_P_ int how) EV_NOEXCEPT
2086{ 3795{
2087 loop_done = how; 3796 loop_done = how;
2088} 3797}
2089 3798
3799void
3800ev_ref (EV_P) EV_NOEXCEPT
3801{
3802 ++activecnt;
3803}
3804
3805void
3806ev_unref (EV_P) EV_NOEXCEPT
3807{
3808 --activecnt;
3809}
3810
3811void
3812ev_now_update (EV_P) EV_NOEXCEPT
3813{
3814 time_update (EV_A_ 1e100);
3815}
3816
3817void
3818ev_suspend (EV_P) EV_NOEXCEPT
3819{
3820 ev_now_update (EV_A);
3821}
3822
3823void
3824ev_resume (EV_P) EV_NOEXCEPT
3825{
3826 ev_tstamp mn_prev = mn_now;
3827
3828 ev_now_update (EV_A);
3829 timers_reschedule (EV_A_ mn_now - mn_prev);
3830#if EV_PERIODIC_ENABLE
3831 /* TODO: really do this? */
3832 periodics_reschedule (EV_A);
3833#endif
3834}
3835
2090/*****************************************************************************/ 3836/*****************************************************************************/
3837/* singly-linked list management, used when the expected list length is short */
2091 3838
2092void inline_size 3839inline_size void
2093wlist_add (WL *head, WL elem) 3840wlist_add (WL *head, WL elem)
2094{ 3841{
2095 elem->next = *head; 3842 elem->next = *head;
2096 *head = elem; 3843 *head = elem;
2097} 3844}
2098 3845
2099void inline_size 3846inline_size void
2100wlist_del (WL *head, WL elem) 3847wlist_del (WL *head, WL elem)
2101{ 3848{
2102 while (*head) 3849 while (*head)
2103 { 3850 {
2104 if (*head == elem) 3851 if (expect_true (*head == elem))
2105 { 3852 {
2106 *head = elem->next; 3853 *head = elem->next;
2107 return; 3854 break;
2108 } 3855 }
2109 3856
2110 head = &(*head)->next; 3857 head = &(*head)->next;
2111 } 3858 }
2112} 3859}
2113 3860
2114void inline_speed 3861/* internal, faster, version of ev_clear_pending */
3862inline_speed void
2115clear_pending (EV_P_ W w) 3863clear_pending (EV_P_ W w)
2116{ 3864{
2117 if (w->pending) 3865 if (w->pending)
2118 { 3866 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3867 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 3868 w->pending = 0;
2121 } 3869 }
2122} 3870}
2123 3871
2124int 3872int
2125ev_clear_pending (EV_P_ void *w) 3873ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2126{ 3874{
2127 W w_ = (W)w; 3875 W w_ = (W)w;
2128 int pending = w_->pending; 3876 int pending = w_->pending;
2129 3877
2130 if (expect_true (pending)) 3878 if (expect_true (pending))
2131 { 3879 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3880 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3881 p->w = (W)&pending_w;
2133 w_->pending = 0; 3882 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 3883 return p->events;
2136 } 3884 }
2137 else 3885 else
2138 return 0; 3886 return 0;
2139} 3887}
2140 3888
2141void inline_size 3889inline_size void
2142pri_adjust (EV_P_ W w) 3890pri_adjust (EV_P_ W w)
2143{ 3891{
2144 int pri = w->priority; 3892 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3893 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3894 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 3895 ev_set_priority (w, pri);
2148} 3896}
2149 3897
2150void inline_speed 3898inline_speed void
2151ev_start (EV_P_ W w, int active) 3899ev_start (EV_P_ W w, int active)
2152{ 3900{
2153 pri_adjust (EV_A_ w); 3901 pri_adjust (EV_A_ w);
2154 w->active = active; 3902 w->active = active;
2155 ev_ref (EV_A); 3903 ev_ref (EV_A);
2156} 3904}
2157 3905
2158void inline_size 3906inline_size void
2159ev_stop (EV_P_ W w) 3907ev_stop (EV_P_ W w)
2160{ 3908{
2161 ev_unref (EV_A); 3909 ev_unref (EV_A);
2162 w->active = 0; 3910 w->active = 0;
2163} 3911}
2164 3912
2165/*****************************************************************************/ 3913/*****************************************************************************/
2166 3914
2167void noinline 3915noinline
3916void
2168ev_io_start (EV_P_ ev_io *w) 3917ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2169{ 3918{
2170 int fd = w->fd; 3919 int fd = w->fd;
2171 3920
2172 if (expect_false (ev_is_active (w))) 3921 if (expect_false (ev_is_active (w)))
2173 return; 3922 return;
2174 3923
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3924 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3925 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 3926
3927#if EV_VERIFY >= 2
3928 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3929#endif
2178 EV_FREQUENT_CHECK; 3930 EV_FREQUENT_CHECK;
2179 3931
2180 ev_start (EV_A_ (W)w, 1); 3932 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3933 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2182 wlist_add (&anfds[fd].head, (WL)w); 3934 wlist_add (&anfds[fd].head, (WL)w);
2183 3935
3936 /* common bug, apparently */
3937 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3938
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3939 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 3940 w->events &= ~EV__IOFDSET;
2186 3941
2187 EV_FREQUENT_CHECK; 3942 EV_FREQUENT_CHECK;
2188} 3943}
2189 3944
2190void noinline 3945noinline
3946void
2191ev_io_stop (EV_P_ ev_io *w) 3947ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2192{ 3948{
2193 clear_pending (EV_A_ (W)w); 3949 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3950 if (expect_false (!ev_is_active (w)))
2195 return; 3951 return;
2196 3952
2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3953 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198 3954
3955#if EV_VERIFY >= 2
3956 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3957#endif
2199 EV_FREQUENT_CHECK; 3958 EV_FREQUENT_CHECK;
2200 3959
2201 wlist_del (&anfds[w->fd].head, (WL)w); 3960 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
2203 3962
2204 fd_change (EV_A_ w->fd, 1); 3963 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 3964
2206 EV_FREQUENT_CHECK; 3965 EV_FREQUENT_CHECK;
2207} 3966}
2208 3967
2209void noinline 3968noinline
3969void
2210ev_timer_start (EV_P_ ev_timer *w) 3970ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2211{ 3971{
2212 if (expect_false (ev_is_active (w))) 3972 if (expect_false (ev_is_active (w)))
2213 return; 3973 return;
2214 3974
2215 ev_at (w) += mn_now; 3975 ev_at (w) += mn_now;
2218 3978
2219 EV_FREQUENT_CHECK; 3979 EV_FREQUENT_CHECK;
2220 3980
2221 ++timercnt; 3981 ++timercnt;
2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3982 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3983 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2224 ANHE_w (timers [ev_active (w)]) = (WT)w; 3984 ANHE_w (timers [ev_active (w)]) = (WT)w;
2225 ANHE_at_cache (timers [ev_active (w)]); 3985 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w)); 3986 upheap (timers, ev_active (w));
2227 3987
2228 EV_FREQUENT_CHECK; 3988 EV_FREQUENT_CHECK;
2229 3989
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3990 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231} 3991}
2232 3992
2233void noinline 3993noinline
3994void
2234ev_timer_stop (EV_P_ ev_timer *w) 3995ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2235{ 3996{
2236 clear_pending (EV_A_ (W)w); 3997 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w))) 3998 if (expect_false (!ev_is_active (w)))
2238 return; 3999 return;
2239 4000
2251 timers [active] = timers [timercnt + HEAP0]; 4012 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 4013 adjustheap (timers, timercnt, active);
2253 } 4014 }
2254 } 4015 }
2255 4016
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 4017 ev_at (w) -= mn_now;
2259 4018
2260 ev_stop (EV_A_ (W)w); 4019 ev_stop (EV_A_ (W)w);
2261}
2262 4020
4021 EV_FREQUENT_CHECK;
4022}
4023
2263void noinline 4024noinline
4025void
2264ev_timer_again (EV_P_ ev_timer *w) 4026ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2265{ 4027{
2266 EV_FREQUENT_CHECK; 4028 EV_FREQUENT_CHECK;
4029
4030 clear_pending (EV_A_ (W)w);
2267 4031
2268 if (ev_is_active (w)) 4032 if (ev_is_active (w))
2269 { 4033 {
2270 if (w->repeat) 4034 if (w->repeat)
2271 { 4035 {
2283 } 4047 }
2284 4048
2285 EV_FREQUENT_CHECK; 4049 EV_FREQUENT_CHECK;
2286} 4050}
2287 4051
4052ev_tstamp
4053ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4054{
4055 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4056}
4057
2288#if EV_PERIODIC_ENABLE 4058#if EV_PERIODIC_ENABLE
2289void noinline 4059noinline
4060void
2290ev_periodic_start (EV_P_ ev_periodic *w) 4061ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2291{ 4062{
2292 if (expect_false (ev_is_active (w))) 4063 if (expect_false (ev_is_active (w)))
2293 return; 4064 return;
2294 4065
2295 if (w->reschedule_cb) 4066 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4067 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval) 4068 else if (w->interval)
2298 { 4069 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4070 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */ 4071 periodic_recalc (EV_A_ w);
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 } 4072 }
2303 else 4073 else
2304 ev_at (w) = w->offset; 4074 ev_at (w) = w->offset;
2305 4075
2306 EV_FREQUENT_CHECK; 4076 EV_FREQUENT_CHECK;
2307 4077
2308 ++periodiccnt; 4078 ++periodiccnt;
2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4079 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4080 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2311 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4081 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2312 ANHE_at_cache (periodics [ev_active (w)]); 4082 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w)); 4083 upheap (periodics, ev_active (w));
2314 4084
2315 EV_FREQUENT_CHECK; 4085 EV_FREQUENT_CHECK;
2316 4086
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4087 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318} 4088}
2319 4089
2320void noinline 4090noinline
4091void
2321ev_periodic_stop (EV_P_ ev_periodic *w) 4092ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2322{ 4093{
2323 clear_pending (EV_A_ (W)w); 4094 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w))) 4095 if (expect_false (!ev_is_active (w)))
2325 return; 4096 return;
2326 4097
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 4109 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 4110 adjustheap (periodics, periodiccnt, active);
2340 } 4111 }
2341 } 4112 }
2342 4113
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 4114 ev_stop (EV_A_ (W)w);
2346}
2347 4115
4116 EV_FREQUENT_CHECK;
4117}
4118
2348void noinline 4119noinline
4120void
2349ev_periodic_again (EV_P_ ev_periodic *w) 4121ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2350{ 4122{
2351 /* TODO: use adjustheap and recalculation */ 4123 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w); 4124 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w); 4125 ev_periodic_start (EV_A_ w);
2354} 4126}
2356 4128
2357#ifndef SA_RESTART 4129#ifndef SA_RESTART
2358# define SA_RESTART 0 4130# define SA_RESTART 0
2359#endif 4131#endif
2360 4132
4133#if EV_SIGNAL_ENABLE
4134
2361void noinline 4135noinline
4136void
2362ev_signal_start (EV_P_ ev_signal *w) 4137ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2363{ 4138{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 4139 if (expect_false (ev_is_active (w)))
2368 return; 4140 return;
2369 4141
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4142 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 4143
2372 evpipe_init (EV_A); 4144#if EV_MULTIPLICITY
4145 assert (("libev: a signal must not be attached to two different loops",
4146 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 4147
2374 EV_FREQUENT_CHECK; 4148 signals [w->signum - 1].loop = EV_A;
4149 ECB_MEMORY_FENCE_RELEASE;
4150#endif
2375 4151
4152 EV_FREQUENT_CHECK;
4153
4154#if EV_USE_SIGNALFD
4155 if (sigfd == -2)
2376 { 4156 {
2377#ifndef _WIN32 4157 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 4158 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 4159 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 4160
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4161 if (sigfd >= 0)
4162 {
4163 fd_intern (sigfd); /* doing it twice will not hurt */
2384 4164
2385#ifndef _WIN32 4165 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 4166
2387#endif 4167 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4168 ev_set_priority (&sigfd_w, EV_MAXPRI);
4169 ev_io_start (EV_A_ &sigfd_w);
4170 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4171 }
2388 } 4172 }
4173
4174 if (sigfd >= 0)
4175 {
4176 /* TODO: check .head */
4177 sigaddset (&sigfd_set, w->signum);
4178 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4179
4180 signalfd (sigfd, &sigfd_set, 0);
4181 }
4182#endif
2389 4183
2390 ev_start (EV_A_ (W)w, 1); 4184 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 4185 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 4186
2393 if (!((WL)w)->next) 4187 if (!((WL)w)->next)
4188# if EV_USE_SIGNALFD
4189 if (sigfd < 0) /*TODO*/
4190# endif
2394 { 4191 {
2395#if _WIN32 4192# ifdef _WIN32
4193 evpipe_init (EV_A);
4194
2396 signal (w->signum, ev_sighandler); 4195 signal (w->signum, ev_sighandler);
2397#else 4196# else
2398 struct sigaction sa; 4197 struct sigaction sa;
4198
4199 evpipe_init (EV_A);
4200
2399 sa.sa_handler = ev_sighandler; 4201 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 4202 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4203 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 4204 sigaction (w->signum, &sa, 0);
4205
4206 if (origflags & EVFLAG_NOSIGMASK)
4207 {
4208 sigemptyset (&sa.sa_mask);
4209 sigaddset (&sa.sa_mask, w->signum);
4210 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4211 }
2403#endif 4212#endif
2404 } 4213 }
2405 4214
2406 EV_FREQUENT_CHECK; 4215 EV_FREQUENT_CHECK;
2407} 4216}
2408 4217
2409void noinline 4218noinline
4219void
2410ev_signal_stop (EV_P_ ev_signal *w) 4220ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2411{ 4221{
2412 clear_pending (EV_A_ (W)w); 4222 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w))) 4223 if (expect_false (!ev_is_active (w)))
2414 return; 4224 return;
2415 4225
2417 4227
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 4228 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 4229 ev_stop (EV_A_ (W)w);
2420 4230
2421 if (!signals [w->signum - 1].head) 4231 if (!signals [w->signum - 1].head)
4232 {
4233#if EV_MULTIPLICITY
4234 signals [w->signum - 1].loop = 0; /* unattach from signal */
4235#endif
4236#if EV_USE_SIGNALFD
4237 if (sigfd >= 0)
4238 {
4239 sigset_t ss;
4240
4241 sigemptyset (&ss);
4242 sigaddset (&ss, w->signum);
4243 sigdelset (&sigfd_set, w->signum);
4244
4245 signalfd (sigfd, &sigfd_set, 0);
4246 sigprocmask (SIG_UNBLOCK, &ss, 0);
4247 }
4248 else
4249#endif
2422 signal (w->signum, SIG_DFL); 4250 signal (w->signum, SIG_DFL);
4251 }
2423 4252
2424 EV_FREQUENT_CHECK; 4253 EV_FREQUENT_CHECK;
2425} 4254}
2426 4255
4256#endif
4257
4258#if EV_CHILD_ENABLE
4259
2427void 4260void
2428ev_child_start (EV_P_ ev_child *w) 4261ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2429{ 4262{
2430#if EV_MULTIPLICITY 4263#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4264 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif 4265#endif
2433 if (expect_false (ev_is_active (w))) 4266 if (expect_false (ev_is_active (w)))
2434 return; 4267 return;
2435 4268
2436 EV_FREQUENT_CHECK; 4269 EV_FREQUENT_CHECK;
2437 4270
2438 ev_start (EV_A_ (W)w, 1); 4271 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4272 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 4273
2441 EV_FREQUENT_CHECK; 4274 EV_FREQUENT_CHECK;
2442} 4275}
2443 4276
2444void 4277void
2445ev_child_stop (EV_P_ ev_child *w) 4278ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2446{ 4279{
2447 clear_pending (EV_A_ (W)w); 4280 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w))) 4281 if (expect_false (!ev_is_active (w)))
2449 return; 4282 return;
2450 4283
2451 EV_FREQUENT_CHECK; 4284 EV_FREQUENT_CHECK;
2452 4285
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4286 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 4287 ev_stop (EV_A_ (W)w);
2455 4288
2456 EV_FREQUENT_CHECK; 4289 EV_FREQUENT_CHECK;
2457} 4290}
4291
4292#endif
2458 4293
2459#if EV_STAT_ENABLE 4294#if EV_STAT_ENABLE
2460 4295
2461# ifdef _WIN32 4296# ifdef _WIN32
2462# undef lstat 4297# undef lstat
2465 4300
2466#define DEF_STAT_INTERVAL 5.0074891 4301#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4302#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468#define MIN_STAT_INTERVAL 0.1074891 4303#define MIN_STAT_INTERVAL 0.1074891
2469 4304
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4305noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 4306
2472#if EV_USE_INOTIFY 4307#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192
2474 4308
2475static void noinline 4309/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4310# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4311
4312noinline
4313static void
2476infy_add (EV_P_ ev_stat *w) 4314infy_add (EV_P_ ev_stat *w)
2477{ 4315{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4316 w->wd = inotify_add_watch (fs_fd, w->path,
4317 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4318 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4319 | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 4320
2480 if (w->wd < 0) 4321 if (w->wd >= 0)
4322 {
4323 struct statfs sfs;
4324
4325 /* now local changes will be tracked by inotify, but remote changes won't */
4326 /* unless the filesystem is known to be local, we therefore still poll */
4327 /* also do poll on <2.6.25, but with normal frequency */
4328
4329 if (!fs_2625)
4330 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4331 else if (!statfs (w->path, &sfs)
4332 && (sfs.f_type == 0x1373 /* devfs */
4333 || sfs.f_type == 0x4006 /* fat */
4334 || sfs.f_type == 0x4d44 /* msdos */
4335 || sfs.f_type == 0xEF53 /* ext2/3 */
4336 || sfs.f_type == 0x72b6 /* jffs2 */
4337 || sfs.f_type == 0x858458f6 /* ramfs */
4338 || sfs.f_type == 0x5346544e /* ntfs */
4339 || sfs.f_type == 0x3153464a /* jfs */
4340 || sfs.f_type == 0x9123683e /* btrfs */
4341 || sfs.f_type == 0x52654973 /* reiser3 */
4342 || sfs.f_type == 0x01021994 /* tmpfs */
4343 || sfs.f_type == 0x58465342 /* xfs */))
4344 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4345 else
4346 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 4347 }
4348 else
4349 {
4350 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4351 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 4352
2485 /* monitor some parent directory for speedup hints */ 4353 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4354 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 4355 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4356 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 4357 {
2490 char path [4096]; 4358 char path [4096];
2500 if (!pend || pend == path) 4368 if (!pend || pend == path)
2501 break; 4369 break;
2502 4370
2503 *pend = 0; 4371 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask); 4372 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 } 4373 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4374 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 4375 }
2508 } 4376 }
2509 4377
2510 if (w->wd >= 0) 4378 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4379 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 4380
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 4381 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 4382 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 4383 ev_timer_again (EV_A_ &w->timer);
2530 } 4384 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 4385}
2532 4386
2533static void noinline 4387noinline
4388static void
2534infy_del (EV_P_ ev_stat *w) 4389infy_del (EV_P_ ev_stat *w)
2535{ 4390{
2536 int slot; 4391 int slot;
2537 int wd = w->wd; 4392 int wd = w->wd;
2538 4393
2539 if (wd < 0) 4394 if (wd < 0)
2540 return; 4395 return;
2541 4396
2542 w->wd = -2; 4397 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4398 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 4399 wlist_del (&fs_hash [slot].head, (WL)w);
2545 4400
2546 /* remove this watcher, if others are watching it, they will rearm */ 4401 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 4402 inotify_rm_watch (fs_fd, wd);
2548} 4403}
2549 4404
2550static void noinline 4405noinline
4406static void
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4407infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 4408{
2553 if (slot < 0) 4409 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 4410 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4411 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 4412 infy_wd (EV_A_ slot, wd, ev);
2557 else 4413 else
2558 { 4414 {
2559 WL w_; 4415 WL w_;
2560 4416
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4417 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 4418 {
2563 ev_stat *w = (ev_stat *)w_; 4419 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 4420 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 4421
2566 if (w->wd == wd || wd == -1) 4422 if (w->wd == wd || wd == -1)
2567 { 4423 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4424 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 4425 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4426 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 4427 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 4428 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 4429 }
2574 4430
2575 stat_timer_cb (EV_A_ &w->timer, 0); 4431 stat_timer_cb (EV_A_ &w->timer, 0);
2580 4436
2581static void 4437static void
2582infy_cb (EV_P_ ev_io *w, int revents) 4438infy_cb (EV_P_ ev_io *w, int revents)
2583{ 4439{
2584 char buf [EV_INOTIFY_BUFSIZE]; 4440 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 4441 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 4442 int len = read (fs_fd, buf, sizeof (buf));
2588 4443
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4444 for (ofs = 0; ofs < len; )
4445 {
4446 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4447 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4448 ofs += sizeof (struct inotify_event) + ev->len;
4449 }
2591} 4450}
2592 4451
2593void inline_size 4452inline_size ecb_cold
4453void
2594check_2625 (EV_P) 4454ev_check_2625 (EV_P)
2595{ 4455{
2596 /* kernels < 2.6.25 are borked 4456 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4457 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 4458 */
2599 struct utsname buf; 4459 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 4460 return;
2604 4461
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 4462 fs_2625 = 1;
2614} 4463}
2615 4464
2616void inline_size 4465inline_size int
4466infy_newfd (void)
4467{
4468#if defined IN_CLOEXEC && defined IN_NONBLOCK
4469 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4470 if (fd >= 0)
4471 return fd;
4472#endif
4473 return inotify_init ();
4474}
4475
4476inline_size void
2617infy_init (EV_P) 4477infy_init (EV_P)
2618{ 4478{
2619 if (fs_fd != -2) 4479 if (fs_fd != -2)
2620 return; 4480 return;
2621 4481
2622 fs_fd = -1; 4482 fs_fd = -1;
2623 4483
2624 check_2625 (EV_A); 4484 ev_check_2625 (EV_A);
2625 4485
2626 fs_fd = inotify_init (); 4486 fs_fd = infy_newfd ();
2627 4487
2628 if (fs_fd >= 0) 4488 if (fs_fd >= 0)
2629 { 4489 {
4490 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4491 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 4492 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 4493 ev_io_start (EV_A_ &fs_w);
4494 ev_unref (EV_A);
2633 } 4495 }
2634} 4496}
2635 4497
2636void inline_size 4498inline_size void
2637infy_fork (EV_P) 4499infy_fork (EV_P)
2638{ 4500{
2639 int slot; 4501 int slot;
2640 4502
2641 if (fs_fd < 0) 4503 if (fs_fd < 0)
2642 return; 4504 return;
2643 4505
4506 ev_ref (EV_A);
4507 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 4508 close (fs_fd);
2645 fs_fd = inotify_init (); 4509 fs_fd = infy_newfd ();
2646 4510
4511 if (fs_fd >= 0)
4512 {
4513 fd_intern (fs_fd);
4514 ev_io_set (&fs_w, fs_fd, EV_READ);
4515 ev_io_start (EV_A_ &fs_w);
4516 ev_unref (EV_A);
4517 }
4518
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4519 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 4520 {
2649 WL w_ = fs_hash [slot].head; 4521 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 4522 fs_hash [slot].head = 0;
2651 4523
2652 while (w_) 4524 while (w_)
2657 w->wd = -1; 4529 w->wd = -1;
2658 4530
2659 if (fs_fd >= 0) 4531 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 4532 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 4533 else
4534 {
4535 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4536 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 4537 ev_timer_again (EV_A_ &w->timer);
4538 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4539 }
2663 } 4540 }
2664 } 4541 }
2665} 4542}
2666 4543
2667#endif 4544#endif
2671#else 4548#else
2672# define EV_LSTAT(p,b) lstat (p, b) 4549# define EV_LSTAT(p,b) lstat (p, b)
2673#endif 4550#endif
2674 4551
2675void 4552void
2676ev_stat_stat (EV_P_ ev_stat *w) 4553ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2677{ 4554{
2678 if (lstat (w->path, &w->attr) < 0) 4555 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0; 4556 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink) 4557 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1; 4558 w->attr.st_nlink = 1;
2682} 4559}
2683 4560
2684static void noinline 4561noinline
4562static void
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4563stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 4564{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4565 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 4566
2689 /* we copy this here each the time so that */ 4567 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 4568 ev_stat_stat (EV_A_ w);
2693 4569
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4570 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 4571 if (
2696 w->prev.st_dev != w->attr.st_dev 4572 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 4573 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 4574 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 4575 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 4576 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 4577 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 4578 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 4579 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 4580 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 4581 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 4582 || prev.st_ctime != w->attr.st_ctime
2707 ) { 4583 ) {
4584 /* we only update w->prev on actual differences */
4585 /* in case we test more often than invoke the callback, */
4586 /* to ensure that prev is always different to attr */
4587 w->prev = prev;
4588
2708 #if EV_USE_INOTIFY 4589 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 4590 if (fs_fd >= 0)
2710 { 4591 {
2711 infy_del (EV_A_ w); 4592 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 4593 infy_add (EV_A_ w);
2717 ev_feed_event (EV_A_ w, EV_STAT); 4598 ev_feed_event (EV_A_ w, EV_STAT);
2718 } 4599 }
2719} 4600}
2720 4601
2721void 4602void
2722ev_stat_start (EV_P_ ev_stat *w) 4603ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2723{ 4604{
2724 if (expect_false (ev_is_active (w))) 4605 if (expect_false (ev_is_active (w)))
2725 return; 4606 return;
2726 4607
2727 ev_stat_stat (EV_A_ w); 4608 ev_stat_stat (EV_A_ w);
2737 4618
2738 if (fs_fd >= 0) 4619 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 4620 infy_add (EV_A_ w);
2740 else 4621 else
2741#endif 4622#endif
4623 {
2742 ev_timer_again (EV_A_ &w->timer); 4624 ev_timer_again (EV_A_ &w->timer);
4625 ev_unref (EV_A);
4626 }
2743 4627
2744 ev_start (EV_A_ (W)w, 1); 4628 ev_start (EV_A_ (W)w, 1);
2745 4629
2746 EV_FREQUENT_CHECK; 4630 EV_FREQUENT_CHECK;
2747} 4631}
2748 4632
2749void 4633void
2750ev_stat_stop (EV_P_ ev_stat *w) 4634ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2751{ 4635{
2752 clear_pending (EV_A_ (W)w); 4636 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w))) 4637 if (expect_false (!ev_is_active (w)))
2754 return; 4638 return;
2755 4639
2756 EV_FREQUENT_CHECK; 4640 EV_FREQUENT_CHECK;
2757 4641
2758#if EV_USE_INOTIFY 4642#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 4643 infy_del (EV_A_ w);
2760#endif 4644#endif
4645
4646 if (ev_is_active (&w->timer))
4647 {
4648 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 4649 ev_timer_stop (EV_A_ &w->timer);
4650 }
2762 4651
2763 ev_stop (EV_A_ (W)w); 4652 ev_stop (EV_A_ (W)w);
2764 4653
2765 EV_FREQUENT_CHECK; 4654 EV_FREQUENT_CHECK;
2766} 4655}
2767#endif 4656#endif
2768 4657
2769#if EV_IDLE_ENABLE 4658#if EV_IDLE_ENABLE
2770void 4659void
2771ev_idle_start (EV_P_ ev_idle *w) 4660ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2772{ 4661{
2773 if (expect_false (ev_is_active (w))) 4662 if (expect_false (ev_is_active (w)))
2774 return; 4663 return;
2775 4664
2776 pri_adjust (EV_A_ (W)w); 4665 pri_adjust (EV_A_ (W)w);
2781 int active = ++idlecnt [ABSPRI (w)]; 4670 int active = ++idlecnt [ABSPRI (w)];
2782 4671
2783 ++idleall; 4672 ++idleall;
2784 ev_start (EV_A_ (W)w, active); 4673 ev_start (EV_A_ (W)w, active);
2785 4674
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4675 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2787 idles [ABSPRI (w)][active - 1] = w; 4676 idles [ABSPRI (w)][active - 1] = w;
2788 } 4677 }
2789 4678
2790 EV_FREQUENT_CHECK; 4679 EV_FREQUENT_CHECK;
2791} 4680}
2792 4681
2793void 4682void
2794ev_idle_stop (EV_P_ ev_idle *w) 4683ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2795{ 4684{
2796 clear_pending (EV_A_ (W)w); 4685 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4686 if (expect_false (!ev_is_active (w)))
2798 return; 4687 return;
2799 4688
2811 4700
2812 EV_FREQUENT_CHECK; 4701 EV_FREQUENT_CHECK;
2813} 4702}
2814#endif 4703#endif
2815 4704
4705#if EV_PREPARE_ENABLE
2816void 4706void
2817ev_prepare_start (EV_P_ ev_prepare *w) 4707ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2818{ 4708{
2819 if (expect_false (ev_is_active (w))) 4709 if (expect_false (ev_is_active (w)))
2820 return; 4710 return;
2821 4711
2822 EV_FREQUENT_CHECK; 4712 EV_FREQUENT_CHECK;
2823 4713
2824 ev_start (EV_A_ (W)w, ++preparecnt); 4714 ev_start (EV_A_ (W)w, ++preparecnt);
2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4715 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2826 prepares [preparecnt - 1] = w; 4716 prepares [preparecnt - 1] = w;
2827 4717
2828 EV_FREQUENT_CHECK; 4718 EV_FREQUENT_CHECK;
2829} 4719}
2830 4720
2831void 4721void
2832ev_prepare_stop (EV_P_ ev_prepare *w) 4722ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2833{ 4723{
2834 clear_pending (EV_A_ (W)w); 4724 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w))) 4725 if (expect_false (!ev_is_active (w)))
2836 return; 4726 return;
2837 4727
2846 4736
2847 ev_stop (EV_A_ (W)w); 4737 ev_stop (EV_A_ (W)w);
2848 4738
2849 EV_FREQUENT_CHECK; 4739 EV_FREQUENT_CHECK;
2850} 4740}
4741#endif
2851 4742
4743#if EV_CHECK_ENABLE
2852void 4744void
2853ev_check_start (EV_P_ ev_check *w) 4745ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2854{ 4746{
2855 if (expect_false (ev_is_active (w))) 4747 if (expect_false (ev_is_active (w)))
2856 return; 4748 return;
2857 4749
2858 EV_FREQUENT_CHECK; 4750 EV_FREQUENT_CHECK;
2859 4751
2860 ev_start (EV_A_ (W)w, ++checkcnt); 4752 ev_start (EV_A_ (W)w, ++checkcnt);
2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4753 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2862 checks [checkcnt - 1] = w; 4754 checks [checkcnt - 1] = w;
2863 4755
2864 EV_FREQUENT_CHECK; 4756 EV_FREQUENT_CHECK;
2865} 4757}
2866 4758
2867void 4759void
2868ev_check_stop (EV_P_ ev_check *w) 4760ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2869{ 4761{
2870 clear_pending (EV_A_ (W)w); 4762 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w))) 4763 if (expect_false (!ev_is_active (w)))
2872 return; 4764 return;
2873 4765
2882 4774
2883 ev_stop (EV_A_ (W)w); 4775 ev_stop (EV_A_ (W)w);
2884 4776
2885 EV_FREQUENT_CHECK; 4777 EV_FREQUENT_CHECK;
2886} 4778}
4779#endif
2887 4780
2888#if EV_EMBED_ENABLE 4781#if EV_EMBED_ENABLE
2889void noinline 4782noinline
4783void
2890ev_embed_sweep (EV_P_ ev_embed *w) 4784ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2891{ 4785{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 4786 ev_run (w->other, EVRUN_NOWAIT);
2893} 4787}
2894 4788
2895static void 4789static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 4790embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 4791{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 4793
2900 if (ev_cb (w)) 4794 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4795 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 4796 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 4797 ev_run (w->other, EVRUN_NOWAIT);
2904} 4798}
2905 4799
2906static void 4800static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4801embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 4802{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4803 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 4804
2911 { 4805 {
2912 struct ev_loop *loop = w->other; 4806 EV_P = w->other;
2913 4807
2914 while (fdchangecnt) 4808 while (fdchangecnt)
2915 { 4809 {
2916 fd_reify (EV_A); 4810 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4811 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4812 }
2919 } 4813 }
2920} 4814}
2921 4815
2922static void 4816static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4819 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 4820
2927 ev_embed_stop (EV_A_ w); 4821 ev_embed_stop (EV_A_ w);
2928 4822
2929 { 4823 {
2930 struct ev_loop *loop = w->other; 4824 EV_P = w->other;
2931 4825
2932 ev_loop_fork (EV_A); 4826 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4827 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 4828 }
2935 4829
2936 ev_embed_start (EV_A_ w); 4830 ev_embed_start (EV_A_ w);
2937} 4831}
2938 4832
2943 ev_idle_stop (EV_A_ idle); 4837 ev_idle_stop (EV_A_ idle);
2944} 4838}
2945#endif 4839#endif
2946 4840
2947void 4841void
2948ev_embed_start (EV_P_ ev_embed *w) 4842ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2949{ 4843{
2950 if (expect_false (ev_is_active (w))) 4844 if (expect_false (ev_is_active (w)))
2951 return; 4845 return;
2952 4846
2953 { 4847 {
2954 struct ev_loop *loop = w->other; 4848 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4849 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4850 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 4851 }
2958 4852
2959 EV_FREQUENT_CHECK; 4853 EV_FREQUENT_CHECK;
2974 4868
2975 EV_FREQUENT_CHECK; 4869 EV_FREQUENT_CHECK;
2976} 4870}
2977 4871
2978void 4872void
2979ev_embed_stop (EV_P_ ev_embed *w) 4873ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2980{ 4874{
2981 clear_pending (EV_A_ (W)w); 4875 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w))) 4876 if (expect_false (!ev_is_active (w)))
2983 return; 4877 return;
2984 4878
2986 4880
2987 ev_io_stop (EV_A_ &w->io); 4881 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 4882 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 4883 ev_fork_stop (EV_A_ &w->fork);
2990 4884
4885 ev_stop (EV_A_ (W)w);
4886
2991 EV_FREQUENT_CHECK; 4887 EV_FREQUENT_CHECK;
2992} 4888}
2993#endif 4889#endif
2994 4890
2995#if EV_FORK_ENABLE 4891#if EV_FORK_ENABLE
2996void 4892void
2997ev_fork_start (EV_P_ ev_fork *w) 4893ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2998{ 4894{
2999 if (expect_false (ev_is_active (w))) 4895 if (expect_false (ev_is_active (w)))
3000 return; 4896 return;
3001 4897
3002 EV_FREQUENT_CHECK; 4898 EV_FREQUENT_CHECK;
3003 4899
3004 ev_start (EV_A_ (W)w, ++forkcnt); 4900 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4901 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3006 forks [forkcnt - 1] = w; 4902 forks [forkcnt - 1] = w;
3007 4903
3008 EV_FREQUENT_CHECK; 4904 EV_FREQUENT_CHECK;
3009} 4905}
3010 4906
3011void 4907void
3012ev_fork_stop (EV_P_ ev_fork *w) 4908ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3013{ 4909{
3014 clear_pending (EV_A_ (W)w); 4910 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w))) 4911 if (expect_false (!ev_is_active (w)))
3016 return; 4912 return;
3017 4913
3028 4924
3029 EV_FREQUENT_CHECK; 4925 EV_FREQUENT_CHECK;
3030} 4926}
3031#endif 4927#endif
3032 4928
3033#if EV_ASYNC_ENABLE 4929#if EV_CLEANUP_ENABLE
3034void 4930void
3035ev_async_start (EV_P_ ev_async *w) 4931ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
3036{ 4932{
3037 if (expect_false (ev_is_active (w))) 4933 if (expect_false (ev_is_active (w)))
3038 return; 4934 return;
3039 4935
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK; 4936 EV_FREQUENT_CHECK;
3043 4937
3044 ev_start (EV_A_ (W)w, ++asynccnt); 4938 ev_start (EV_A_ (W)w, ++cleanupcnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4939 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
3046 asyncs [asynccnt - 1] = w; 4940 cleanups [cleanupcnt - 1] = w;
3047 4941
4942 /* cleanup watchers should never keep a refcount on the loop */
4943 ev_unref (EV_A);
3048 EV_FREQUENT_CHECK; 4944 EV_FREQUENT_CHECK;
3049} 4945}
3050 4946
3051void 4947void
3052ev_async_stop (EV_P_ ev_async *w) 4948ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
3053{ 4949{
3054 clear_pending (EV_A_ (W)w); 4950 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w))) 4951 if (expect_false (!ev_is_active (w)))
3056 return; 4952 return;
3057 4953
3058 EV_FREQUENT_CHECK; 4954 EV_FREQUENT_CHECK;
4955 ev_ref (EV_A);
4956
4957 {
4958 int active = ev_active (w);
4959
4960 cleanups [active - 1] = cleanups [--cleanupcnt];
4961 ev_active (cleanups [active - 1]) = active;
4962 }
4963
4964 ev_stop (EV_A_ (W)w);
4965
4966 EV_FREQUENT_CHECK;
4967}
4968#endif
4969
4970#if EV_ASYNC_ENABLE
4971void
4972ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4973{
4974 if (expect_false (ev_is_active (w)))
4975 return;
4976
4977 w->sent = 0;
4978
4979 evpipe_init (EV_A);
4980
4981 EV_FREQUENT_CHECK;
4982
4983 ev_start (EV_A_ (W)w, ++asynccnt);
4984 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4985 asyncs [asynccnt - 1] = w;
4986
4987 EV_FREQUENT_CHECK;
4988}
4989
4990void
4991ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4992{
4993 clear_pending (EV_A_ (W)w);
4994 if (expect_false (!ev_is_active (w)))
4995 return;
4996
4997 EV_FREQUENT_CHECK;
3059 4998
3060 { 4999 {
3061 int active = ev_active (w); 5000 int active = ev_active (w);
3062 5001
3063 asyncs [active - 1] = asyncs [--asynccnt]; 5002 asyncs [active - 1] = asyncs [--asynccnt];
3068 5007
3069 EV_FREQUENT_CHECK; 5008 EV_FREQUENT_CHECK;
3070} 5009}
3071 5010
3072void 5011void
3073ev_async_send (EV_P_ ev_async *w) 5012ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3074{ 5013{
3075 w->sent = 1; 5014 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 5015 evpipe_write (EV_A_ &async_pending);
3077} 5016}
3078#endif 5017#endif
3079 5018
3080/*****************************************************************************/ 5019/*****************************************************************************/
3081 5020
3115 5054
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117} 5056}
3118 5057
3119void 5058void
3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5059ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3121{ 5060{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5061 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123
3124 if (expect_false (!once))
3125 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3127 return;
3128 }
3129 5062
3130 once->cb = cb; 5063 once->cb = cb;
3131 once->arg = arg; 5064 once->arg = arg;
3132 5065
3133 ev_init (&once->io, once_cb_io); 5066 ev_init (&once->io, once_cb_io);
3145 } 5078 }
3146} 5079}
3147 5080
3148/*****************************************************************************/ 5081/*****************************************************************************/
3149 5082
3150#if 0 5083#if EV_WALK_ENABLE
5084ecb_cold
3151void 5085void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5086ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3153{ 5087{
3154 int i, j; 5088 int i, j;
3155 ev_watcher_list *wl, *wn; 5089 ev_watcher_list *wl, *wn;
3156 5090
3157 if (types & (EV_IO | EV_EMBED)) 5091 if (types & (EV_IO | EV_EMBED))
3171#if EV_USE_INOTIFY 5105#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 5106 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 5107 ;
3174 else 5108 else
3175#endif 5109#endif
3176 if ((ev_io *)wl != &pipeev) 5110 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 5111 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 5112 cb (EV_A_ EV_IO, wl);
3179 5113
3180 wl = wn; 5114 wl = wn;
3181 } 5115 }
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5134 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif 5135#endif
3202 5136
3203#if EV_IDLE_ENABLE 5137#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE) 5138 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; ) 5139 for (j = NUMPRI; j--; )
3206 for (i = idlecnt [j]; i--; ) 5140 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]); 5141 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif 5142#endif
3209 5143
3210#if EV_FORK_ENABLE 5144#if EV_FORK_ENABLE
3218 if (types & EV_ASYNC) 5152 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 5153 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 5154 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 5155#endif
3222 5156
5157#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 5158 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 5159 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 5160# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 5161 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 5162# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 5163 cb (EV_A_ EV_PREPARE, prepares [i]);
5164#endif
3229 5165
5166#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 5167 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 5168 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 5169 cb (EV_A_ EV_CHECK, checks [i]);
5170#endif
3233 5171
5172#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 5173 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 5174 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 5175 for (wl = signals [i].head; wl; )
3237 { 5176 {
3238 wn = wl->next; 5177 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 5178 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 5179 wl = wn;
3241 } 5180 }
5181#endif
3242 5182
5183#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 5184 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 5185 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 5186 for (wl = childs [i]; wl; )
3246 { 5187 {
3247 wn = wl->next; 5188 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 5189 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 5190 wl = wn;
3250 } 5191 }
5192#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 5193/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5194/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 5195}
3254#endif 5196#endif
3255 5197
3256#if EV_MULTIPLICITY 5198#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 5199 #include "ev_wrap.h"
3258#endif 5200#endif
3259 5201
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines