ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.509 by root, Sat Aug 17 05:30:16 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
112# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
114# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
122# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# else
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
126# endif 136# endif
127 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
134# endif 145# endif
135 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
137# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
142# endif 172# endif
143 173
144#endif 174#endif
145 175
146#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
147#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
148#include <fcntl.h> 188#include <fcntl.h>
149#include <stddef.h> 189#include <stddef.h>
150 190
151#include <stdio.h> 191#include <stdio.h>
152 192
153#include <assert.h> 193#include <assert.h>
154#include <errno.h> 194#include <errno.h>
155#include <sys/types.h> 195#include <sys/types.h>
156#include <time.h> 196#include <time.h>
197#include <limits.h>
157 198
158#include <signal.h> 199#include <signal.h>
159 200
160#ifdef EV_H 201#ifdef EV_H
161# include EV_H 202# include EV_H
162#else 203#else
163# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
164#endif 216#endif
165 217
166#ifndef _WIN32 218#ifndef _WIN32
167# include <sys/time.h> 219# include <sys/time.h>
168# include <sys/wait.h> 220# include <sys/wait.h>
169# include <unistd.h> 221# include <unistd.h>
170#else 222#else
171# include <io.h> 223# include <io.h>
172# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
173# include <windows.h> 226# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
176# endif 229# endif
230# undef EV_AVOID_STDIO
177#endif 231#endif
178 232
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
180 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
181#ifndef EV_USE_CLOCK_SYSCALL 264#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 267# else
185# define EV_USE_CLOCK_SYSCALL 0 268# define EV_USE_CLOCK_SYSCALL 0
186# endif 269# endif
187#endif 270#endif
188 271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
189#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 284# else
193# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
194# endif 286# endif
195#endif 287#endif
196 288
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 291#endif
200 292
201#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 296# else
205# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
206# endif 298# endif
207#endif 299#endif
208 300
209#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 303#endif
212 304
213#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
214# ifdef _WIN32 306# ifdef _WIN32
215# define EV_USE_POLL 0 307# define EV_USE_POLL 0
216# else 308# else
217# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 310# endif
219#endif 311#endif
220 312
221#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 316# else
225# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
226# endif 318# endif
227#endif 319#endif
228 320
232 324
233#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
234# define EV_USE_PORT 0 326# define EV_USE_PORT 0
235#endif 327#endif
236 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
237#ifndef EV_USE_INOTIFY 345#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 347# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 348# else
241# define EV_USE_INOTIFY 0 349# define EV_USE_INOTIFY 0
242# endif 350# endif
243#endif 351#endif
244 352
245#ifndef EV_PID_HASHSIZE 353#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 355#endif
252 356
253#ifndef EV_INOTIFY_HASHSIZE 357#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 359#endif
260 360
261#ifndef EV_USE_EVENTFD 361#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 363# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 364# else
265# define EV_USE_EVENTFD 0 365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
266# endif 374# endif
267#endif 375#endif
268 376
269#if 0 /* debugging */ 377#if 0 /* debugging */
270# define EV_VERIFY 3 378# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 379# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 380# define EV_HEAP_CACHE_AT 1
273#endif 381#endif
274 382
275#ifndef EV_VERIFY 383#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 385#endif
278 386
279#ifndef EV_USE_4HEAP 387#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 388# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 389#endif
282 390
283#ifndef EV_HEAP_CACHE_AT 391#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
285#endif 424#endif
286 425
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 427
289#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 439# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 440# define EV_USE_INOTIFY 0
302#endif 441#endif
303 442
304#if !EV_USE_NANOSLEEP 443#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 446# include <sys/select.h>
307# endif 447# endif
308#endif 448#endif
309 449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
310#if EV_USE_INOTIFY 475#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 476# include <sys/statfs.h>
313# include <sys/inotify.h> 477# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 479# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 480# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 481# define EV_USE_INOTIFY 0
318# endif 482# endif
319#endif 483#endif
320 484
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 485#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 487# include <stdint.h>
337# ifdef __cplusplus 488# ifndef EFD_NONBLOCK
338extern "C" { 489# define EFD_NONBLOCK O_NONBLOCK
339# endif 490# endif
340int eventfd (unsigned int initval, int flags); 491# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 492# ifdef O_CLOEXEC
342} 493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
343# endif 497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
344#endif 506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
345 515
346/**/ 516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
347 524
348#if EV_VERIFY >= 3 525#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 526# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 527#else
351# define EV_FREQUENT_CHECK do { } while (0) 528# define EV_FREQUENT_CHECK do { } while (0)
352#endif 529#endif
353 530
354/* 531/*
355 * This is used to avoid floating point rounding problems. 532 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 533 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 534 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 537
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#ifndef EV_TS_CONST
550# define EV_TS_CONST(nv) nv
551# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
552# define EV_TS_FROM_USEC(us) us * 1e-6
553# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
554# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
555# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
556# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
557#endif
558
559/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
560/* ECB.H BEGIN */
561/*
562 * libecb - http://software.schmorp.de/pkg/libecb
563 *
564 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
565 * Copyright (©) 2011 Emanuele Giaquinta
566 * All rights reserved.
567 *
568 * Redistribution and use in source and binary forms, with or without modifica-
569 * tion, are permitted provided that the following conditions are met:
570 *
571 * 1. Redistributions of source code must retain the above copyright notice,
572 * this list of conditions and the following disclaimer.
573 *
574 * 2. Redistributions in binary form must reproduce the above copyright
575 * notice, this list of conditions and the following disclaimer in the
576 * documentation and/or other materials provided with the distribution.
577 *
578 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
579 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
580 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
581 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
582 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
583 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
584 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
585 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
586 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
587 * OF THE POSSIBILITY OF SUCH DAMAGE.
588 *
589 * Alternatively, the contents of this file may be used under the terms of
590 * the GNU General Public License ("GPL") version 2 or any later version,
591 * in which case the provisions of the GPL are applicable instead of
592 * the above. If you wish to allow the use of your version of this file
593 * only under the terms of the GPL and not to allow others to use your
594 * version of this file under the BSD license, indicate your decision
595 * by deleting the provisions above and replace them with the notice
596 * and other provisions required by the GPL. If you do not delete the
597 * provisions above, a recipient may use your version of this file under
598 * either the BSD or the GPL.
599 */
600
601#ifndef ECB_H
602#define ECB_H
603
604/* 16 bits major, 16 bits minor */
605#define ECB_VERSION 0x00010006
606
607#ifdef _WIN32
608 typedef signed char int8_t;
609 typedef unsigned char uint8_t;
610 typedef signed short int16_t;
611 typedef unsigned short uint16_t;
612 typedef signed int int32_t;
613 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 614 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 615 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 616 typedef unsigned long long uint64_t;
617 #else /* _MSC_VER || __BORLANDC__ */
618 typedef signed __int64 int64_t;
619 typedef unsigned __int64 uint64_t;
620 #endif
621 #ifdef _WIN64
622 #define ECB_PTRSIZE 8
623 typedef uint64_t uintptr_t;
624 typedef int64_t intptr_t;
625 #else
626 #define ECB_PTRSIZE 4
627 typedef uint32_t uintptr_t;
628 typedef int32_t intptr_t;
629 #endif
371#else 630#else
372# define expect(expr,value) (expr) 631 #include <inttypes.h>
373# define noinline 632 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 633 #define ECB_PTRSIZE 8
375# define inline 634 #else
635 #define ECB_PTRSIZE 4
636 #endif
376# endif 637#endif
638
639#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
640#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
641
642/* work around x32 idiocy by defining proper macros */
643#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
644 #if _ILP32
645 #define ECB_AMD64_X32 1
646 #else
647 #define ECB_AMD64 1
377#endif 648 #endif
649#endif
378 650
379#define expect_false(expr) expect ((expr) != 0, 0) 651/* many compilers define _GNUC_ to some versions but then only implement
380#define expect_true(expr) expect ((expr) != 0, 1) 652 * what their idiot authors think are the "more important" extensions,
381#define inline_size static inline 653 * causing enormous grief in return for some better fake benchmark numbers.
382 654 * or so.
383#if EV_MINIMAL 655 * we try to detect these and simply assume they are not gcc - if they have
384# define inline_speed static noinline 656 * an issue with that they should have done it right in the first place.
657 */
658#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
659 #define ECB_GCC_VERSION(major,minor) 0
385#else 660#else
661 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
662#endif
663
664#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
665
666#if __clang__ && defined __has_builtin
667 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
668#else
669 #define ECB_CLANG_BUILTIN(x) 0
670#endif
671
672#if __clang__ && defined __has_extension
673 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
674#else
675 #define ECB_CLANG_EXTENSION(x) 0
676#endif
677
678#define ECB_CPP (__cplusplus+0)
679#define ECB_CPP11 (__cplusplus >= 201103L)
680#define ECB_CPP14 (__cplusplus >= 201402L)
681#define ECB_CPP17 (__cplusplus >= 201703L)
682
683#if ECB_CPP
684 #define ECB_C 0
685 #define ECB_STDC_VERSION 0
686#else
687 #define ECB_C 1
688 #define ECB_STDC_VERSION __STDC_VERSION__
689#endif
690
691#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
692#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
693#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
694
695#if ECB_CPP
696 #define ECB_EXTERN_C extern "C"
697 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
698 #define ECB_EXTERN_C_END }
699#else
700 #define ECB_EXTERN_C extern
701 #define ECB_EXTERN_C_BEG
702 #define ECB_EXTERN_C_END
703#endif
704
705/*****************************************************************************/
706
707/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
708/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
709
710#if ECB_NO_THREADS
711 #define ECB_NO_SMP 1
712#endif
713
714#if ECB_NO_SMP
715 #define ECB_MEMORY_FENCE do { } while (0)
716#endif
717
718/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
719#if __xlC__ && ECB_CPP
720 #include <builtins.h>
721#endif
722
723#if 1400 <= _MSC_VER
724 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
725#endif
726
727#ifndef ECB_MEMORY_FENCE
728 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
730 #if __i386 || __i386__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
732 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
733 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
734 #elif ECB_GCC_AMD64
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
736 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
737 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
738 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
739 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
740 #elif defined __ARM_ARCH_2__ \
741 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
742 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
743 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
744 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
745 || defined __ARM_ARCH_5TEJ__
746 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
747 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
748 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
749 || defined __ARM_ARCH_6T2__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
751 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
752 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
753 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
754 #elif __aarch64__
755 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
756 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
757 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
758 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
759 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
760 #elif defined __s390__ || defined __s390x__
761 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
762 #elif defined __mips__
763 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
764 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
766 #elif defined __alpha__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
768 #elif defined __hppa__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
771 #elif defined __ia64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
773 #elif defined __m68k__
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
775 #elif defined __m88k__
776 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
777 #elif defined __sh__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
779 #endif
780 #endif
781#endif
782
783#ifndef ECB_MEMORY_FENCE
784 #if ECB_GCC_VERSION(4,7)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_CLANG_EXTENSION(c_atomic)
792 /* see comment below (stdatomic.h) about the C11 memory model. */
793 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
794 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
795 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
796 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
797
798 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
799 #define ECB_MEMORY_FENCE __sync_synchronize ()
800 #elif _MSC_VER >= 1500 /* VC++ 2008 */
801 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
806 #elif _MSC_VER >= 1400 /* VC++ 2005 */
807 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
808 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
809 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
810 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
811 #elif defined _WIN32
812 #include <WinNT.h>
813 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
814 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
815 #include <mbarrier.h>
816 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
817 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
818 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
819 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
820 #elif __xlC__
821 #define ECB_MEMORY_FENCE __sync ()
822 #endif
823#endif
824
825#ifndef ECB_MEMORY_FENCE
826 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
827 /* we assume that these memory fences work on all variables/all memory accesses, */
828 /* not just C11 atomics and atomic accesses */
829 #include <stdatomic.h>
830 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
831 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
832 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
833 #endif
834#endif
835
836#ifndef ECB_MEMORY_FENCE
837 #if !ECB_AVOID_PTHREADS
838 /*
839 * if you get undefined symbol references to pthread_mutex_lock,
840 * or failure to find pthread.h, then you should implement
841 * the ECB_MEMORY_FENCE operations for your cpu/compiler
842 * OR provide pthread.h and link against the posix thread library
843 * of your system.
844 */
845 #include <pthread.h>
846 #define ECB_NEEDS_PTHREADS 1
847 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
848
849 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
850 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
851 #endif
852#endif
853
854#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
855 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
856#endif
857
858#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
859 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
860#endif
861
862#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
863 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
864#endif
865
866/*****************************************************************************/
867
868#if ECB_CPP
869 #define ecb_inline static inline
870#elif ECB_GCC_VERSION(2,5)
871 #define ecb_inline static __inline__
872#elif ECB_C99
873 #define ecb_inline static inline
874#else
875 #define ecb_inline static
876#endif
877
878#if ECB_GCC_VERSION(3,3)
879 #define ecb_restrict __restrict__
880#elif ECB_C99
881 #define ecb_restrict restrict
882#else
883 #define ecb_restrict
884#endif
885
886typedef int ecb_bool;
887
888#define ECB_CONCAT_(a, b) a ## b
889#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
890#define ECB_STRINGIFY_(a) # a
891#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
892#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
893
894#define ecb_function_ ecb_inline
895
896#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
897 #define ecb_attribute(attrlist) __attribute__ (attrlist)
898#else
899 #define ecb_attribute(attrlist)
900#endif
901
902#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
903 #define ecb_is_constant(expr) __builtin_constant_p (expr)
904#else
905 /* possible C11 impl for integral types
906 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
907 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
908
909 #define ecb_is_constant(expr) 0
910#endif
911
912#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
913 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
914#else
915 #define ecb_expect(expr,value) (expr)
916#endif
917
918#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
919 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
920#else
921 #define ecb_prefetch(addr,rw,locality)
922#endif
923
924/* no emulation for ecb_decltype */
925#if ECB_CPP11
926 // older implementations might have problems with decltype(x)::type, work around it
927 template<class T> struct ecb_decltype_t { typedef T type; };
928 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
929#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
930 #define ecb_decltype(x) __typeof__ (x)
931#endif
932
933#if _MSC_VER >= 1300
934 #define ecb_deprecated __declspec (deprecated)
935#else
936 #define ecb_deprecated ecb_attribute ((__deprecated__))
937#endif
938
939#if _MSC_VER >= 1500
940 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
941#elif ECB_GCC_VERSION(4,5)
942 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
943#else
944 #define ecb_deprecated_message(msg) ecb_deprecated
945#endif
946
947#if _MSC_VER >= 1400
948 #define ecb_noinline __declspec (noinline)
949#else
950 #define ecb_noinline ecb_attribute ((__noinline__))
951#endif
952
953#define ecb_unused ecb_attribute ((__unused__))
954#define ecb_const ecb_attribute ((__const__))
955#define ecb_pure ecb_attribute ((__pure__))
956
957#if ECB_C11 || __IBMC_NORETURN
958 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
959 #define ecb_noreturn _Noreturn
960#elif ECB_CPP11
961 #define ecb_noreturn [[noreturn]]
962#elif _MSC_VER >= 1200
963 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
964 #define ecb_noreturn __declspec (noreturn)
965#else
966 #define ecb_noreturn ecb_attribute ((__noreturn__))
967#endif
968
969#if ECB_GCC_VERSION(4,3)
970 #define ecb_artificial ecb_attribute ((__artificial__))
971 #define ecb_hot ecb_attribute ((__hot__))
972 #define ecb_cold ecb_attribute ((__cold__))
973#else
974 #define ecb_artificial
975 #define ecb_hot
976 #define ecb_cold
977#endif
978
979/* put around conditional expressions if you are very sure that the */
980/* expression is mostly true or mostly false. note that these return */
981/* booleans, not the expression. */
982#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
983#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
984/* for compatibility to the rest of the world */
985#define ecb_likely(expr) ecb_expect_true (expr)
986#define ecb_unlikely(expr) ecb_expect_false (expr)
987
988/* count trailing zero bits and count # of one bits */
989#if ECB_GCC_VERSION(3,4) \
990 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
991 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
992 && ECB_CLANG_BUILTIN(__builtin_popcount))
993 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
994 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
995 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
996 #define ecb_ctz32(x) __builtin_ctz (x)
997 #define ecb_ctz64(x) __builtin_ctzll (x)
998 #define ecb_popcount32(x) __builtin_popcount (x)
999 /* no popcountll */
1000#else
1001 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1002 ecb_function_ ecb_const int
1003 ecb_ctz32 (uint32_t x)
1004 {
1005#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1006 unsigned long r;
1007 _BitScanForward (&r, x);
1008 return (int)r;
1009#else
1010 int r = 0;
1011
1012 x &= ~x + 1; /* this isolates the lowest bit */
1013
1014#if ECB_branchless_on_i386
1015 r += !!(x & 0xaaaaaaaa) << 0;
1016 r += !!(x & 0xcccccccc) << 1;
1017 r += !!(x & 0xf0f0f0f0) << 2;
1018 r += !!(x & 0xff00ff00) << 3;
1019 r += !!(x & 0xffff0000) << 4;
1020#else
1021 if (x & 0xaaaaaaaa) r += 1;
1022 if (x & 0xcccccccc) r += 2;
1023 if (x & 0xf0f0f0f0) r += 4;
1024 if (x & 0xff00ff00) r += 8;
1025 if (x & 0xffff0000) r += 16;
1026#endif
1027
1028 return r;
1029#endif
1030 }
1031
1032 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1033 ecb_function_ ecb_const int
1034 ecb_ctz64 (uint64_t x)
1035 {
1036#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1037 unsigned long r;
1038 _BitScanForward64 (&r, x);
1039 return (int)r;
1040#else
1041 int shift = x & 0xffffffff ? 0 : 32;
1042 return ecb_ctz32 (x >> shift) + shift;
1043#endif
1044 }
1045
1046 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1047 ecb_function_ ecb_const int
1048 ecb_popcount32 (uint32_t x)
1049 {
1050 x -= (x >> 1) & 0x55555555;
1051 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1052 x = ((x >> 4) + x) & 0x0f0f0f0f;
1053 x *= 0x01010101;
1054
1055 return x >> 24;
1056 }
1057
1058 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1059 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1060 {
1061#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1062 unsigned long r;
1063 _BitScanReverse (&r, x);
1064 return (int)r;
1065#else
1066 int r = 0;
1067
1068 if (x >> 16) { x >>= 16; r += 16; }
1069 if (x >> 8) { x >>= 8; r += 8; }
1070 if (x >> 4) { x >>= 4; r += 4; }
1071 if (x >> 2) { x >>= 2; r += 2; }
1072 if (x >> 1) { r += 1; }
1073
1074 return r;
1075#endif
1076 }
1077
1078 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1079 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1080 {
1081#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1082 unsigned long r;
1083 _BitScanReverse64 (&r, x);
1084 return (int)r;
1085#else
1086 int r = 0;
1087
1088 if (x >> 32) { x >>= 32; r += 32; }
1089
1090 return r + ecb_ld32 (x);
1091#endif
1092 }
1093#endif
1094
1095ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1096ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1097ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1098ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1099
1100ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1101ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1102{
1103 return ( (x * 0x0802U & 0x22110U)
1104 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1105}
1106
1107ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1108ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1109{
1110 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1111 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1112 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1113 x = ( x >> 8 ) | ( x << 8);
1114
1115 return x;
1116}
1117
1118ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1119ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1120{
1121 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1122 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1123 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1124 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1125 x = ( x >> 16 ) | ( x << 16);
1126
1127 return x;
1128}
1129
1130/* popcount64 is only available on 64 bit cpus as gcc builtin */
1131/* so for this version we are lazy */
1132ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1133ecb_function_ ecb_const int
1134ecb_popcount64 (uint64_t x)
1135{
1136 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1137}
1138
1139ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1140ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1141ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1142ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1143ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1144ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1145ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1146ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1147
1148ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1149ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1150ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1151ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1152ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1153ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1154ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1155ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1156
1157#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1158 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1159 #define ecb_bswap16(x) __builtin_bswap16 (x)
1160 #else
1161 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1162 #endif
1163 #define ecb_bswap32(x) __builtin_bswap32 (x)
1164 #define ecb_bswap64(x) __builtin_bswap64 (x)
1165#elif _MSC_VER
1166 #include <stdlib.h>
1167 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1168 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1169 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1170#else
1171 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1172 ecb_function_ ecb_const uint16_t
1173 ecb_bswap16 (uint16_t x)
1174 {
1175 return ecb_rotl16 (x, 8);
1176 }
1177
1178 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1179 ecb_function_ ecb_const uint32_t
1180 ecb_bswap32 (uint32_t x)
1181 {
1182 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1183 }
1184
1185 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1186 ecb_function_ ecb_const uint64_t
1187 ecb_bswap64 (uint64_t x)
1188 {
1189 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1190 }
1191#endif
1192
1193#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1194 #define ecb_unreachable() __builtin_unreachable ()
1195#else
1196 /* this seems to work fine, but gcc always emits a warning for it :/ */
1197 ecb_inline ecb_noreturn void ecb_unreachable (void);
1198 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1199#endif
1200
1201/* try to tell the compiler that some condition is definitely true */
1202#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1203
1204ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1205ecb_inline ecb_const uint32_t
1206ecb_byteorder_helper (void)
1207{
1208 /* the union code still generates code under pressure in gcc, */
1209 /* but less than using pointers, and always seems to */
1210 /* successfully return a constant. */
1211 /* the reason why we have this horrible preprocessor mess */
1212 /* is to avoid it in all cases, at least on common architectures */
1213 /* or when using a recent enough gcc version (>= 4.6) */
1214#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1215 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1216 #define ECB_LITTLE_ENDIAN 1
1217 return 0x44332211;
1218#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1219 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1220 #define ECB_BIG_ENDIAN 1
1221 return 0x11223344;
1222#else
1223 union
1224 {
1225 uint8_t c[4];
1226 uint32_t u;
1227 } u = { 0x11, 0x22, 0x33, 0x44 };
1228 return u.u;
1229#endif
1230}
1231
1232ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1233ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1234ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1235ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1236
1237#if ECB_GCC_VERSION(3,0) || ECB_C99
1238 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1239#else
1240 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1241#endif
1242
1243#if ECB_CPP
1244 template<typename T>
1245 static inline T ecb_div_rd (T val, T div)
1246 {
1247 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1248 }
1249 template<typename T>
1250 static inline T ecb_div_ru (T val, T div)
1251 {
1252 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1253 }
1254#else
1255 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1256 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1257#endif
1258
1259#if ecb_cplusplus_does_not_suck
1260 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1261 template<typename T, int N>
1262 static inline int ecb_array_length (const T (&arr)[N])
1263 {
1264 return N;
1265 }
1266#else
1267 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1268#endif
1269
1270ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1271ecb_function_ ecb_const uint32_t
1272ecb_binary16_to_binary32 (uint32_t x)
1273{
1274 unsigned int s = (x & 0x8000) << (31 - 15);
1275 int e = (x >> 10) & 0x001f;
1276 unsigned int m = x & 0x03ff;
1277
1278 if (ecb_expect_false (e == 31))
1279 /* infinity or NaN */
1280 e = 255 - (127 - 15);
1281 else if (ecb_expect_false (!e))
1282 {
1283 if (ecb_expect_true (!m))
1284 /* zero, handled by code below by forcing e to 0 */
1285 e = 0 - (127 - 15);
1286 else
1287 {
1288 /* subnormal, renormalise */
1289 unsigned int s = 10 - ecb_ld32 (m);
1290
1291 m = (m << s) & 0x3ff; /* mask implicit bit */
1292 e -= s - 1;
1293 }
1294 }
1295
1296 /* e and m now are normalised, or zero, (or inf or nan) */
1297 e += 127 - 15;
1298
1299 return s | (e << 23) | (m << (23 - 10));
1300}
1301
1302ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1303ecb_function_ ecb_const uint16_t
1304ecb_binary32_to_binary16 (uint32_t x)
1305{
1306 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1307 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1308 unsigned int m = x & 0x007fffff;
1309
1310 x &= 0x7fffffff;
1311
1312 /* if it's within range of binary16 normals, use fast path */
1313 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1314 {
1315 /* mantissa round-to-even */
1316 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1317
1318 /* handle overflow */
1319 if (ecb_expect_false (m >= 0x00800000))
1320 {
1321 m >>= 1;
1322 e += 1;
1323 }
1324
1325 return s | (e << 10) | (m >> (23 - 10));
1326 }
1327
1328 /* handle large numbers and infinity */
1329 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1330 return s | 0x7c00;
1331
1332 /* handle zero, subnormals and small numbers */
1333 if (ecb_expect_true (x < 0x38800000))
1334 {
1335 /* zero */
1336 if (ecb_expect_true (!x))
1337 return s;
1338
1339 /* handle subnormals */
1340
1341 /* too small, will be zero */
1342 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1343 return s;
1344
1345 m |= 0x00800000; /* make implicit bit explicit */
1346
1347 /* very tricky - we need to round to the nearest e (+10) bit value */
1348 {
1349 unsigned int bits = 14 - e;
1350 unsigned int half = (1 << (bits - 1)) - 1;
1351 unsigned int even = (m >> bits) & 1;
1352
1353 /* if this overflows, we will end up with a normalised number */
1354 m = (m + half + even) >> bits;
1355 }
1356
1357 return s | m;
1358 }
1359
1360 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1361 m >>= 13;
1362
1363 return s | 0x7c00 | m | !m;
1364}
1365
1366/*******************************************************************************/
1367/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1368
1369/* basically, everything uses "ieee pure-endian" floating point numbers */
1370/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1371#if 0 \
1372 || __i386 || __i386__ \
1373 || ECB_GCC_AMD64 \
1374 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1375 || defined __s390__ || defined __s390x__ \
1376 || defined __mips__ \
1377 || defined __alpha__ \
1378 || defined __hppa__ \
1379 || defined __ia64__ \
1380 || defined __m68k__ \
1381 || defined __m88k__ \
1382 || defined __sh__ \
1383 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1384 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1385 || defined __aarch64__
1386 #define ECB_STDFP 1
1387 #include <string.h> /* for memcpy */
1388#else
1389 #define ECB_STDFP 0
1390#endif
1391
1392#ifndef ECB_NO_LIBM
1393
1394 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1395
1396 /* only the oldest of old doesn't have this one. solaris. */
1397 #ifdef INFINITY
1398 #define ECB_INFINITY INFINITY
1399 #else
1400 #define ECB_INFINITY HUGE_VAL
1401 #endif
1402
1403 #ifdef NAN
1404 #define ECB_NAN NAN
1405 #else
1406 #define ECB_NAN ECB_INFINITY
1407 #endif
1408
1409 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1410 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1411 #define ecb_frexpf(x,e) frexpf ((x), (e))
1412 #else
1413 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1414 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1415 #endif
1416
1417 /* convert a float to ieee single/binary32 */
1418 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1419 ecb_function_ ecb_const uint32_t
1420 ecb_float_to_binary32 (float x)
1421 {
1422 uint32_t r;
1423
1424 #if ECB_STDFP
1425 memcpy (&r, &x, 4);
1426 #else
1427 /* slow emulation, works for anything but -0 */
1428 uint32_t m;
1429 int e;
1430
1431 if (x == 0e0f ) return 0x00000000U;
1432 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1433 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1434 if (x != x ) return 0x7fbfffffU;
1435
1436 m = ecb_frexpf (x, &e) * 0x1000000U;
1437
1438 r = m & 0x80000000U;
1439
1440 if (r)
1441 m = -m;
1442
1443 if (e <= -126)
1444 {
1445 m &= 0xffffffU;
1446 m >>= (-125 - e);
1447 e = -126;
1448 }
1449
1450 r |= (e + 126) << 23;
1451 r |= m & 0x7fffffU;
1452 #endif
1453
1454 return r;
1455 }
1456
1457 /* converts an ieee single/binary32 to a float */
1458 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1459 ecb_function_ ecb_const float
1460 ecb_binary32_to_float (uint32_t x)
1461 {
1462 float r;
1463
1464 #if ECB_STDFP
1465 memcpy (&r, &x, 4);
1466 #else
1467 /* emulation, only works for normals and subnormals and +0 */
1468 int neg = x >> 31;
1469 int e = (x >> 23) & 0xffU;
1470
1471 x &= 0x7fffffU;
1472
1473 if (e)
1474 x |= 0x800000U;
1475 else
1476 e = 1;
1477
1478 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1479 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1480
1481 r = neg ? -r : r;
1482 #endif
1483
1484 return r;
1485 }
1486
1487 /* convert a double to ieee double/binary64 */
1488 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1489 ecb_function_ ecb_const uint64_t
1490 ecb_double_to_binary64 (double x)
1491 {
1492 uint64_t r;
1493
1494 #if ECB_STDFP
1495 memcpy (&r, &x, 8);
1496 #else
1497 /* slow emulation, works for anything but -0 */
1498 uint64_t m;
1499 int e;
1500
1501 if (x == 0e0 ) return 0x0000000000000000U;
1502 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1503 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1504 if (x != x ) return 0X7ff7ffffffffffffU;
1505
1506 m = frexp (x, &e) * 0x20000000000000U;
1507
1508 r = m & 0x8000000000000000;;
1509
1510 if (r)
1511 m = -m;
1512
1513 if (e <= -1022)
1514 {
1515 m &= 0x1fffffffffffffU;
1516 m >>= (-1021 - e);
1517 e = -1022;
1518 }
1519
1520 r |= ((uint64_t)(e + 1022)) << 52;
1521 r |= m & 0xfffffffffffffU;
1522 #endif
1523
1524 return r;
1525 }
1526
1527 /* converts an ieee double/binary64 to a double */
1528 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1529 ecb_function_ ecb_const double
1530 ecb_binary64_to_double (uint64_t x)
1531 {
1532 double r;
1533
1534 #if ECB_STDFP
1535 memcpy (&r, &x, 8);
1536 #else
1537 /* emulation, only works for normals and subnormals and +0 */
1538 int neg = x >> 63;
1539 int e = (x >> 52) & 0x7ffU;
1540
1541 x &= 0xfffffffffffffU;
1542
1543 if (e)
1544 x |= 0x10000000000000U;
1545 else
1546 e = 1;
1547
1548 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1549 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1550
1551 r = neg ? -r : r;
1552 #endif
1553
1554 return r;
1555 }
1556
1557 /* convert a float to ieee half/binary16 */
1558 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1559 ecb_function_ ecb_const uint16_t
1560 ecb_float_to_binary16 (float x)
1561 {
1562 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1563 }
1564
1565 /* convert an ieee half/binary16 to float */
1566 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1567 ecb_function_ ecb_const float
1568 ecb_binary16_to_float (uint16_t x)
1569 {
1570 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1571 }
1572
1573#endif
1574
1575#endif
1576
1577/* ECB.H END */
1578
1579#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1580/* if your architecture doesn't need memory fences, e.g. because it is
1581 * single-cpu/core, or if you use libev in a project that doesn't use libev
1582 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1583 * libev, in which cases the memory fences become nops.
1584 * alternatively, you can remove this #error and link against libpthread,
1585 * which will then provide the memory fences.
1586 */
1587# error "memory fences not defined for your architecture, please report"
1588#endif
1589
1590#ifndef ECB_MEMORY_FENCE
1591# define ECB_MEMORY_FENCE do { } while (0)
1592# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1593# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1594#endif
1595
1596#define inline_size ecb_inline
1597
1598#if EV_FEATURE_CODE
386# define inline_speed static inline 1599# define inline_speed ecb_inline
1600#else
1601# define inline_speed ecb_noinline static
387#endif 1602#endif
388 1603
1604/*****************************************************************************/
1605/* raw syscall wrappers */
1606
1607#if EV_NEED_SYSCALL
1608
1609#include <sys/syscall.h>
1610
1611/*
1612 * define some syscall wrappers for common architectures
1613 * this is mostly for nice looks during debugging, not performance.
1614 * our syscalls return < 0, not == -1, on error. which is good
1615 * enough for linux aio.
1616 * TODO: arm is also common nowadays, maybe even mips and x86
1617 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1618 */
1619#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1620 /* the costly errno access probably kills this for size optimisation */
1621
1622 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1623 ({ \
1624 long res; \
1625 register unsigned long r6 __asm__ ("r9" ); \
1626 register unsigned long r5 __asm__ ("r8" ); \
1627 register unsigned long r4 __asm__ ("r10"); \
1628 register unsigned long r3 __asm__ ("rdx"); \
1629 register unsigned long r2 __asm__ ("rsi"); \
1630 register unsigned long r1 __asm__ ("rdi"); \
1631 if (narg >= 6) r6 = (unsigned long)(arg6); \
1632 if (narg >= 5) r5 = (unsigned long)(arg5); \
1633 if (narg >= 4) r4 = (unsigned long)(arg4); \
1634 if (narg >= 3) r3 = (unsigned long)(arg3); \
1635 if (narg >= 2) r2 = (unsigned long)(arg2); \
1636 if (narg >= 1) r1 = (unsigned long)(arg1); \
1637 __asm__ __volatile__ ( \
1638 "syscall\n\t" \
1639 : "=a" (res) \
1640 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1641 : "cc", "r11", "cx", "memory"); \
1642 errno = -res; \
1643 res; \
1644 })
1645
1646#endif
1647
1648#ifdef ev_syscall
1649 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1650 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1651 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1652 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1653 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1654 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1655 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1656#else
1657 #define ev_syscall0(nr) syscall (nr)
1658 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1659 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1660 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1661 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1662 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1663 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1664#endif
1665
1666#endif
1667
1668/*****************************************************************************/
1669
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1670#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1671
1672#if EV_MINPRI == EV_MAXPRI
1673# define ABSPRI(w) (((W)w), 0)
1674#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1675# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1676#endif
391 1677
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1678#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394 1679
395typedef ev_watcher *W; 1680typedef ev_watcher *W;
396typedef ev_watcher_list *WL; 1681typedef ev_watcher_list *WL;
397typedef ev_watcher_time *WT; 1682typedef ev_watcher_time *WT;
398 1683
399#define ev_active(w) ((W)(w))->active 1684#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1685#define ev_at(w) ((WT)(w))->at
401 1686
402#if EV_USE_REALTIME 1687#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1688/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1689/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1690static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1691#endif
407 1692
408#if EV_USE_MONOTONIC 1693#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1694static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1695#endif
411 1696
1697#ifndef EV_FD_TO_WIN32_HANDLE
1698# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1699#endif
1700#ifndef EV_WIN32_HANDLE_TO_FD
1701# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1702#endif
1703#ifndef EV_WIN32_CLOSE_FD
1704# define EV_WIN32_CLOSE_FD(fd) close (fd)
1705#endif
1706
412#ifdef _WIN32 1707#ifdef _WIN32
413# include "ev_win32.c" 1708# include "ev_win32.c"
414#endif 1709#endif
415 1710
416/*****************************************************************************/ 1711/*****************************************************************************/
417 1712
1713#if EV_USE_LINUXAIO
1714# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1715#endif
1716
1717/* define a suitable floor function (only used by periodics atm) */
1718
1719#if EV_USE_FLOOR
1720# include <math.h>
1721# define ev_floor(v) floor (v)
1722#else
1723
1724#include <float.h>
1725
1726/* a floor() replacement function, should be independent of ev_tstamp type */
1727ecb_noinline
1728static ev_tstamp
1729ev_floor (ev_tstamp v)
1730{
1731 /* the choice of shift factor is not terribly important */
1732#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1733 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1734#else
1735 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1736#endif
1737
1738 /* special treatment for negative arguments */
1739 if (ecb_expect_false (v < 0.))
1740 {
1741 ev_tstamp f = -ev_floor (-v);
1742
1743 return f - (f == v ? 0 : 1);
1744 }
1745
1746 /* argument too large for an unsigned long? then reduce it */
1747 if (ecb_expect_false (v >= shift))
1748 {
1749 ev_tstamp f;
1750
1751 if (v == v - 1.)
1752 return v; /* very large numbers are assumed to be integer */
1753
1754 f = shift * ev_floor (v * (1. / shift));
1755 return f + ev_floor (v - f);
1756 }
1757
1758 /* fits into an unsigned long */
1759 return (unsigned long)v;
1760}
1761
1762#endif
1763
1764/*****************************************************************************/
1765
1766#ifdef __linux
1767# include <sys/utsname.h>
1768#endif
1769
1770ecb_noinline ecb_cold
1771static unsigned int
1772ev_linux_version (void)
1773{
1774#ifdef __linux
1775 unsigned int v = 0;
1776 struct utsname buf;
1777 int i;
1778 char *p = buf.release;
1779
1780 if (uname (&buf))
1781 return 0;
1782
1783 for (i = 3+1; --i; )
1784 {
1785 unsigned int c = 0;
1786
1787 for (;;)
1788 {
1789 if (*p >= '0' && *p <= '9')
1790 c = c * 10 + *p++ - '0';
1791 else
1792 {
1793 p += *p == '.';
1794 break;
1795 }
1796 }
1797
1798 v = (v << 8) | c;
1799 }
1800
1801 return v;
1802#else
1803 return 0;
1804#endif
1805}
1806
1807/*****************************************************************************/
1808
1809#if EV_AVOID_STDIO
1810ecb_noinline ecb_cold
1811static void
1812ev_printerr (const char *msg)
1813{
1814 write (STDERR_FILENO, msg, strlen (msg));
1815}
1816#endif
1817
418static void (*syserr_cb)(const char *msg); 1818static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
419 1819
1820ecb_cold
420void 1821void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1822ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
422{ 1823{
423 syserr_cb = cb; 1824 syserr_cb = cb;
424} 1825}
425 1826
426static void noinline 1827ecb_noinline ecb_cold
1828static void
427ev_syserr (const char *msg) 1829ev_syserr (const char *msg)
428{ 1830{
429 if (!msg) 1831 if (!msg)
430 msg = "(libev) system error"; 1832 msg = "(libev) system error";
431 1833
432 if (syserr_cb) 1834 if (syserr_cb)
433 syserr_cb (msg); 1835 syserr_cb (msg);
434 else 1836 else
435 { 1837 {
1838#if EV_AVOID_STDIO
1839 ev_printerr (msg);
1840 ev_printerr (": ");
1841 ev_printerr (strerror (errno));
1842 ev_printerr ("\n");
1843#else
436 perror (msg); 1844 perror (msg);
1845#endif
437 abort (); 1846 abort ();
438 } 1847 }
439} 1848}
440 1849
441static void * 1850static void *
442ev_realloc_emul (void *ptr, long size) 1851ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
443{ 1852{
444 /* some systems, notably openbsd and darwin, fail to properly 1853 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1854 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1855 * the single unix specification, so work around them here.
1856 * recently, also (at least) fedora and debian started breaking it,
1857 * despite documenting it otherwise.
447 */ 1858 */
448 1859
449 if (size) 1860 if (size)
450 return realloc (ptr, size); 1861 return realloc (ptr, size);
451 1862
452 free (ptr); 1863 free (ptr);
453 return 0; 1864 return 0;
454} 1865}
455 1866
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1867static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
457 1868
1869ecb_cold
458void 1870void
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1871ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
460{ 1872{
461 alloc = cb; 1873 alloc = cb;
462} 1874}
463 1875
464inline_speed void * 1876inline_speed void *
466{ 1878{
467 ptr = alloc (ptr, size); 1879 ptr = alloc (ptr, size);
468 1880
469 if (!ptr && size) 1881 if (!ptr && size)
470 { 1882 {
1883#if EV_AVOID_STDIO
1884 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1885#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1886 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1887#endif
472 abort (); 1888 abort ();
473 } 1889 }
474 1890
475 return ptr; 1891 return ptr;
476} 1892}
478#define ev_malloc(size) ev_realloc (0, (size)) 1894#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1895#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1896
481/*****************************************************************************/ 1897/*****************************************************************************/
482 1898
1899/* set in reify when reification needed */
1900#define EV_ANFD_REIFY 1
1901
1902/* file descriptor info structure */
483typedef struct 1903typedef struct
484{ 1904{
485 WL head; 1905 WL head;
486 unsigned char events; 1906 unsigned char events; /* the events watched for */
487 unsigned char reify; 1907 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1908 unsigned char emask; /* some backends store the actual kernel mask in here */
489 unsigned char unused; 1909 unsigned char eflags; /* flags field for use by backends */
490#if EV_USE_EPOLL 1910#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1911 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1912#endif
493#if EV_SELECT_IS_WINSOCKET 1913#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1914 SOCKET handle;
495#endif 1915#endif
1916#if EV_USE_IOCP
1917 OVERLAPPED or, ow;
1918#endif
496} ANFD; 1919} ANFD;
497 1920
1921/* stores the pending event set for a given watcher */
498typedef struct 1922typedef struct
499{ 1923{
500 W w; 1924 W w;
501 int events; 1925 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1926} ANPENDING;
503 1927
504#if EV_USE_INOTIFY 1928#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1929/* hash table entry per inotify-id */
506typedef struct 1930typedef struct
509} ANFS; 1933} ANFS;
510#endif 1934#endif
511 1935
512/* Heap Entry */ 1936/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1937#if EV_HEAP_CACHE_AT
1938 /* a heap element */
514 typedef struct { 1939 typedef struct {
515 ev_tstamp at; 1940 ev_tstamp at;
516 WT w; 1941 WT w;
517 } ANHE; 1942 } ANHE;
518 1943
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1944 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1945 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1946 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1947#else
1948 /* a heap element */
523 typedef WT ANHE; 1949 typedef WT ANHE;
524 1950
525 #define ANHE_w(he) (he) 1951 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1952 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1953 #define ANHE_at_cache(he)
538 #undef VAR 1964 #undef VAR
539 }; 1965 };
540 #include "ev_wrap.h" 1966 #include "ev_wrap.h"
541 1967
542 static struct ev_loop default_loop_struct; 1968 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1969 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1970
545#else 1971#else
546 1972
547 ev_tstamp ev_rt_now; 1973 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1974 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1975 #include "ev_vars.h"
550 #undef VAR 1976 #undef VAR
551 1977
552 static int ev_default_loop_ptr; 1978 static int ev_default_loop_ptr;
553 1979
554#endif 1980#endif
555 1981
1982#if EV_FEATURE_API
1983# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1984# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1985# define EV_INVOKE_PENDING invoke_cb (EV_A)
1986#else
1987# define EV_RELEASE_CB (void)0
1988# define EV_ACQUIRE_CB (void)0
1989# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1990#endif
1991
1992#define EVBREAK_RECURSE 0x80
1993
556/*****************************************************************************/ 1994/*****************************************************************************/
557 1995
1996#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1997ev_tstamp
559ev_time (void) 1998ev_time (void) EV_NOEXCEPT
560{ 1999{
561#if EV_USE_REALTIME 2000#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 2001 if (ecb_expect_true (have_realtime))
563 { 2002 {
564 struct timespec ts; 2003 struct timespec ts;
565 clock_gettime (CLOCK_REALTIME, &ts); 2004 clock_gettime (CLOCK_REALTIME, &ts);
566 return ts.tv_sec + ts.tv_nsec * 1e-9; 2005 return EV_TS_GET (ts);
567 } 2006 }
568#endif 2007#endif
569 2008
570 struct timeval tv; 2009 struct timeval tv;
571 gettimeofday (&tv, 0); 2010 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 2011 return EV_TV_GET (tv);
573} 2012}
2013#endif
574 2014
575ev_tstamp inline_size 2015inline_size ev_tstamp
576get_clock (void) 2016get_clock (void)
577{ 2017{
578#if EV_USE_MONOTONIC 2018#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 2019 if (ecb_expect_true (have_monotonic))
580 { 2020 {
581 struct timespec ts; 2021 struct timespec ts;
582 clock_gettime (CLOCK_MONOTONIC, &ts); 2022 clock_gettime (CLOCK_MONOTONIC, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9; 2023 return EV_TS_GET (ts);
584 } 2024 }
585#endif 2025#endif
586 2026
587 return ev_time (); 2027 return ev_time ();
588} 2028}
589 2029
590#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
591ev_tstamp 2031ev_tstamp
592ev_now (EV_P) 2032ev_now (EV_P) EV_NOEXCEPT
593{ 2033{
594 return ev_rt_now; 2034 return ev_rt_now;
595} 2035}
596#endif 2036#endif
597 2037
598void 2038void
599ev_sleep (ev_tstamp delay) 2039ev_sleep (ev_tstamp delay) EV_NOEXCEPT
600{ 2040{
601 if (delay > 0.) 2041 if (delay > EV_TS_CONST (0.))
602 { 2042 {
603#if EV_USE_NANOSLEEP 2043#if EV_USE_NANOSLEEP
604 struct timespec ts; 2044 struct timespec ts;
605 2045
606 ts.tv_sec = (time_t)delay; 2046 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 2047 nanosleep (&ts, 0);
610#elif defined(_WIN32) 2048#elif defined _WIN32
2049 /* maybe this should round up, as ms is very low resolution */
2050 /* compared to select (µs) or nanosleep (ns) */
611 Sleep ((unsigned long)(delay * 1e3)); 2051 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
612#else 2052#else
613 struct timeval tv; 2053 struct timeval tv;
614 2054
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2055 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2056 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 2057 /* by older ones */
2058 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 2059 select (0, 0, 0, 0, &tv);
622#endif 2060#endif
623 } 2061 }
624} 2062}
625 2063
626/*****************************************************************************/ 2064/*****************************************************************************/
627 2065
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2066#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 2067
630int inline_size 2068/* find a suitable new size for the given array, */
2069/* hopefully by rounding to a nice-to-malloc size */
2070inline_size int
631array_nextsize (int elem, int cur, int cnt) 2071array_nextsize (int elem, int cur, int cnt)
632{ 2072{
633 int ncur = cur + 1; 2073 int ncur = cur + 1;
634 2074
635 do 2075 do
636 ncur <<= 1; 2076 ncur <<= 1;
637 while (cnt > ncur); 2077 while (cnt > ncur);
638 2078
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2079 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2080 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 2081 {
642 ncur *= elem; 2082 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2083 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 2084 ncur = ncur - sizeof (void *) * 4;
646 } 2086 }
647 2087
648 return ncur; 2088 return ncur;
649} 2089}
650 2090
651static noinline void * 2091ecb_noinline ecb_cold
2092static void *
652array_realloc (int elem, void *base, int *cur, int cnt) 2093array_realloc (int elem, void *base, int *cur, int cnt)
653{ 2094{
654 *cur = array_nextsize (elem, *cur, cnt); 2095 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 2096 return ev_realloc (base, elem * *cur);
656} 2097}
657 2098
2099#define array_needsize_noinit(base,offset,count)
2100
658#define array_init_zero(base,count) \ 2101#define array_needsize_zerofill(base,offset,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2102 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
660 2103
661#define array_needsize(type,base,cur,cnt,init) \ 2104#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 2105 if (ecb_expect_false ((cnt) > (cur))) \
663 { \ 2106 { \
664 int ocur_ = (cur); \ 2107 ecb_unused int ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 2108 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 2109 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 2110 init ((base), ocur_, ((cur) - ocur_)); \
668 } 2111 }
669 2112
670#if 0 2113#if 0
671#define array_slim(type,stem) \ 2114#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2115 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
680#define array_free(stem, idx) \ 2123#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2124 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 2125
683/*****************************************************************************/ 2126/*****************************************************************************/
684 2127
685void noinline 2128/* dummy callback for pending events */
2129ecb_noinline
2130static void
2131pendingcb (EV_P_ ev_prepare *w, int revents)
2132{
2133}
2134
2135ecb_noinline
2136void
686ev_feed_event (EV_P_ void *w, int revents) 2137ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
687{ 2138{
688 W w_ = (W)w; 2139 W w_ = (W)w;
689 int pri = ABSPRI (w_); 2140 int pri = ABSPRI (w_);
690 2141
691 if (expect_false (w_->pending)) 2142 if (ecb_expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents; 2143 pendings [pri][w_->pending - 1].events |= revents;
693 else 2144 else
694 { 2145 {
695 w_->pending = ++pendingcnt [pri]; 2146 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2147 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
697 pendings [pri][w_->pending - 1].w = w_; 2148 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 2149 pendings [pri][w_->pending - 1].events = revents;
699 } 2150 }
700}
701 2151
702void inline_speed 2152 pendingpri = NUMPRI - 1;
2153}
2154
2155inline_speed void
2156feed_reverse (EV_P_ W w)
2157{
2158 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2159 rfeeds [rfeedcnt++] = w;
2160}
2161
2162inline_size void
2163feed_reverse_done (EV_P_ int revents)
2164{
2165 do
2166 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2167 while (rfeedcnt);
2168}
2169
2170inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 2171queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 2172{
705 int i; 2173 int i;
706 2174
707 for (i = 0; i < eventcnt; ++i) 2175 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 2176 ev_feed_event (EV_A_ events [i], type);
709} 2177}
710 2178
711/*****************************************************************************/ 2179/*****************************************************************************/
712 2180
713void inline_speed 2181inline_speed void
714fd_event (EV_P_ int fd, int revents) 2182fd_event_nocheck (EV_P_ int fd, int revents)
715{ 2183{
716 ANFD *anfd = anfds + fd; 2184 ANFD *anfd = anfds + fd;
717 ev_io *w; 2185 ev_io *w;
718 2186
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2187 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 2191 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 2192 ev_feed_event (EV_A_ (W)w, ev);
725 } 2193 }
726} 2194}
727 2195
728void 2196/* do not submit kernel events for fds that have reify set */
2197/* because that means they changed while we were polling for new events */
2198inline_speed void
729ev_feed_fd_event (EV_P_ int fd, int revents) 2199fd_event (EV_P_ int fd, int revents)
2200{
2201 ANFD *anfd = anfds + fd;
2202
2203 if (ecb_expect_true (!anfd->reify))
2204 fd_event_nocheck (EV_A_ fd, revents);
2205}
2206
2207void
2208ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
730{ 2209{
731 if (fd >= 0 && fd < anfdmax) 2210 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 2211 fd_event_nocheck (EV_A_ fd, revents);
733} 2212}
734 2213
735void inline_size 2214/* make sure the external fd watch events are in-sync */
2215/* with the kernel/libev internal state */
2216inline_size void
736fd_reify (EV_P) 2217fd_reify (EV_P)
737{ 2218{
738 int i; 2219 int i;
2220
2221#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2222 for (i = 0; i < fdchangecnt; ++i)
2223 {
2224 int fd = fdchanges [i];
2225 ANFD *anfd = anfds + fd;
2226
2227 if (anfd->reify & EV__IOFDSET && anfd->head)
2228 {
2229 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2230
2231 if (handle != anfd->handle)
2232 {
2233 unsigned long arg;
2234
2235 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2236
2237 /* handle changed, but fd didn't - we need to do it in two steps */
2238 backend_modify (EV_A_ fd, anfd->events, 0);
2239 anfd->events = 0;
2240 anfd->handle = handle;
2241 }
2242 }
2243 }
2244#endif
739 2245
740 for (i = 0; i < fdchangecnt; ++i) 2246 for (i = 0; i < fdchangecnt; ++i)
741 { 2247 {
742 int fd = fdchanges [i]; 2248 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 2249 ANFD *anfd = anfds + fd;
744 ev_io *w; 2250 ev_io *w;
745 2251
746 unsigned char events = 0; 2252 unsigned char o_events = anfd->events;
2253 unsigned char o_reify = anfd->reify;
747 2254
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2255 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 2256
751#if EV_SELECT_IS_WINSOCKET 2257 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 2258 {
754 unsigned long arg; 2259 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 2260
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2261 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 2262 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 2263
759 #endif 2264 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2265 o_reify = EV__IOFDSET; /* actually |= */
761 } 2266 }
762#endif
763 2267
764 { 2268 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 2269 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 2270 }
775 2271
776 fdchangecnt = 0; 2272 fdchangecnt = 0;
777} 2273}
778 2274
2275/* something about the given fd changed */
779void inline_size 2276inline_size
2277void
780fd_change (EV_P_ int fd, int flags) 2278fd_change (EV_P_ int fd, int flags)
781{ 2279{
782 unsigned char reify = anfds [fd].reify; 2280 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 2281 anfds [fd].reify |= flags;
784 2282
785 if (expect_true (!reify)) 2283 if (ecb_expect_true (!reify))
786 { 2284 {
787 ++fdchangecnt; 2285 ++fdchangecnt;
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2286 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
789 fdchanges [fdchangecnt - 1] = fd; 2287 fdchanges [fdchangecnt - 1] = fd;
790 } 2288 }
791} 2289}
792 2290
793void inline_speed 2291/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2292inline_speed ecb_cold void
794fd_kill (EV_P_ int fd) 2293fd_kill (EV_P_ int fd)
795{ 2294{
796 ev_io *w; 2295 ev_io *w;
797 2296
798 while ((w = (ev_io *)anfds [fd].head)) 2297 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 2299 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2300 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 2301 }
803} 2302}
804 2303
805int inline_size 2304/* check whether the given fd is actually valid, for error recovery */
2305inline_size ecb_cold int
806fd_valid (int fd) 2306fd_valid (int fd)
807{ 2307{
808#ifdef _WIN32 2308#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 2309 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 2310#else
811 return fcntl (fd, F_GETFD) != -1; 2311 return fcntl (fd, F_GETFD) != -1;
812#endif 2312#endif
813} 2313}
814 2314
815/* called on EBADF to verify fds */ 2315/* called on EBADF to verify fds */
816static void noinline 2316ecb_noinline ecb_cold
2317static void
817fd_ebadf (EV_P) 2318fd_ebadf (EV_P)
818{ 2319{
819 int fd; 2320 int fd;
820 2321
821 for (fd = 0; fd < anfdmax; ++fd) 2322 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 2324 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 2325 fd_kill (EV_A_ fd);
825} 2326}
826 2327
827/* called on ENOMEM in select/poll to kill some fds and retry */ 2328/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 2329ecb_noinline ecb_cold
2330static void
829fd_enomem (EV_P) 2331fd_enomem (EV_P)
830{ 2332{
831 int fd; 2333 int fd;
832 2334
833 for (fd = anfdmax; fd--; ) 2335 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 2336 if (anfds [fd].events)
835 { 2337 {
836 fd_kill (EV_A_ fd); 2338 fd_kill (EV_A_ fd);
837 return; 2339 break;
838 } 2340 }
839} 2341}
840 2342
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 2343/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 2344ecb_noinline
2345static void
843fd_rearm_all (EV_P) 2346fd_rearm_all (EV_P)
844{ 2347{
845 int fd; 2348 int fd;
846 2349
847 for (fd = 0; fd < anfdmax; ++fd) 2350 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 2351 if (anfds [fd].events)
849 { 2352 {
850 anfds [fd].events = 0; 2353 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 2354 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 2355 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 2356 }
854} 2357}
855 2358
2359/* used to prepare libev internal fd's */
2360/* this is not fork-safe */
2361inline_speed void
2362fd_intern (int fd)
2363{
2364#ifdef _WIN32
2365 unsigned long arg = 1;
2366 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2367#else
2368 fcntl (fd, F_SETFD, FD_CLOEXEC);
2369 fcntl (fd, F_SETFL, O_NONBLOCK);
2370#endif
2371}
2372
856/*****************************************************************************/ 2373/*****************************************************************************/
857 2374
858/* 2375/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2376 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2377 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2378 * the branching factor of the d-tree.
862 */ 2379 */
863 2380
864/* 2381/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2390#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2391#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2392#define UPHEAP_DONE(p,k) ((p) == (k))
876 2393
877/* away from the root */ 2394/* away from the root */
878void inline_speed 2395inline_speed void
879downheap (ANHE *heap, int N, int k) 2396downheap (ANHE *heap, int N, int k)
880{ 2397{
881 ANHE he = heap [k]; 2398 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2399 ANHE *E = heap + N + HEAP0;
883 2400
886 ev_tstamp minat; 2403 ev_tstamp minat;
887 ANHE *minpos; 2404 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2405 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
889 2406
890 /* find minimum child */ 2407 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E)) 2408 if (ecb_expect_true (pos + DHEAP - 1 < E))
892 { 2409 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2410 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2411 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2412 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2413 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 } 2414 }
898 else if (pos < E) 2415 else if (pos < E)
899 { 2416 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2417 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2418 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2419 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2420 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 } 2421 }
905 else 2422 else
906 break; 2423 break;
907 2424
908 if (ANHE_at (he) <= minat) 2425 if (ANHE_at (he) <= minat)
916 2433
917 heap [k] = he; 2434 heap [k] = he;
918 ev_active (ANHE_w (he)) = k; 2435 ev_active (ANHE_w (he)) = k;
919} 2436}
920 2437
921#else /* 4HEAP */ 2438#else /* not 4HEAP */
922 2439
923#define HEAP0 1 2440#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2441#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2442#define UPHEAP_DONE(p,k) (!(p))
926 2443
927/* away from the root */ 2444/* away from the root */
928void inline_speed 2445inline_speed void
929downheap (ANHE *heap, int N, int k) 2446downheap (ANHE *heap, int N, int k)
930{ 2447{
931 ANHE he = heap [k]; 2448 ANHE he = heap [k];
932 2449
933 for (;;) 2450 for (;;)
934 { 2451 {
935 int c = k << 1; 2452 int c = k << 1;
936 2453
937 if (c > N + HEAP0 - 1) 2454 if (c >= N + HEAP0)
938 break; 2455 break;
939 2456
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2457 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2458 ? 1 : 0;
942 2459
953 ev_active (ANHE_w (he)) = k; 2470 ev_active (ANHE_w (he)) = k;
954} 2471}
955#endif 2472#endif
956 2473
957/* towards the root */ 2474/* towards the root */
958void inline_speed 2475inline_speed void
959upheap (ANHE *heap, int k) 2476upheap (ANHE *heap, int k)
960{ 2477{
961 ANHE he = heap [k]; 2478 ANHE he = heap [k];
962 2479
963 for (;;) 2480 for (;;)
974 2491
975 heap [k] = he; 2492 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2493 ev_active (ANHE_w (he)) = k;
977} 2494}
978 2495
979void inline_size 2496/* move an element suitably so it is in a correct place */
2497inline_size void
980adjustheap (ANHE *heap, int N, int k) 2498adjustheap (ANHE *heap, int N, int k)
981{ 2499{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2500 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2501 upheap (heap, k);
984 else 2502 else
985 downheap (heap, N, k); 2503 downheap (heap, N, k);
986} 2504}
987 2505
988/* rebuild the heap: this function is used only once and executed rarely */ 2506/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2507inline_size void
990reheap (ANHE *heap, int N) 2508reheap (ANHE *heap, int N)
991{ 2509{
992 int i; 2510 int i;
993 2511
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2512 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2515 upheap (heap, i + HEAP0);
998} 2516}
999 2517
1000/*****************************************************************************/ 2518/*****************************************************************************/
1001 2519
2520/* associate signal watchers to a signal signal */
1002typedef struct 2521typedef struct
1003{ 2522{
2523 EV_ATOMIC_T pending;
2524#if EV_MULTIPLICITY
2525 EV_P;
2526#endif
1004 WL head; 2527 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2528} ANSIG;
1007 2529
1008static ANSIG *signals; 2530static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2531
1013/*****************************************************************************/ 2532/*****************************************************************************/
1014 2533
1015void inline_speed 2534#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2535
1027static void noinline 2536ecb_noinline ecb_cold
2537static void
1028evpipe_init (EV_P) 2538evpipe_init (EV_P)
1029{ 2539{
1030 if (!ev_is_active (&pipeev)) 2540 if (!ev_is_active (&pipe_w))
2541 {
2542 int fds [2];
2543
2544# if EV_USE_EVENTFD
2545 fds [0] = -1;
2546 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2547 if (fds [1] < 0 && errno == EINVAL)
2548 fds [1] = eventfd (0, 0);
2549
2550 if (fds [1] < 0)
2551# endif
2552 {
2553 while (pipe (fds))
2554 ev_syserr ("(libev) error creating signal/async pipe");
2555
2556 fd_intern (fds [0]);
2557 }
2558
2559 evpipe [0] = fds [0];
2560
2561 if (evpipe [1] < 0)
2562 evpipe [1] = fds [1]; /* first call, set write fd */
2563 else
2564 {
2565 /* on subsequent calls, do not change evpipe [1] */
2566 /* so that evpipe_write can always rely on its value. */
2567 /* this branch does not do anything sensible on windows, */
2568 /* so must not be executed on windows */
2569
2570 dup2 (fds [1], evpipe [1]);
2571 close (fds [1]);
2572 }
2573
2574 fd_intern (evpipe [1]);
2575
2576 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2577 ev_io_start (EV_A_ &pipe_w);
2578 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2579 }
2580}
2581
2582inline_speed void
2583evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2584{
2585 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2586
2587 if (ecb_expect_true (*flag))
2588 return;
2589
2590 *flag = 1;
2591 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2592
2593 pipe_write_skipped = 1;
2594
2595 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2596
2597 if (pipe_write_wanted)
2598 {
2599 int old_errno;
2600
2601 pipe_write_skipped = 0;
2602 ECB_MEMORY_FENCE_RELEASE;
2603
2604 old_errno = errno; /* save errno because write will clobber it */
2605
1032#if EV_USE_EVENTFD 2606#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2607 if (evpipe [0] < 0)
1034 { 2608 {
1035 evpipe [0] = -1; 2609 uint64_t counter = 1;
1036 fd_intern (evfd); 2610 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2611 }
1039 else 2612 else
1040#endif 2613#endif
1041 { 2614 {
1042 while (pipe (evpipe)) 2615#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2616 WSABUF buf;
1044 2617 DWORD sent;
1045 fd_intern (evpipe [0]); 2618 buf.buf = (char *)&buf;
1046 fd_intern (evpipe [1]); 2619 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2620 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2621#else
2622 write (evpipe [1], &(evpipe [1]), 1);
2623#endif
1048 } 2624 }
1049 2625
1050 ev_io_start (EV_A_ &pipeev); 2626 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2627 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2628}
1061 2629
1062 *flag = 1; 2630/* called whenever the libev signal pipe */
2631/* got some events (signal, async) */
2632static void
2633pipecb (EV_P_ ev_io *iow, int revents)
2634{
2635 int i;
1063 2636
2637 if (revents & EV_READ)
2638 {
1064#if EV_USE_EVENTFD 2639#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2640 if (evpipe [0] < 0)
1066 { 2641 {
1067 uint64_t counter = 1; 2642 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2643 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2644 }
1070 else 2645 else
1071#endif 2646#endif
1072 write (evpipe [1], &old_errno, 1); 2647 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2648 char dummy[4];
2649#ifdef _WIN32
2650 WSABUF buf;
2651 DWORD recvd;
2652 DWORD flags = 0;
2653 buf.buf = dummy;
2654 buf.len = sizeof (dummy);
2655 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2656#else
1091 read (evpipe [0], &dummy, 1); 2657 read (evpipe [0], &dummy, sizeof (dummy));
2658#endif
2659 }
2660 }
2661
2662 pipe_write_skipped = 0;
2663
2664 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2665
2666#if EV_SIGNAL_ENABLE
2667 if (sig_pending)
1092 } 2668 {
2669 sig_pending = 0;
1093 2670
1094 if (gotsig && ev_is_default_loop (EV_A)) 2671 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2672
1099 for (signum = signalmax; signum--; ) 2673 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2674 if (ecb_expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2675 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2676 }
2677#endif
1103 2678
1104#if EV_ASYNC_ENABLE 2679#if EV_ASYNC_ENABLE
1105 if (gotasync) 2680 if (async_pending)
1106 { 2681 {
1107 int i; 2682 async_pending = 0;
1108 gotasync = 0; 2683
2684 ECB_MEMORY_FENCE;
1109 2685
1110 for (i = asynccnt; i--; ) 2686 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2687 if (asyncs [i]->sent)
1112 { 2688 {
1113 asyncs [i]->sent = 0; 2689 asyncs [i]->sent = 0;
2690 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2691 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2692 }
1116 } 2693 }
1117#endif 2694#endif
1118} 2695}
1119 2696
1120/*****************************************************************************/ 2697/*****************************************************************************/
1121 2698
2699void
2700ev_feed_signal (int signum) EV_NOEXCEPT
2701{
2702#if EV_MULTIPLICITY
2703 EV_P;
2704 ECB_MEMORY_FENCE_ACQUIRE;
2705 EV_A = signals [signum - 1].loop;
2706
2707 if (!EV_A)
2708 return;
2709#endif
2710
2711 signals [signum - 1].pending = 1;
2712 evpipe_write (EV_A_ &sig_pending);
2713}
2714
1122static void 2715static void
1123ev_sighandler (int signum) 2716ev_sighandler (int signum)
1124{ 2717{
2718#ifdef _WIN32
2719 signal (signum, ev_sighandler);
2720#endif
2721
2722 ev_feed_signal (signum);
2723}
2724
2725ecb_noinline
2726void
2727ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2728{
2729 WL w;
2730
2731 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2732 return;
2733
2734 --signum;
2735
1125#if EV_MULTIPLICITY 2736#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2737 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2738 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2739
1129#if _WIN32 2740 if (ecb_expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2741 return;
2742#endif
1150 2743
1151 signals [signum].gotsig = 0; 2744 signals [signum].pending = 0;
2745 ECB_MEMORY_FENCE_RELEASE;
1152 2746
1153 for (w = signals [signum].head; w; w = w->next) 2747 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2749}
1156 2750
2751#if EV_USE_SIGNALFD
2752static void
2753sigfdcb (EV_P_ ev_io *iow, int revents)
2754{
2755 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2756
2757 for (;;)
2758 {
2759 ssize_t res = read (sigfd, si, sizeof (si));
2760
2761 /* not ISO-C, as res might be -1, but works with SuS */
2762 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2763 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2764
2765 if (res < (ssize_t)sizeof (si))
2766 break;
2767 }
2768}
2769#endif
2770
2771#endif
2772
1157/*****************************************************************************/ 2773/*****************************************************************************/
1158 2774
2775#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2776static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2777
1163static ev_signal childev; 2778static ev_signal childev;
1164 2779
1165#ifndef WIFCONTINUED 2780#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2781# define WIFCONTINUED(status) 0
1167#endif 2782#endif
1168 2783
1169void inline_speed 2784/* handle a single child status event */
2785inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2786child_reap (EV_P_ int chain, int pid, int status)
1171{ 2787{
1172 ev_child *w; 2788 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2789 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2790
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2791 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2792 {
1177 if ((w->pid == pid || !w->pid) 2793 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2794 && (!traced || (w->flags & 1)))
1179 { 2795 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2796 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2803
1188#ifndef WCONTINUED 2804#ifndef WCONTINUED
1189# define WCONTINUED 0 2805# define WCONTINUED 0
1190#endif 2806#endif
1191 2807
2808/* called on sigchld etc., calls waitpid */
1192static void 2809static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2810childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2811{
1195 int pid, status; 2812 int pid, status;
1196 2813
1204 /* make sure we are called again until all children have been reaped */ 2821 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2822 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2823 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2824
1208 child_reap (EV_A_ pid, pid, status); 2825 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2826 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2827 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2828}
1212 2829
1213#endif 2830#endif
1214 2831
1215/*****************************************************************************/ 2832/*****************************************************************************/
1216 2833
2834#if EV_USE_IOCP
2835# include "ev_iocp.c"
2836#endif
1217#if EV_USE_PORT 2837#if EV_USE_PORT
1218# include "ev_port.c" 2838# include "ev_port.c"
1219#endif 2839#endif
1220#if EV_USE_KQUEUE 2840#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2841# include "ev_kqueue.c"
1222#endif 2842#endif
1223#if EV_USE_EPOLL 2843#if EV_USE_EPOLL
1224# include "ev_epoll.c" 2844# include "ev_epoll.c"
1225#endif 2845#endif
2846#if EV_USE_LINUXAIO
2847# include "ev_linuxaio.c"
2848#endif
2849#if EV_USE_IOURING
2850# include "ev_iouring.c"
2851#endif
1226#if EV_USE_POLL 2852#if EV_USE_POLL
1227# include "ev_poll.c" 2853# include "ev_poll.c"
1228#endif 2854#endif
1229#if EV_USE_SELECT 2855#if EV_USE_SELECT
1230# include "ev_select.c" 2856# include "ev_select.c"
1231#endif 2857#endif
1232 2858
1233int 2859ecb_cold int
1234ev_version_major (void) 2860ev_version_major (void) EV_NOEXCEPT
1235{ 2861{
1236 return EV_VERSION_MAJOR; 2862 return EV_VERSION_MAJOR;
1237} 2863}
1238 2864
1239int 2865ecb_cold int
1240ev_version_minor (void) 2866ev_version_minor (void) EV_NOEXCEPT
1241{ 2867{
1242 return EV_VERSION_MINOR; 2868 return EV_VERSION_MINOR;
1243} 2869}
1244 2870
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2871/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2872inline_size ecb_cold int
1247enable_secure (void) 2873enable_secure (void)
1248{ 2874{
1249#ifdef _WIN32 2875#ifdef _WIN32
1250 return 0; 2876 return 0;
1251#else 2877#else
1252 return getuid () != geteuid () 2878 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2879 || getgid () != getegid ();
1254#endif 2880#endif
1255} 2881}
1256 2882
2883ecb_cold
1257unsigned int 2884unsigned int
1258ev_supported_backends (void) 2885ev_supported_backends (void) EV_NOEXCEPT
1259{ 2886{
1260 unsigned int flags = 0; 2887 unsigned int flags = 0;
1261 2888
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2889 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2890 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2891 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2892 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2893 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2894 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2895 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1267 2896
1268 return flags; 2897 return flags;
1269} 2898}
1270 2899
2900ecb_cold
1271unsigned int 2901unsigned int
1272ev_recommended_backends (void) 2902ev_recommended_backends (void) EV_NOEXCEPT
1273{ 2903{
1274 unsigned int flags = ev_supported_backends (); 2904 unsigned int flags = ev_supported_backends ();
1275 2905
1276#ifndef __NetBSD__ 2906#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2907 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2911#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2912 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2913 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2914 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2915#endif
2916#ifdef __FreeBSD__
2917 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2918#endif
2919
2920 /* TODO: linuxaio is very experimental */
2921#if !EV_RECOMMEND_LINUXAIO
2922 flags &= ~EVBACKEND_LINUXAIO;
2923#endif
2924 /* TODO: linuxaio is super experimental */
2925#if !EV_RECOMMEND_IOURING
2926 flags &= ~EVBACKEND_IOURING;
2927#endif
1286 2928
1287 return flags; 2929 return flags;
1288} 2930}
1289 2931
2932ecb_cold
1290unsigned int 2933unsigned int
1291ev_embeddable_backends (void) 2934ev_embeddable_backends (void) EV_NOEXCEPT
1292{ 2935{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2936 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294 2937
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2938 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 2939 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 2940 flags &= ~EVBACKEND_EPOLL;
2941
2942 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2943
2944 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2945 * because our backend_fd is the epoll fd we need as fallback.
2946 * if the kernel ever is fixed, this might change...
2947 */
1298 2948
1299 return flags; 2949 return flags;
1300} 2950}
1301 2951
1302unsigned int 2952unsigned int
1303ev_backend (EV_P) 2953ev_backend (EV_P) EV_NOEXCEPT
1304{ 2954{
1305 return backend; 2955 return backend;
1306} 2956}
1307 2957
2958#if EV_FEATURE_API
1308unsigned int 2959unsigned int
1309ev_loop_count (EV_P) 2960ev_iteration (EV_P) EV_NOEXCEPT
1310{ 2961{
1311 return loop_count; 2962 return loop_count;
1312} 2963}
1313 2964
2965unsigned int
2966ev_depth (EV_P) EV_NOEXCEPT
2967{
2968 return loop_depth;
2969}
2970
1314void 2971void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2972ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1316{ 2973{
1317 io_blocktime = interval; 2974 io_blocktime = interval;
1318} 2975}
1319 2976
1320void 2977void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2978ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1322{ 2979{
1323 timeout_blocktime = interval; 2980 timeout_blocktime = interval;
1324} 2981}
1325 2982
1326static void noinline 2983void
2984ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2985{
2986 userdata = data;
2987}
2988
2989void *
2990ev_userdata (EV_P) EV_NOEXCEPT
2991{
2992 return userdata;
2993}
2994
2995void
2996ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2997{
2998 invoke_cb = invoke_pending_cb;
2999}
3000
3001void
3002ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3003{
3004 release_cb = release;
3005 acquire_cb = acquire;
3006}
3007#endif
3008
3009/* initialise a loop structure, must be zero-initialised */
3010ecb_noinline ecb_cold
3011static void
1327loop_init (EV_P_ unsigned int flags) 3012loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1328{ 3013{
1329 if (!backend) 3014 if (!backend)
1330 { 3015 {
3016 origflags = flags;
3017
1331#if EV_USE_REALTIME 3018#if EV_USE_REALTIME
1332 if (!have_realtime) 3019 if (!have_realtime)
1333 { 3020 {
1334 struct timespec ts; 3021 struct timespec ts;
1335 3022
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3033 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 3034 have_monotonic = 1;
1348 } 3035 }
1349#endif 3036#endif
1350 3037
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 3038 /* pid check not overridable via env */
1366#ifndef _WIN32 3039#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 3040 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 3041 curpid = getpid ();
1369#endif 3042#endif
1371 if (!(flags & EVFLAG_NOENV) 3044 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 3045 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 3046 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 3047 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 3048
1376 if (!(flags & 0x0000ffffU)) 3049 ev_rt_now = ev_time ();
3050 mn_now = get_clock ();
3051 now_floor = mn_now;
3052 rtmn_diff = ev_rt_now - mn_now;
3053#if EV_FEATURE_API
3054 invoke_cb = ev_invoke_pending;
3055#endif
3056
3057 io_blocktime = 0.;
3058 timeout_blocktime = 0.;
3059 backend = 0;
3060 backend_fd = -1;
3061 sig_pending = 0;
3062#if EV_ASYNC_ENABLE
3063 async_pending = 0;
3064#endif
3065 pipe_write_skipped = 0;
3066 pipe_write_wanted = 0;
3067 evpipe [0] = -1;
3068 evpipe [1] = -1;
3069#if EV_USE_INOTIFY
3070 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3071#endif
3072#if EV_USE_SIGNALFD
3073 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3074#endif
3075
3076 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 3077 flags |= ev_recommended_backends ();
1378 3078
3079#if EV_USE_IOCP
3080 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3081#endif
1379#if EV_USE_PORT 3082#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3083 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 3084#endif
1382#if EV_USE_KQUEUE 3085#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3086 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3087#endif
3088#if EV_USE_IOURING
3089 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3090#endif
3091#if EV_USE_LINUXAIO
3092 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1384#endif 3093#endif
1385#if EV_USE_EPOLL 3094#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3095 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif 3096#endif
1388#if EV_USE_POLL 3097#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3098 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif 3099#endif
1391#if EV_USE_SELECT 3100#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3101 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1393#endif 3102#endif
1394 3103
3104 ev_prepare_init (&pending_w, pendingcb);
3105
3106#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 3107 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 3108 ev_set_priority (&pipe_w, EV_MAXPRI);
3109#endif
1397 } 3110 }
1398} 3111}
1399 3112
1400static void noinline 3113/* free up a loop structure */
3114ecb_cold
3115void
1401loop_destroy (EV_P) 3116ev_loop_destroy (EV_P)
1402{ 3117{
1403 int i; 3118 int i;
1404 3119
3120#if EV_MULTIPLICITY
3121 /* mimic free (0) */
3122 if (!EV_A)
3123 return;
3124#endif
3125
3126#if EV_CLEANUP_ENABLE
3127 /* queue cleanup watchers (and execute them) */
3128 if (ecb_expect_false (cleanupcnt))
3129 {
3130 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3131 EV_INVOKE_PENDING;
3132 }
3133#endif
3134
3135#if EV_CHILD_ENABLE
3136 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3137 {
3138 ev_ref (EV_A); /* child watcher */
3139 ev_signal_stop (EV_A_ &childev);
3140 }
3141#endif
3142
1405 if (ev_is_active (&pipeev)) 3143 if (ev_is_active (&pipe_w))
1406 { 3144 {
1407 ev_ref (EV_A); /* signal watcher */ 3145 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 3146 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 3147
3148 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3149 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3150 }
3151
1410#if EV_USE_EVENTFD 3152#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 3153 if (ev_is_active (&sigfd_w))
1412 close (evfd); 3154 close (sigfd);
1413#endif 3155#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 3156
1422#if EV_USE_INOTIFY 3157#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 3158 if (fs_fd >= 0)
1424 close (fs_fd); 3159 close (fs_fd);
1425#endif 3160#endif
1426 3161
1427 if (backend_fd >= 0) 3162 if (backend_fd >= 0)
1428 close (backend_fd); 3163 close (backend_fd);
1429 3164
3165#if EV_USE_IOCP
3166 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3167#endif
1430#if EV_USE_PORT 3168#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3169 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 3170#endif
1433#if EV_USE_KQUEUE 3171#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3172 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3173#endif
3174#if EV_USE_IOURING
3175 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3176#endif
3177#if EV_USE_LINUXAIO
3178 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1435#endif 3179#endif
1436#if EV_USE_EPOLL 3180#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3181 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif 3182#endif
1439#if EV_USE_POLL 3183#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3184 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif 3185#endif
1442#if EV_USE_SELECT 3186#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3187 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1444#endif 3188#endif
1445 3189
1446 for (i = NUMPRI; i--; ) 3190 for (i = NUMPRI; i--; )
1447 { 3191 {
1448 array_free (pending, [i]); 3192 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE 3193#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 3194 array_free (idle, [i]);
1451#endif 3195#endif
1452 } 3196 }
1453 3197
1454 ev_free (anfds); anfdmax = 0; 3198 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 3199
1456 /* have to use the microsoft-never-gets-it-right macro */ 3200 /* have to use the microsoft-never-gets-it-right macro */
3201 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 3202 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 3203 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 3204#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 3205 array_free (periodic, EMPTY);
1461#endif 3206#endif
1462#if EV_FORK_ENABLE 3207#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 3208 array_free (fork, EMPTY);
1464#endif 3209#endif
3210#if EV_CLEANUP_ENABLE
3211 array_free (cleanup, EMPTY);
3212#endif
1465 array_free (prepare, EMPTY); 3213 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 3214 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 3215#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 3216 array_free (async, EMPTY);
1469#endif 3217#endif
1470 3218
1471 backend = 0; 3219 backend = 0;
3220
3221#if EV_MULTIPLICITY
3222 if (ev_is_default_loop (EV_A))
3223#endif
3224 ev_default_loop_ptr = 0;
3225#if EV_MULTIPLICITY
3226 else
3227 ev_free (EV_A);
3228#endif
1472} 3229}
1473 3230
1474#if EV_USE_INOTIFY 3231#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 3232inline_size void infy_fork (EV_P);
1476#endif 3233#endif
1477 3234
1478void inline_size 3235inline_size void
1479loop_fork (EV_P) 3236loop_fork (EV_P)
1480{ 3237{
1481#if EV_USE_PORT 3238#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3239 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 3240#endif
1484#if EV_USE_KQUEUE 3241#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3242 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3243#endif
3244#if EV_USE_IOURING
3245 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3246#endif
3247#if EV_USE_LINUXAIO
3248 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1486#endif 3249#endif
1487#if EV_USE_EPOLL 3250#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3251 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif 3252#endif
1490#if EV_USE_INOTIFY 3253#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 3254 infy_fork (EV_A);
1492#endif 3255#endif
1493 3256
1494 if (ev_is_active (&pipeev)) 3257#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3258 if (ev_is_active (&pipe_w) && postfork != 2)
1495 { 3259 {
1496 /* this "locks" the handlers against writing to the pipe */ 3260 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 3261
1503 ev_ref (EV_A); 3262 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 3263 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 3264
1511 if (evpipe [0] >= 0) 3265 if (evpipe [0] >= 0)
1512 { 3266 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 3267
1517 evpipe_init (EV_A); 3268 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 3269 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 3270 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 3271 }
3272#endif
1521 3273
1522 postfork = 0; 3274 postfork = 0;
1523} 3275}
1524 3276
1525#if EV_MULTIPLICITY 3277#if EV_MULTIPLICITY
1526 3278
3279ecb_cold
1527struct ev_loop * 3280struct ev_loop *
1528ev_loop_new (unsigned int flags) 3281ev_loop_new (unsigned int flags) EV_NOEXCEPT
1529{ 3282{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3283 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 3284
1532 memset (loop, 0, sizeof (struct ev_loop)); 3285 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 3286 loop_init (EV_A_ flags);
1535 3287
1536 if (ev_backend (EV_A)) 3288 if (ev_backend (EV_A))
1537 return loop; 3289 return EV_A;
1538 3290
3291 ev_free (EV_A);
1539 return 0; 3292 return 0;
1540} 3293}
1541 3294
1542void 3295#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 3296
1555#if EV_VERIFY 3297#if EV_VERIFY
1556static void noinline 3298ecb_noinline ecb_cold
3299static void
1557verify_watcher (EV_P_ W w) 3300verify_watcher (EV_P_ W w)
1558{ 3301{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3302 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 3303
1561 if (w->pending) 3304 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3305 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 3306}
1564 3307
1565static void noinline 3308ecb_noinline ecb_cold
3309static void
1566verify_heap (EV_P_ ANHE *heap, int N) 3310verify_heap (EV_P_ ANHE *heap, int N)
1567{ 3311{
1568 int i; 3312 int i;
1569 3313
1570 for (i = HEAP0; i < N + HEAP0; ++i) 3314 for (i = HEAP0; i < N + HEAP0; ++i)
1575 3319
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3320 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 3321 }
1578} 3322}
1579 3323
1580static void noinline 3324ecb_noinline ecb_cold
3325static void
1581array_verify (EV_P_ W *ws, int cnt) 3326array_verify (EV_P_ W *ws, int cnt)
1582{ 3327{
1583 while (cnt--) 3328 while (cnt--)
1584 { 3329 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3330 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 3331 verify_watcher (EV_A_ ws [cnt]);
1587 } 3332 }
1588} 3333}
1589#endif 3334#endif
1590 3335
1591void 3336#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 3337void ecb_cold
3338ev_verify (EV_P) EV_NOEXCEPT
1593{ 3339{
1594#if EV_VERIFY 3340#if EV_VERIFY
1595 int i; 3341 int i;
1596 WL w; 3342 WL w, w2;
1597 3343
1598 assert (activecnt >= -1); 3344 assert (activecnt >= -1);
1599 3345
1600 assert (fdchangemax >= fdchangecnt); 3346 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 3347 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3348 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 3349
1604 assert (anfdmax >= 0); 3350 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 3351 for (i = 0; i < anfdmax; ++i)
3352 {
3353 int j = 0;
3354
1606 for (w = anfds [i].head; w; w = w->next) 3355 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 3356 {
1608 verify_watcher (EV_A_ (W)w); 3357 verify_watcher (EV_A_ (W)w);
3358
3359 if (j++ & 1)
3360 {
3361 assert (("libev: io watcher list contains a loop", w != w2));
3362 w2 = w2->next;
3363 }
3364
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3365 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3366 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 3367 }
3368 }
1612 3369
1613 assert (timermax >= timercnt); 3370 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 3371 verify_heap (EV_A_ timers, timercnt);
1615 3372
1616#if EV_PERIODIC_ENABLE 3373#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 3388#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 3389 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 3390 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 3391#endif
1635 3392
3393#if EV_CLEANUP_ENABLE
3394 assert (cleanupmax >= cleanupcnt);
3395 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3396#endif
3397
1636#if EV_ASYNC_ENABLE 3398#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 3399 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 3400 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 3401#endif
1640 3402
3403#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 3404 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 3405 array_verify (EV_A_ (W *)prepares, preparecnt);
3406#endif
1643 3407
3408#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 3409 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 3410 array_verify (EV_A_ (W *)checks, checkcnt);
3411#endif
1646 3412
1647# if 0 3413# if 0
3414#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3415 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3416 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3417#endif
1650# endif 3418# endif
1651#endif 3419#endif
1652} 3420}
1653 3421#endif
1654#endif /* multiplicity */
1655 3422
1656#if EV_MULTIPLICITY 3423#if EV_MULTIPLICITY
3424ecb_cold
1657struct ev_loop * 3425struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 3426#else
1660int 3427int
3428#endif
1661ev_default_loop (unsigned int flags) 3429ev_default_loop (unsigned int flags) EV_NOEXCEPT
1662#endif
1663{ 3430{
1664 if (!ev_default_loop_ptr) 3431 if (!ev_default_loop_ptr)
1665 { 3432 {
1666#if EV_MULTIPLICITY 3433#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3434 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3435#else
1669 ev_default_loop_ptr = 1; 3436 ev_default_loop_ptr = 1;
1670#endif 3437#endif
1671 3438
1672 loop_init (EV_A_ flags); 3439 loop_init (EV_A_ flags);
1673 3440
1674 if (ev_backend (EV_A)) 3441 if (ev_backend (EV_A))
1675 { 3442 {
1676#ifndef _WIN32 3443#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3444 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3445 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3446 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3447 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3448#endif
1686 3453
1687 return ev_default_loop_ptr; 3454 return ev_default_loop_ptr;
1688} 3455}
1689 3456
1690void 3457void
1691ev_default_destroy (void) 3458ev_loop_fork (EV_P) EV_NOEXCEPT
1692{ 3459{
1693#if EV_MULTIPLICITY 3460 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3461}
1716 3462
1717/*****************************************************************************/ 3463/*****************************************************************************/
1718 3464
1719void 3465void
1720ev_invoke (EV_P_ void *w, int revents) 3466ev_invoke (EV_P_ void *w, int revents)
1721{ 3467{
1722 EV_CB_INVOKE ((W)w, revents); 3468 EV_CB_INVOKE ((W)w, revents);
1723} 3469}
1724 3470
1725void inline_speed 3471unsigned int
1726call_pending (EV_P) 3472ev_pending_count (EV_P) EV_NOEXCEPT
1727{ 3473{
1728 int pri; 3474 int pri;
3475 unsigned int count = 0;
1729 3476
1730 for (pri = NUMPRI; pri--; ) 3477 for (pri = NUMPRI; pri--; )
3478 count += pendingcnt [pri];
3479
3480 return count;
3481}
3482
3483ecb_noinline
3484void
3485ev_invoke_pending (EV_P)
3486{
3487 pendingpri = NUMPRI;
3488
3489 do
3490 {
3491 --pendingpri;
3492
3493 /* pendingpri possibly gets modified in the inner loop */
1731 while (pendingcnt [pri]) 3494 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3495 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3496 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3497
1739 p->w->pending = 0; 3498 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3499 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3500 EV_FREQUENT_CHECK;
1742 } 3501 }
1743 } 3502 }
3503 while (pendingpri);
1744} 3504}
1745 3505
1746#if EV_IDLE_ENABLE 3506#if EV_IDLE_ENABLE
1747void inline_size 3507/* make idle watchers pending. this handles the "call-idle */
3508/* only when higher priorities are idle" logic */
3509inline_size void
1748idle_reify (EV_P) 3510idle_reify (EV_P)
1749{ 3511{
1750 if (expect_false (idleall)) 3512 if (ecb_expect_false (idleall))
1751 { 3513 {
1752 int pri; 3514 int pri;
1753 3515
1754 for (pri = NUMPRI; pri--; ) 3516 for (pri = NUMPRI; pri--; )
1755 { 3517 {
1764 } 3526 }
1765 } 3527 }
1766} 3528}
1767#endif 3529#endif
1768 3530
1769void inline_size 3531/* make timers pending */
3532inline_size void
1770timers_reify (EV_P) 3533timers_reify (EV_P)
1771{ 3534{
1772 EV_FREQUENT_CHECK; 3535 EV_FREQUENT_CHECK;
1773 3536
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3537 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3538 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3539 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3540 {
3541 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3542
3543 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3544
3545 /* first reschedule or stop timer */
3546 if (w->repeat)
3547 {
1783 ev_at (w) += w->repeat; 3548 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3549 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3550 ev_at (w) = mn_now;
1786 3551
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3552 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1788 3553
1789 ANHE_at_cache (timers [HEAP0]); 3554 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3555 downheap (timers, timercnt, HEAP0);
3556 }
3557 else
3558 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3559
3560 EV_FREQUENT_CHECK;
3561 feed_reverse (EV_A_ (W)w);
1791 } 3562 }
1792 else 3563 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3564
1795 EV_FREQUENT_CHECK; 3565 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3566 }
1798} 3567}
1799 3568
1800#if EV_PERIODIC_ENABLE 3569#if EV_PERIODIC_ENABLE
1801void inline_size 3570
3571ecb_noinline
3572static void
3573periodic_recalc (EV_P_ ev_periodic *w)
3574{
3575 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3576 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3577
3578 /* the above almost always errs on the low side */
3579 while (at <= ev_rt_now)
3580 {
3581 ev_tstamp nat = at + w->interval;
3582
3583 /* when resolution fails us, we use ev_rt_now */
3584 if (ecb_expect_false (nat == at))
3585 {
3586 at = ev_rt_now;
3587 break;
3588 }
3589
3590 at = nat;
3591 }
3592
3593 ev_at (w) = at;
3594}
3595
3596/* make periodics pending */
3597inline_size void
1802periodics_reify (EV_P) 3598periodics_reify (EV_P)
1803{ 3599{
1804 EV_FREQUENT_CHECK; 3600 EV_FREQUENT_CHECK;
1805 3601
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3602 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3603 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3604 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3605 {
3606 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3607
3608 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3609
3610 /* first reschedule or stop timer */
3611 if (w->reschedule_cb)
3612 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3613 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3614
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3615 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3616
1819 ANHE_at_cache (periodics [HEAP0]); 3617 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3618 downheap (periodics, periodiccnt, HEAP0);
3619 }
3620 else if (w->interval)
3621 {
3622 periodic_recalc (EV_A_ w);
3623 ANHE_at_cache (periodics [HEAP0]);
3624 downheap (periodics, periodiccnt, HEAP0);
3625 }
3626 else
3627 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3628
3629 EV_FREQUENT_CHECK;
3630 feed_reverse (EV_A_ (W)w);
1821 } 3631 }
1822 else if (w->interval) 3632 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3633
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3634 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3635 }
1847} 3636}
1848 3637
1849static void noinline 3638/* simply recalculate all periodics */
3639/* TODO: maybe ensure that at least one event happens when jumping forward? */
3640ecb_noinline ecb_cold
3641static void
1850periodics_reschedule (EV_P) 3642periodics_reschedule (EV_P)
1851{ 3643{
1852 int i; 3644 int i;
1853 3645
1854 /* adjust periodics after time jump */ 3646 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3649 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3650
1859 if (w->reschedule_cb) 3651 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3653 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3654 periodic_recalc (EV_A_ w);
1863 3655
1864 ANHE_at_cache (periodics [i]); 3656 ANHE_at_cache (periodics [i]);
1865 } 3657 }
1866 3658
1867 reheap (periodics, periodiccnt); 3659 reheap (periodics, periodiccnt);
1868} 3660}
1869#endif 3661#endif
1870 3662
1871void inline_speed 3663/* adjust all timers by a given offset */
3664ecb_noinline ecb_cold
3665static void
3666timers_reschedule (EV_P_ ev_tstamp adjust)
3667{
3668 int i;
3669
3670 for (i = 0; i < timercnt; ++i)
3671 {
3672 ANHE *he = timers + i + HEAP0;
3673 ANHE_w (*he)->at += adjust;
3674 ANHE_at_cache (*he);
3675 }
3676}
3677
3678/* fetch new monotonic and realtime times from the kernel */
3679/* also detect if there was a timejump, and act accordingly */
3680inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3681time_update (EV_P_ ev_tstamp max_block)
1873{ 3682{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3683#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3684 if (ecb_expect_true (have_monotonic))
1878 { 3685 {
3686 int i;
1879 ev_tstamp odiff = rtmn_diff; 3687 ev_tstamp odiff = rtmn_diff;
1880 3688
1881 mn_now = get_clock (); 3689 mn_now = get_clock ();
1882 3690
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3691 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */ 3692 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3693 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1886 { 3694 {
1887 ev_rt_now = rtmn_diff + mn_now; 3695 ev_rt_now = rtmn_diff + mn_now;
1888 return; 3696 return;
1889 } 3697 }
1890 3698
1899 * doesn't hurt either as we only do this on time-jumps or 3707 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3708 * in the unlikely event of having been preempted here.
1901 */ 3709 */
1902 for (i = 4; --i; ) 3710 for (i = 4; --i; )
1903 { 3711 {
3712 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3713 rtmn_diff = ev_rt_now - mn_now;
1905 3714
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3715 diff = odiff - rtmn_diff;
3716
3717 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1907 return; /* all is well */ 3718 return; /* all is well */
1908 3719
1909 ev_rt_now = ev_time (); 3720 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3721 mn_now = get_clock ();
1911 now_floor = mn_now; 3722 now_floor = mn_now;
1912 } 3723 }
1913 3724
3725 /* no timer adjustment, as the monotonic clock doesn't jump */
3726 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 3727# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 3728 periodics_reschedule (EV_A);
1916# endif 3729# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 3730 }
1920 else 3731 else
1921#endif 3732#endif
1922 { 3733 {
1923 ev_rt_now = ev_time (); 3734 ev_rt_now = ev_time ();
1924 3735
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3736 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1926 { 3737 {
3738 /* adjust timers. this is easy, as the offset is the same for all of them */
3739 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3740#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3741 periodics_reschedule (EV_A);
1929#endif 3742#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3743 }
1938 3744
1939 mn_now = ev_rt_now; 3745 mn_now = ev_rt_now;
1940 } 3746 }
1941} 3747}
1942 3748
1943void 3749int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3750ev_run (EV_P_ int flags)
1965{ 3751{
3752#if EV_FEATURE_API
3753 ++loop_depth;
3754#endif
3755
3756 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3757
1966 loop_done = EVUNLOOP_CANCEL; 3758 loop_done = EVBREAK_CANCEL;
1967 3759
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3760 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3761
1970 do 3762 do
1971 { 3763 {
1972#if EV_VERIFY >= 2 3764#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3765 ev_verify (EV_A);
1974#endif 3766#endif
1975 3767
1976#ifndef _WIN32 3768#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3769 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3770 if (ecb_expect_false (getpid () != curpid))
1979 { 3771 {
1980 curpid = getpid (); 3772 curpid = getpid ();
1981 postfork = 1; 3773 postfork = 1;
1982 } 3774 }
1983#endif 3775#endif
1984 3776
1985#if EV_FORK_ENABLE 3777#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */ 3778 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3779 if (ecb_expect_false (postfork))
1988 if (forkcnt) 3780 if (forkcnt)
1989 { 3781 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3782 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3783 EV_INVOKE_PENDING;
1992 } 3784 }
1993#endif 3785#endif
1994 3786
3787#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3788 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3789 if (ecb_expect_false (preparecnt))
1997 { 3790 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3791 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3792 EV_INVOKE_PENDING;
2000 } 3793 }
3794#endif
3795
3796 if (ecb_expect_false (loop_done))
3797 break;
2001 3798
2002 /* we might have forked, so reify kernel state if necessary */ 3799 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 3800 if (ecb_expect_false (postfork))
2004 loop_fork (EV_A); 3801 loop_fork (EV_A);
2005 3802
2006 /* update fd-related kernel structures */ 3803 /* update fd-related kernel structures */
2007 fd_reify (EV_A); 3804 fd_reify (EV_A);
2008 3805
2009 /* calculate blocking time */ 3806 /* calculate blocking time */
2010 { 3807 {
2011 ev_tstamp waittime = 0.; 3808 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 3809 ev_tstamp sleeptime = 0.;
2013 3810
3811 /* remember old timestamp for io_blocktime calculation */
3812 ev_tstamp prev_mn_now = mn_now;
3813
3814 /* update time to cancel out callback processing overhead */
3815 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3816
3817 /* from now on, we want a pipe-wake-up */
3818 pipe_write_wanted = 1;
3819
3820 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3821
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3822 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2015 { 3823 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 3824 waittime = EV_TS_CONST (MAX_BLOCKTIME);
2020 3825
2021 if (timercnt) 3826 if (timercnt)
2022 { 3827 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3828 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2024 if (waittime > to) waittime = to; 3829 if (waittime > to) waittime = to;
2025 } 3830 }
2026 3831
2027#if EV_PERIODIC_ENABLE 3832#if EV_PERIODIC_ENABLE
2028 if (periodiccnt) 3833 if (periodiccnt)
2029 { 3834 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3835 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2031 if (waittime > to) waittime = to; 3836 if (waittime > to) waittime = to;
2032 } 3837 }
2033#endif 3838#endif
2034 3839
3840 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 3841 if (ecb_expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 3842 waittime = timeout_blocktime;
2037 3843
2038 sleeptime = waittime - backend_fudge; 3844 /* at this point, we NEED to wait, so we have to ensure */
3845 /* to pass a minimum nonzero value to the backend */
3846 if (ecb_expect_false (waittime < backend_mintime))
3847 waittime = backend_mintime;
2039 3848
3849 /* extra check because io_blocktime is commonly 0 */
2040 if (expect_true (sleeptime > io_blocktime)) 3850 if (ecb_expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 3851 {
3852 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3853
3854 if (sleeptime > waittime - backend_mintime)
3855 sleeptime = waittime - backend_mintime;
3856
3857 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3858 {
2045 ev_sleep (sleeptime); 3859 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 3860 waittime -= sleeptime;
3861 }
2047 } 3862 }
2048 } 3863 }
2049 3864
3865#if EV_FEATURE_API
2050 ++loop_count; 3866 ++loop_count;
3867#endif
3868 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 3869 backend_poll (EV_A_ waittime);
3870 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3871
3872 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3873
3874 ECB_MEMORY_FENCE_ACQUIRE;
3875 if (pipe_write_skipped)
3876 {
3877 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3878 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3879 }
2052 3880
2053 /* update ev_rt_now, do magic */ 3881 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 3882 time_update (EV_A_ waittime + sleeptime);
2055 } 3883 }
2056 3884
2063#if EV_IDLE_ENABLE 3891#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 3892 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 3893 idle_reify (EV_A);
2066#endif 3894#endif
2067 3895
3896#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 3897 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 3898 if (ecb_expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3899 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3900#endif
2071 3901
2072 call_pending (EV_A); 3902 EV_INVOKE_PENDING;
2073 } 3903 }
2074 while (expect_true ( 3904 while (ecb_expect_true (
2075 activecnt 3905 activecnt
2076 && !loop_done 3906 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3907 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 3908 ));
2079 3909
2080 if (loop_done == EVUNLOOP_ONE) 3910 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 3911 loop_done = EVBREAK_CANCEL;
2082}
2083 3912
3913#if EV_FEATURE_API
3914 --loop_depth;
3915#endif
3916
3917 return activecnt;
3918}
3919
2084void 3920void
2085ev_unloop (EV_P_ int how) 3921ev_break (EV_P_ int how) EV_NOEXCEPT
2086{ 3922{
2087 loop_done = how; 3923 loop_done = how;
2088} 3924}
2089 3925
3926void
3927ev_ref (EV_P) EV_NOEXCEPT
3928{
3929 ++activecnt;
3930}
3931
3932void
3933ev_unref (EV_P) EV_NOEXCEPT
3934{
3935 --activecnt;
3936}
3937
3938void
3939ev_now_update (EV_P) EV_NOEXCEPT
3940{
3941 time_update (EV_A_ EV_TSTAMP_HUGE);
3942}
3943
3944void
3945ev_suspend (EV_P) EV_NOEXCEPT
3946{
3947 ev_now_update (EV_A);
3948}
3949
3950void
3951ev_resume (EV_P) EV_NOEXCEPT
3952{
3953 ev_tstamp mn_prev = mn_now;
3954
3955 ev_now_update (EV_A);
3956 timers_reschedule (EV_A_ mn_now - mn_prev);
3957#if EV_PERIODIC_ENABLE
3958 /* TODO: really do this? */
3959 periodics_reschedule (EV_A);
3960#endif
3961}
3962
2090/*****************************************************************************/ 3963/*****************************************************************************/
3964/* singly-linked list management, used when the expected list length is short */
2091 3965
2092void inline_size 3966inline_size void
2093wlist_add (WL *head, WL elem) 3967wlist_add (WL *head, WL elem)
2094{ 3968{
2095 elem->next = *head; 3969 elem->next = *head;
2096 *head = elem; 3970 *head = elem;
2097} 3971}
2098 3972
2099void inline_size 3973inline_size void
2100wlist_del (WL *head, WL elem) 3974wlist_del (WL *head, WL elem)
2101{ 3975{
2102 while (*head) 3976 while (*head)
2103 { 3977 {
2104 if (*head == elem) 3978 if (ecb_expect_true (*head == elem))
2105 { 3979 {
2106 *head = elem->next; 3980 *head = elem->next;
2107 return; 3981 break;
2108 } 3982 }
2109 3983
2110 head = &(*head)->next; 3984 head = &(*head)->next;
2111 } 3985 }
2112} 3986}
2113 3987
2114void inline_speed 3988/* internal, faster, version of ev_clear_pending */
3989inline_speed void
2115clear_pending (EV_P_ W w) 3990clear_pending (EV_P_ W w)
2116{ 3991{
2117 if (w->pending) 3992 if (w->pending)
2118 { 3993 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3994 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 3995 w->pending = 0;
2121 } 3996 }
2122} 3997}
2123 3998
2124int 3999int
2125ev_clear_pending (EV_P_ void *w) 4000ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2126{ 4001{
2127 W w_ = (W)w; 4002 W w_ = (W)w;
2128 int pending = w_->pending; 4003 int pending = w_->pending;
2129 4004
2130 if (expect_true (pending)) 4005 if (ecb_expect_true (pending))
2131 { 4006 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4007 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4008 p->w = (W)&pending_w;
2133 w_->pending = 0; 4009 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 4010 return p->events;
2136 } 4011 }
2137 else 4012 else
2138 return 0; 4013 return 0;
2139} 4014}
2140 4015
2141void inline_size 4016inline_size void
2142pri_adjust (EV_P_ W w) 4017pri_adjust (EV_P_ W w)
2143{ 4018{
2144 int pri = w->priority; 4019 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4020 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4021 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 4022 ev_set_priority (w, pri);
2148} 4023}
2149 4024
2150void inline_speed 4025inline_speed void
2151ev_start (EV_P_ W w, int active) 4026ev_start (EV_P_ W w, int active)
2152{ 4027{
2153 pri_adjust (EV_A_ w); 4028 pri_adjust (EV_A_ w);
2154 w->active = active; 4029 w->active = active;
2155 ev_ref (EV_A); 4030 ev_ref (EV_A);
2156} 4031}
2157 4032
2158void inline_size 4033inline_size void
2159ev_stop (EV_P_ W w) 4034ev_stop (EV_P_ W w)
2160{ 4035{
2161 ev_unref (EV_A); 4036 ev_unref (EV_A);
2162 w->active = 0; 4037 w->active = 0;
2163} 4038}
2164 4039
2165/*****************************************************************************/ 4040/*****************************************************************************/
2166 4041
2167void noinline 4042ecb_noinline
4043void
2168ev_io_start (EV_P_ ev_io *w) 4044ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2169{ 4045{
2170 int fd = w->fd; 4046 int fd = w->fd;
2171 4047
2172 if (expect_false (ev_is_active (w))) 4048 if (ecb_expect_false (ev_is_active (w)))
2173 return; 4049 return;
2174 4050
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 4051 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 4052 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 4053
4054#if EV_VERIFY >= 2
4055 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4056#endif
2178 EV_FREQUENT_CHECK; 4057 EV_FREQUENT_CHECK;
2179 4058
2180 ev_start (EV_A_ (W)w, 1); 4059 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4060 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2182 wlist_add (&anfds[fd].head, (WL)w); 4061 wlist_add (&anfds[fd].head, (WL)w);
2183 4062
4063 /* common bug, apparently */
4064 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4065
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 4066 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 4067 w->events &= ~EV__IOFDSET;
2186 4068
2187 EV_FREQUENT_CHECK; 4069 EV_FREQUENT_CHECK;
2188} 4070}
2189 4071
2190void noinline 4072ecb_noinline
4073void
2191ev_io_stop (EV_P_ ev_io *w) 4074ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2192{ 4075{
2193 clear_pending (EV_A_ (W)w); 4076 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 4077 if (ecb_expect_false (!ev_is_active (w)))
2195 return; 4078 return;
2196 4079
2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4080 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198 4081
4082#if EV_VERIFY >= 2
4083 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4084#endif
2199 EV_FREQUENT_CHECK; 4085 EV_FREQUENT_CHECK;
2200 4086
2201 wlist_del (&anfds[w->fd].head, (WL)w); 4087 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 4088 ev_stop (EV_A_ (W)w);
2203 4089
2204 fd_change (EV_A_ w->fd, 1); 4090 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 4091
2206 EV_FREQUENT_CHECK; 4092 EV_FREQUENT_CHECK;
2207} 4093}
2208 4094
2209void noinline 4095ecb_noinline
4096void
2210ev_timer_start (EV_P_ ev_timer *w) 4097ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2211{ 4098{
2212 if (expect_false (ev_is_active (w))) 4099 if (ecb_expect_false (ev_is_active (w)))
2213 return; 4100 return;
2214 4101
2215 ev_at (w) += mn_now; 4102 ev_at (w) += mn_now;
2216 4103
2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4104 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2218 4105
2219 EV_FREQUENT_CHECK; 4106 EV_FREQUENT_CHECK;
2220 4107
2221 ++timercnt; 4108 ++timercnt;
2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4109 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4110 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2224 ANHE_w (timers [ev_active (w)]) = (WT)w; 4111 ANHE_w (timers [ev_active (w)]) = (WT)w;
2225 ANHE_at_cache (timers [ev_active (w)]); 4112 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w)); 4113 upheap (timers, ev_active (w));
2227 4114
2228 EV_FREQUENT_CHECK; 4115 EV_FREQUENT_CHECK;
2229 4116
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4117 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231} 4118}
2232 4119
2233void noinline 4120ecb_noinline
4121void
2234ev_timer_stop (EV_P_ ev_timer *w) 4122ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2235{ 4123{
2236 clear_pending (EV_A_ (W)w); 4124 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w))) 4125 if (ecb_expect_false (!ev_is_active (w)))
2238 return; 4126 return;
2239 4127
2240 EV_FREQUENT_CHECK; 4128 EV_FREQUENT_CHECK;
2241 4129
2242 { 4130 {
2244 4132
2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4133 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2246 4134
2247 --timercnt; 4135 --timercnt;
2248 4136
2249 if (expect_true (active < timercnt + HEAP0)) 4137 if (ecb_expect_true (active < timercnt + HEAP0))
2250 { 4138 {
2251 timers [active] = timers [timercnt + HEAP0]; 4139 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 4140 adjustheap (timers, timercnt, active);
2253 } 4141 }
2254 } 4142 }
2255 4143
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 4144 ev_at (w) -= mn_now;
2259 4145
2260 ev_stop (EV_A_ (W)w); 4146 ev_stop (EV_A_ (W)w);
2261}
2262 4147
2263void noinline 4148 EV_FREQUENT_CHECK;
4149}
4150
4151ecb_noinline
4152void
2264ev_timer_again (EV_P_ ev_timer *w) 4153ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2265{ 4154{
2266 EV_FREQUENT_CHECK; 4155 EV_FREQUENT_CHECK;
4156
4157 clear_pending (EV_A_ (W)w);
2267 4158
2268 if (ev_is_active (w)) 4159 if (ev_is_active (w))
2269 { 4160 {
2270 if (w->repeat) 4161 if (w->repeat)
2271 { 4162 {
2283 } 4174 }
2284 4175
2285 EV_FREQUENT_CHECK; 4176 EV_FREQUENT_CHECK;
2286} 4177}
2287 4178
4179ev_tstamp
4180ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4181{
4182 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4183}
4184
2288#if EV_PERIODIC_ENABLE 4185#if EV_PERIODIC_ENABLE
2289void noinline 4186ecb_noinline
4187void
2290ev_periodic_start (EV_P_ ev_periodic *w) 4188ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2291{ 4189{
2292 if (expect_false (ev_is_active (w))) 4190 if (ecb_expect_false (ev_is_active (w)))
2293 return; 4191 return;
2294 4192
2295 if (w->reschedule_cb) 4193 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4194 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval) 4195 else if (w->interval)
2298 { 4196 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4197 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */ 4198 periodic_recalc (EV_A_ w);
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 } 4199 }
2303 else 4200 else
2304 ev_at (w) = w->offset; 4201 ev_at (w) = w->offset;
2305 4202
2306 EV_FREQUENT_CHECK; 4203 EV_FREQUENT_CHECK;
2307 4204
2308 ++periodiccnt; 4205 ++periodiccnt;
2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4206 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4207 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2311 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4208 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2312 ANHE_at_cache (periodics [ev_active (w)]); 4209 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w)); 4210 upheap (periodics, ev_active (w));
2314 4211
2315 EV_FREQUENT_CHECK; 4212 EV_FREQUENT_CHECK;
2316 4213
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4214 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318} 4215}
2319 4216
2320void noinline 4217ecb_noinline
4218void
2321ev_periodic_stop (EV_P_ ev_periodic *w) 4219ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2322{ 4220{
2323 clear_pending (EV_A_ (W)w); 4221 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w))) 4222 if (ecb_expect_false (!ev_is_active (w)))
2325 return; 4223 return;
2326 4224
2327 EV_FREQUENT_CHECK; 4225 EV_FREQUENT_CHECK;
2328 4226
2329 { 4227 {
2331 4229
2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4230 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2333 4231
2334 --periodiccnt; 4232 --periodiccnt;
2335 4233
2336 if (expect_true (active < periodiccnt + HEAP0)) 4234 if (ecb_expect_true (active < periodiccnt + HEAP0))
2337 { 4235 {
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 4236 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 4237 adjustheap (periodics, periodiccnt, active);
2340 } 4238 }
2341 } 4239 }
2342 4240
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 4241 ev_stop (EV_A_ (W)w);
2346}
2347 4242
2348void noinline 4243 EV_FREQUENT_CHECK;
4244}
4245
4246ecb_noinline
4247void
2349ev_periodic_again (EV_P_ ev_periodic *w) 4248ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2350{ 4249{
2351 /* TODO: use adjustheap and recalculation */ 4250 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w); 4251 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w); 4252 ev_periodic_start (EV_A_ w);
2354} 4253}
2356 4255
2357#ifndef SA_RESTART 4256#ifndef SA_RESTART
2358# define SA_RESTART 0 4257# define SA_RESTART 0
2359#endif 4258#endif
2360 4259
2361void noinline 4260#if EV_SIGNAL_ENABLE
4261
4262ecb_noinline
4263void
2362ev_signal_start (EV_P_ ev_signal *w) 4264ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2363{ 4265{
4266 if (ecb_expect_false (ev_is_active (w)))
4267 return;
4268
4269 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4270
2364#if EV_MULTIPLICITY 4271#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4272 assert (("libev: a signal must not be attached to two different loops",
2366#endif 4273 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2367 if (expect_false (ev_is_active (w)))
2368 return;
2369 4274
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4275 signals [w->signum - 1].loop = EV_A;
4276 ECB_MEMORY_FENCE_RELEASE;
4277#endif
2371 4278
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK; 4279 EV_FREQUENT_CHECK;
2375 4280
4281#if EV_USE_SIGNALFD
4282 if (sigfd == -2)
2376 { 4283 {
2377#ifndef _WIN32 4284 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 4285 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 4286 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 4287
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4288 if (sigfd >= 0)
4289 {
4290 fd_intern (sigfd); /* doing it twice will not hurt */
2384 4291
2385#ifndef _WIN32 4292 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 4293
2387#endif 4294 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4295 ev_set_priority (&sigfd_w, EV_MAXPRI);
4296 ev_io_start (EV_A_ &sigfd_w);
4297 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4298 }
2388 } 4299 }
4300
4301 if (sigfd >= 0)
4302 {
4303 /* TODO: check .head */
4304 sigaddset (&sigfd_set, w->signum);
4305 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4306
4307 signalfd (sigfd, &sigfd_set, 0);
4308 }
4309#endif
2389 4310
2390 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 4312 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 4313
2393 if (!((WL)w)->next) 4314 if (!((WL)w)->next)
4315# if EV_USE_SIGNALFD
4316 if (sigfd < 0) /*TODO*/
4317# endif
2394 { 4318 {
2395#if _WIN32 4319# ifdef _WIN32
4320 evpipe_init (EV_A);
4321
2396 signal (w->signum, ev_sighandler); 4322 signal (w->signum, ev_sighandler);
2397#else 4323# else
2398 struct sigaction sa; 4324 struct sigaction sa;
4325
4326 evpipe_init (EV_A);
4327
2399 sa.sa_handler = ev_sighandler; 4328 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 4329 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4330 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 4331 sigaction (w->signum, &sa, 0);
4332
4333 if (origflags & EVFLAG_NOSIGMASK)
4334 {
4335 sigemptyset (&sa.sa_mask);
4336 sigaddset (&sa.sa_mask, w->signum);
4337 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4338 }
2403#endif 4339#endif
2404 } 4340 }
2405 4341
2406 EV_FREQUENT_CHECK; 4342 EV_FREQUENT_CHECK;
2407} 4343}
2408 4344
2409void noinline 4345ecb_noinline
4346void
2410ev_signal_stop (EV_P_ ev_signal *w) 4347ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2411{ 4348{
2412 clear_pending (EV_A_ (W)w); 4349 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w))) 4350 if (ecb_expect_false (!ev_is_active (w)))
2414 return; 4351 return;
2415 4352
2416 EV_FREQUENT_CHECK; 4353 EV_FREQUENT_CHECK;
2417 4354
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 4355 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 4356 ev_stop (EV_A_ (W)w);
2420 4357
2421 if (!signals [w->signum - 1].head) 4358 if (!signals [w->signum - 1].head)
4359 {
4360#if EV_MULTIPLICITY
4361 signals [w->signum - 1].loop = 0; /* unattach from signal */
4362#endif
4363#if EV_USE_SIGNALFD
4364 if (sigfd >= 0)
4365 {
4366 sigset_t ss;
4367
4368 sigemptyset (&ss);
4369 sigaddset (&ss, w->signum);
4370 sigdelset (&sigfd_set, w->signum);
4371
4372 signalfd (sigfd, &sigfd_set, 0);
4373 sigprocmask (SIG_UNBLOCK, &ss, 0);
4374 }
4375 else
4376#endif
2422 signal (w->signum, SIG_DFL); 4377 signal (w->signum, SIG_DFL);
4378 }
2423 4379
2424 EV_FREQUENT_CHECK; 4380 EV_FREQUENT_CHECK;
2425} 4381}
2426 4382
4383#endif
4384
4385#if EV_CHILD_ENABLE
4386
2427void 4387void
2428ev_child_start (EV_P_ ev_child *w) 4388ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2429{ 4389{
2430#if EV_MULTIPLICITY 4390#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4391 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif 4392#endif
2433 if (expect_false (ev_is_active (w))) 4393 if (ecb_expect_false (ev_is_active (w)))
2434 return; 4394 return;
2435 4395
2436 EV_FREQUENT_CHECK; 4396 EV_FREQUENT_CHECK;
2437 4397
2438 ev_start (EV_A_ (W)w, 1); 4398 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4399 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 4400
2441 EV_FREQUENT_CHECK; 4401 EV_FREQUENT_CHECK;
2442} 4402}
2443 4403
2444void 4404void
2445ev_child_stop (EV_P_ ev_child *w) 4405ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2446{ 4406{
2447 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w))) 4408 if (ecb_expect_false (!ev_is_active (w)))
2449 return; 4409 return;
2450 4410
2451 EV_FREQUENT_CHECK; 4411 EV_FREQUENT_CHECK;
2452 4412
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4413 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 4414 ev_stop (EV_A_ (W)w);
2455 4415
2456 EV_FREQUENT_CHECK; 4416 EV_FREQUENT_CHECK;
2457} 4417}
4418
4419#endif
2458 4420
2459#if EV_STAT_ENABLE 4421#if EV_STAT_ENABLE
2460 4422
2461# ifdef _WIN32 4423# ifdef _WIN32
2462# undef lstat 4424# undef lstat
2465 4427
2466#define DEF_STAT_INTERVAL 5.0074891 4428#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4429#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468#define MIN_STAT_INTERVAL 0.1074891 4430#define MIN_STAT_INTERVAL 0.1074891
2469 4431
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4432ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 4433
2472#if EV_USE_INOTIFY 4434#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192
2474 4435
2475static void noinline 4436/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4437# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4438
4439ecb_noinline
4440static void
2476infy_add (EV_P_ ev_stat *w) 4441infy_add (EV_P_ ev_stat *w)
2477{ 4442{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4443 w->wd = inotify_add_watch (fs_fd, w->path,
4444 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4445 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4446 | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 4447
2480 if (w->wd < 0) 4448 if (w->wd >= 0)
4449 {
4450 struct statfs sfs;
4451
4452 /* now local changes will be tracked by inotify, but remote changes won't */
4453 /* unless the filesystem is known to be local, we therefore still poll */
4454 /* also do poll on <2.6.25, but with normal frequency */
4455
4456 if (!fs_2625)
4457 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4458 else if (!statfs (w->path, &sfs)
4459 && (sfs.f_type == 0x1373 /* devfs */
4460 || sfs.f_type == 0x4006 /* fat */
4461 || sfs.f_type == 0x4d44 /* msdos */
4462 || sfs.f_type == 0xEF53 /* ext2/3 */
4463 || sfs.f_type == 0x72b6 /* jffs2 */
4464 || sfs.f_type == 0x858458f6 /* ramfs */
4465 || sfs.f_type == 0x5346544e /* ntfs */
4466 || sfs.f_type == 0x3153464a /* jfs */
4467 || sfs.f_type == 0x9123683e /* btrfs */
4468 || sfs.f_type == 0x52654973 /* reiser3 */
4469 || sfs.f_type == 0x01021994 /* tmpfs */
4470 || sfs.f_type == 0x58465342 /* xfs */))
4471 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4472 else
4473 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 4474 }
4475 else
4476 {
4477 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4478 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 4479
2485 /* monitor some parent directory for speedup hints */ 4480 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4481 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 4482 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4483 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 4484 {
2490 char path [4096]; 4485 char path [4096];
2500 if (!pend || pend == path) 4495 if (!pend || pend == path)
2501 break; 4496 break;
2502 4497
2503 *pend = 0; 4498 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask); 4499 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 } 4500 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4501 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 4502 }
2508 } 4503 }
2509 4504
2510 if (w->wd >= 0) 4505 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4506 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 4507
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 4508 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 4509 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 4510 ev_timer_again (EV_A_ &w->timer);
2530 } 4511 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 4512}
2532 4513
2533static void noinline 4514ecb_noinline
4515static void
2534infy_del (EV_P_ ev_stat *w) 4516infy_del (EV_P_ ev_stat *w)
2535{ 4517{
2536 int slot; 4518 int slot;
2537 int wd = w->wd; 4519 int wd = w->wd;
2538 4520
2539 if (wd < 0) 4521 if (wd < 0)
2540 return; 4522 return;
2541 4523
2542 w->wd = -2; 4524 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4525 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 4526 wlist_del (&fs_hash [slot].head, (WL)w);
2545 4527
2546 /* remove this watcher, if others are watching it, they will rearm */ 4528 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 4529 inotify_rm_watch (fs_fd, wd);
2548} 4530}
2549 4531
2550static void noinline 4532ecb_noinline
4533static void
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 4535{
2553 if (slot < 0) 4536 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 4537 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4538 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 4539 infy_wd (EV_A_ slot, wd, ev);
2557 else 4540 else
2558 { 4541 {
2559 WL w_; 4542 WL w_;
2560 4543
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4544 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 4545 {
2563 ev_stat *w = (ev_stat *)w_; 4546 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 4547 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 4548
2566 if (w->wd == wd || wd == -1) 4549 if (w->wd == wd || wd == -1)
2567 { 4550 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 4552 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4553 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 4554 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 4555 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 4556 }
2574 4557
2575 stat_timer_cb (EV_A_ &w->timer, 0); 4558 stat_timer_cb (EV_A_ &w->timer, 0);
2580 4563
2581static void 4564static void
2582infy_cb (EV_P_ ev_io *w, int revents) 4565infy_cb (EV_P_ ev_io *w, int revents)
2583{ 4566{
2584 char buf [EV_INOTIFY_BUFSIZE]; 4567 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 4568 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 4569 int len = read (fs_fd, buf, sizeof (buf));
2588 4570
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4571 for (ofs = 0; ofs < len; )
4572 {
4573 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4574 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4575 ofs += sizeof (struct inotify_event) + ev->len;
4576 }
2591} 4577}
2592 4578
2593void inline_size 4579inline_size ecb_cold
4580void
2594check_2625 (EV_P) 4581ev_check_2625 (EV_P)
2595{ 4582{
2596 /* kernels < 2.6.25 are borked 4583 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4584 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 4585 */
2599 struct utsname buf; 4586 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 4587 return;
2604 4588
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 4589 fs_2625 = 1;
2614} 4590}
2615 4591
2616void inline_size 4592inline_size int
4593infy_newfd (void)
4594{
4595#if defined IN_CLOEXEC && defined IN_NONBLOCK
4596 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4597 if (fd >= 0)
4598 return fd;
4599#endif
4600 return inotify_init ();
4601}
4602
4603inline_size void
2617infy_init (EV_P) 4604infy_init (EV_P)
2618{ 4605{
2619 if (fs_fd != -2) 4606 if (fs_fd != -2)
2620 return; 4607 return;
2621 4608
2622 fs_fd = -1; 4609 fs_fd = -1;
2623 4610
2624 check_2625 (EV_A); 4611 ev_check_2625 (EV_A);
2625 4612
2626 fs_fd = inotify_init (); 4613 fs_fd = infy_newfd ();
2627 4614
2628 if (fs_fd >= 0) 4615 if (fs_fd >= 0)
2629 { 4616 {
4617 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4618 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 4619 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 4620 ev_io_start (EV_A_ &fs_w);
4621 ev_unref (EV_A);
2633 } 4622 }
2634} 4623}
2635 4624
2636void inline_size 4625inline_size void
2637infy_fork (EV_P) 4626infy_fork (EV_P)
2638{ 4627{
2639 int slot; 4628 int slot;
2640 4629
2641 if (fs_fd < 0) 4630 if (fs_fd < 0)
2642 return; 4631 return;
2643 4632
4633 ev_ref (EV_A);
4634 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 4635 close (fs_fd);
2645 fs_fd = inotify_init (); 4636 fs_fd = infy_newfd ();
2646 4637
4638 if (fs_fd >= 0)
4639 {
4640 fd_intern (fs_fd);
4641 ev_io_set (&fs_w, fs_fd, EV_READ);
4642 ev_io_start (EV_A_ &fs_w);
4643 ev_unref (EV_A);
4644 }
4645
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4646 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 4647 {
2649 WL w_ = fs_hash [slot].head; 4648 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 4649 fs_hash [slot].head = 0;
2651 4650
2652 while (w_) 4651 while (w_)
2657 w->wd = -1; 4656 w->wd = -1;
2658 4657
2659 if (fs_fd >= 0) 4658 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 4659 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 4660 else
4661 {
4662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 4664 ev_timer_again (EV_A_ &w->timer);
4665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4666 }
2663 } 4667 }
2664 } 4668 }
2665} 4669}
2666 4670
2667#endif 4671#endif
2671#else 4675#else
2672# define EV_LSTAT(p,b) lstat (p, b) 4676# define EV_LSTAT(p,b) lstat (p, b)
2673#endif 4677#endif
2674 4678
2675void 4679void
2676ev_stat_stat (EV_P_ ev_stat *w) 4680ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2677{ 4681{
2678 if (lstat (w->path, &w->attr) < 0) 4682 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0; 4683 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink) 4684 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1; 4685 w->attr.st_nlink = 1;
2682} 4686}
2683 4687
2684static void noinline 4688ecb_noinline
4689static void
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4690stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 4691{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4692 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 4693
2689 /* we copy this here each the time so that */ 4694 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 4695 ev_stat_stat (EV_A_ w);
2693 4696
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 4698 if (
2696 w->prev.st_dev != w->attr.st_dev 4699 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 4700 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 4701 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 4702 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 4703 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 4704 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 4705 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 4706 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 4707 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 4708 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 4709 || prev.st_ctime != w->attr.st_ctime
2707 ) { 4710 ) {
4711 /* we only update w->prev on actual differences */
4712 /* in case we test more often than invoke the callback, */
4713 /* to ensure that prev is always different to attr */
4714 w->prev = prev;
4715
2708 #if EV_USE_INOTIFY 4716 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 4717 if (fs_fd >= 0)
2710 { 4718 {
2711 infy_del (EV_A_ w); 4719 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 4720 infy_add (EV_A_ w);
2717 ev_feed_event (EV_A_ w, EV_STAT); 4725 ev_feed_event (EV_A_ w, EV_STAT);
2718 } 4726 }
2719} 4727}
2720 4728
2721void 4729void
2722ev_stat_start (EV_P_ ev_stat *w) 4730ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2723{ 4731{
2724 if (expect_false (ev_is_active (w))) 4732 if (ecb_expect_false (ev_is_active (w)))
2725 return; 4733 return;
2726 4734
2727 ev_stat_stat (EV_A_ w); 4735 ev_stat_stat (EV_A_ w);
2728 4736
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval) 4737 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2737 4745
2738 if (fs_fd >= 0) 4746 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 4747 infy_add (EV_A_ w);
2740 else 4748 else
2741#endif 4749#endif
4750 {
2742 ev_timer_again (EV_A_ &w->timer); 4751 ev_timer_again (EV_A_ &w->timer);
4752 ev_unref (EV_A);
4753 }
2743 4754
2744 ev_start (EV_A_ (W)w, 1); 4755 ev_start (EV_A_ (W)w, 1);
2745 4756
2746 EV_FREQUENT_CHECK; 4757 EV_FREQUENT_CHECK;
2747} 4758}
2748 4759
2749void 4760void
2750ev_stat_stop (EV_P_ ev_stat *w) 4761ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2751{ 4762{
2752 clear_pending (EV_A_ (W)w); 4763 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w))) 4764 if (ecb_expect_false (!ev_is_active (w)))
2754 return; 4765 return;
2755 4766
2756 EV_FREQUENT_CHECK; 4767 EV_FREQUENT_CHECK;
2757 4768
2758#if EV_USE_INOTIFY 4769#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 4770 infy_del (EV_A_ w);
2760#endif 4771#endif
4772
4773 if (ev_is_active (&w->timer))
4774 {
4775 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 4776 ev_timer_stop (EV_A_ &w->timer);
4777 }
2762 4778
2763 ev_stop (EV_A_ (W)w); 4779 ev_stop (EV_A_ (W)w);
2764 4780
2765 EV_FREQUENT_CHECK; 4781 EV_FREQUENT_CHECK;
2766} 4782}
2767#endif 4783#endif
2768 4784
2769#if EV_IDLE_ENABLE 4785#if EV_IDLE_ENABLE
2770void 4786void
2771ev_idle_start (EV_P_ ev_idle *w) 4787ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2772{ 4788{
2773 if (expect_false (ev_is_active (w))) 4789 if (ecb_expect_false (ev_is_active (w)))
2774 return; 4790 return;
2775 4791
2776 pri_adjust (EV_A_ (W)w); 4792 pri_adjust (EV_A_ (W)w);
2777 4793
2778 EV_FREQUENT_CHECK; 4794 EV_FREQUENT_CHECK;
2781 int active = ++idlecnt [ABSPRI (w)]; 4797 int active = ++idlecnt [ABSPRI (w)];
2782 4798
2783 ++idleall; 4799 ++idleall;
2784 ev_start (EV_A_ (W)w, active); 4800 ev_start (EV_A_ (W)w, active);
2785 4801
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4802 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2787 idles [ABSPRI (w)][active - 1] = w; 4803 idles [ABSPRI (w)][active - 1] = w;
2788 } 4804 }
2789 4805
2790 EV_FREQUENT_CHECK; 4806 EV_FREQUENT_CHECK;
2791} 4807}
2792 4808
2793void 4809void
2794ev_idle_stop (EV_P_ ev_idle *w) 4810ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2795{ 4811{
2796 clear_pending (EV_A_ (W)w); 4812 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4813 if (ecb_expect_false (!ev_is_active (w)))
2798 return; 4814 return;
2799 4815
2800 EV_FREQUENT_CHECK; 4816 EV_FREQUENT_CHECK;
2801 4817
2802 { 4818 {
2811 4827
2812 EV_FREQUENT_CHECK; 4828 EV_FREQUENT_CHECK;
2813} 4829}
2814#endif 4830#endif
2815 4831
4832#if EV_PREPARE_ENABLE
2816void 4833void
2817ev_prepare_start (EV_P_ ev_prepare *w) 4834ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2818{ 4835{
2819 if (expect_false (ev_is_active (w))) 4836 if (ecb_expect_false (ev_is_active (w)))
2820 return; 4837 return;
2821 4838
2822 EV_FREQUENT_CHECK; 4839 EV_FREQUENT_CHECK;
2823 4840
2824 ev_start (EV_A_ (W)w, ++preparecnt); 4841 ev_start (EV_A_ (W)w, ++preparecnt);
2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4842 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2826 prepares [preparecnt - 1] = w; 4843 prepares [preparecnt - 1] = w;
2827 4844
2828 EV_FREQUENT_CHECK; 4845 EV_FREQUENT_CHECK;
2829} 4846}
2830 4847
2831void 4848void
2832ev_prepare_stop (EV_P_ ev_prepare *w) 4849ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2833{ 4850{
2834 clear_pending (EV_A_ (W)w); 4851 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w))) 4852 if (ecb_expect_false (!ev_is_active (w)))
2836 return; 4853 return;
2837 4854
2838 EV_FREQUENT_CHECK; 4855 EV_FREQUENT_CHECK;
2839 4856
2840 { 4857 {
2846 4863
2847 ev_stop (EV_A_ (W)w); 4864 ev_stop (EV_A_ (W)w);
2848 4865
2849 EV_FREQUENT_CHECK; 4866 EV_FREQUENT_CHECK;
2850} 4867}
4868#endif
2851 4869
4870#if EV_CHECK_ENABLE
2852void 4871void
2853ev_check_start (EV_P_ ev_check *w) 4872ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2854{ 4873{
2855 if (expect_false (ev_is_active (w))) 4874 if (ecb_expect_false (ev_is_active (w)))
2856 return; 4875 return;
2857 4876
2858 EV_FREQUENT_CHECK; 4877 EV_FREQUENT_CHECK;
2859 4878
2860 ev_start (EV_A_ (W)w, ++checkcnt); 4879 ev_start (EV_A_ (W)w, ++checkcnt);
2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4880 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2862 checks [checkcnt - 1] = w; 4881 checks [checkcnt - 1] = w;
2863 4882
2864 EV_FREQUENT_CHECK; 4883 EV_FREQUENT_CHECK;
2865} 4884}
2866 4885
2867void 4886void
2868ev_check_stop (EV_P_ ev_check *w) 4887ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2869{ 4888{
2870 clear_pending (EV_A_ (W)w); 4889 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w))) 4890 if (ecb_expect_false (!ev_is_active (w)))
2872 return; 4891 return;
2873 4892
2874 EV_FREQUENT_CHECK; 4893 EV_FREQUENT_CHECK;
2875 4894
2876 { 4895 {
2882 4901
2883 ev_stop (EV_A_ (W)w); 4902 ev_stop (EV_A_ (W)w);
2884 4903
2885 EV_FREQUENT_CHECK; 4904 EV_FREQUENT_CHECK;
2886} 4905}
4906#endif
2887 4907
2888#if EV_EMBED_ENABLE 4908#if EV_EMBED_ENABLE
2889void noinline 4909ecb_noinline
4910void
2890ev_embed_sweep (EV_P_ ev_embed *w) 4911ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2891{ 4912{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 4913 ev_run (w->other, EVRUN_NOWAIT);
2893} 4914}
2894 4915
2895static void 4916static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 4917embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 4918{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4919 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 4920
2900 if (ev_cb (w)) 4921 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4922 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 4923 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 4924 ev_run (w->other, EVRUN_NOWAIT);
2904} 4925}
2905 4926
2906static void 4927static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4928embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 4929{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4930 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 4931
2911 { 4932 {
2912 struct ev_loop *loop = w->other; 4933 EV_P = w->other;
2913 4934
2914 while (fdchangecnt) 4935 while (fdchangecnt)
2915 { 4936 {
2916 fd_reify (EV_A); 4937 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4938 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4939 }
2919 } 4940 }
2920} 4941}
2921 4942
2922static void 4943static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4946 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 4947
2927 ev_embed_stop (EV_A_ w); 4948 ev_embed_stop (EV_A_ w);
2928 4949
2929 { 4950 {
2930 struct ev_loop *loop = w->other; 4951 EV_P = w->other;
2931 4952
2932 ev_loop_fork (EV_A); 4953 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4954 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 4955 }
2935 4956
2936 ev_embed_start (EV_A_ w); 4957 ev_embed_start (EV_A_ w);
2937} 4958}
2938 4959
2943 ev_idle_stop (EV_A_ idle); 4964 ev_idle_stop (EV_A_ idle);
2944} 4965}
2945#endif 4966#endif
2946 4967
2947void 4968void
2948ev_embed_start (EV_P_ ev_embed *w) 4969ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2949{ 4970{
2950 if (expect_false (ev_is_active (w))) 4971 if (ecb_expect_false (ev_is_active (w)))
2951 return; 4972 return;
2952 4973
2953 { 4974 {
2954 struct ev_loop *loop = w->other; 4975 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4976 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4977 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 4978 }
2958 4979
2959 EV_FREQUENT_CHECK; 4980 EV_FREQUENT_CHECK;
2974 4995
2975 EV_FREQUENT_CHECK; 4996 EV_FREQUENT_CHECK;
2976} 4997}
2977 4998
2978void 4999void
2979ev_embed_stop (EV_P_ ev_embed *w) 5000ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2980{ 5001{
2981 clear_pending (EV_A_ (W)w); 5002 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w))) 5003 if (ecb_expect_false (!ev_is_active (w)))
2983 return; 5004 return;
2984 5005
2985 EV_FREQUENT_CHECK; 5006 EV_FREQUENT_CHECK;
2986 5007
2987 ev_io_stop (EV_A_ &w->io); 5008 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 5009 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 5010 ev_fork_stop (EV_A_ &w->fork);
2990 5011
5012 ev_stop (EV_A_ (W)w);
5013
2991 EV_FREQUENT_CHECK; 5014 EV_FREQUENT_CHECK;
2992} 5015}
2993#endif 5016#endif
2994 5017
2995#if EV_FORK_ENABLE 5018#if EV_FORK_ENABLE
2996void 5019void
2997ev_fork_start (EV_P_ ev_fork *w) 5020ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2998{ 5021{
2999 if (expect_false (ev_is_active (w))) 5022 if (ecb_expect_false (ev_is_active (w)))
3000 return; 5023 return;
3001 5024
3002 EV_FREQUENT_CHECK; 5025 EV_FREQUENT_CHECK;
3003 5026
3004 ev_start (EV_A_ (W)w, ++forkcnt); 5027 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5028 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3006 forks [forkcnt - 1] = w; 5029 forks [forkcnt - 1] = w;
3007 5030
3008 EV_FREQUENT_CHECK; 5031 EV_FREQUENT_CHECK;
3009} 5032}
3010 5033
3011void 5034void
3012ev_fork_stop (EV_P_ ev_fork *w) 5035ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3013{ 5036{
3014 clear_pending (EV_A_ (W)w); 5037 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w))) 5038 if (ecb_expect_false (!ev_is_active (w)))
3016 return; 5039 return;
3017 5040
3018 EV_FREQUENT_CHECK; 5041 EV_FREQUENT_CHECK;
3019 5042
3020 { 5043 {
3028 5051
3029 EV_FREQUENT_CHECK; 5052 EV_FREQUENT_CHECK;
3030} 5053}
3031#endif 5054#endif
3032 5055
5056#if EV_CLEANUP_ENABLE
5057void
5058ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5059{
5060 if (ecb_expect_false (ev_is_active (w)))
5061 return;
5062
5063 EV_FREQUENT_CHECK;
5064
5065 ev_start (EV_A_ (W)w, ++cleanupcnt);
5066 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5067 cleanups [cleanupcnt - 1] = w;
5068
5069 /* cleanup watchers should never keep a refcount on the loop */
5070 ev_unref (EV_A);
5071 EV_FREQUENT_CHECK;
5072}
5073
5074void
5075ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5076{
5077 clear_pending (EV_A_ (W)w);
5078 if (ecb_expect_false (!ev_is_active (w)))
5079 return;
5080
5081 EV_FREQUENT_CHECK;
5082 ev_ref (EV_A);
5083
5084 {
5085 int active = ev_active (w);
5086
5087 cleanups [active - 1] = cleanups [--cleanupcnt];
5088 ev_active (cleanups [active - 1]) = active;
5089 }
5090
5091 ev_stop (EV_A_ (W)w);
5092
5093 EV_FREQUENT_CHECK;
5094}
5095#endif
5096
3033#if EV_ASYNC_ENABLE 5097#if EV_ASYNC_ENABLE
3034void 5098void
3035ev_async_start (EV_P_ ev_async *w) 5099ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
3036{ 5100{
3037 if (expect_false (ev_is_active (w))) 5101 if (ecb_expect_false (ev_is_active (w)))
3038 return; 5102 return;
3039 5103
5104 w->sent = 0;
5105
3040 evpipe_init (EV_A); 5106 evpipe_init (EV_A);
3041 5107
3042 EV_FREQUENT_CHECK; 5108 EV_FREQUENT_CHECK;
3043 5109
3044 ev_start (EV_A_ (W)w, ++asynccnt); 5110 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5111 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
3046 asyncs [asynccnt - 1] = w; 5112 asyncs [asynccnt - 1] = w;
3047 5113
3048 EV_FREQUENT_CHECK; 5114 EV_FREQUENT_CHECK;
3049} 5115}
3050 5116
3051void 5117void
3052ev_async_stop (EV_P_ ev_async *w) 5118ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
3053{ 5119{
3054 clear_pending (EV_A_ (W)w); 5120 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w))) 5121 if (ecb_expect_false (!ev_is_active (w)))
3056 return; 5122 return;
3057 5123
3058 EV_FREQUENT_CHECK; 5124 EV_FREQUENT_CHECK;
3059 5125
3060 { 5126 {
3068 5134
3069 EV_FREQUENT_CHECK; 5135 EV_FREQUENT_CHECK;
3070} 5136}
3071 5137
3072void 5138void
3073ev_async_send (EV_P_ ev_async *w) 5139ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3074{ 5140{
3075 w->sent = 1; 5141 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 5142 evpipe_write (EV_A_ &async_pending);
3077} 5143}
3078#endif 5144#endif
3079 5145
3080/*****************************************************************************/ 5146/*****************************************************************************/
3081 5147
3115 5181
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5182 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117} 5183}
3118 5184
3119void 5185void
3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5186ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3121{ 5187{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5188 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123
3124 if (expect_false (!once))
3125 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3127 return;
3128 }
3129 5189
3130 once->cb = cb; 5190 once->cb = cb;
3131 once->arg = arg; 5191 once->arg = arg;
3132 5192
3133 ev_init (&once->io, once_cb_io); 5193 ev_init (&once->io, once_cb_io);
3145 } 5205 }
3146} 5206}
3147 5207
3148/*****************************************************************************/ 5208/*****************************************************************************/
3149 5209
3150#if 0 5210#if EV_WALK_ENABLE
5211ecb_cold
3151void 5212void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5213ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3153{ 5214{
3154 int i, j; 5215 int i, j;
3155 ev_watcher_list *wl, *wn; 5216 ev_watcher_list *wl, *wn;
3156 5217
3157 if (types & (EV_IO | EV_EMBED)) 5218 if (types & (EV_IO | EV_EMBED))
3171#if EV_USE_INOTIFY 5232#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 5233 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 5234 ;
3174 else 5235 else
3175#endif 5236#endif
3176 if ((ev_io *)wl != &pipeev) 5237 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 5238 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 5239 cb (EV_A_ EV_IO, wl);
3179 5240
3180 wl = wn; 5241 wl = wn;
3181 } 5242 }
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5261 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif 5262#endif
3202 5263
3203#if EV_IDLE_ENABLE 5264#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE) 5265 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; ) 5266 for (j = NUMPRI; j--; )
3206 for (i = idlecnt [j]; i--; ) 5267 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]); 5268 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif 5269#endif
3209 5270
3210#if EV_FORK_ENABLE 5271#if EV_FORK_ENABLE
3218 if (types & EV_ASYNC) 5279 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 5280 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 5281 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 5282#endif
3222 5283
5284#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 5285 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 5286 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 5287# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 5288 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 5289# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 5290 cb (EV_A_ EV_PREPARE, prepares [i]);
5291#endif
3229 5292
5293#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 5294 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 5295 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 5296 cb (EV_A_ EV_CHECK, checks [i]);
5297#endif
3233 5298
5299#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 5300 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 5301 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 5302 for (wl = signals [i].head; wl; )
3237 { 5303 {
3238 wn = wl->next; 5304 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 5305 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 5306 wl = wn;
3241 } 5307 }
5308#endif
3242 5309
5310#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 5311 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 5312 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 5313 for (wl = childs [i]; wl; )
3246 { 5314 {
3247 wn = wl->next; 5315 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 5316 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 5317 wl = wn;
3250 } 5318 }
5319#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 5320/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5321/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 5322}
3254#endif 5323#endif
3255 5324
3256#if EV_MULTIPLICITY 5325#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 5326 #include "ev_wrap.h"
3258#endif 5327#endif
3259 5328
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines