ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC vs.
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
33 63
34# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
37# endif 78# endif
38 79
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
41# endif 86# endif
42 87
43# if HAVE_POLL && HAVE_POLL_H 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
45# endif 94# endif
46 95
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
49# endif 102# endif
50 103
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
53# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
54 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
55#endif 144#endif
56 145
57#include <math.h> 146#include <math.h>
58#include <stdlib.h> 147#include <stdlib.h>
59#include <fcntl.h> 148#include <fcntl.h>
66#include <sys/types.h> 155#include <sys/types.h>
67#include <time.h> 156#include <time.h>
68 157
69#include <signal.h> 158#include <signal.h>
70 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
71#ifndef WIN32 166#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 167# include <sys/time.h>
74# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
75#endif 176# endif
76/**/ 177#endif
178
179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
77 188
78#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
80#endif 207#endif
81 208
82#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
84#endif 211#endif
85 212
86#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
88#endif 219#endif
89 220
90#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
91# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
92#endif 227#endif
93 228
94#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
96#endif 231#endif
97 232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
98#ifndef EV_USE_WIN32 237#ifndef EV_USE_INOTIFY
99# ifdef WIN32 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 239# define EV_USE_INOTIFY 1
103# else 240# else
104# define EV_USE_WIN32 0 241# define EV_USE_INOTIFY 0
105# endif 242# endif
106#endif 243#endif
107 244
108#ifndef EV_USE_REALTIME 245#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
110#endif 250# endif
251#endif
111 252
112/**/ 253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 288
114#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
117#endif 292#endif
119#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
122#endif 297#endif
123 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
124/**/ 346/**/
125 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 367
131#include "ev.h"
132
133#if __GNUC__ >= 3 368#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 370# define noinline __attribute__ ((noinline))
136#else 371#else
137# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
138# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
139#endif 377#endif
140 378
141#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
143 388
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
147typedef struct ev_watcher *W; 395typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
150 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
152 411
412#ifdef _WIN32
153#include "ev_win32.c" 413# include "ev_win32.c"
414#endif
154 415
155/*****************************************************************************/ 416/*****************************************************************************/
156 417
157static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
158 419
420void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 422{
161 syserr_cb = cb; 423 syserr_cb = cb;
162} 424}
163 425
164static void 426static void noinline
165syserr (const char *msg) 427ev_syserr (const char *msg)
166{ 428{
167 if (!msg) 429 if (!msg)
168 msg = "(libev) system error"; 430 msg = "(libev) system error";
169 431
170 if (syserr_cb) 432 if (syserr_cb)
174 perror (msg); 436 perror (msg);
175 abort (); 437 abort ();
176 } 438 }
177} 439}
178 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
179static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 457
458void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 460{
183 alloc = cb; 461 alloc = cb;
184} 462}
185 463
186static void * 464inline_speed void *
187ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
188{ 466{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
190 468
191 if (!ptr && size) 469 if (!ptr && size)
192 { 470 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 472 abort ();
205typedef struct 483typedef struct
206{ 484{
207 WL head; 485 WL head;
208 unsigned char events; 486 unsigned char events;
209 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
210} ANFD; 496} ANFD;
211 497
212typedef struct 498typedef struct
213{ 499{
214 W w; 500 W w;
215 int events; 501 int events;
216} ANPENDING; 502} ANPENDING;
217 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
218#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
219 531
220struct ev_loop 532 struct ev_loop
221{ 533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
223# include "ev_vars.h" 537 #include "ev_vars.h"
224};
225# undef VAR 538 #undef VAR
539 };
226# include "ev_wrap.h" 540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
227 544
228#else 545#else
229 546
547 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 549 #include "ev_vars.h"
232# undef VAR 550 #undef VAR
551
552 static int ev_default_loop_ptr;
233 553
234#endif 554#endif
235 555
236/*****************************************************************************/ 556/*****************************************************************************/
237 557
238inline ev_tstamp 558ev_tstamp
239ev_time (void) 559ev_time (void)
240{ 560{
241#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
242 struct timespec ts; 564 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 567 }
568#endif
569
246 struct timeval tv; 570 struct timeval tv;
247 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 573}
251 574
252inline ev_tstamp 575ev_tstamp inline_size
253get_clock (void) 576get_clock (void)
254{ 577{
255#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
257 { 580 {
262#endif 585#endif
263 586
264 return ev_time (); 587 return ev_time ();
265} 588}
266 589
590#if EV_MULTIPLICITY
267ev_tstamp 591ev_tstamp
268ev_now (EV_P) 592ev_now (EV_P)
269{ 593{
270 return rt_now; 594 return ev_rt_now;
271} 595}
596#endif
272 597
273#define array_roundsize(type,n) ((n) | 4 & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 660
275#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
277 { \ 663 { \
278 int newcnt = cur; \ 664 int ocur_ = (cur); \
279 do \ 665 (base) = (type *)array_realloc \
280 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 668 }
289 669
670#if 0
290#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 673 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 677 }
297 678#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 679
303#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 682
306/*****************************************************************************/ 683/*****************************************************************************/
307 684
308static void 685void noinline
309anfds_init (ANFD *base, int count)
310{
311 while (count--)
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316
317 ++base;
318 }
319}
320
321void
322ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
323{ 687{
324 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
325 690
326 if (w_->pending) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
327 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
329 return;
330 } 699 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336} 700}
337 701
338static void 702void inline_speed
339queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
340{ 704{
341 int i; 705 int i;
342 706
343 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
345} 709}
346 710
347static void 711/*****************************************************************************/
712
713void inline_speed
348fd_event (EV_P_ int fd, int events) 714fd_event (EV_P_ int fd, int revents)
349{ 715{
350 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 717 ev_io *w;
352 718
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 720 {
355 int ev = w->events & events; 721 int ev = w->events & revents;
356 722
357 if (ev) 723 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 724 ev_feed_event (EV_A_ (W)w, ev);
359 } 725 }
360} 726}
361 727
362/*****************************************************************************/ 728void
729ev_feed_fd_event (EV_P_ int fd, int revents)
730{
731 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents);
733}
363 734
364static void 735void inline_size
365fd_reify (EV_P) 736fd_reify (EV_P)
366{ 737{
367 int i; 738 int i;
368 739
369 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
370 { 741 {
371 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
372 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
373 struct ev_io *w; 744 ev_io *w;
374 745
375 int events = 0; 746 unsigned char events = 0;
376 747
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
378 events |= w->events; 749 events |= (unsigned char)w->events;
379 750
751#if EV_SELECT_IS_WINSOCKET
752 if (events)
753 {
754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 }
762#endif
763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
380 anfd->reify = 0; 768 anfd->reify = 0;
381
382 method_modify (EV_A_ fd, anfd->events, events);
383 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
384 } 774 }
385 775
386 fdchangecnt = 0; 776 fdchangecnt = 0;
387} 777}
388 778
389static void 779void inline_size
390fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
391{ 781{
392 if (anfds [fd].reify) 782 unsigned char reify = anfds [fd].reify;
393 return;
394
395 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
396 784
785 if (expect_true (!reify))
786 {
397 ++fdchangecnt; 787 ++fdchangecnt;
398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
399 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
400} 791}
401 792
402static void 793void inline_speed
403fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
404{ 795{
405 struct ev_io *w; 796 ev_io *w;
406 797
407 while ((w = (struct ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
408 { 799 {
409 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 } 802 }
412} 803}
413 804
414static int 805int inline_size
415fd_valid (int fd) 806fd_valid (int fd)
416{ 807{
417#ifdef WIN32 808#ifdef _WIN32
418 return !!win32_get_osfhandle (fd); 809 return _get_osfhandle (fd) != -1;
419#else 810#else
420 return fcntl (fd, F_GETFD) != -1; 811 return fcntl (fd, F_GETFD) != -1;
421#endif 812#endif
422} 813}
423 814
424/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
425static void 816static void noinline
426fd_ebadf (EV_P) 817fd_ebadf (EV_P)
427{ 818{
428 int fd; 819 int fd;
429 820
430 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
431 if (anfds [fd].events) 822 if (anfds [fd].events)
432 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
433 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
434} 825}
435 826
436/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
437static void 828static void noinline
438fd_enomem (EV_P) 829fd_enomem (EV_P)
439{ 830{
440 int fd; 831 int fd;
441 832
442 for (fd = anfdmax; fd--; ) 833 for (fd = anfdmax; fd--; )
445 fd_kill (EV_A_ fd); 836 fd_kill (EV_A_ fd);
446 return; 837 return;
447 } 838 }
448} 839}
449 840
450/* usually called after fork if method needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
451static void 842static void noinline
452fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
453{ 844{
454 int fd; 845 int fd;
455 846
456 /* this should be highly optimised to not do anything but set a flag */
457 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
458 if (anfds [fd].events) 848 if (anfds [fd].events)
459 { 849 {
460 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
461 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
462 } 853 }
463} 854}
464 855
465/*****************************************************************************/ 856/*****************************************************************************/
466 857
467static void 858/*
468upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
469{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
470 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
471 863
472 while (k && heap [k >> 1]->at > w->at) 864/*
473 { 865 * at the moment we allow libev the luxury of two heaps,
474 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
475 ((W)heap [k])->active = k + 1; 867 * which is more cache-efficient.
476 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
477 } 869 */
870#if EV_USE_4HEAP
478 871
479 heap [k] = w; 872#define DHEAP 4
480 ((W)heap [k])->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
481 876
482} 877/* away from the root */
483 878void inline_speed
484static void
485downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
486{ 880{
487 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
488 883
489 while (k < (N >> 1)) 884 for (;;)
490 { 885 {
491 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
492 889
493 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
494 ++j; 892 {
495 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
496 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
497 break; 906 break;
498 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
499 heap [k] = heap [j]; 946 heap [k] = heap [c];
500 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
501 k = j; 949 k = c;
502 } 950 }
503 951
504 heap [k] = w; 952 heap [k] = he;
505 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
978
979void inline_size
980adjustheap (ANHE *heap, int N, int k)
981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k);
984 else
985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
506} 998}
507 999
508/*****************************************************************************/ 1000/*****************************************************************************/
509 1001
510typedef struct 1002typedef struct
511{ 1003{
512 WL head; 1004 WL head;
513 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
514} ANSIG; 1006} ANSIG;
515 1007
516static ANSIG *signals; 1008static ANSIG *signals;
517static int signalmax; 1009static int signalmax;
518 1010
519static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
520static sig_atomic_t volatile gotsig; 1012
521static struct ev_io sigev; 1013/*****************************************************************************/
1014
1015void inline_speed
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
522 1077
523static void 1078static void
524signals_init (ANSIG *base, int count) 1079pipecb (EV_P_ ev_io *iow, int revents)
525{ 1080{
526 while (count--) 1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
527 { 1086 }
528 base->head = 0; 1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
529 base->gotsig = 0; 1097 gotsig = 0;
530 1098
531 ++base; 1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
532 } 1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
533} 1118}
1119
1120/*****************************************************************************/
534 1121
535static void 1122static void
536sighandler (int signum) 1123ev_sighandler (int signum)
537{ 1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
538#if WIN32 1129#if _WIN32
539 signal (signum, sighandler); 1130 signal (signum, ev_sighandler);
540#endif 1131#endif
541 1132
542 signals [signum - 1].gotsig = 1; 1133 signals [signum - 1].gotsig = 1;
543 1134 evpipe_write (EV_A_ &gotsig);
544 if (!gotsig)
545 {
546 int old_errno = errno;
547 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
551 write (sigpipe [1], &signum, 1);
552#endif
553 errno = old_errno;
554 }
555} 1135}
556 1136
557static void 1137void noinline
558sigcb (EV_P_ struct ev_io *iow, int revents) 1138ev_feed_signal_event (EV_P_ int signum)
559{ 1139{
560 WL w; 1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
561 int signum; 1146 --signum;
562 1147
563#ifdef WIN32 1148 if (signum < 0 || signum >= signalmax)
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1149 return;
565#else
566 read (sigpipe [0], &revents, 1);
567#endif
568 gotsig = 0;
569 1150
570 for (signum = signalmax; signum--; )
571 if (signals [signum].gotsig)
572 {
573 signals [signum].gotsig = 0; 1151 signals [signum].gotsig = 0;
574 1152
575 for (w = signals [signum].head; w; w = w->next) 1153 for (w = signals [signum].head; w; w = w->next)
576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
577 }
578}
579
580static void
581siginit (EV_P)
582{
583#ifndef WIN32
584 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
585 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
586
587 /* rather than sort out wether we really need nb, set it */
588 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
589 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590#endif
591
592 ev_io_set (&sigev, sigpipe [0], EV_READ);
593 ev_io_start (EV_A_ &sigev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */
595} 1155}
596 1156
597/*****************************************************************************/ 1157/*****************************************************************************/
598 1158
599static struct ev_child *childs [PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
600 1160
601#ifndef WIN32 1161#ifndef _WIN32
602 1162
603static struct ev_signal childev; 1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
604 1187
605#ifndef WCONTINUED 1188#ifndef WCONTINUED
606# define WCONTINUED 0 1189# define WCONTINUED 0
607#endif 1190#endif
608 1191
609static void 1192static void
610child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
611{
612 struct ev_child *w;
613
614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 if (w->pid == pid || !w->pid)
616 {
617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618 w->rpid = pid;
619 w->rstatus = status;
620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 }
622}
623
624static void
625childcb (EV_P_ struct ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
626{ 1194{
627 int pid, status; 1195 int pid, status;
628 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
630 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
631 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
633 1207
634 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
636 }
637} 1211}
638 1212
639#endif 1213#endif
640 1214
641/*****************************************************************************/ 1215/*****************************************************************************/
642 1216
1217#if EV_USE_PORT
1218# include "ev_port.c"
1219#endif
643#if EV_USE_KQUEUE 1220#if EV_USE_KQUEUE
644# include "ev_kqueue.c" 1221# include "ev_kqueue.c"
645#endif 1222#endif
646#if EV_USE_EPOLL 1223#if EV_USE_EPOLL
647# include "ev_epoll.c" 1224# include "ev_epoll.c"
664{ 1241{
665 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
666} 1243}
667 1244
668/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
669static int 1246int inline_size
670enable_secure (void) 1247enable_secure (void)
671{ 1248{
672#ifdef WIN32 1249#ifdef _WIN32
673 return 0; 1250 return 0;
674#else 1251#else
675 return getuid () != geteuid () 1252 return getuid () != geteuid ()
676 || getgid () != getegid (); 1253 || getgid () != getegid ();
677#endif 1254#endif
678} 1255}
679 1256
680int 1257unsigned int
681ev_method (EV_P) 1258ev_supported_backends (void)
682{ 1259{
683 return method; 1260 unsigned int flags = 0;
684}
685 1261
686static void 1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
687loop_init (EV_P_ int methods) 1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_recommended_backends (void)
688{ 1273{
689 if (!method) 1274 unsigned int flags = ev_supported_backends ();
1275
1276#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */
1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1279 flags &= ~EVBACKEND_KQUEUE;
1280#endif
1281#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif
1286
1287 return flags;
1288}
1289
1290unsigned int
1291ev_embeddable_backends (void)
1292{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300}
1301
1302unsigned int
1303ev_backend (EV_P)
1304{
1305 return backend;
1306}
1307
1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
1327loop_init (EV_P_ unsigned int flags)
1328{
1329 if (!backend)
690 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
691#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1343 {
1344 struct timespec ts;
1345
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1;
1348 }
1349#endif
1350
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends ();
1378
1379#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif
1382#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1384#endif
1385#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif
1388#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif
1391#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif
1394
1395 ev_init (&pipeev, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI);
1397 }
1398}
1399
1400static void noinline
1401loop_destroy (EV_P)
1402{
1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
1429
1430#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif
1433#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1435#endif
1436#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif
1439#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif
1442#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1444#endif
1445
1446 for (i = NUMPRI; i--; )
1447 {
1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1455
1456 /* have to use the microsoft-never-gets-it-right macro */
1457 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY);
1461#endif
1462#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464#endif
1465 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1470
1471 backend = 0;
1472}
1473
1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
1479loop_fork (EV_P)
1480{
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
1493
1494 if (ev_is_active (&pipeev))
1495 {
1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516
1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1520 }
1521
1522 postfork = 0;
1523}
1524
1525#if EV_MULTIPLICITY
1526
1527struct ev_loop *
1528ev_loop_new (unsigned int flags)
1529{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531
1532 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags);
1535
1536 if (ev_backend (EV_A))
1537 return loop;
1538
1539 return 0;
1540}
1541
1542void
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
692 { 1607 {
693 struct timespec ts; 1608 verify_watcher (EV_A_ (W)w);
694 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
695 have_monotonic = 1; 1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
696 } 1611 }
697#endif
698 1612
699 rt_now = ev_time (); 1613 assert (timermax >= timercnt);
700 mn_now = get_clock (); 1614 verify_heap (EV_A_ timers, timercnt);
701 now_floor = mn_now;
702 rtmn_diff = rt_now - mn_now;
703 1615
704 if (methods == EVMETHOD_AUTO) 1616#if EV_PERIODIC_ENABLE
705 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1617 assert (periodicmax >= periodiccnt);
706 methods = atoi (getenv ("LIBEV_METHODS")); 1618 verify_heap (EV_A_ periodics, periodiccnt);
707 else
708 methods = EVMETHOD_ANY;
709
710 method = 0;
711#if EV_USE_WIN32
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713#endif
714#if EV_USE_KQUEUE
715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
716#endif
717#if EV_USE_EPOLL
718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
719#endif
720#if EV_USE_POLL
721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
722#endif
723#if EV_USE_SELECT
724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
725#endif
726
727 ev_watcher_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI);
729 }
730}
731
732void
733loop_destroy (EV_P)
734{
735 int i;
736
737#if EV_USE_WIN32
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739#endif
740#if EV_USE_KQUEUE
741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
742#endif
743#if EV_USE_EPOLL
744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
745#endif
746#if EV_USE_POLL
747 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
748#endif
749#if EV_USE_SELECT
750 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
751#endif 1619#endif
752 1620
753 for (i = NUMPRI; i--; ) 1621 for (i = NUMPRI; i--; )
754 array_free (pending, [i]); 1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
755 1630
756 /* have to use the microsoft-never-gets-it-right macro */ 1631#if EV_FORK_ENABLE
757 array_free_microshit (fdchange); 1632 assert (forkmax >= forkcnt);
758 array_free_microshit (timer); 1633 array_verify (EV_A_ (W *)forks, forkcnt);
759 array_free_microshit (periodic); 1634#endif
760 array_free_microshit (idle);
761 array_free_microshit (prepare);
762 array_free_microshit (check);
763 1635
764 method = 0; 1636#if EV_ASYNC_ENABLE
765} 1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
766 1640
767static void 1641 assert (preparemax >= preparecnt);
768loop_fork (EV_P) 1642 array_verify (EV_A_ (W *)prepares, preparecnt);
769{ 1643
770#if EV_USE_EPOLL 1644 assert (checkmax >= checkcnt);
771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
772#endif 1650# endif
773#if EV_USE_KQUEUE
774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
775#endif 1651#endif
776
777 if (ev_is_active (&sigev))
778 {
779 /* default loop */
780
781 ev_ref (EV_A);
782 ev_io_stop (EV_A_ &sigev);
783 close (sigpipe [0]);
784 close (sigpipe [1]);
785
786 while (pipe (sigpipe))
787 syserr ("(libev) error creating pipe");
788
789 siginit (EV_A);
790 }
791
792 postfork = 0;
793} 1652}
1653
1654#endif /* multiplicity */
794 1655
795#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
796struct ev_loop * 1657struct ev_loop *
797ev_loop_new (int methods) 1658ev_default_loop_init (unsigned int flags)
798{ 1659#else
799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1660int
800 1661ev_default_loop (unsigned int flags)
801 memset (loop, 0, sizeof (struct ev_loop));
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 return loop;
807
808 return 0;
809}
810
811void
812ev_loop_destroy (EV_P)
813{
814 loop_destroy (EV_A);
815 ev_free (loop);
816}
817
818void
819ev_loop_fork (EV_P)
820{
821 postfork = 1;
822}
823
824#endif 1662#endif
825 1663{
1664 if (!ev_default_loop_ptr)
1665 {
826#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
827struct ev_loop default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
828static struct ev_loop *default_loop;
829
830struct ev_loop *
831#else 1668#else
832static int default_loop;
833
834int
835#endif
836ev_default_loop (int methods)
837{
838 if (sigpipe [0] == sigpipe [1])
839 if (pipe (sigpipe))
840 return 0;
841
842 if (!default_loop)
843 {
844#if EV_MULTIPLICITY
845 struct ev_loop *loop = default_loop = &default_loop_struct;
846#else
847 default_loop = 1; 1669 ev_default_loop_ptr = 1;
848#endif 1670#endif
849 1671
850 loop_init (EV_A_ methods); 1672 loop_init (EV_A_ flags);
851 1673
852 if (ev_method (EV_A)) 1674 if (ev_backend (EV_A))
853 { 1675 {
854 siginit (EV_A);
855
856#ifndef WIN32 1676#ifndef _WIN32
857 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
858 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
859 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
860 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
861#endif 1681#endif
862 } 1682 }
863 else 1683 else
864 default_loop = 0; 1684 ev_default_loop_ptr = 0;
865 } 1685 }
866 1686
867 return default_loop; 1687 return ev_default_loop_ptr;
868} 1688}
869 1689
870void 1690void
871ev_default_destroy (void) 1691ev_default_destroy (void)
872{ 1692{
873#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
874 struct ev_loop *loop = default_loop; 1694 struct ev_loop *loop = ev_default_loop_ptr;
875#endif 1695#endif
876 1696
1697 ev_default_loop_ptr = 0;
1698
877#ifndef WIN32 1699#ifndef _WIN32
878 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
879 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
880#endif 1702#endif
881 1703
882 ev_ref (EV_A); /* signal watcher */
883 ev_io_stop (EV_A_ &sigev);
884
885 close (sigpipe [0]); sigpipe [0] = 0;
886 close (sigpipe [1]); sigpipe [1] = 0;
887
888 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
889} 1705}
890 1706
891void 1707void
892ev_default_fork (void) 1708ev_default_fork (void)
893{ 1709{
894#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop; 1711 struct ev_loop *loop = ev_default_loop_ptr;
896#endif 1712#endif
897 1713
898 if (method) 1714 postfork = 1; /* must be in line with ev_loop_fork */
899 postfork = 1;
900} 1715}
901 1716
902/*****************************************************************************/ 1717/*****************************************************************************/
903 1718
904static int 1719void
905any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
906{ 1721{
907 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914} 1723}
915 1724
916static void 1725void inline_speed
917call_pending (EV_P) 1726call_pending (EV_P)
918{ 1727{
919 int pri; 1728 int pri;
920 1729
921 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
922 while (pendingcnt [pri]) 1731 while (pendingcnt [pri])
923 { 1732 {
924 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
925 1734
926 if (p->w) 1735 if (expect_true (p->w))
927 { 1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
928 p->w->pending = 0; 1739 p->w->pending = 0;
929 p->w->cb (EV_A_ p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
930 } 1742 }
931 } 1743 }
932} 1744}
933 1745
934static void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
935timers_reify (EV_P) 1770timers_reify (EV_P)
936{ 1771{
1772 EV_FREQUENT_CHECK;
1773
937 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
938 { 1775 {
939 struct ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
940 1777
941 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
942 1779
943 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
944 if (w->repeat) 1781 if (w->repeat)
945 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
947 ((WT)w)->at = mn_now + w->repeat; 1788
1789 ANHE_at_cache (timers [HEAP0]);
948 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
949 } 1791 }
950 else 1792 else
951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
952 1794
1795 EV_FREQUENT_CHECK;
953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
954 } 1797 }
955} 1798}
956 1799
957static void 1800#if EV_PERIODIC_ENABLE
1801void inline_size
958periodics_reify (EV_P) 1802periodics_reify (EV_P)
959{ 1803{
1804 EV_FREQUENT_CHECK;
1805
960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
961 { 1807 {
962 struct ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
963 1809
964 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
965 1811
966 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
967 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
968 { 1814 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
970 1816
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
972 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
973 } 1821 }
974 else if (w->interval) 1822 else if (w->interval)
975 { 1823 {
976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
978 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
979 } 1840 }
980 else 1841 else
981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
982 1843
1844 EV_FREQUENT_CHECK;
983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
984 } 1846 }
985} 1847}
986 1848
987static void 1849static void noinline
988periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
989{ 1851{
990 int i; 1852 int i;
991 1853
992 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
993 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
994 { 1856 {
995 struct ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
996 1858
997 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
999 else if (w->interval) 1861 else if (w->interval)
1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1001 }
1002 1863
1003 /* now rebuild the heap */ 1864 ANHE_at_cache (periodics [i]);
1004 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i);
1006}
1007
1008inline int
1009time_update_monotonic (EV_P)
1010{
1011 mn_now = get_clock ();
1012
1013 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 { 1865 }
1015 rt_now = rtmn_diff + mn_now;
1016 return 0;
1017 }
1018 else
1019 {
1020 now_floor = mn_now;
1021 rt_now = ev_time ();
1022 return 1;
1023 }
1024}
1025 1866
1026static void 1867 reheap (periodics, periodiccnt);
1027time_update (EV_P) 1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1028{ 1873{
1029 int i; 1874 int i;
1030 1875
1031#if EV_USE_MONOTONIC 1876#if EV_USE_MONOTONIC
1032 if (expect_true (have_monotonic)) 1877 if (expect_true (have_monotonic))
1033 { 1878 {
1034 if (time_update_monotonic (EV_A)) 1879 ev_tstamp odiff = rtmn_diff;
1880
1881 mn_now = get_clock ();
1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 1886 {
1036 ev_tstamp odiff = rtmn_diff; 1887 ev_rt_now = rtmn_diff + mn_now;
1888 return;
1889 }
1037 1890
1891 now_floor = mn_now;
1892 ev_rt_now = ev_time ();
1893
1038 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1894 /* loop a few times, before making important decisions.
1895 * on the choice of "4": one iteration isn't enough,
1896 * in case we get preempted during the calls to
1897 * ev_time and get_clock. a second call is almost guaranteed
1898 * to succeed in that case, though. and looping a few more times
1899 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here.
1901 */
1902 for (i = 4; --i; )
1903 {
1904 rtmn_diff = ev_rt_now - mn_now;
1905
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1039 { 1932 {
1040 rtmn_diff = rt_now - mn_now; 1933 ANHE *he = timers + i + HEAP0;
1041 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1042 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1935 ANHE_at_cache (*he);
1043 return; /* all is well */
1044
1045 rt_now = ev_time ();
1046 mn_now = get_clock ();
1047 now_floor = mn_now;
1048 } 1936 }
1049
1050 periodics_reschedule (EV_A);
1051 /* no timer adjustment, as the monotonic clock doesn't jump */
1052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1053 } 1937 }
1054 }
1055 else
1056#endif
1057 {
1058 rt_now = ev_time ();
1059 1938
1060 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1061 {
1062 periodics_reschedule (EV_A);
1063
1064 /* adjust timers. this is easy, as the offset is the same for all */
1065 for (i = 0; i < timercnt; ++i)
1066 ((WT)timers [i])->at += rt_now - mn_now;
1067 }
1068
1069 mn_now = rt_now; 1939 mn_now = ev_rt_now;
1070 } 1940 }
1071} 1941}
1072 1942
1073void 1943void
1074ev_ref (EV_P) 1944ev_ref (EV_P)
1080ev_unref (EV_P) 1950ev_unref (EV_P)
1081{ 1951{
1082 --activecnt; 1952 --activecnt;
1083} 1953}
1084 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1085static int loop_done; 1961static int loop_done;
1086 1962
1087void 1963void
1088ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1089{ 1965{
1090 double block; 1966 loop_done = EVUNLOOP_CANCEL;
1091 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1967
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1092 1969
1093 do 1970 do
1094 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
1095 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1096 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1097 { 1997 {
1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1099 call_pending (EV_A); 1999 call_pending (EV_A);
1100 } 2000 }
1105 2005
1106 /* update fd-related kernel structures */ 2006 /* update fd-related kernel structures */
1107 fd_reify (EV_A); 2007 fd_reify (EV_A);
1108 2008
1109 /* calculate blocking time */ 2009 /* calculate blocking time */
2010 {
2011 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.;
1110 2013
1111 /* we only need this for !monotonic clock or timers, but as we basically 2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1112 always have timers, we just calculate it always */
1113#if EV_USE_MONOTONIC
1114 if (expect_true (have_monotonic))
1115 time_update_monotonic (EV_A);
1116 else
1117#endif
1118 { 2015 {
1119 rt_now = ev_time (); 2016 /* update time to cancel out callback processing overhead */
1120 mn_now = rt_now; 2017 time_update (EV_A_ 1e100);
1121 }
1122 2018
1123 if (flags & EVLOOP_NONBLOCK || idlecnt)
1124 block = 0.;
1125 else
1126 {
1127 block = MAX_BLOCKTIME; 2019 waittime = MAX_BLOCKTIME;
1128 2020
1129 if (timercnt) 2021 if (timercnt)
1130 { 2022 {
1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1132 if (block > to) block = to; 2024 if (waittime > to) waittime = to;
1133 } 2025 }
1134 2026
2027#if EV_PERIODIC_ENABLE
1135 if (periodiccnt) 2028 if (periodiccnt)
1136 { 2029 {
1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1138 if (block > to) block = to; 2031 if (waittime > to) waittime = to;
1139 } 2032 }
2033#endif
1140 2034
1141 if (block < 0.) block = 0.; 2035 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime;
2037
2038 sleeptime = waittime - backend_fudge;
2039
2040 if (expect_true (sleeptime > io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 {
2045 ev_sleep (sleeptime);
2046 waittime -= sleeptime;
2047 }
1142 } 2048 }
1143 2049
1144 method_poll (EV_A_ block); 2050 ++loop_count;
2051 backend_poll (EV_A_ waittime);
1145 2052
1146 /* update rt_now, do magic */ 2053 /* update ev_rt_now, do magic */
1147 time_update (EV_A); 2054 time_update (EV_A_ waittime + sleeptime);
2055 }
1148 2056
1149 /* queue pending timers and reschedule them */ 2057 /* queue pending timers and reschedule them */
1150 timers_reify (EV_A); /* relative timers called last */ 2058 timers_reify (EV_A); /* relative timers called last */
2059#if EV_PERIODIC_ENABLE
1151 periodics_reify (EV_A); /* absolute timers called first */ 2060 periodics_reify (EV_A); /* absolute timers called first */
2061#endif
1152 2062
2063#if EV_IDLE_ENABLE
1153 /* queue idle watchers unless io or timers are pending */ 2064 /* queue idle watchers unless other events are pending */
1154 if (idlecnt && !any_pending (EV_A)) 2065 idle_reify (EV_A);
1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2066#endif
1156 2067
1157 /* queue check watchers, to be executed first */ 2068 /* queue check watchers, to be executed first */
1158 if (checkcnt) 2069 if (expect_false (checkcnt))
1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1160 2071
1161 call_pending (EV_A); 2072 call_pending (EV_A);
1162 } 2073 }
1163 while (activecnt && !loop_done); 2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
1164 2079
1165 if (loop_done != 2) 2080 if (loop_done == EVUNLOOP_ONE)
1166 loop_done = 0; 2081 loop_done = EVUNLOOP_CANCEL;
1167} 2082}
1168 2083
1169void 2084void
1170ev_unloop (EV_P_ int how) 2085ev_unloop (EV_P_ int how)
1171{ 2086{
1172 loop_done = how; 2087 loop_done = how;
1173} 2088}
1174 2089
1175/*****************************************************************************/ 2090/*****************************************************************************/
1176 2091
1177inline void 2092void inline_size
1178wlist_add (WL *head, WL elem) 2093wlist_add (WL *head, WL elem)
1179{ 2094{
1180 elem->next = *head; 2095 elem->next = *head;
1181 *head = elem; 2096 *head = elem;
1182} 2097}
1183 2098
1184inline void 2099void inline_size
1185wlist_del (WL *head, WL elem) 2100wlist_del (WL *head, WL elem)
1186{ 2101{
1187 while (*head) 2102 while (*head)
1188 { 2103 {
1189 if (*head == elem) 2104 if (*head == elem)
1194 2109
1195 head = &(*head)->next; 2110 head = &(*head)->next;
1196 } 2111 }
1197} 2112}
1198 2113
1199inline void 2114void inline_speed
1200ev_clear_pending (EV_P_ W w) 2115clear_pending (EV_P_ W w)
1201{ 2116{
1202 if (w->pending) 2117 if (w->pending)
1203 { 2118 {
1204 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2119 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1205 w->pending = 0; 2120 w->pending = 0;
1206 } 2121 }
1207} 2122}
1208 2123
1209inline void 2124int
2125ev_clear_pending (EV_P_ void *w)
2126{
2127 W w_ = (W)w;
2128 int pending = w_->pending;
2129
2130 if (expect_true (pending))
2131 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2133 w_->pending = 0;
2134 p->w = 0;
2135 return p->events;
2136 }
2137 else
2138 return 0;
2139}
2140
2141void inline_size
2142pri_adjust (EV_P_ W w)
2143{
2144 int pri = w->priority;
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri;
2148}
2149
2150void inline_speed
1210ev_start (EV_P_ W w, int active) 2151ev_start (EV_P_ W w, int active)
1211{ 2152{
1212 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2153 pri_adjust (EV_A_ w);
1213 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214
1215 w->active = active; 2154 w->active = active;
1216 ev_ref (EV_A); 2155 ev_ref (EV_A);
1217} 2156}
1218 2157
1219inline void 2158void inline_size
1220ev_stop (EV_P_ W w) 2159ev_stop (EV_P_ W w)
1221{ 2160{
1222 ev_unref (EV_A); 2161 ev_unref (EV_A);
1223 w->active = 0; 2162 w->active = 0;
1224} 2163}
1225 2164
1226/*****************************************************************************/ 2165/*****************************************************************************/
1227 2166
1228void 2167void noinline
1229ev_io_start (EV_P_ struct ev_io *w) 2168ev_io_start (EV_P_ ev_io *w)
1230{ 2169{
1231 int fd = w->fd; 2170 int fd = w->fd;
1232 2171
1233 if (ev_is_active (w)) 2172 if (expect_false (ev_is_active (w)))
1234 return; 2173 return;
1235 2174
1236 assert (("ev_io_start called with negative fd", fd >= 0)); 2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
1237 2179
1238 ev_start (EV_A_ (W)w, 1); 2180 ev_start (EV_A_ (W)w, 1);
1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1240 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2182 wlist_add (&anfds[fd].head, (WL)w);
1241 2183
1242 fd_change (EV_A_ fd); 2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1243} 2185 w->events &= ~EV__IOFDSET;
1244 2186
1245void 2187 EV_FREQUENT_CHECK;
2188}
2189
2190void noinline
1246ev_io_stop (EV_P_ struct ev_io *w) 2191ev_io_stop (EV_P_ ev_io *w)
1247{ 2192{
1248 ev_clear_pending (EV_A_ (W)w); 2193 clear_pending (EV_A_ (W)w);
1249 if (!ev_is_active (w)) 2194 if (expect_false (!ev_is_active (w)))
1250 return; 2195 return;
1251 2196
2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198
2199 EV_FREQUENT_CHECK;
2200
1252 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2201 wlist_del (&anfds[w->fd].head, (WL)w);
1253 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1254 2203
1255 fd_change (EV_A_ w->fd); 2204 fd_change (EV_A_ w->fd, 1);
1256}
1257 2205
1258void 2206 EV_FREQUENT_CHECK;
2207}
2208
2209void noinline
1259ev_timer_start (EV_P_ struct ev_timer *w) 2210ev_timer_start (EV_P_ ev_timer *w)
1260{ 2211{
1261 if (ev_is_active (w)) 2212 if (expect_false (ev_is_active (w)))
1262 return; 2213 return;
1263 2214
1264 ((WT)w)->at += mn_now; 2215 ev_at (w) += mn_now;
1265 2216
1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1267 2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
1268 ev_start (EV_A_ (W)w, ++timercnt); 2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1270 timers [timercnt - 1] = w; 2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
1271 upheap ((WT *)timers, timercnt - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
1272 2227
2228 EV_FREQUENT_CHECK;
2229
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1274} 2231}
1275 2232
1276void 2233void noinline
1277ev_timer_stop (EV_P_ struct ev_timer *w) 2234ev_timer_stop (EV_P_ ev_timer *w)
1278{ 2235{
1279 ev_clear_pending (EV_A_ (W)w); 2236 clear_pending (EV_A_ (W)w);
1280 if (!ev_is_active (w)) 2237 if (expect_false (!ev_is_active (w)))
1281 return; 2238 return;
1282 2239
2240 EV_FREQUENT_CHECK;
2241
2242 {
2243 int active = ev_active (w);
2244
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1284 2246
1285 if (((W)w)->active < timercnt--) 2247 --timercnt;
2248
2249 if (expect_true (active < timercnt + HEAP0))
1286 { 2250 {
1287 timers [((W)w)->active - 1] = timers [timercnt]; 2251 timers [active] = timers [timercnt + HEAP0];
1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2252 adjustheap (timers, timercnt, active);
1289 } 2253 }
2254 }
1290 2255
1291 ((WT)w)->at = w->repeat; 2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
1292 2259
1293 ev_stop (EV_A_ (W)w); 2260 ev_stop (EV_A_ (W)w);
1294} 2261}
1295 2262
1296void 2263void noinline
1297ev_timer_again (EV_P_ struct ev_timer *w) 2264ev_timer_again (EV_P_ ev_timer *w)
1298{ 2265{
2266 EV_FREQUENT_CHECK;
2267
1299 if (ev_is_active (w)) 2268 if (ev_is_active (w))
1300 { 2269 {
1301 if (w->repeat) 2270 if (w->repeat)
1302 { 2271 {
1303 ((WT)w)->at = mn_now + w->repeat; 2272 ev_at (w) = mn_now + w->repeat;
1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2273 ANHE_at_cache (timers [ev_active (w)]);
2274 adjustheap (timers, timercnt, ev_active (w));
1305 } 2275 }
1306 else 2276 else
1307 ev_timer_stop (EV_A_ w); 2277 ev_timer_stop (EV_A_ w);
1308 } 2278 }
1309 else if (w->repeat) 2279 else if (w->repeat)
2280 {
2281 ev_at (w) = w->repeat;
1310 ev_timer_start (EV_A_ w); 2282 ev_timer_start (EV_A_ w);
1311} 2283 }
1312 2284
1313void 2285 EV_FREQUENT_CHECK;
2286}
2287
2288#if EV_PERIODIC_ENABLE
2289void noinline
1314ev_periodic_start (EV_P_ struct ev_periodic *w) 2290ev_periodic_start (EV_P_ ev_periodic *w)
1315{ 2291{
1316 if (ev_is_active (w)) 2292 if (expect_false (ev_is_active (w)))
1317 return; 2293 return;
1318 2294
1319 if (w->reschedule_cb) 2295 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1321 else if (w->interval) 2297 else if (w->interval)
1322 { 2298 {
1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1324 /* this formula differs from the one in periodic_reify because we do not always round up */ 2300 /* this formula differs from the one in periodic_reify because we do not always round up */
1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1326 } 2302 }
2303 else
2304 ev_at (w) = w->offset;
1327 2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
1328 ev_start (EV_A_ (W)w, ++periodiccnt); 2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1330 periodics [periodiccnt - 1] = w; 2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1331 upheap ((WT *)periodics, periodiccnt - 1); 2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
1332 2314
2315 EV_FREQUENT_CHECK;
2316
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1334} 2318}
1335 2319
1336void 2320void noinline
1337ev_periodic_stop (EV_P_ struct ev_periodic *w) 2321ev_periodic_stop (EV_P_ ev_periodic *w)
1338{ 2322{
1339 ev_clear_pending (EV_A_ (W)w); 2323 clear_pending (EV_A_ (W)w);
1340 if (!ev_is_active (w)) 2324 if (expect_false (!ev_is_active (w)))
1341 return; 2325 return;
1342 2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330 int active = ev_active (w);
2331
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1344 2333
1345 if (((W)w)->active < periodiccnt--) 2334 --periodiccnt;
2335
2336 if (expect_true (active < periodiccnt + HEAP0))
1346 { 2337 {
1347 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2338 periodics [active] = periodics [periodiccnt + HEAP0];
1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2339 adjustheap (periodics, periodiccnt, active);
1349 } 2340 }
2341 }
2342
2343 EV_FREQUENT_CHECK;
1350 2344
1351 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1352} 2346}
1353 2347
1354void 2348void noinline
1355ev_periodic_again (EV_P_ struct ev_periodic *w) 2349ev_periodic_again (EV_P_ ev_periodic *w)
1356{ 2350{
2351 /* TODO: use adjustheap and recalculation */
1357 ev_periodic_stop (EV_A_ w); 2352 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w); 2353 ev_periodic_start (EV_A_ w);
1359} 2354}
1360 2355#endif
1361void
1362ev_idle_start (EV_P_ struct ev_idle *w)
1363{
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, ++idlecnt);
1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 idles [idlecnt - 1] = w;
1370}
1371
1372void
1373ev_idle_stop (EV_P_ struct ev_idle *w)
1374{
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383void
1384ev_prepare_start (EV_P_ struct ev_prepare *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++preparecnt);
1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 prepares [preparecnt - 1] = w;
1392}
1393
1394void
1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_check_start (EV_P_ struct ev_check *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++checkcnt);
1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 checks [checkcnt - 1] = w;
1414}
1415
1416void
1417ev_check_stop (EV_P_ struct ev_check *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426 2356
1427#ifndef SA_RESTART 2357#ifndef SA_RESTART
1428# define SA_RESTART 0 2358# define SA_RESTART 0
1429#endif 2359#endif
1430 2360
1431void 2361void noinline
1432ev_signal_start (EV_P_ struct ev_signal *w) 2362ev_signal_start (EV_P_ ev_signal *w)
1433{ 2363{
1434#if EV_MULTIPLICITY 2364#if EV_MULTIPLICITY
1435 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1436#endif 2366#endif
1437 if (ev_is_active (w)) 2367 if (expect_false (ev_is_active (w)))
1438 return; 2368 return;
1439 2369
1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
2375
2376 {
2377#ifndef _WIN32
2378 sigset_t full, prev;
2379 sigfillset (&full);
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2384
2385#ifndef _WIN32
2386 sigprocmask (SIG_SETMASK, &prev, 0);
2387#endif
2388 }
1441 2389
1442 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
1445 2392
1446 if (!((WL)w)->next) 2393 if (!((WL)w)->next)
1447 { 2394 {
1448#if WIN32 2395#if _WIN32
1449 signal (w->signum, sighandler); 2396 signal (w->signum, ev_sighandler);
1450#else 2397#else
1451 struct sigaction sa; 2398 struct sigaction sa;
1452 sa.sa_handler = sighandler; 2399 sa.sa_handler = ev_sighandler;
1453 sigfillset (&sa.sa_mask); 2400 sigfillset (&sa.sa_mask);
1454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1455 sigaction (w->signum, &sa, 0); 2402 sigaction (w->signum, &sa, 0);
1456#endif 2403#endif
1457 } 2404 }
1458}
1459 2405
1460void 2406 EV_FREQUENT_CHECK;
2407}
2408
2409void noinline
1461ev_signal_stop (EV_P_ struct ev_signal *w) 2410ev_signal_stop (EV_P_ ev_signal *w)
1462{ 2411{
1463 ev_clear_pending (EV_A_ (W)w); 2412 clear_pending (EV_A_ (W)w);
1464 if (!ev_is_active (w)) 2413 if (expect_false (!ev_is_active (w)))
1465 return; 2414 return;
1466 2415
2416 EV_FREQUENT_CHECK;
2417
1467 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
1468 ev_stop (EV_A_ (W)w); 2419 ev_stop (EV_A_ (W)w);
1469 2420
1470 if (!signals [w->signum - 1].head) 2421 if (!signals [w->signum - 1].head)
1471 signal (w->signum, SIG_DFL); 2422 signal (w->signum, SIG_DFL);
1472}
1473 2423
2424 EV_FREQUENT_CHECK;
2425}
2426
1474void 2427void
1475ev_child_start (EV_P_ struct ev_child *w) 2428ev_child_start (EV_P_ ev_child *w)
1476{ 2429{
1477#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
1478 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1479#endif 2432#endif
1480 if (ev_is_active (w)) 2433 if (expect_false (ev_is_active (w)))
1481 return; 2434 return;
1482 2435
2436 EV_FREQUENT_CHECK;
2437
1483 ev_start (EV_A_ (W)w, 1); 2438 ev_start (EV_A_ (W)w, 1);
1484 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1485}
1486 2440
2441 EV_FREQUENT_CHECK;
2442}
2443
1487void 2444void
1488ev_child_stop (EV_P_ struct ev_child *w) 2445ev_child_stop (EV_P_ ev_child *w)
1489{ 2446{
1490 ev_clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1491 if (ev_is_active (w)) 2448 if (expect_false (!ev_is_active (w)))
1492 return; 2449 return;
1493 2450
2451 EV_FREQUENT_CHECK;
2452
1494 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1495 ev_stop (EV_A_ (W)w); 2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
1496} 2457}
2458
2459#if EV_STAT_ENABLE
2460
2461# ifdef _WIN32
2462# undef lstat
2463# define lstat(a,b) _stati64 (a,b)
2464# endif
2465
2466#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468#define MIN_STAT_INTERVAL 0.1074891
2469
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471
2472#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192
2474
2475static void noinline
2476infy_add (EV_P_ ev_stat *w)
2477{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479
2480 if (w->wd < 0)
2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484
2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 {
2490 char path [4096];
2491 strcpy (path, w->path);
2492
2493 do
2494 {
2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2497
2498 char *pend = strrchr (path, '/');
2499
2500 if (!pend || pend == path)
2501 break;
2502
2503 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 }
2508 }
2509
2510 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
2531}
2532
2533static void noinline
2534infy_del (EV_P_ ev_stat *w)
2535{
2536 int slot;
2537 int wd = w->wd;
2538
2539 if (wd < 0)
2540 return;
2541
2542 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w);
2545
2546 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd);
2548}
2549
2550static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{
2553 if (slot < 0)
2554 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2556 infy_wd (EV_A_ slot, wd, ev);
2557 else
2558 {
2559 WL w_;
2560
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2562 {
2563 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */
2565
2566 if (w->wd == wd || wd == -1)
2567 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2571 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */
2573 }
2574
2575 stat_timer_cb (EV_A_ &w->timer, 0);
2576 }
2577 }
2578 }
2579}
2580
2581static void
2582infy_cb (EV_P_ ev_io *w, int revents)
2583{
2584 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf));
2588
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591}
2592
2593void inline_size
2594check_2625 (EV_P)
2595{
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614}
2615
2616void inline_size
2617infy_init (EV_P)
2618{
2619 if (fs_fd != -2)
2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
2625
2626 fs_fd = inotify_init ();
2627
2628 if (fs_fd >= 0)
2629 {
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w);
2633 }
2634}
2635
2636void inline_size
2637infy_fork (EV_P)
2638{
2639 int slot;
2640
2641 if (fs_fd < 0)
2642 return;
2643
2644 close (fs_fd);
2645 fs_fd = inotify_init ();
2646
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2648 {
2649 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0;
2651
2652 while (w_)
2653 {
2654 ev_stat *w = (ev_stat *)w_;
2655 w_ = w_->next; /* lets us add this watcher */
2656
2657 w->wd = -1;
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else
2662 ev_timer_again (EV_A_ &w->timer);
2663 }
2664 }
2665}
2666
2667#endif
2668
2669#ifdef _WIN32
2670# define EV_LSTAT(p,b) _stati64 (p, b)
2671#else
2672# define EV_LSTAT(p,b) lstat (p, b)
2673#endif
2674
2675void
2676ev_stat_stat (EV_P_ ev_stat *w)
2677{
2678 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1;
2682}
2683
2684static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688
2689 /* we copy this here each the time so that */
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w);
2693
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if (
2696 w->prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime
2707 ) {
2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
2711 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w);
2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
2715 #endif
2716
2717 ev_feed_event (EV_A_ w, EV_STAT);
2718 }
2719}
2720
2721void
2722ev_stat_start (EV_P_ ev_stat *w)
2723{
2724 if (expect_false (ev_is_active (w)))
2725 return;
2726
2727 ev_stat_stat (EV_A_ w);
2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2730 w->interval = MIN_STAT_INTERVAL;
2731
2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2733 ev_set_priority (&w->timer, ev_priority (w));
2734
2735#if EV_USE_INOTIFY
2736 infy_init (EV_A);
2737
2738 if (fs_fd >= 0)
2739 infy_add (EV_A_ w);
2740 else
2741#endif
2742 ev_timer_again (EV_A_ &w->timer);
2743
2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
2747}
2748
2749void
2750ev_stat_stop (EV_P_ ev_stat *w)
2751{
2752 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w)))
2754 return;
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w);
2760#endif
2761 ev_timer_stop (EV_A_ &w->timer);
2762
2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2766}
2767#endif
2768
2769#if EV_IDLE_ENABLE
2770void
2771ev_idle_start (EV_P_ ev_idle *w)
2772{
2773 if (expect_false (ev_is_active (w)))
2774 return;
2775
2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779
2780 {
2781 int active = ++idlecnt [ABSPRI (w)];
2782
2783 ++idleall;
2784 ev_start (EV_A_ (W)w, active);
2785
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2787 idles [ABSPRI (w)][active - 1] = w;
2788 }
2789
2790 EV_FREQUENT_CHECK;
2791}
2792
2793void
2794ev_idle_stop (EV_P_ ev_idle *w)
2795{
2796 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w)))
2798 return;
2799
2800 EV_FREQUENT_CHECK;
2801
2802 {
2803 int active = ev_active (w);
2804
2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2807
2808 ev_stop (EV_A_ (W)w);
2809 --idleall;
2810 }
2811
2812 EV_FREQUENT_CHECK;
2813}
2814#endif
2815
2816void
2817ev_prepare_start (EV_P_ ev_prepare *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
2823
2824 ev_start (EV_A_ (W)w, ++preparecnt);
2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2829}
2830
2831void
2832ev_prepare_stop (EV_P_ ev_prepare *w)
2833{
2834 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w)))
2836 return;
2837
2838 EV_FREQUENT_CHECK;
2839
2840 {
2841 int active = ev_active (w);
2842
2843 prepares [active - 1] = prepares [--preparecnt];
2844 ev_active (prepares [active - 1]) = active;
2845 }
2846
2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851
2852void
2853ev_check_start (EV_P_ ev_check *w)
2854{
2855 if (expect_false (ev_is_active (w)))
2856 return;
2857
2858 EV_FREQUENT_CHECK;
2859
2860 ev_start (EV_A_ (W)w, ++checkcnt);
2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
2865}
2866
2867void
2868ev_check_stop (EV_P_ ev_check *w)
2869{
2870 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w)))
2872 return;
2873
2874 EV_FREQUENT_CHECK;
2875
2876 {
2877 int active = ev_active (w);
2878
2879 checks [active - 1] = checks [--checkcnt];
2880 ev_active (checks [active - 1]) = active;
2881 }
2882
2883 ev_stop (EV_A_ (W)w);
2884
2885 EV_FREQUENT_CHECK;
2886}
2887
2888#if EV_EMBED_ENABLE
2889void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w)
2891{
2892 ev_loop (w->other, EVLOOP_NONBLOCK);
2893}
2894
2895static void
2896embed_io_cb (EV_P_ ev_io *io, int revents)
2897{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899
2900 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK);
2904}
2905
2906static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910
2911 {
2912 struct ev_loop *loop = w->other;
2913
2914 while (fdchangecnt)
2915 {
2916 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919 }
2920}
2921
2922static void
2923embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924{
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937}
2938
2939#if 0
2940static void
2941embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2942{
2943 ev_idle_stop (EV_A_ idle);
2944}
2945#endif
2946
2947void
2948ev_embed_start (EV_P_ ev_embed *w)
2949{
2950 if (expect_false (ev_is_active (w)))
2951 return;
2952
2953 {
2954 struct ev_loop *loop = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 }
2958
2959 EV_FREQUENT_CHECK;
2960
2961 ev_set_priority (&w->io, ev_priority (w));
2962 ev_io_start (EV_A_ &w->io);
2963
2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2965 ev_set_priority (&w->prepare, EV_MINPRI);
2966 ev_prepare_start (EV_A_ &w->prepare);
2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2972
2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
2976}
2977
2978void
2979ev_embed_stop (EV_P_ ev_embed *w)
2980{
2981 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w)))
2983 return;
2984
2985 EV_FREQUENT_CHECK;
2986
2987 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2990
2991 EV_FREQUENT_CHECK;
2992}
2993#endif
2994
2995#if EV_FORK_ENABLE
2996void
2997ev_fork_start (EV_P_ ev_fork *w)
2998{
2999 if (expect_false (ev_is_active (w)))
3000 return;
3001
3002 EV_FREQUENT_CHECK;
3003
3004 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
3009}
3010
3011void
3012ev_fork_stop (EV_P_ ev_fork *w)
3013{
3014 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w)))
3016 return;
3017
3018 EV_FREQUENT_CHECK;
3019
3020 {
3021 int active = ev_active (w);
3022
3023 forks [active - 1] = forks [--forkcnt];
3024 ev_active (forks [active - 1]) = active;
3025 }
3026
3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
3030}
3031#endif
3032
3033#if EV_ASYNC_ENABLE
3034void
3035ev_async_start (EV_P_ ev_async *w)
3036{
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
3043
3044 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
3049}
3050
3051void
3052ev_async_stop (EV_P_ ev_async *w)
3053{
3054 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 {
3061 int active = ev_active (w);
3062
3063 asyncs [active - 1] = asyncs [--asynccnt];
3064 ev_active (asyncs [active - 1]) = active;
3065 }
3066
3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
3070}
3071
3072void
3073ev_async_send (EV_P_ ev_async *w)
3074{
3075 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync);
3077}
3078#endif
1497 3079
1498/*****************************************************************************/ 3080/*****************************************************************************/
1499 3081
1500struct ev_once 3082struct ev_once
1501{ 3083{
1502 struct ev_io io; 3084 ev_io io;
1503 struct ev_timer to; 3085 ev_timer to;
1504 void (*cb)(int revents, void *arg); 3086 void (*cb)(int revents, void *arg);
1505 void *arg; 3087 void *arg;
1506}; 3088};
1507 3089
1508static void 3090static void
1509once_cb (EV_P_ struct ev_once *once, int revents) 3091once_cb (EV_P_ struct ev_once *once, int revents)
1510{ 3092{
1511 void (*cb)(int revents, void *arg) = once->cb; 3093 void (*cb)(int revents, void *arg) = once->cb;
1512 void *arg = once->arg; 3094 void *arg = once->arg;
1513 3095
1514 ev_io_stop (EV_A_ &once->io); 3096 ev_io_stop (EV_A_ &once->io);
1515 ev_timer_stop (EV_A_ &once->to); 3097 ev_timer_stop (EV_A_ &once->to);
1516 ev_free (once); 3098 ev_free (once);
1517 3099
1518 cb (revents, arg); 3100 cb (revents, arg);
1519} 3101}
1520 3102
1521static void 3103static void
1522once_cb_io (EV_P_ struct ev_io *w, int revents) 3104once_cb_io (EV_P_ ev_io *w, int revents)
1523{ 3105{
1524 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1525} 3109}
1526 3110
1527static void 3111static void
1528once_cb_to (EV_P_ struct ev_timer *w, int revents) 3112once_cb_to (EV_P_ ev_timer *w, int revents)
1529{ 3113{
1530 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1531} 3117}
1532 3118
1533void 3119void
1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1535{ 3121{
1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1537 3123
1538 if (!once) 3124 if (expect_false (!once))
3125 {
1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1540 else 3127 return;
1541 { 3128 }
3129
1542 once->cb = cb; 3130 once->cb = cb;
1543 once->arg = arg; 3131 once->arg = arg;
1544 3132
1545 ev_watcher_init (&once->io, once_cb_io); 3133 ev_init (&once->io, once_cb_io);
1546 if (fd >= 0) 3134 if (fd >= 0)
3135 {
3136 ev_io_set (&once->io, fd, events);
3137 ev_io_start (EV_A_ &once->io);
3138 }
3139
3140 ev_init (&once->to, once_cb_to);
3141 if (timeout >= 0.)
3142 {
3143 ev_timer_set (&once->to, timeout, 0.);
3144 ev_timer_start (EV_A_ &once->to);
3145 }
3146}
3147
3148/*****************************************************************************/
3149
3150#if 0
3151void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
1547 { 3160 {
1548 ev_io_set (&once->io, fd, events); 3161 wn = wl->next;
1549 ev_io_start (EV_A_ &once->io); 3162
3163#if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170#endif
3171#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175#endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
1550 } 3181 }
1551 3182
1552 ev_watcher_init (&once->to, once_cb_to); 3183 if (types & (EV_TIMER | EV_STAT))
1553 if (timeout >= 0.) 3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185#if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1554 { 3188 {
1555 ev_timer_set (&once->to, timeout, 0.); 3189 if (types & EV_STAT)
1556 ev_timer_start (EV_A_ &once->to); 3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1557 } 3191 }
1558 } 3192 else
1559} 3193#endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1560 3196
3197#if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif
3202
3203#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif
3209
3210#if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215#endif
3216
3217#if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253}
3254#endif
3255
3256#if EV_MULTIPLICITY
3257 #include "ev_wrap.h"
3258#endif
3259
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines