ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.284 by root, Wed Apr 15 17:49:26 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
45# endif 77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
63 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
64#endif 144#endif
65 145
66#include <math.h> 146#include <math.h>
67#include <stdlib.h> 147#include <stdlib.h>
68#include <fcntl.h> 148#include <fcntl.h>
75#include <sys/types.h> 155#include <sys/types.h>
76#include <time.h> 156#include <time.h>
77 157
78#include <signal.h> 158#include <signal.h>
79 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
80#ifndef _WIN32 166#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 167# include <sys/time.h>
83# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
84#else 170#else
171# include <io.h>
85# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 173# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
89# endif 176# endif
90#endif 177#endif
91 178
92/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
93 188
94#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
96#endif 207#endif
97 208
98#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 211#endif
102 212
103#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
104# ifdef _WIN32 214# ifdef _WIN32
105# define EV_USE_POLL 0 215# define EV_USE_POLL 0
107# define EV_USE_POLL 1 217# define EV_USE_POLL 1
108# endif 218# endif
109#endif 219#endif
110 220
111#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
112# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
113#endif 227#endif
114 228
115#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
117#endif 231#endif
118 232
119#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
121#endif 242# endif
243#endif
122 244
123/**/ 245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 288
125#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
128#endif 292#endif
130#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
133#endif 297#endif
134 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
135#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 322# include <winsock.h>
137#endif 323#endif
138 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
139/**/ 346/**/
140 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 367
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 368#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 370# define noinline __attribute__ ((noinline))
155#else 371#else
156# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
157# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
158#endif 377#endif
159 378
160#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
162 388
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 391
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
167 394
168typedef struct ev_watcher *W; 395typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
171 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
173 411
174#ifdef _WIN32 412#ifdef _WIN32
175# include "ev_win32.c" 413# include "ev_win32.c"
176#endif 414#endif
177 415
178/*****************************************************************************/ 416/*****************************************************************************/
179 417
180static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
181 419
420void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 422{
184 syserr_cb = cb; 423 syserr_cb = cb;
185} 424}
186 425
187static void 426static void noinline
188syserr (const char *msg) 427ev_syserr (const char *msg)
189{ 428{
190 if (!msg) 429 if (!msg)
191 msg = "(libev) system error"; 430 msg = "(libev) system error";
192 431
193 if (syserr_cb) 432 if (syserr_cb)
197 perror (msg); 436 perror (msg);
198 abort (); 437 abort ();
199 } 438 }
200} 439}
201 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
202static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 457
458void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 460{
206 alloc = cb; 461 alloc = cb;
207} 462}
208 463
209static void * 464inline_speed void *
210ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
211{ 466{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
213 468
214 if (!ptr && size) 469 if (!ptr && size)
215 { 470 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 472 abort ();
228typedef struct 483typedef struct
229{ 484{
230 WL head; 485 WL head;
231 unsigned char events; 486 unsigned char events;
232 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
233#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle; 494 SOCKET handle;
235#endif 495#endif
236} ANFD; 496} ANFD;
237 497
238typedef struct 498typedef struct
239{ 499{
240 W w; 500 W w;
241 int events; 501 int events;
242} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
243 529
244#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
245 531
246 struct ev_loop 532 struct ev_loop
247 { 533 {
251 #include "ev_vars.h" 537 #include "ev_vars.h"
252 #undef VAR 538 #undef VAR
253 }; 539 };
254 #include "ev_wrap.h" 540 #include "ev_wrap.h"
255 541
256 struct ev_loop default_loop_struct; 542 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 543 struct ev_loop *ev_default_loop_ptr;
258 544
259#else 545#else
260 546
261 ev_tstamp ev_rt_now; 547 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 549 #include "ev_vars.h"
264 #undef VAR 550 #undef VAR
265 551
266 static int default_loop; 552 static int ev_default_loop_ptr;
267 553
268#endif 554#endif
269 555
270/*****************************************************************************/ 556/*****************************************************************************/
271 557
272ev_tstamp 558ev_tstamp
273ev_time (void) 559ev_time (void)
274{ 560{
275#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
276 struct timespec ts; 564 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 567 }
568#endif
569
280 struct timeval tv; 570 struct timeval tv;
281 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 573}
285 574
286inline ev_tstamp 575inline_size ev_tstamp
287get_clock (void) 576get_clock (void)
288{ 577{
289#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
291 { 580 {
304{ 593{
305 return ev_rt_now; 594 return ev_rt_now;
306} 595}
307#endif 596#endif
308 597
309#define array_roundsize(type,n) ((n) | 4 & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 660
311#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
313 { \ 663 { \
314 int newcnt = cur; \ 664 int ocur_ = (cur); \
315 do \ 665 (base) = (type *)array_realloc \
316 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 668 }
325 669
670#if 0
326#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 673 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 677 }
678#endif
333 679
334#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 682
337/*****************************************************************************/ 683/*****************************************************************************/
338 684
339static void 685void noinline
340anfds_init (ANFD *base, int count)
341{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350}
351
352void
353ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
354{ 687{
355 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
356 690
357 if (w_->pending) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
358 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 699 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 700}
368 701
369static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 719{
372 int i; 720 int i;
373 721
374 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
376} 724}
377 725
726/*****************************************************************************/
727
378inline void 728inline_speed void
379fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
380{ 730{
381 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 732 ev_io *w;
383 733
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 735 {
386 int ev = w->events & revents; 736 int ev = w->events & revents;
387 737
388 if (ev) 738 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 739 ev_feed_event (EV_A_ (W)w, ev);
391} 741}
392 742
393void 743void
394ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 745{
746 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
397} 748}
398 749
399/*****************************************************************************/ 750inline_size void
400
401static void
402fd_reify (EV_P) 751fd_reify (EV_P)
403{ 752{
404 int i; 753 int i;
405 754
406 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
407 { 756 {
408 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 759 ev_io *w;
411 760
412 int events = 0; 761 unsigned char events = 0;
413 762
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 764 events |= (unsigned char)w->events;
416 765
417#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
418 if (events) 767 if (events)
419 { 768 {
420 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
421 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 776 }
424#endif 777#endif
425 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
426 anfd->reify = 0; 783 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
430 } 789 }
431 790
432 fdchangecnt = 0; 791 fdchangecnt = 0;
433} 792}
434 793
435static void 794inline_size void
436fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
437{ 796{
438 if (anfds [fd].reify) 797 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
442 799
800 if (expect_true (!reify))
801 {
443 ++fdchangecnt; 802 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
446} 806}
447 807
448static void 808inline_speed void
449fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
450{ 810{
451 struct ev_io *w; 811 ev_io *w;
452 812
453 while ((w = (struct ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
454 { 814 {
455 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 817 }
458} 818}
459 819
460static int 820inline_size int
461fd_valid (int fd) 821fd_valid (int fd)
462{ 822{
463#ifdef _WIN32 823#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
465#else 825#else
466 return fcntl (fd, F_GETFD) != -1; 826 return fcntl (fd, F_GETFD) != -1;
467#endif 827#endif
468} 828}
469 829
470/* called on EBADF to verify fds */ 830/* called on EBADF to verify fds */
471static void 831static void noinline
472fd_ebadf (EV_P) 832fd_ebadf (EV_P)
473{ 833{
474 int fd; 834 int fd;
475 835
476 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 837 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
480} 840}
481 841
482/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 843static void noinline
484fd_enomem (EV_P) 844fd_enomem (EV_P)
485{ 845{
486 int fd; 846 int fd;
487 847
488 for (fd = anfdmax; fd--; ) 848 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 851 fd_kill (EV_A_ fd);
492 return; 852 return;
493 } 853 }
494} 854}
495 855
496/* usually called after fork if method needs to re-arm all fds from scratch */ 856/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 857static void noinline
498fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
499{ 859{
500 int fd; 860 int fd;
501 861
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 863 if (anfds [fd].events)
505 { 864 {
506 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
507 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
508 } 868 }
509} 869}
510 870
511/*****************************************************************************/ 871/*****************************************************************************/
512 872
513static void 873/*
514upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
517 878
518 while (k && heap [k >> 1]->at > w->at) 879/*
519 { 880 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
522 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
523 } 884 */
885#if EV_USE_4HEAP
524 886
525 heap [k] = w; 887#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
527 891
528} 892/* away from the root */
529 893inline_speed void
530static void
531downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
532{ 895{
533 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
534 898
535 while (k < (N >> 1)) 899 for (;;)
536 { 900 {
537 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 904
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 907 {
541 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
543 break; 921 break;
544 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
545 heap [k] = heap [j]; 961 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
547 k = j; 964 k = c;
548 } 965 }
549 966
550 heap [k] = w; 967 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
552} 969}
970#endif
553 971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
554inline void 994inline_size void
555adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
556{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
557 upheap (heap, k); 998 upheap (heap, k);
999 else
558 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
559} 1013}
560 1014
561/*****************************************************************************/ 1015/*****************************************************************************/
562 1016
563typedef struct 1017typedef struct
564{ 1018{
565 WL head; 1019 WL head;
566 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
567} ANSIG; 1021} ANSIG;
568 1022
569static ANSIG *signals; 1023static ANSIG *signals;
570static int signalmax; 1024static int signalmax;
571 1025
572static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 1027
576static void 1028/*****************************************************************************/
577signals_init (ANSIG *base, int count)
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583 1029
584 ++base;
585 }
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void 1030inline_speed void
640fd_intern (int fd) 1031fd_intern (int fd)
641{ 1032{
642#ifdef _WIN32 1033#ifdef _WIN32
643 int arg = 1; 1034 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else 1036#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1039#endif
649} 1040}
650 1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
651static void 1093static void
652siginit (EV_P) 1094pipecb (EV_P_ ev_io *iow, int revents)
653{ 1095{
654 fd_intern (sigpipe [0]); 1096#if EV_USE_EVENTFD
655 fd_intern (sigpipe [1]); 1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
656 1108
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1109 if (gotsig && ev_is_default_loop (EV_A))
658 ev_io_start (EV_A_ &sigev); 1110 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
660} 1133}
661 1134
662/*****************************************************************************/ 1135/*****************************************************************************/
663 1136
664static struct ev_child *childs [PID_HASHSIZE]; 1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
1174static WL childs [EV_PID_HASHSIZE];
665 1175
666#ifndef _WIN32 1176#ifndef _WIN32
667 1177
668static struct ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
669 1202
670#ifndef WCONTINUED 1203#ifndef WCONTINUED
671# define WCONTINUED 0 1204# define WCONTINUED 0
672#endif 1205#endif
673 1206
674static void 1207static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
691{ 1209{
692 int pid, status; 1210 int pid, status;
693 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
696 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1222
699 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1226}
703 1227
704#endif 1228#endif
705 1229
706/*****************************************************************************/ 1230/*****************************************************************************/
707 1231
1232#if EV_USE_PORT
1233# include "ev_port.c"
1234#endif
708#if EV_USE_KQUEUE 1235#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1236# include "ev_kqueue.c"
710#endif 1237#endif
711#if EV_USE_EPOLL 1238#if EV_USE_EPOLL
712# include "ev_epoll.c" 1239# include "ev_epoll.c"
729{ 1256{
730 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
731} 1258}
732 1259
733/* return true if we are running with elevated privileges and should ignore env variables */ 1260/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1261int inline_size
735enable_secure (void) 1262enable_secure (void)
736{ 1263{
737#ifdef _WIN32 1264#ifdef _WIN32
738 return 0; 1265 return 0;
739#else 1266#else
740 return getuid () != geteuid () 1267 return getuid () != geteuid ()
741 || getgid () != getegid (); 1268 || getgid () != getegid ();
742#endif 1269#endif
743} 1270}
744 1271
745int 1272unsigned int
746ev_method (EV_P) 1273ev_supported_backends (void)
747{ 1274{
748 return method; 1275 unsigned int flags = 0;
749}
750 1276
751static void 1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
753{ 1288{
754 if (!method) 1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
1342loop_init (EV_P_ unsigned int flags)
1343{
1344 if (!backend)
755 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
756#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
757 { 1358 {
758 struct timespec ts; 1359 struct timespec ts;
1360
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1362 have_monotonic = 1;
761 } 1363 }
762#endif 1364#endif
763 1365
764 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1367 mn_now = get_clock ();
766 now_floor = mn_now; 1368 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
768 1370
769 if (methods == EVMETHOD_AUTO) 1371 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1390
775 method = 0; 1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif
776#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1399#endif
779#if EV_USE_EPOLL 1400#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1402#endif
782#if EV_USE_POLL 1403#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1405#endif
785#if EV_USE_SELECT 1406#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1408#endif
788 1409
789 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
791 } 1412 }
792} 1413}
793 1414
794void 1415static void noinline
795loop_destroy (EV_P) 1416loop_destroy (EV_P)
796{ 1417{
797 int i; 1418 int i;
798 1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif
799#if EV_USE_KQUEUE 1448#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1450#endif
802#if EV_USE_EPOLL 1451#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1453#endif
805#if EV_USE_POLL 1454#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1456#endif
808#if EV_USE_SELECT 1457#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1459#endif
811 1460
812 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
813 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
814 1470
815 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
818#if EV_PERIODICS 1475#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
820#endif 1477#endif
1478#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1479 array_free (fork, EMPTY);
1480#endif
822 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
824 1486
825 method = 0; 1487 backend = 0;
826} 1488}
827 1489
828static void 1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
829loop_fork (EV_P) 1495loop_fork (EV_P)
830{ 1496{
1497#if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499#endif
1500#if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502#endif
831#if EV_USE_EPOLL 1503#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1505#endif
834#if EV_USE_KQUEUE 1506#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1507 infy_fork (EV_A);
836#endif 1508#endif
837 1509
838 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
839 { 1511 {
840 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
841 1518
842 ev_ref (EV_A); 1519 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
844 close (sigpipe [0]); 1529 close (evpipe [0]);
845 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
846 1532
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
851 } 1536 }
852 1537
853 postfork = 0; 1538 postfork = 0;
854} 1539}
1540
1541#if EV_MULTIPLICITY
1542
1543struct ev_loop *
1544ev_loop_new (unsigned int flags)
1545{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556}
1557
1558void
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
855 1671
856#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
857struct ev_loop * 1673struct ev_loop *
858ev_loop_new (int methods) 1674ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1675#else
890int 1676int
1677ev_default_loop (unsigned int flags)
891#endif 1678#endif
892ev_default_loop (int methods)
893{ 1679{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1680 if (!ev_default_loop_ptr)
899 { 1681 {
900#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1684#else
903 default_loop = 1; 1685 ev_default_loop_ptr = 1;
904#endif 1686#endif
905 1687
906 loop_init (EV_A_ methods); 1688 loop_init (EV_A_ flags);
907 1689
908 if (ev_method (EV_A)) 1690 if (ev_backend (EV_A))
909 { 1691 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1692#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1697#endif
918 } 1698 }
919 else 1699 else
920 default_loop = 0; 1700 ev_default_loop_ptr = 0;
921 } 1701 }
922 1702
923 return default_loop; 1703 return ev_default_loop_ptr;
924} 1704}
925 1705
926void 1706void
927ev_default_destroy (void) 1707ev_default_destroy (void)
928{ 1708{
929#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1710 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1711#endif
1712
1713 ev_default_loop_ptr = 0;
932 1714
933#ifndef _WIN32 1715#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
936#endif 1718#endif
937 1719
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
945} 1721}
946 1722
947void 1723void
948ev_default_fork (void) 1724ev_default_fork (void)
949{ 1725{
950#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1727 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1728#endif
953 1729
954 if (method) 1730 postfork = 1; /* must be in line with ev_loop_fork */
955 postfork = 1;
956} 1731}
957 1732
958/*****************************************************************************/ 1733/*****************************************************************************/
959 1734
960static int 1735void
961any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
962{ 1737{
963 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1739}
971 1740
972static void 1741inline_speed void
973call_pending (EV_P) 1742call_pending (EV_P)
974{ 1743{
975 int pri; 1744 int pri;
976 1745
977 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1747 while (pendingcnt [pri])
979 { 1748 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1750
982 if (p->w) 1751 if (expect_true (p->w))
983 { 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
984 p->w->pending = 0; 1755 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
986 } 1758 }
987 } 1759 }
988} 1760}
989 1761
990static void 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
991timers_reify (EV_P) 1786timers_reify (EV_P)
992{ 1787{
1788 EV_FREQUENT_CHECK;
1789
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 1791 {
995 struct ev_timer *w = timers [0]; 1792 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1806
1004 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1009 } 1815 }
1010 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1817
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 } 1819 }
1015} 1820}
1016 1821
1017#if EV_PERIODICS 1822#if EV_PERIODIC_ENABLE
1018static void 1823inline_size void
1019periodics_reify (EV_P) 1824periodics_reify (EV_P)
1020{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 1829 {
1023 struct ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1024 1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1837
1027 /* first reschedule or stop timer */ 1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1028 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901inline_speed void
1902time_update (EV_P_ ev_tstamp max_block)
1903{
1904 int i;
1905
1906#if EV_USE_MONOTONIC
1907 if (expect_true (have_monotonic))
1908 {
1909 ev_tstamp odiff = rtmn_diff;
1910
1911 mn_now = get_clock ();
1912
1913 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1914 /* interpolate in the meantime */
1915 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 1916 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1917 ev_rt_now = rtmn_diff + mn_now;
1031 1918 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 1919 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1920
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 1921 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1922 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1923
1088static void 1924 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1925 * on the choice of "4": one iteration isn't enough,
1090{ 1926 * in case we get preempted during the calls to
1091 int i; 1927 * ev_time and get_clock. a second call is almost guaranteed
1092 1928 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1929 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1930 * in the unlikely event of having been preempted here.
1095 { 1931 */
1096 if (time_update_monotonic (EV_A)) 1932 for (i = 4; --i; )
1097 { 1933 {
1098 ev_tstamp odiff = rtmn_diff; 1934 rtmn_diff = ev_rt_now - mn_now;
1099 1935
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1936 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1937 return; /* all is well */
1938
1939 ev_rt_now = ev_time ();
1940 mn_now = get_clock ();
1941 now_floor = mn_now;
1942 }
1943
1944# if EV_PERIODIC_ENABLE
1945 periodics_reschedule (EV_A);
1946# endif
1947 /* no timer adjustment, as the monotonic clock doesn't jump */
1948 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1949 }
1950 else
1951#endif
1952 {
1953 ev_rt_now = ev_time ();
1954
1955 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1956 {
1957#if EV_PERIODIC_ENABLE
1958 periodics_reschedule (EV_A);
1959#endif
1960 /* adjust timers. this is easy, as the offset is the same for all of them */
1961 for (i = 0; i < timercnt; ++i)
1101 { 1962 {
1102 rtmn_diff = ev_rt_now - mn_now; 1963 ANHE *he = timers + i + HEAP0;
1103 1964 ANHE_w (*he)->at += ev_rt_now - mn_now;
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1965 ANHE_at_cache (*he);
1105 return; /* all is well */
1106
1107 ev_rt_now = ev_time ();
1108 mn_now = get_clock ();
1109 now_floor = mn_now;
1110 } 1966 }
1111
1112# if EV_PERIODICS
1113 periodics_reschedule (EV_A);
1114# endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 1967 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 1968
1135 mn_now = ev_rt_now; 1969 mn_now = ev_rt_now;
1136 } 1970 }
1137} 1971}
1138 1972
1146ev_unref (EV_P) 1980ev_unref (EV_P)
1147{ 1981{
1148 --activecnt; 1982 --activecnt;
1149} 1983}
1150 1984
1985void
1986ev_now_update (EV_P)
1987{
1988 time_update (EV_A_ 1e100);
1989}
1990
1151static int loop_done; 1991static int loop_done;
1152 1992
1153void 1993void
1154ev_loop (EV_P_ int flags) 1994ev_loop (EV_P_ int flags)
1155{ 1995{
1156 double block; 1996 loop_done = EVUNLOOP_CANCEL;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1997
1998 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1999
1159 do 2000 do
1160 { 2001 {
2002#if EV_VERIFY >= 2
2003 ev_loop_verify (EV_A);
2004#endif
2005
2006#ifndef _WIN32
2007 if (expect_false (curpid)) /* penalise the forking check even more */
2008 if (expect_false (getpid () != curpid))
2009 {
2010 curpid = getpid ();
2011 postfork = 1;
2012 }
2013#endif
2014
2015#if EV_FORK_ENABLE
2016 /* we might have forked, so queue fork handlers */
2017 if (expect_false (postfork))
2018 if (forkcnt)
2019 {
2020 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2021 call_pending (EV_A);
2022 }
2023#endif
2024
1161 /* queue check watchers (and execute them) */ 2025 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2026 if (expect_false (preparecnt))
1163 { 2027 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2028 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2029 call_pending (EV_A);
1166 } 2030 }
1171 2035
1172 /* update fd-related kernel structures */ 2036 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 2037 fd_reify (EV_A);
1174 2038
1175 /* calculate blocking time */ 2039 /* calculate blocking time */
2040 {
2041 ev_tstamp waittime = 0.;
2042 ev_tstamp sleeptime = 0.;
1176 2043
1177 /* we only need this for !monotonic clock or timers, but as we basically 2044 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 2045 {
1185 ev_rt_now = ev_time (); 2046 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 2047 time_update (EV_A_ 1e100);
1187 }
1188 2048
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME;
1194
1195 if (timercnt) 2049 if (timercnt)
1196 { 2050 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2051 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 2052 if (waittime > to) waittime = to;
1199 } 2053 }
1200 2054
1201#if EV_PERIODICS 2055#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 2056 if (periodiccnt)
1203 { 2057 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2058 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 2059 if (waittime > to) waittime = to;
1206 } 2060 }
1207#endif 2061#endif
1208 2062
1209 if (block < 0.) block = 0.; 2063 if (expect_false (waittime < timeout_blocktime))
2064 waittime = timeout_blocktime;
2065
2066 sleeptime = waittime - backend_fudge;
2067
2068 if (expect_true (sleeptime > io_blocktime))
2069 sleeptime = io_blocktime;
2070
2071 if (sleeptime)
2072 {
2073 ev_sleep (sleeptime);
2074 waittime -= sleeptime;
2075 }
1210 } 2076 }
1211 2077
1212 method_poll (EV_A_ block); 2078 ++loop_count;
2079 backend_poll (EV_A_ waittime);
1213 2080
1214 /* update ev_rt_now, do magic */ 2081 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2082 time_update (EV_A_ waittime + sleeptime);
2083 }
1216 2084
1217 /* queue pending timers and reschedule them */ 2085 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2086 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2087#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2088 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2089#endif
1222 2090
2091#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2092 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2093 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2094#endif
1226 2095
1227 /* queue check watchers, to be executed first */ 2096 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2097 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2098 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2099
1231 call_pending (EV_A); 2100 call_pending (EV_A);
1232 } 2101 }
1233 while (activecnt && !loop_done); 2102 while (expect_true (
2103 activecnt
2104 && !loop_done
2105 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2106 ));
1234 2107
1235 if (loop_done != 2) 2108 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2109 loop_done = EVUNLOOP_CANCEL;
1237} 2110}
1238 2111
1239void 2112void
1240ev_unloop (EV_P_ int how) 2113ev_unloop (EV_P_ int how)
1241{ 2114{
1242 loop_done = how; 2115 loop_done = how;
1243} 2116}
1244 2117
1245/*****************************************************************************/ 2118/*****************************************************************************/
1246 2119
1247inline void 2120inline_size void
1248wlist_add (WL *head, WL elem) 2121wlist_add (WL *head, WL elem)
1249{ 2122{
1250 elem->next = *head; 2123 elem->next = *head;
1251 *head = elem; 2124 *head = elem;
1252} 2125}
1253 2126
1254inline void 2127inline_size void
1255wlist_del (WL *head, WL elem) 2128wlist_del (WL *head, WL elem)
1256{ 2129{
1257 while (*head) 2130 while (*head)
1258 { 2131 {
1259 if (*head == elem) 2132 if (*head == elem)
1264 2137
1265 head = &(*head)->next; 2138 head = &(*head)->next;
1266 } 2139 }
1267} 2140}
1268 2141
1269inline void 2142inline_speed void
1270ev_clear_pending (EV_P_ W w) 2143clear_pending (EV_P_ W w)
1271{ 2144{
1272 if (w->pending) 2145 if (w->pending)
1273 { 2146 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2147 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 2148 w->pending = 0;
1276 } 2149 }
1277} 2150}
1278 2151
2152int
2153ev_clear_pending (EV_P_ void *w)
2154{
2155 W w_ = (W)w;
2156 int pending = w_->pending;
2157
2158 if (expect_true (pending))
2159 {
2160 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2161 w_->pending = 0;
2162 p->w = 0;
2163 return p->events;
2164 }
2165 else
2166 return 0;
2167}
2168
1279inline void 2169inline_size void
2170pri_adjust (EV_P_ W w)
2171{
2172 int pri = w->priority;
2173 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2174 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2175 w->priority = pri;
2176}
2177
2178inline_speed void
1280ev_start (EV_P_ W w, int active) 2179ev_start (EV_P_ W w, int active)
1281{ 2180{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2181 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2182 w->active = active;
1286 ev_ref (EV_A); 2183 ev_ref (EV_A);
1287} 2184}
1288 2185
1289inline void 2186inline_size void
1290ev_stop (EV_P_ W w) 2187ev_stop (EV_P_ W w)
1291{ 2188{
1292 ev_unref (EV_A); 2189 ev_unref (EV_A);
1293 w->active = 0; 2190 w->active = 0;
1294} 2191}
1295 2192
1296/*****************************************************************************/ 2193/*****************************************************************************/
1297 2194
1298void 2195void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2196ev_io_start (EV_P_ ev_io *w)
1300{ 2197{
1301 int fd = w->fd; 2198 int fd = w->fd;
1302 2199
1303 if (ev_is_active (w)) 2200 if (expect_false (ev_is_active (w)))
1304 return; 2201 return;
1305 2202
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2204 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2205
2206 EV_FREQUENT_CHECK;
1307 2207
1308 ev_start (EV_A_ (W)w, 1); 2208 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2209 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2210 wlist_add (&anfds[fd].head, (WL)w);
1311 2211
1312 fd_change (EV_A_ fd); 2212 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1313} 2213 w->events &= ~EV__IOFDSET;
1314 2214
1315void 2215 EV_FREQUENT_CHECK;
2216}
2217
2218void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2219ev_io_stop (EV_P_ ev_io *w)
1317{ 2220{
1318 ev_clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2222 if (expect_false (!ev_is_active (w)))
1320 return; 2223 return;
1321 2224
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2225 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2226
2227 EV_FREQUENT_CHECK;
2228
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2229 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2230 ev_stop (EV_A_ (W)w);
1326 2231
1327 fd_change (EV_A_ w->fd); 2232 fd_change (EV_A_ w->fd, 1);
1328}
1329 2233
1330void 2234 EV_FREQUENT_CHECK;
2235}
2236
2237void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2238ev_timer_start (EV_P_ ev_timer *w)
1332{ 2239{
1333 if (ev_is_active (w)) 2240 if (expect_false (ev_is_active (w)))
1334 return; 2241 return;
1335 2242
1336 ((WT)w)->at += mn_now; 2243 ev_at (w) += mn_now;
1337 2244
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2245 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2246
2247 EV_FREQUENT_CHECK;
2248
2249 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2250 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2251 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2252 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2253 ANHE_at_cache (timers [ev_active (w)]);
2254 upheap (timers, ev_active (w));
1344 2255
2256 EV_FREQUENT_CHECK;
2257
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2258 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2259}
1347 2260
1348void 2261void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2262ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2263{
1351 ev_clear_pending (EV_A_ (W)w); 2264 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2265 if (expect_false (!ev_is_active (w)))
1353 return; 2266 return;
1354 2267
2268 EV_FREQUENT_CHECK;
2269
2270 {
2271 int active = ev_active (w);
2272
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2273 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2274
1357 if (((W)w)->active < timercnt--) 2275 --timercnt;
2276
2277 if (expect_true (active < timercnt + HEAP0))
1358 { 2278 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2279 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2280 adjustheap (timers, timercnt, active);
1361 } 2281 }
2282 }
1362 2283
1363 ((WT)w)->at -= mn_now; 2284 EV_FREQUENT_CHECK;
2285
2286 ev_at (w) -= mn_now;
1364 2287
1365 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1366} 2289}
1367 2290
1368void 2291void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2292ev_timer_again (EV_P_ ev_timer *w)
1370{ 2293{
2294 EV_FREQUENT_CHECK;
2295
1371 if (ev_is_active (w)) 2296 if (ev_is_active (w))
1372 { 2297 {
1373 if (w->repeat) 2298 if (w->repeat)
1374 { 2299 {
1375 ((WT)w)->at = mn_now + w->repeat; 2300 ev_at (w) = mn_now + w->repeat;
2301 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2302 adjustheap (timers, timercnt, ev_active (w));
1377 } 2303 }
1378 else 2304 else
1379 ev_timer_stop (EV_A_ w); 2305 ev_timer_stop (EV_A_ w);
1380 } 2306 }
1381 else if (w->repeat) 2307 else if (w->repeat)
2308 {
2309 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2310 ev_timer_start (EV_A_ w);
1383} 2311 }
1384 2312
2313 EV_FREQUENT_CHECK;
2314}
2315
1385#if EV_PERIODICS 2316#if EV_PERIODIC_ENABLE
1386void 2317void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2318ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2319{
1389 if (ev_is_active (w)) 2320 if (expect_false (ev_is_active (w)))
1390 return; 2321 return;
1391 2322
1392 if (w->reschedule_cb) 2323 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2324 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2325 else if (w->interval)
1395 { 2326 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2327 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2328 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2329 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2330 }
2331 else
2332 ev_at (w) = w->offset;
1400 2333
2334 EV_FREQUENT_CHECK;
2335
2336 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2337 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2338 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2339 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2340 ANHE_at_cache (periodics [ev_active (w)]);
2341 upheap (periodics, ev_active (w));
1405 2342
2343 EV_FREQUENT_CHECK;
2344
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2345 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2346}
1408 2347
1409void 2348void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2349ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2350{
1412 ev_clear_pending (EV_A_ (W)w); 2351 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2352 if (expect_false (!ev_is_active (w)))
1414 return; 2353 return;
1415 2354
2355 EV_FREQUENT_CHECK;
2356
2357 {
2358 int active = ev_active (w);
2359
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2360 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2361
1418 if (((W)w)->active < periodiccnt--) 2362 --periodiccnt;
2363
2364 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2365 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2366 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2367 adjustheap (periodics, periodiccnt, active);
1422 } 2368 }
2369 }
2370
2371 EV_FREQUENT_CHECK;
1423 2372
1424 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1425} 2374}
1426 2375
1427void 2376void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2377ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2378{
1430 /* TODO: use adjustheap and recalculation */ 2379 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2380 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2381 ev_periodic_start (EV_A_ w);
1433} 2382}
1434#endif 2383#endif
1435 2384
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2385#ifndef SA_RESTART
1503# define SA_RESTART 0 2386# define SA_RESTART 0
1504#endif 2387#endif
1505 2388
1506void 2389void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2390ev_signal_start (EV_P_ ev_signal *w)
1508{ 2391{
1509#if EV_MULTIPLICITY 2392#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2393 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 2394#endif
1512 if (ev_is_active (w)) 2395 if (expect_false (ev_is_active (w)))
1513 return; 2396 return;
1514 2397
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2398 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2399
2400 evpipe_init (EV_A);
2401
2402 EV_FREQUENT_CHECK;
2403
2404 {
2405#ifndef _WIN32
2406 sigset_t full, prev;
2407 sigfillset (&full);
2408 sigprocmask (SIG_SETMASK, &full, &prev);
2409#endif
2410
2411 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2412
2413#ifndef _WIN32
2414 sigprocmask (SIG_SETMASK, &prev, 0);
2415#endif
2416 }
1516 2417
1517 ev_start (EV_A_ (W)w, 1); 2418 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2419 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 2420
1521 if (!((WL)w)->next) 2421 if (!((WL)w)->next)
1522 { 2422 {
1523#if _WIN32 2423#if _WIN32
1524 signal (w->signum, sighandler); 2424 signal (w->signum, ev_sighandler);
1525#else 2425#else
1526 struct sigaction sa; 2426 struct sigaction sa;
1527 sa.sa_handler = sighandler; 2427 sa.sa_handler = ev_sighandler;
1528 sigfillset (&sa.sa_mask); 2428 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2429 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0); 2430 sigaction (w->signum, &sa, 0);
1531#endif 2431#endif
1532 } 2432 }
1533}
1534 2433
1535void 2434 EV_FREQUENT_CHECK;
2435}
2436
2437void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 2438ev_signal_stop (EV_P_ ev_signal *w)
1537{ 2439{
1538 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
1540 return; 2442 return;
1541 2443
2444 EV_FREQUENT_CHECK;
2445
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2446 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 2447 ev_stop (EV_A_ (W)w);
1544 2448
1545 if (!signals [w->signum - 1].head) 2449 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 2450 signal (w->signum, SIG_DFL);
1547}
1548 2451
2452 EV_FREQUENT_CHECK;
2453}
2454
1549void 2455void
1550ev_child_start (EV_P_ struct ev_child *w) 2456ev_child_start (EV_P_ ev_child *w)
1551{ 2457{
1552#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2459 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 2460#endif
1555 if (ev_is_active (w)) 2461 if (expect_false (ev_is_active (w)))
1556 return; 2462 return;
1557 2463
2464 EV_FREQUENT_CHECK;
2465
1558 ev_start (EV_A_ (W)w, 1); 2466 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2467 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560}
1561 2468
2469 EV_FREQUENT_CHECK;
2470}
2471
1562void 2472void
1563ev_child_stop (EV_P_ struct ev_child *w) 2473ev_child_stop (EV_P_ ev_child *w)
1564{ 2474{
1565 ev_clear_pending (EV_A_ (W)w); 2475 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 2476 if (expect_false (!ev_is_active (w)))
1567 return; 2477 return;
1568 2478
2479 EV_FREQUENT_CHECK;
2480
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2481 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 2482 ev_stop (EV_A_ (W)w);
2483
2484 EV_FREQUENT_CHECK;
1571} 2485}
2486
2487#if EV_STAT_ENABLE
2488
2489# ifdef _WIN32
2490# undef lstat
2491# define lstat(a,b) _stati64 (a,b)
2492# endif
2493
2494#define DEF_STAT_INTERVAL 5.0074891
2495#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2496#define MIN_STAT_INTERVAL 0.1074891
2497
2498static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2499
2500#if EV_USE_INOTIFY
2501# define EV_INOTIFY_BUFSIZE 8192
2502
2503static void noinline
2504infy_add (EV_P_ ev_stat *w)
2505{
2506 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2507
2508 if (w->wd < 0)
2509 {
2510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2512
2513 /* monitor some parent directory for speedup hints */
2514 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2515 /* but an efficiency issue only */
2516 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2517 {
2518 char path [4096];
2519 strcpy (path, w->path);
2520
2521 do
2522 {
2523 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2524 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2525
2526 char *pend = strrchr (path, '/');
2527
2528 if (!pend || pend == path)
2529 break;
2530
2531 *pend = 0;
2532 w->wd = inotify_add_watch (fs_fd, path, mask);
2533 }
2534 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2535 }
2536 }
2537
2538 if (w->wd >= 0)
2539 {
2540 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2541
2542 /* now local changes will be tracked by inotify, but remote changes won't */
2543 /* unless the filesystem it known to be local, we therefore still poll */
2544 /* also do poll on <2.6.25, but with normal frequency */
2545 struct statfs sfs;
2546
2547 if (fs_2625 && !statfs (w->path, &sfs))
2548 if (sfs.f_type == 0x1373 /* devfs */
2549 || sfs.f_type == 0xEF53 /* ext2/3 */
2550 || sfs.f_type == 0x3153464a /* jfs */
2551 || sfs.f_type == 0x52654973 /* reiser3 */
2552 || sfs.f_type == 0x01021994 /* tempfs */
2553 || sfs.f_type == 0x58465342 /* xfs */)
2554 return;
2555
2556 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2557 ev_timer_again (EV_A_ &w->timer);
2558 }
2559}
2560
2561static void noinline
2562infy_del (EV_P_ ev_stat *w)
2563{
2564 int slot;
2565 int wd = w->wd;
2566
2567 if (wd < 0)
2568 return;
2569
2570 w->wd = -2;
2571 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2572 wlist_del (&fs_hash [slot].head, (WL)w);
2573
2574 /* remove this watcher, if others are watching it, they will rearm */
2575 inotify_rm_watch (fs_fd, wd);
2576}
2577
2578static void noinline
2579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2580{
2581 if (slot < 0)
2582 /* overflow, need to check for all hash slots */
2583 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2584 infy_wd (EV_A_ slot, wd, ev);
2585 else
2586 {
2587 WL w_;
2588
2589 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2590 {
2591 ev_stat *w = (ev_stat *)w_;
2592 w_ = w_->next; /* lets us remove this watcher and all before it */
2593
2594 if (w->wd == wd || wd == -1)
2595 {
2596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2597 {
2598 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2599 w->wd = -1;
2600 infy_add (EV_A_ w); /* re-add, no matter what */
2601 }
2602
2603 stat_timer_cb (EV_A_ &w->timer, 0);
2604 }
2605 }
2606 }
2607}
2608
2609static void
2610infy_cb (EV_P_ ev_io *w, int revents)
2611{
2612 char buf [EV_INOTIFY_BUFSIZE];
2613 struct inotify_event *ev = (struct inotify_event *)buf;
2614 int ofs;
2615 int len = read (fs_fd, buf, sizeof (buf));
2616
2617 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2618 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2619}
2620
2621inline_size void
2622check_2625 (EV_P)
2623{
2624 /* kernels < 2.6.25 are borked
2625 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2626 */
2627 struct utsname buf;
2628 int major, minor, micro;
2629
2630 if (uname (&buf))
2631 return;
2632
2633 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2634 return;
2635
2636 if (major < 2
2637 || (major == 2 && minor < 6)
2638 || (major == 2 && minor == 6 && micro < 25))
2639 return;
2640
2641 fs_2625 = 1;
2642}
2643
2644inline_size void
2645infy_init (EV_P)
2646{
2647 if (fs_fd != -2)
2648 return;
2649
2650 fs_fd = -1;
2651
2652 check_2625 (EV_A);
2653
2654 fs_fd = inotify_init ();
2655
2656 if (fs_fd >= 0)
2657 {
2658 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2659 ev_set_priority (&fs_w, EV_MAXPRI);
2660 ev_io_start (EV_A_ &fs_w);
2661 }
2662}
2663
2664inline_size void
2665infy_fork (EV_P)
2666{
2667 int slot;
2668
2669 if (fs_fd < 0)
2670 return;
2671
2672 close (fs_fd);
2673 fs_fd = inotify_init ();
2674
2675 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2676 {
2677 WL w_ = fs_hash [slot].head;
2678 fs_hash [slot].head = 0;
2679
2680 while (w_)
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us add this watcher */
2684
2685 w->wd = -1;
2686
2687 if (fs_fd >= 0)
2688 infy_add (EV_A_ w); /* re-add, no matter what */
2689 else
2690 ev_timer_again (EV_A_ &w->timer);
2691 }
2692 }
2693}
2694
2695#endif
2696
2697#ifdef _WIN32
2698# define EV_LSTAT(p,b) _stati64 (p, b)
2699#else
2700# define EV_LSTAT(p,b) lstat (p, b)
2701#endif
2702
2703void
2704ev_stat_stat (EV_P_ ev_stat *w)
2705{
2706 if (lstat (w->path, &w->attr) < 0)
2707 w->attr.st_nlink = 0;
2708 else if (!w->attr.st_nlink)
2709 w->attr.st_nlink = 1;
2710}
2711
2712static void noinline
2713stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2714{
2715 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2716
2717 /* we copy this here each the time so that */
2718 /* prev has the old value when the callback gets invoked */
2719 w->prev = w->attr;
2720 ev_stat_stat (EV_A_ w);
2721
2722 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2723 if (
2724 w->prev.st_dev != w->attr.st_dev
2725 || w->prev.st_ino != w->attr.st_ino
2726 || w->prev.st_mode != w->attr.st_mode
2727 || w->prev.st_nlink != w->attr.st_nlink
2728 || w->prev.st_uid != w->attr.st_uid
2729 || w->prev.st_gid != w->attr.st_gid
2730 || w->prev.st_rdev != w->attr.st_rdev
2731 || w->prev.st_size != w->attr.st_size
2732 || w->prev.st_atime != w->attr.st_atime
2733 || w->prev.st_mtime != w->attr.st_mtime
2734 || w->prev.st_ctime != w->attr.st_ctime
2735 ) {
2736 #if EV_USE_INOTIFY
2737 if (fs_fd >= 0)
2738 {
2739 infy_del (EV_A_ w);
2740 infy_add (EV_A_ w);
2741 ev_stat_stat (EV_A_ w); /* avoid race... */
2742 }
2743 #endif
2744
2745 ev_feed_event (EV_A_ w, EV_STAT);
2746 }
2747}
2748
2749void
2750ev_stat_start (EV_P_ ev_stat *w)
2751{
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 ev_stat_stat (EV_A_ w);
2756
2757 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2758 w->interval = MIN_STAT_INTERVAL;
2759
2760 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2761 ev_set_priority (&w->timer, ev_priority (w));
2762
2763#if EV_USE_INOTIFY
2764 infy_init (EV_A);
2765
2766 if (fs_fd >= 0)
2767 infy_add (EV_A_ w);
2768 else
2769#endif
2770 ev_timer_again (EV_A_ &w->timer);
2771
2772 ev_start (EV_A_ (W)w, 1);
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_stat_stop (EV_P_ ev_stat *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_INOTIFY
2787 infy_del (EV_A_ w);
2788#endif
2789 ev_timer_stop (EV_A_ &w->timer);
2790
2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2794}
2795#endif
2796
2797#if EV_IDLE_ENABLE
2798void
2799ev_idle_start (EV_P_ ev_idle *w)
2800{
2801 if (expect_false (ev_is_active (w)))
2802 return;
2803
2804 pri_adjust (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807
2808 {
2809 int active = ++idlecnt [ABSPRI (w)];
2810
2811 ++idleall;
2812 ev_start (EV_A_ (W)w, active);
2813
2814 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2815 idles [ABSPRI (w)][active - 1] = w;
2816 }
2817
2818 EV_FREQUENT_CHECK;
2819}
2820
2821void
2822ev_idle_stop (EV_P_ ev_idle *w)
2823{
2824 clear_pending (EV_A_ (W)w);
2825 if (expect_false (!ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
2829
2830 {
2831 int active = ev_active (w);
2832
2833 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2834 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2835
2836 ev_stop (EV_A_ (W)w);
2837 --idleall;
2838 }
2839
2840 EV_FREQUENT_CHECK;
2841}
2842#endif
2843
2844void
2845ev_prepare_start (EV_P_ ev_prepare *w)
2846{
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
2851
2852 ev_start (EV_A_ (W)w, ++preparecnt);
2853 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2854 prepares [preparecnt - 1] = w;
2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859void
2860ev_prepare_stop (EV_P_ ev_prepare *w)
2861{
2862 clear_pending (EV_A_ (W)w);
2863 if (expect_false (!ev_is_active (w)))
2864 return;
2865
2866 EV_FREQUENT_CHECK;
2867
2868 {
2869 int active = ev_active (w);
2870
2871 prepares [active - 1] = prepares [--preparecnt];
2872 ev_active (prepares [active - 1]) = active;
2873 }
2874
2875 ev_stop (EV_A_ (W)w);
2876
2877 EV_FREQUENT_CHECK;
2878}
2879
2880void
2881ev_check_start (EV_P_ ev_check *w)
2882{
2883 if (expect_false (ev_is_active (w)))
2884 return;
2885
2886 EV_FREQUENT_CHECK;
2887
2888 ev_start (EV_A_ (W)w, ++checkcnt);
2889 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2890 checks [checkcnt - 1] = w;
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_check_stop (EV_P_ ev_check *w)
2897{
2898 clear_pending (EV_A_ (W)w);
2899 if (expect_false (!ev_is_active (w)))
2900 return;
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ev_active (w);
2906
2907 checks [active - 1] = checks [--checkcnt];
2908 ev_active (checks [active - 1]) = active;
2909 }
2910
2911 ev_stop (EV_A_ (W)w);
2912
2913 EV_FREQUENT_CHECK;
2914}
2915
2916#if EV_EMBED_ENABLE
2917void noinline
2918ev_embed_sweep (EV_P_ ev_embed *w)
2919{
2920 ev_loop (w->other, EVLOOP_NONBLOCK);
2921}
2922
2923static void
2924embed_io_cb (EV_P_ ev_io *io, int revents)
2925{
2926 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2927
2928 if (ev_cb (w))
2929 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2930 else
2931 ev_loop (w->other, EVLOOP_NONBLOCK);
2932}
2933
2934static void
2935embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2936{
2937 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2938
2939 {
2940 struct ev_loop *loop = w->other;
2941
2942 while (fdchangecnt)
2943 {
2944 fd_reify (EV_A);
2945 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2946 }
2947 }
2948}
2949
2950static void
2951embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2952{
2953 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2954
2955 ev_embed_stop (EV_A_ w);
2956
2957 {
2958 struct ev_loop *loop = w->other;
2959
2960 ev_loop_fork (EV_A);
2961 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2962 }
2963
2964 ev_embed_start (EV_A_ w);
2965}
2966
2967#if 0
2968static void
2969embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2970{
2971 ev_idle_stop (EV_A_ idle);
2972}
2973#endif
2974
2975void
2976ev_embed_start (EV_P_ ev_embed *w)
2977{
2978 if (expect_false (ev_is_active (w)))
2979 return;
2980
2981 {
2982 struct ev_loop *loop = w->other;
2983 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2984 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988
2989 ev_set_priority (&w->io, ev_priority (w));
2990 ev_io_start (EV_A_ &w->io);
2991
2992 ev_prepare_init (&w->prepare, embed_prepare_cb);
2993 ev_set_priority (&w->prepare, EV_MINPRI);
2994 ev_prepare_start (EV_A_ &w->prepare);
2995
2996 ev_fork_init (&w->fork, embed_fork_cb);
2997 ev_fork_start (EV_A_ &w->fork);
2998
2999 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3000
3001 ev_start (EV_A_ (W)w, 1);
3002
3003 EV_FREQUENT_CHECK;
3004}
3005
3006void
3007ev_embed_stop (EV_P_ ev_embed *w)
3008{
3009 clear_pending (EV_A_ (W)w);
3010 if (expect_false (!ev_is_active (w)))
3011 return;
3012
3013 EV_FREQUENT_CHECK;
3014
3015 ev_io_stop (EV_A_ &w->io);
3016 ev_prepare_stop (EV_A_ &w->prepare);
3017 ev_fork_stop (EV_A_ &w->fork);
3018
3019 EV_FREQUENT_CHECK;
3020}
3021#endif
3022
3023#if EV_FORK_ENABLE
3024void
3025ev_fork_start (EV_P_ ev_fork *w)
3026{
3027 if (expect_false (ev_is_active (w)))
3028 return;
3029
3030 EV_FREQUENT_CHECK;
3031
3032 ev_start (EV_A_ (W)w, ++forkcnt);
3033 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3034 forks [forkcnt - 1] = w;
3035
3036 EV_FREQUENT_CHECK;
3037}
3038
3039void
3040ev_fork_stop (EV_P_ ev_fork *w)
3041{
3042 clear_pending (EV_A_ (W)w);
3043 if (expect_false (!ev_is_active (w)))
3044 return;
3045
3046 EV_FREQUENT_CHECK;
3047
3048 {
3049 int active = ev_active (w);
3050
3051 forks [active - 1] = forks [--forkcnt];
3052 ev_active (forks [active - 1]) = active;
3053 }
3054
3055 ev_stop (EV_A_ (W)w);
3056
3057 EV_FREQUENT_CHECK;
3058}
3059#endif
3060
3061#if EV_ASYNC_ENABLE
3062void
3063ev_async_start (EV_P_ ev_async *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 evpipe_init (EV_A);
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_start (EV_A_ (W)w, ++asynccnt);
3073 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3074 asyncs [asynccnt - 1] = w;
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_async_stop (EV_P_ ev_async *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 {
3089 int active = ev_active (w);
3090
3091 asyncs [active - 1] = asyncs [--asynccnt];
3092 ev_active (asyncs [active - 1]) = active;
3093 }
3094
3095 ev_stop (EV_A_ (W)w);
3096
3097 EV_FREQUENT_CHECK;
3098}
3099
3100void
3101ev_async_send (EV_P_ ev_async *w)
3102{
3103 w->sent = 1;
3104 evpipe_write (EV_A_ &gotasync);
3105}
3106#endif
1572 3107
1573/*****************************************************************************/ 3108/*****************************************************************************/
1574 3109
1575struct ev_once 3110struct ev_once
1576{ 3111{
1577 struct ev_io io; 3112 ev_io io;
1578 struct ev_timer to; 3113 ev_timer to;
1579 void (*cb)(int revents, void *arg); 3114 void (*cb)(int revents, void *arg);
1580 void *arg; 3115 void *arg;
1581}; 3116};
1582 3117
1583static void 3118static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 3119once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 3120{
1586 void (*cb)(int revents, void *arg) = once->cb; 3121 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 3122 void *arg = once->arg;
1588 3123
1589 ev_io_stop (EV_A_ &once->io); 3124 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 3125 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 3126 ev_free (once);
1592 3127
1593 cb (revents, arg); 3128 cb (revents, arg);
1594} 3129}
1595 3130
1596static void 3131static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 3132once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 3133{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3134 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3135
3136 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 3137}
1601 3138
1602static void 3139static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 3140once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 3141{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3142 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3143
3144 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 3145}
1607 3146
1608void 3147void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3148ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3149{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3150 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3151
1613 if (!once) 3152 if (expect_false (!once))
3153 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3154 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3155 return;
1616 { 3156 }
3157
1617 once->cb = cb; 3158 once->cb = cb;
1618 once->arg = arg; 3159 once->arg = arg;
1619 3160
1620 ev_init (&once->io, once_cb_io); 3161 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3162 if (fd >= 0)
3163 {
3164 ev_io_set (&once->io, fd, events);
3165 ev_io_start (EV_A_ &once->io);
3166 }
3167
3168 ev_init (&once->to, once_cb_to);
3169 if (timeout >= 0.)
3170 {
3171 ev_timer_set (&once->to, timeout, 0.);
3172 ev_timer_start (EV_A_ &once->to);
3173 }
3174}
3175
3176/*****************************************************************************/
3177
3178#if 0
3179void
3180ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3181{
3182 int i, j;
3183 ev_watcher_list *wl, *wn;
3184
3185 if (types & (EV_IO | EV_EMBED))
3186 for (i = 0; i < anfdmax; ++i)
3187 for (wl = anfds [i].head; wl; )
1622 { 3188 {
1623 ev_io_set (&once->io, fd, events); 3189 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 3190
3191#if EV_EMBED_ENABLE
3192 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3193 {
3194 if (types & EV_EMBED)
3195 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3196 }
3197 else
3198#endif
3199#if EV_USE_INOTIFY
3200 if (ev_cb ((ev_io *)wl) == infy_cb)
3201 ;
3202 else
3203#endif
3204 if ((ev_io *)wl != &pipeev)
3205 if (types & EV_IO)
3206 cb (EV_A_ EV_IO, wl);
3207
3208 wl = wn;
1625 } 3209 }
1626 3210
1627 ev_init (&once->to, once_cb_to); 3211 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 3212 for (i = timercnt + HEAP0; i-- > HEAP0; )
3213#if EV_STAT_ENABLE
3214 /*TODO: timer is not always active*/
3215 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 3216 {
1630 ev_timer_set (&once->to, timeout, 0.); 3217 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 3218 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 3219 }
1633 } 3220 else
3221#endif
3222 if (types & EV_TIMER)
3223 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3224
3225#if EV_PERIODIC_ENABLE
3226 if (types & EV_PERIODIC)
3227 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3228 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3229#endif
3230
3231#if EV_IDLE_ENABLE
3232 if (types & EV_IDLE)
3233 for (j = NUMPRI; i--; )
3234 for (i = idlecnt [j]; i--; )
3235 cb (EV_A_ EV_IDLE, idles [j][i]);
3236#endif
3237
3238#if EV_FORK_ENABLE
3239 if (types & EV_FORK)
3240 for (i = forkcnt; i--; )
3241 if (ev_cb (forks [i]) != embed_fork_cb)
3242 cb (EV_A_ EV_FORK, forks [i]);
3243#endif
3244
3245#if EV_ASYNC_ENABLE
3246 if (types & EV_ASYNC)
3247 for (i = asynccnt; i--; )
3248 cb (EV_A_ EV_ASYNC, asyncs [i]);
3249#endif
3250
3251 if (types & EV_PREPARE)
3252 for (i = preparecnt; i--; )
3253#if EV_EMBED_ENABLE
3254 if (ev_cb (prepares [i]) != embed_prepare_cb)
3255#endif
3256 cb (EV_A_ EV_PREPARE, prepares [i]);
3257
3258 if (types & EV_CHECK)
3259 for (i = checkcnt; i--; )
3260 cb (EV_A_ EV_CHECK, checks [i]);
3261
3262 if (types & EV_SIGNAL)
3263 for (i = 0; i < signalmax; ++i)
3264 for (wl = signals [i].head; wl; )
3265 {
3266 wn = wl->next;
3267 cb (EV_A_ EV_SIGNAL, wl);
3268 wl = wn;
3269 }
3270
3271 if (types & EV_CHILD)
3272 for (i = EV_PID_HASHSIZE; i--; )
3273 for (wl = childs [i]; wl; )
3274 {
3275 wn = wl->next;
3276 cb (EV_A_ EV_CHILD, wl);
3277 wl = wn;
3278 }
3279/* EV_STAT 0x00001000 /* stat data changed */
3280/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1634} 3281}
3282#endif
3283
3284#if EV_MULTIPLICITY
3285 #include "ev_wrap.h"
3286#endif
1635 3287
1636#ifdef __cplusplus 3288#ifdef __cplusplus
1637} 3289}
1638#endif 3290#endif
1639 3291

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines