ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.284 by root, Wed Apr 15 17:49:26 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
45# endif 70# endif
46# else 71# else
47# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
49# endif 74# endif
50# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
52# endif 85# endif
53# endif 86# endif
54 87
55# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 123# else
91# define EV_USE_PORT 0 124# define EV_USE_PORT 0
92# endif 125# endif
93# endif 126# endif
94 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
95#endif 144#endif
96 145
97#include <math.h> 146#include <math.h>
98#include <stdlib.h> 147#include <stdlib.h>
99#include <fcntl.h> 148#include <fcntl.h>
106#include <sys/types.h> 155#include <sys/types.h>
107#include <time.h> 156#include <time.h>
108 157
109#include <signal.h> 158#include <signal.h>
110 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
111#ifndef _WIN32 166#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 167# include <sys/time.h>
114# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
115#else 170#else
171# include <io.h>
116# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 173# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
120# endif 176# endif
121#endif 177#endif
122 178
123/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
124 188
125#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
126# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
127#endif 195#endif
128 196
129#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
131#endif 207#endif
132 208
133#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
135#endif 211#endif
141# define EV_USE_POLL 1 217# define EV_USE_POLL 1
142# endif 218# endif
143#endif 219#endif
144 220
145#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
146# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
147#endif 227#endif
148 228
149#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
151#endif 231#endif
152 232
153#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 234# define EV_USE_PORT 0
155#endif 235#endif
156 236
157/**/ 237#ifndef EV_USE_INOTIFY
158 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 239# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 240# else
161# undef EV_USE_POLL 241# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 288
165#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
168#endif 292#endif
170#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
173#endif 297#endif
174 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
175#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 322# include <winsock.h>
177#endif 323#endif
178 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
179/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 363
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 367
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 368#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 370# define noinline __attribute__ ((noinline))
195#else 371#else
196# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
197# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
198#endif 377#endif
199 378
200#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
202 388
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 391
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
208 394
209typedef struct ev_watcher *W; 395typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
212 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
214 411
215#ifdef _WIN32 412#ifdef _WIN32
216# include "ev_win32.c" 413# include "ev_win32.c"
217#endif 414#endif
218 415
219/*****************************************************************************/ 416/*****************************************************************************/
220 417
221static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
222 419
420void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 422{
225 syserr_cb = cb; 423 syserr_cb = cb;
226} 424}
227 425
228static void 426static void noinline
229syserr (const char *msg) 427ev_syserr (const char *msg)
230{ 428{
231 if (!msg) 429 if (!msg)
232 msg = "(libev) system error"; 430 msg = "(libev) system error";
233 431
234 if (syserr_cb) 432 if (syserr_cb)
238 perror (msg); 436 perror (msg);
239 abort (); 437 abort ();
240 } 438 }
241} 439}
242 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
243static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 457
458void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 460{
247 alloc = cb; 461 alloc = cb;
248} 462}
249 463
250static void * 464inline_speed void *
251ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
252{ 466{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
254 468
255 if (!ptr && size) 469 if (!ptr && size)
256 { 470 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 472 abort ();
269typedef struct 483typedef struct
270{ 484{
271 WL head; 485 WL head;
272 unsigned char events; 486 unsigned char events;
273 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
274#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 494 SOCKET handle;
276#endif 495#endif
277} ANFD; 496} ANFD;
278 497
279typedef struct 498typedef struct
280{ 499{
281 W w; 500 W w;
282 int events; 501 int events;
283} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
284 529
285#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
286 531
287 struct ev_loop 532 struct ev_loop
288 { 533 {
312 557
313ev_tstamp 558ev_tstamp
314ev_time (void) 559ev_time (void)
315{ 560{
316#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
317 struct timespec ts; 564 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 567 }
568#endif
569
321 struct timeval tv; 570 struct timeval tv;
322 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 573}
326 574
327inline ev_tstamp 575inline_size ev_tstamp
328get_clock (void) 576get_clock (void)
329{ 577{
330#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
332 { 580 {
345{ 593{
346 return ev_rt_now; 594 return ev_rt_now;
347} 595}
348#endif 596#endif
349 597
350#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 660
352#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
354 { \ 663 { \
355 int newcnt = cur; \ 664 int ocur_ = (cur); \
356 do \ 665 (base) = (type *)array_realloc \
357 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 668 }
366 669
670#if 0
367#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 673 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 677 }
678#endif
374 679
375#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 682
378/*****************************************************************************/ 683/*****************************************************************************/
379 684
380static void 685void noinline
381anfds_init (ANFD *base, int count)
382{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391}
392
393void
394ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
395{ 687{
396 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
397 690
398 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
399 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 699 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 700}
409 701
410static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 719{
413 int i; 720 int i;
414 721
415 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
417} 724}
418 725
726/*****************************************************************************/
727
419inline void 728inline_speed void
420fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
421{ 730{
422 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 732 ev_io *w;
424 733
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 735 {
427 int ev = w->events & revents; 736 int ev = w->events & revents;
428 737
429 if (ev) 738 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 739 ev_feed_event (EV_A_ (W)w, ev);
432} 741}
433 742
434void 743void
435ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 745{
746 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
438} 748}
439 749
440/*****************************************************************************/
441
442inline void 750inline_size void
443fd_reify (EV_P) 751fd_reify (EV_P)
444{ 752{
445 int i; 753 int i;
446 754
447 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
448 { 756 {
449 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 759 ev_io *w;
452 760
453 int events = 0; 761 unsigned char events = 0;
454 762
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 764 events |= (unsigned char)w->events;
457 765
458#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
459 if (events) 767 if (events)
460 { 768 {
461 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
462 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 776 }
465#endif 777#endif
466 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
467 anfd->reify = 0; 783 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
471 } 789 }
472 790
473 fdchangecnt = 0; 791 fdchangecnt = 0;
474} 792}
475 793
476static void 794inline_size void
477fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
478{ 796{
479 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
483 799
800 if (expect_true (!reify))
801 {
484 ++fdchangecnt; 802 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
487} 806}
488 807
489static void 808inline_speed void
490fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
491{ 810{
492 struct ev_io *w; 811 ev_io *w;
493 812
494 while ((w = (struct ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
495 { 814 {
496 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 817 }
499} 818}
500 819
501inline int 820inline_size int
502fd_valid (int fd) 821fd_valid (int fd)
503{ 822{
504#ifdef _WIN32 823#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
506#else 825#else
507 return fcntl (fd, F_GETFD) != -1; 826 return fcntl (fd, F_GETFD) != -1;
508#endif 827#endif
509} 828}
510 829
511/* called on EBADF to verify fds */ 830/* called on EBADF to verify fds */
512static void 831static void noinline
513fd_ebadf (EV_P) 832fd_ebadf (EV_P)
514{ 833{
515 int fd; 834 int fd;
516 835
517 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 837 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
521} 840}
522 841
523/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 843static void noinline
525fd_enomem (EV_P) 844fd_enomem (EV_P)
526{ 845{
527 int fd; 846 int fd;
528 847
529 for (fd = anfdmax; fd--; ) 848 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 851 fd_kill (EV_A_ fd);
533 return; 852 return;
534 } 853 }
535} 854}
536 855
537/* usually called after fork if method needs to re-arm all fds from scratch */ 856/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 857static void noinline
539fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
540{ 859{
541 int fd; 860 int fd;
542 861
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 863 if (anfds [fd].events)
546 { 864 {
547 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
548 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
549 } 868 }
550} 869}
551 870
552/*****************************************************************************/ 871/*****************************************************************************/
553 872
554static void 873/*
555upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
558 878
559 while (k && heap [k >> 1]->at > w->at) 879/*
560 { 880 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
563 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
564 } 884 */
885#if EV_USE_4HEAP
565 886
566 heap [k] = w; 887#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
568 891
569} 892/* away from the root */
570 893inline_speed void
571static void
572downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
573{ 895{
574 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
575 898
576 while (k < (N >> 1)) 899 for (;;)
577 { 900 {
578 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 904
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 907 {
582 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
584 break; 921 break;
585 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
586 heap [k] = heap [j]; 961 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
588 k = j; 964 k = c;
589 } 965 }
590 966
591 heap [k] = w; 967 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
593} 969}
970#endif
594 971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
595inline void 994inline_size void
596adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
597{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 998 upheap (heap, k);
999 else
599 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
600} 1013}
601 1014
602/*****************************************************************************/ 1015/*****************************************************************************/
603 1016
604typedef struct 1017typedef struct
605{ 1018{
606 WL head; 1019 WL head;
607 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
608} ANSIG; 1021} ANSIG;
609 1022
610static ANSIG *signals; 1023static ANSIG *signals;
611static int signalmax; 1024static int signalmax;
612 1025
613static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 1027
617static void 1028/*****************************************************************************/
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624 1029
625 ++base; 1030inline_speed void
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1031fd_intern (int fd)
682{ 1032{
683#ifdef _WIN32 1033#ifdef _WIN32
684 int arg = 1; 1034 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1036#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1039#endif
690} 1040}
691 1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
692static void 1093static void
693siginit (EV_P) 1094pipecb (EV_P_ ev_io *iow, int revents)
694{ 1095{
695 fd_intern (sigpipe [0]); 1096#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
697 1108
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1109 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1110 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
701} 1133}
702 1134
703/*****************************************************************************/ 1135/*****************************************************************************/
704 1136
705static struct ev_child *childs [PID_HASHSIZE]; 1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
1174static WL childs [EV_PID_HASHSIZE];
706 1175
707#ifndef _WIN32 1176#ifndef _WIN32
708 1177
709static struct ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
710 1202
711#ifndef WCONTINUED 1203#ifndef WCONTINUED
712# define WCONTINUED 0 1204# define WCONTINUED 0
713#endif 1205#endif
714 1206
715static void 1207static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
732{ 1209{
733 int pid, status; 1210 int pid, status;
734 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
737 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1222
740 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1226}
744 1227
745#endif 1228#endif
746 1229
747/*****************************************************************************/ 1230/*****************************************************************************/
773{ 1256{
774 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
775} 1258}
776 1259
777/* return true if we are running with elevated privileges and should ignore env variables */ 1260/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1261int inline_size
779enable_secure (void) 1262enable_secure (void)
780{ 1263{
781#ifdef _WIN32 1264#ifdef _WIN32
782 return 0; 1265 return 0;
783#else 1266#else
785 || getgid () != getegid (); 1268 || getgid () != getegid ();
786#endif 1269#endif
787} 1270}
788 1271
789unsigned int 1272unsigned int
790ev_method (EV_P) 1273ev_supported_backends (void)
791{ 1274{
792 return method; 1275 unsigned int flags = 0;
793}
794 1276
795static void 1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
1288{
1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
796loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
797{ 1343{
798 if (!method) 1344 if (!backend)
799 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
800#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
801 { 1358 {
802 struct timespec ts; 1359 struct timespec ts;
1360
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1362 have_monotonic = 1;
805 } 1363 }
806#endif 1364#endif
807 1365
808 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1367 mn_now = get_clock ();
810 now_floor = mn_now; 1368 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
812 1370
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1390
816 if (!(flags & 0x0000ffff)) 1391 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1392 flags |= ev_recommended_backends ();
818 1393
819 method = 0;
820#if EV_USE_PORT 1394#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1396#endif
823#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1399#endif
826#if EV_USE_EPOLL 1400#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1402#endif
829#if EV_USE_POLL 1403#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1405#endif
832#if EV_USE_SELECT 1406#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1408#endif
835 1409
836 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1412 }
839} 1413}
840 1414
841static void 1415static void noinline
842loop_destroy (EV_P) 1416loop_destroy (EV_P)
843{ 1417{
844 int i; 1418 int i;
845 1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
846#if EV_USE_PORT 1445#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1447#endif
849#if EV_USE_KQUEUE 1448#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1450#endif
852#if EV_USE_EPOLL 1451#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1453#endif
855#if EV_USE_POLL 1454#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1456#endif
858#if EV_USE_SELECT 1457#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1459#endif
861 1460
862 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
863 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
864 1470
865 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 1473 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1474 array_free (timer, EMPTY);
868#if EV_PERIODICS 1475#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1476 array_free (periodic, EMPTY);
870#endif 1477#endif
1478#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1479 array_free (fork, EMPTY);
1480#endif
872 array_free (prepare, EMPTY0); 1481 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
874 1486
875 method = 0; 1487 backend = 0;
876} 1488}
877 1489
878static void 1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
879loop_fork (EV_P) 1495loop_fork (EV_P)
880{ 1496{
881#if EV_USE_PORT 1497#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1499#endif
884#if EV_USE_KQUEUE 1500#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1502#endif
887#if EV_USE_EPOLL 1503#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1505#endif
1506#if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508#endif
890 1509
891 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
892 { 1511 {
893 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
894 1518
895 ev_ref (EV_A); 1519 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
897 close (sigpipe [0]); 1529 close (evpipe [0]);
898 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
899 1532
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1536 }
905 1537
906 postfork = 0; 1538 postfork = 0;
907} 1539}
908 1540
909#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
910struct ev_loop * 1543struct ev_loop *
911ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
912{ 1545{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1547
915 memset (loop, 0, sizeof (struct ev_loop)); 1548 memset (loop, 0, sizeof (struct ev_loop));
916 1549
917 loop_init (EV_A_ flags); 1550 loop_init (EV_A_ flags);
918 1551
919 if (ev_method (EV_A)) 1552 if (ev_backend (EV_A))
920 return loop; 1553 return loop;
921 1554
922 return 0; 1555 return 0;
923} 1556}
924 1557
930} 1563}
931 1564
932void 1565void
933ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
934{ 1567{
935 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
936} 1569}
937 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
938#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
939 1671
940#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
941struct ev_loop * 1673struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
943#else 1675#else
944int 1676int
945ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
946#endif 1678#endif
947{ 1679{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
953 { 1681 {
954#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1684#else
957 ev_default_loop_ptr = 1; 1685 ev_default_loop_ptr = 1;
958#endif 1686#endif
959 1687
960 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
961 1689
962 if (ev_method (EV_A)) 1690 if (ev_backend (EV_A))
963 { 1691 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1692#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
982{ 1708{
983#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
985#endif 1711#endif
986 1712
1713 ev_default_loop_ptr = 0;
1714
987#ifndef _WIN32 1715#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
990#endif 1718#endif
991 1719
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
999} 1721}
1000 1722
1001void 1723void
1002ev_default_fork (void) 1724ev_default_fork (void)
1003{ 1725{
1004#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1728#endif
1007 1729
1008 if (method) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 1731}
1011 1732
1012/*****************************************************************************/ 1733/*****************************************************************************/
1013 1734
1014static int 1735void
1015any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
1016{ 1737{
1017 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1739}
1025 1740
1026inline void 1741inline_speed void
1027call_pending (EV_P) 1742call_pending (EV_P)
1028{ 1743{
1029 int pri; 1744 int pri;
1030 1745
1031 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1033 { 1748 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1750
1036 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1037 { 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
1038 p->w->pending = 0; 1755 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1040 } 1758 }
1041 } 1759 }
1042} 1760}
1043 1761
1762#if EV_IDLE_ENABLE
1044inline void 1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
1045timers_reify (EV_P) 1786timers_reify (EV_P)
1046{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1791 {
1049 struct ev_timer *w = timers [0]; 1792 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1806
1058 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1063 } 1815 }
1064 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1817
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1068 } 1819 }
1069} 1820}
1070 1821
1071#if EV_PERIODICS 1822#if EV_PERIODIC_ENABLE
1072inline void 1823inline_size void
1073periodics_reify (EV_P) 1824periodics_reify (EV_P)
1074{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1829 {
1077 struct ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1078 1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1837
1081 /* first reschedule or stop timer */ 1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1082 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901inline_speed void
1902time_update (EV_P_ ev_tstamp max_block)
1903{
1904 int i;
1905
1906#if EV_USE_MONOTONIC
1907 if (expect_true (have_monotonic))
1908 {
1909 ev_tstamp odiff = rtmn_diff;
1910
1911 mn_now = get_clock ();
1912
1913 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1914 /* interpolate in the meantime */
1915 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 1916 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1917 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1918 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 1919 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1920
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 1921 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1922 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1923
1141inline void 1924 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1925 * on the choice of "4": one iteration isn't enough,
1143{ 1926 * in case we get preempted during the calls to
1144 int i; 1927 * ev_time and get_clock. a second call is almost guaranteed
1145 1928 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1929 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1930 * in the unlikely event of having been preempted here.
1148 { 1931 */
1149 if (time_update_monotonic (EV_A)) 1932 for (i = 4; --i; )
1150 { 1933 {
1151 ev_tstamp odiff = rtmn_diff; 1934 rtmn_diff = ev_rt_now - mn_now;
1152 1935
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1936 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1937 return; /* all is well */
1938
1939 ev_rt_now = ev_time ();
1940 mn_now = get_clock ();
1941 now_floor = mn_now;
1942 }
1943
1944# if EV_PERIODIC_ENABLE
1945 periodics_reschedule (EV_A);
1946# endif
1947 /* no timer adjustment, as the monotonic clock doesn't jump */
1948 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1949 }
1950 else
1951#endif
1952 {
1953 ev_rt_now = ev_time ();
1954
1955 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1956 {
1957#if EV_PERIODIC_ENABLE
1958 periodics_reschedule (EV_A);
1959#endif
1960 /* adjust timers. this is easy, as the offset is the same for all of them */
1961 for (i = 0; i < timercnt; ++i)
1154 { 1962 {
1155 rtmn_diff = ev_rt_now - mn_now; 1963 ANHE *he = timers + i + HEAP0;
1156 1964 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1965 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1966 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1967 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1968
1188 mn_now = ev_rt_now; 1969 mn_now = ev_rt_now;
1189 } 1970 }
1190} 1971}
1191 1972
1199ev_unref (EV_P) 1980ev_unref (EV_P)
1200{ 1981{
1201 --activecnt; 1982 --activecnt;
1202} 1983}
1203 1984
1985void
1986ev_now_update (EV_P)
1987{
1988 time_update (EV_A_ 1e100);
1989}
1990
1204static int loop_done; 1991static int loop_done;
1205 1992
1206void 1993void
1207ev_loop (EV_P_ int flags) 1994ev_loop (EV_P_ int flags)
1208{ 1995{
1209 double block; 1996 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1997
1212 while (activecnt) 1998 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1999
2000 do
1213 { 2001 {
2002#if EV_VERIFY >= 2
2003 ev_loop_verify (EV_A);
2004#endif
2005
2006#ifndef _WIN32
2007 if (expect_false (curpid)) /* penalise the forking check even more */
2008 if (expect_false (getpid () != curpid))
2009 {
2010 curpid = getpid ();
2011 postfork = 1;
2012 }
2013#endif
2014
2015#if EV_FORK_ENABLE
2016 /* we might have forked, so queue fork handlers */
2017 if (expect_false (postfork))
2018 if (forkcnt)
2019 {
2020 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2021 call_pending (EV_A);
2022 }
2023#endif
2024
1214 /* queue check watchers (and execute them) */ 2025 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2026 if (expect_false (preparecnt))
1216 { 2027 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2028 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2029 call_pending (EV_A);
1219 } 2030 }
1224 2035
1225 /* update fd-related kernel structures */ 2036 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2037 fd_reify (EV_A);
1227 2038
1228 /* calculate blocking time */ 2039 /* calculate blocking time */
2040 {
2041 ev_tstamp waittime = 0.;
2042 ev_tstamp sleeptime = 0.;
1229 2043
1230 /* we only need this for !monotonic clock or timers, but as we basically 2044 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 2045 {
1238 ev_rt_now = ev_time (); 2046 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 2047 time_update (EV_A_ 1e100);
1240 }
1241 2048
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME;
1247
1248 if (timercnt) 2049 if (timercnt)
1249 { 2050 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2051 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 2052 if (waittime > to) waittime = to;
1252 } 2053 }
1253 2054
1254#if EV_PERIODICS 2055#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2056 if (periodiccnt)
1256 { 2057 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2058 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 2059 if (waittime > to) waittime = to;
1259 } 2060 }
1260#endif 2061#endif
1261 2062
1262 if (expect_false (block < 0.)) block = 0.; 2063 if (expect_false (waittime < timeout_blocktime))
2064 waittime = timeout_blocktime;
2065
2066 sleeptime = waittime - backend_fudge;
2067
2068 if (expect_true (sleeptime > io_blocktime))
2069 sleeptime = io_blocktime;
2070
2071 if (sleeptime)
2072 {
2073 ev_sleep (sleeptime);
2074 waittime -= sleeptime;
2075 }
1263 } 2076 }
1264 2077
1265 method_poll (EV_A_ block); 2078 ++loop_count;
2079 backend_poll (EV_A_ waittime);
1266 2080
1267 /* update ev_rt_now, do magic */ 2081 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2082 time_update (EV_A_ waittime + sleeptime);
2083 }
1269 2084
1270 /* queue pending timers and reschedule them */ 2085 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2086 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2087#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2088 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2089#endif
1275 2090
2091#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2092 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2093 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2094#endif
1279 2095
1280 /* queue check watchers, to be executed first */ 2096 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2097 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2098 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2099
1284 call_pending (EV_A); 2100 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2101 }
2102 while (expect_true (
2103 activecnt
2104 && !loop_done
2105 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2106 ));
1289 2107
1290 if (loop_done != 2) 2108 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2109 loop_done = EVUNLOOP_CANCEL;
1292} 2110}
1293 2111
1294void 2112void
1295ev_unloop (EV_P_ int how) 2113ev_unloop (EV_P_ int how)
1296{ 2114{
1297 loop_done = how; 2115 loop_done = how;
1298} 2116}
1299 2117
1300/*****************************************************************************/ 2118/*****************************************************************************/
1301 2119
1302inline void 2120inline_size void
1303wlist_add (WL *head, WL elem) 2121wlist_add (WL *head, WL elem)
1304{ 2122{
1305 elem->next = *head; 2123 elem->next = *head;
1306 *head = elem; 2124 *head = elem;
1307} 2125}
1308 2126
1309inline void 2127inline_size void
1310wlist_del (WL *head, WL elem) 2128wlist_del (WL *head, WL elem)
1311{ 2129{
1312 while (*head) 2130 while (*head)
1313 { 2131 {
1314 if (*head == elem) 2132 if (*head == elem)
1319 2137
1320 head = &(*head)->next; 2138 head = &(*head)->next;
1321 } 2139 }
1322} 2140}
1323 2141
1324inline void 2142inline_speed void
1325ev_clear_pending (EV_P_ W w) 2143clear_pending (EV_P_ W w)
1326{ 2144{
1327 if (w->pending) 2145 if (w->pending)
1328 { 2146 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2147 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2148 w->pending = 0;
1331 } 2149 }
1332} 2150}
1333 2151
2152int
2153ev_clear_pending (EV_P_ void *w)
2154{
2155 W w_ = (W)w;
2156 int pending = w_->pending;
2157
2158 if (expect_true (pending))
2159 {
2160 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2161 w_->pending = 0;
2162 p->w = 0;
2163 return p->events;
2164 }
2165 else
2166 return 0;
2167}
2168
1334inline void 2169inline_size void
2170pri_adjust (EV_P_ W w)
2171{
2172 int pri = w->priority;
2173 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2174 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2175 w->priority = pri;
2176}
2177
2178inline_speed void
1335ev_start (EV_P_ W w, int active) 2179ev_start (EV_P_ W w, int active)
1336{ 2180{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2181 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2182 w->active = active;
1341 ev_ref (EV_A); 2183 ev_ref (EV_A);
1342} 2184}
1343 2185
1344inline void 2186inline_size void
1345ev_stop (EV_P_ W w) 2187ev_stop (EV_P_ W w)
1346{ 2188{
1347 ev_unref (EV_A); 2189 ev_unref (EV_A);
1348 w->active = 0; 2190 w->active = 0;
1349} 2191}
1350 2192
1351/*****************************************************************************/ 2193/*****************************************************************************/
1352 2194
1353void 2195void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2196ev_io_start (EV_P_ ev_io *w)
1355{ 2197{
1356 int fd = w->fd; 2198 int fd = w->fd;
1357 2199
1358 if (expect_false (ev_is_active (w))) 2200 if (expect_false (ev_is_active (w)))
1359 return; 2201 return;
1360 2202
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2204 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2205
2206 EV_FREQUENT_CHECK;
1362 2207
1363 ev_start (EV_A_ (W)w, 1); 2208 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2209 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2210 wlist_add (&anfds[fd].head, (WL)w);
1366 2211
1367 fd_change (EV_A_ fd); 2212 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1368} 2213 w->events &= ~EV__IOFDSET;
1369 2214
1370void 2215 EV_FREQUENT_CHECK;
2216}
2217
2218void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2219ev_io_stop (EV_P_ ev_io *w)
1372{ 2220{
1373 ev_clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2222 if (expect_false (!ev_is_active (w)))
1375 return; 2223 return;
1376 2224
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2225 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2226
2227 EV_FREQUENT_CHECK;
2228
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2229 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2230 ev_stop (EV_A_ (W)w);
1381 2231
1382 fd_change (EV_A_ w->fd); 2232 fd_change (EV_A_ w->fd, 1);
1383}
1384 2233
1385void 2234 EV_FREQUENT_CHECK;
2235}
2236
2237void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2238ev_timer_start (EV_P_ ev_timer *w)
1387{ 2239{
1388 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1389 return; 2241 return;
1390 2242
1391 ((WT)w)->at += mn_now; 2243 ev_at (w) += mn_now;
1392 2244
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2245 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2246
2247 EV_FREQUENT_CHECK;
2248
2249 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2250 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2251 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2252 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2253 ANHE_at_cache (timers [ev_active (w)]);
2254 upheap (timers, ev_active (w));
1399 2255
2256 EV_FREQUENT_CHECK;
2257
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2258 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2259}
1402 2260
1403void 2261void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2262ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2263{
1406 ev_clear_pending (EV_A_ (W)w); 2264 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2265 if (expect_false (!ev_is_active (w)))
1408 return; 2266 return;
1409 2267
2268 EV_FREQUENT_CHECK;
2269
2270 {
2271 int active = ev_active (w);
2272
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2273 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2274
2275 --timercnt;
2276
1412 if (expect_true (((W)w)->active < timercnt--)) 2277 if (expect_true (active < timercnt + HEAP0))
1413 { 2278 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2279 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2280 adjustheap (timers, timercnt, active);
1416 } 2281 }
2282 }
1417 2283
1418 ((WT)w)->at -= mn_now; 2284 EV_FREQUENT_CHECK;
2285
2286 ev_at (w) -= mn_now;
1419 2287
1420 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1421} 2289}
1422 2290
1423void 2291void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2292ev_timer_again (EV_P_ ev_timer *w)
1425{ 2293{
2294 EV_FREQUENT_CHECK;
2295
1426 if (ev_is_active (w)) 2296 if (ev_is_active (w))
1427 { 2297 {
1428 if (w->repeat) 2298 if (w->repeat)
1429 { 2299 {
1430 ((WT)w)->at = mn_now + w->repeat; 2300 ev_at (w) = mn_now + w->repeat;
2301 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2302 adjustheap (timers, timercnt, ev_active (w));
1432 } 2303 }
1433 else 2304 else
1434 ev_timer_stop (EV_A_ w); 2305 ev_timer_stop (EV_A_ w);
1435 } 2306 }
1436 else if (w->repeat) 2307 else if (w->repeat)
1437 { 2308 {
1438 w->at = w->repeat; 2309 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2310 ev_timer_start (EV_A_ w);
1440 } 2311 }
1441}
1442 2312
2313 EV_FREQUENT_CHECK;
2314}
2315
1443#if EV_PERIODICS 2316#if EV_PERIODIC_ENABLE
1444void 2317void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2318ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2319{
1447 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1448 return; 2321 return;
1449 2322
1450 if (w->reschedule_cb) 2323 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2324 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2325 else if (w->interval)
1453 { 2326 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2327 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2328 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2329 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2330 }
2331 else
2332 ev_at (w) = w->offset;
1458 2333
2334 EV_FREQUENT_CHECK;
2335
2336 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2337 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2338 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2339 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2340 ANHE_at_cache (periodics [ev_active (w)]);
2341 upheap (periodics, ev_active (w));
1463 2342
2343 EV_FREQUENT_CHECK;
2344
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2345 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2346}
1466 2347
1467void 2348void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2349ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2350{
1470 ev_clear_pending (EV_A_ (W)w); 2351 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2352 if (expect_false (!ev_is_active (w)))
1472 return; 2353 return;
1473 2354
2355 EV_FREQUENT_CHECK;
2356
2357 {
2358 int active = ev_active (w);
2359
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2360 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2361
2362 --periodiccnt;
2363
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2364 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2365 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2366 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2367 adjustheap (periodics, periodiccnt, active);
1480 } 2368 }
2369 }
2370
2371 EV_FREQUENT_CHECK;
1481 2372
1482 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1483} 2374}
1484 2375
1485void 2376void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2377ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2378{
1488 /* TODO: use adjustheap and recalculation */ 2379 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2380 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2381 ev_periodic_start (EV_A_ w);
1491} 2382}
1492#endif 2383#endif
1493 2384
1494void 2385#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2386# define SA_RESTART 0
2387#endif
2388
2389void noinline
2390ev_signal_start (EV_P_ ev_signal *w)
1496{ 2391{
2392#if EV_MULTIPLICITY
2393 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2394#endif
1497 if (expect_false (ev_is_active (w))) 2395 if (expect_false (ev_is_active (w)))
1498 return; 2396 return;
1499 2397
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2398 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2399
2400 evpipe_init (EV_A);
2401
2402 EV_FREQUENT_CHECK;
2403
2404 {
2405#ifndef _WIN32
2406 sigset_t full, prev;
2407 sigfillset (&full);
2408 sigprocmask (SIG_SETMASK, &full, &prev);
2409#endif
2410
2411 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2412
2413#ifndef _WIN32
2414 sigprocmask (SIG_SETMASK, &prev, 0);
2415#endif
2416 }
1574 2417
1575 ev_start (EV_A_ (W)w, 1); 2418 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2419 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2420
1579 if (!((WL)w)->next) 2421 if (!((WL)w)->next)
1580 { 2422 {
1581#if _WIN32 2423#if _WIN32
1582 signal (w->signum, sighandler); 2424 signal (w->signum, ev_sighandler);
1583#else 2425#else
1584 struct sigaction sa; 2426 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2427 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2428 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2429 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2430 sigaction (w->signum, &sa, 0);
1589#endif 2431#endif
1590 } 2432 }
1591}
1592 2433
1593void 2434 EV_FREQUENT_CHECK;
2435}
2436
2437void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2438ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2439{
1596 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1598 return; 2442 return;
1599 2443
2444 EV_FREQUENT_CHECK;
2445
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2446 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2447 ev_stop (EV_A_ (W)w);
1602 2448
1603 if (!signals [w->signum - 1].head) 2449 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2450 signal (w->signum, SIG_DFL);
1605}
1606 2451
2452 EV_FREQUENT_CHECK;
2453}
2454
1607void 2455void
1608ev_child_start (EV_P_ struct ev_child *w) 2456ev_child_start (EV_P_ ev_child *w)
1609{ 2457{
1610#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2460#endif
1613 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1614 return; 2462 return;
1615 2463
2464 EV_FREQUENT_CHECK;
2465
1616 ev_start (EV_A_ (W)w, 1); 2466 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2467 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2468
2469 EV_FREQUENT_CHECK;
2470}
2471
1620void 2472void
1621ev_child_stop (EV_P_ struct ev_child *w) 2473ev_child_stop (EV_P_ ev_child *w)
1622{ 2474{
1623 ev_clear_pending (EV_A_ (W)w); 2475 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2476 if (expect_false (!ev_is_active (w)))
1625 return; 2477 return;
1626 2478
2479 EV_FREQUENT_CHECK;
2480
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2481 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2482 ev_stop (EV_A_ (W)w);
2483
2484 EV_FREQUENT_CHECK;
1629} 2485}
2486
2487#if EV_STAT_ENABLE
2488
2489# ifdef _WIN32
2490# undef lstat
2491# define lstat(a,b) _stati64 (a,b)
2492# endif
2493
2494#define DEF_STAT_INTERVAL 5.0074891
2495#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2496#define MIN_STAT_INTERVAL 0.1074891
2497
2498static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2499
2500#if EV_USE_INOTIFY
2501# define EV_INOTIFY_BUFSIZE 8192
2502
2503static void noinline
2504infy_add (EV_P_ ev_stat *w)
2505{
2506 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2507
2508 if (w->wd < 0)
2509 {
2510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2512
2513 /* monitor some parent directory for speedup hints */
2514 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2515 /* but an efficiency issue only */
2516 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2517 {
2518 char path [4096];
2519 strcpy (path, w->path);
2520
2521 do
2522 {
2523 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2524 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2525
2526 char *pend = strrchr (path, '/');
2527
2528 if (!pend || pend == path)
2529 break;
2530
2531 *pend = 0;
2532 w->wd = inotify_add_watch (fs_fd, path, mask);
2533 }
2534 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2535 }
2536 }
2537
2538 if (w->wd >= 0)
2539 {
2540 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2541
2542 /* now local changes will be tracked by inotify, but remote changes won't */
2543 /* unless the filesystem it known to be local, we therefore still poll */
2544 /* also do poll on <2.6.25, but with normal frequency */
2545 struct statfs sfs;
2546
2547 if (fs_2625 && !statfs (w->path, &sfs))
2548 if (sfs.f_type == 0x1373 /* devfs */
2549 || sfs.f_type == 0xEF53 /* ext2/3 */
2550 || sfs.f_type == 0x3153464a /* jfs */
2551 || sfs.f_type == 0x52654973 /* reiser3 */
2552 || sfs.f_type == 0x01021994 /* tempfs */
2553 || sfs.f_type == 0x58465342 /* xfs */)
2554 return;
2555
2556 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2557 ev_timer_again (EV_A_ &w->timer);
2558 }
2559}
2560
2561static void noinline
2562infy_del (EV_P_ ev_stat *w)
2563{
2564 int slot;
2565 int wd = w->wd;
2566
2567 if (wd < 0)
2568 return;
2569
2570 w->wd = -2;
2571 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2572 wlist_del (&fs_hash [slot].head, (WL)w);
2573
2574 /* remove this watcher, if others are watching it, they will rearm */
2575 inotify_rm_watch (fs_fd, wd);
2576}
2577
2578static void noinline
2579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2580{
2581 if (slot < 0)
2582 /* overflow, need to check for all hash slots */
2583 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2584 infy_wd (EV_A_ slot, wd, ev);
2585 else
2586 {
2587 WL w_;
2588
2589 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2590 {
2591 ev_stat *w = (ev_stat *)w_;
2592 w_ = w_->next; /* lets us remove this watcher and all before it */
2593
2594 if (w->wd == wd || wd == -1)
2595 {
2596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2597 {
2598 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2599 w->wd = -1;
2600 infy_add (EV_A_ w); /* re-add, no matter what */
2601 }
2602
2603 stat_timer_cb (EV_A_ &w->timer, 0);
2604 }
2605 }
2606 }
2607}
2608
2609static void
2610infy_cb (EV_P_ ev_io *w, int revents)
2611{
2612 char buf [EV_INOTIFY_BUFSIZE];
2613 struct inotify_event *ev = (struct inotify_event *)buf;
2614 int ofs;
2615 int len = read (fs_fd, buf, sizeof (buf));
2616
2617 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2618 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2619}
2620
2621inline_size void
2622check_2625 (EV_P)
2623{
2624 /* kernels < 2.6.25 are borked
2625 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2626 */
2627 struct utsname buf;
2628 int major, minor, micro;
2629
2630 if (uname (&buf))
2631 return;
2632
2633 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2634 return;
2635
2636 if (major < 2
2637 || (major == 2 && minor < 6)
2638 || (major == 2 && minor == 6 && micro < 25))
2639 return;
2640
2641 fs_2625 = 1;
2642}
2643
2644inline_size void
2645infy_init (EV_P)
2646{
2647 if (fs_fd != -2)
2648 return;
2649
2650 fs_fd = -1;
2651
2652 check_2625 (EV_A);
2653
2654 fs_fd = inotify_init ();
2655
2656 if (fs_fd >= 0)
2657 {
2658 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2659 ev_set_priority (&fs_w, EV_MAXPRI);
2660 ev_io_start (EV_A_ &fs_w);
2661 }
2662}
2663
2664inline_size void
2665infy_fork (EV_P)
2666{
2667 int slot;
2668
2669 if (fs_fd < 0)
2670 return;
2671
2672 close (fs_fd);
2673 fs_fd = inotify_init ();
2674
2675 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2676 {
2677 WL w_ = fs_hash [slot].head;
2678 fs_hash [slot].head = 0;
2679
2680 while (w_)
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us add this watcher */
2684
2685 w->wd = -1;
2686
2687 if (fs_fd >= 0)
2688 infy_add (EV_A_ w); /* re-add, no matter what */
2689 else
2690 ev_timer_again (EV_A_ &w->timer);
2691 }
2692 }
2693}
2694
2695#endif
2696
2697#ifdef _WIN32
2698# define EV_LSTAT(p,b) _stati64 (p, b)
2699#else
2700# define EV_LSTAT(p,b) lstat (p, b)
2701#endif
2702
2703void
2704ev_stat_stat (EV_P_ ev_stat *w)
2705{
2706 if (lstat (w->path, &w->attr) < 0)
2707 w->attr.st_nlink = 0;
2708 else if (!w->attr.st_nlink)
2709 w->attr.st_nlink = 1;
2710}
2711
2712static void noinline
2713stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2714{
2715 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2716
2717 /* we copy this here each the time so that */
2718 /* prev has the old value when the callback gets invoked */
2719 w->prev = w->attr;
2720 ev_stat_stat (EV_A_ w);
2721
2722 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2723 if (
2724 w->prev.st_dev != w->attr.st_dev
2725 || w->prev.st_ino != w->attr.st_ino
2726 || w->prev.st_mode != w->attr.st_mode
2727 || w->prev.st_nlink != w->attr.st_nlink
2728 || w->prev.st_uid != w->attr.st_uid
2729 || w->prev.st_gid != w->attr.st_gid
2730 || w->prev.st_rdev != w->attr.st_rdev
2731 || w->prev.st_size != w->attr.st_size
2732 || w->prev.st_atime != w->attr.st_atime
2733 || w->prev.st_mtime != w->attr.st_mtime
2734 || w->prev.st_ctime != w->attr.st_ctime
2735 ) {
2736 #if EV_USE_INOTIFY
2737 if (fs_fd >= 0)
2738 {
2739 infy_del (EV_A_ w);
2740 infy_add (EV_A_ w);
2741 ev_stat_stat (EV_A_ w); /* avoid race... */
2742 }
2743 #endif
2744
2745 ev_feed_event (EV_A_ w, EV_STAT);
2746 }
2747}
2748
2749void
2750ev_stat_start (EV_P_ ev_stat *w)
2751{
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 ev_stat_stat (EV_A_ w);
2756
2757 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2758 w->interval = MIN_STAT_INTERVAL;
2759
2760 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2761 ev_set_priority (&w->timer, ev_priority (w));
2762
2763#if EV_USE_INOTIFY
2764 infy_init (EV_A);
2765
2766 if (fs_fd >= 0)
2767 infy_add (EV_A_ w);
2768 else
2769#endif
2770 ev_timer_again (EV_A_ &w->timer);
2771
2772 ev_start (EV_A_ (W)w, 1);
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_stat_stop (EV_P_ ev_stat *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_INOTIFY
2787 infy_del (EV_A_ w);
2788#endif
2789 ev_timer_stop (EV_A_ &w->timer);
2790
2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2794}
2795#endif
2796
2797#if EV_IDLE_ENABLE
2798void
2799ev_idle_start (EV_P_ ev_idle *w)
2800{
2801 if (expect_false (ev_is_active (w)))
2802 return;
2803
2804 pri_adjust (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807
2808 {
2809 int active = ++idlecnt [ABSPRI (w)];
2810
2811 ++idleall;
2812 ev_start (EV_A_ (W)w, active);
2813
2814 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2815 idles [ABSPRI (w)][active - 1] = w;
2816 }
2817
2818 EV_FREQUENT_CHECK;
2819}
2820
2821void
2822ev_idle_stop (EV_P_ ev_idle *w)
2823{
2824 clear_pending (EV_A_ (W)w);
2825 if (expect_false (!ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
2829
2830 {
2831 int active = ev_active (w);
2832
2833 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2834 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2835
2836 ev_stop (EV_A_ (W)w);
2837 --idleall;
2838 }
2839
2840 EV_FREQUENT_CHECK;
2841}
2842#endif
2843
2844void
2845ev_prepare_start (EV_P_ ev_prepare *w)
2846{
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
2851
2852 ev_start (EV_A_ (W)w, ++preparecnt);
2853 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2854 prepares [preparecnt - 1] = w;
2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859void
2860ev_prepare_stop (EV_P_ ev_prepare *w)
2861{
2862 clear_pending (EV_A_ (W)w);
2863 if (expect_false (!ev_is_active (w)))
2864 return;
2865
2866 EV_FREQUENT_CHECK;
2867
2868 {
2869 int active = ev_active (w);
2870
2871 prepares [active - 1] = prepares [--preparecnt];
2872 ev_active (prepares [active - 1]) = active;
2873 }
2874
2875 ev_stop (EV_A_ (W)w);
2876
2877 EV_FREQUENT_CHECK;
2878}
2879
2880void
2881ev_check_start (EV_P_ ev_check *w)
2882{
2883 if (expect_false (ev_is_active (w)))
2884 return;
2885
2886 EV_FREQUENT_CHECK;
2887
2888 ev_start (EV_A_ (W)w, ++checkcnt);
2889 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2890 checks [checkcnt - 1] = w;
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_check_stop (EV_P_ ev_check *w)
2897{
2898 clear_pending (EV_A_ (W)w);
2899 if (expect_false (!ev_is_active (w)))
2900 return;
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ev_active (w);
2906
2907 checks [active - 1] = checks [--checkcnt];
2908 ev_active (checks [active - 1]) = active;
2909 }
2910
2911 ev_stop (EV_A_ (W)w);
2912
2913 EV_FREQUENT_CHECK;
2914}
2915
2916#if EV_EMBED_ENABLE
2917void noinline
2918ev_embed_sweep (EV_P_ ev_embed *w)
2919{
2920 ev_loop (w->other, EVLOOP_NONBLOCK);
2921}
2922
2923static void
2924embed_io_cb (EV_P_ ev_io *io, int revents)
2925{
2926 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2927
2928 if (ev_cb (w))
2929 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2930 else
2931 ev_loop (w->other, EVLOOP_NONBLOCK);
2932}
2933
2934static void
2935embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2936{
2937 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2938
2939 {
2940 struct ev_loop *loop = w->other;
2941
2942 while (fdchangecnt)
2943 {
2944 fd_reify (EV_A);
2945 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2946 }
2947 }
2948}
2949
2950static void
2951embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2952{
2953 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2954
2955 ev_embed_stop (EV_A_ w);
2956
2957 {
2958 struct ev_loop *loop = w->other;
2959
2960 ev_loop_fork (EV_A);
2961 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2962 }
2963
2964 ev_embed_start (EV_A_ w);
2965}
2966
2967#if 0
2968static void
2969embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2970{
2971 ev_idle_stop (EV_A_ idle);
2972}
2973#endif
2974
2975void
2976ev_embed_start (EV_P_ ev_embed *w)
2977{
2978 if (expect_false (ev_is_active (w)))
2979 return;
2980
2981 {
2982 struct ev_loop *loop = w->other;
2983 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2984 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988
2989 ev_set_priority (&w->io, ev_priority (w));
2990 ev_io_start (EV_A_ &w->io);
2991
2992 ev_prepare_init (&w->prepare, embed_prepare_cb);
2993 ev_set_priority (&w->prepare, EV_MINPRI);
2994 ev_prepare_start (EV_A_ &w->prepare);
2995
2996 ev_fork_init (&w->fork, embed_fork_cb);
2997 ev_fork_start (EV_A_ &w->fork);
2998
2999 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3000
3001 ev_start (EV_A_ (W)w, 1);
3002
3003 EV_FREQUENT_CHECK;
3004}
3005
3006void
3007ev_embed_stop (EV_P_ ev_embed *w)
3008{
3009 clear_pending (EV_A_ (W)w);
3010 if (expect_false (!ev_is_active (w)))
3011 return;
3012
3013 EV_FREQUENT_CHECK;
3014
3015 ev_io_stop (EV_A_ &w->io);
3016 ev_prepare_stop (EV_A_ &w->prepare);
3017 ev_fork_stop (EV_A_ &w->fork);
3018
3019 EV_FREQUENT_CHECK;
3020}
3021#endif
3022
3023#if EV_FORK_ENABLE
3024void
3025ev_fork_start (EV_P_ ev_fork *w)
3026{
3027 if (expect_false (ev_is_active (w)))
3028 return;
3029
3030 EV_FREQUENT_CHECK;
3031
3032 ev_start (EV_A_ (W)w, ++forkcnt);
3033 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3034 forks [forkcnt - 1] = w;
3035
3036 EV_FREQUENT_CHECK;
3037}
3038
3039void
3040ev_fork_stop (EV_P_ ev_fork *w)
3041{
3042 clear_pending (EV_A_ (W)w);
3043 if (expect_false (!ev_is_active (w)))
3044 return;
3045
3046 EV_FREQUENT_CHECK;
3047
3048 {
3049 int active = ev_active (w);
3050
3051 forks [active - 1] = forks [--forkcnt];
3052 ev_active (forks [active - 1]) = active;
3053 }
3054
3055 ev_stop (EV_A_ (W)w);
3056
3057 EV_FREQUENT_CHECK;
3058}
3059#endif
3060
3061#if EV_ASYNC_ENABLE
3062void
3063ev_async_start (EV_P_ ev_async *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 evpipe_init (EV_A);
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_start (EV_A_ (W)w, ++asynccnt);
3073 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3074 asyncs [asynccnt - 1] = w;
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_async_stop (EV_P_ ev_async *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 {
3089 int active = ev_active (w);
3090
3091 asyncs [active - 1] = asyncs [--asynccnt];
3092 ev_active (asyncs [active - 1]) = active;
3093 }
3094
3095 ev_stop (EV_A_ (W)w);
3096
3097 EV_FREQUENT_CHECK;
3098}
3099
3100void
3101ev_async_send (EV_P_ ev_async *w)
3102{
3103 w->sent = 1;
3104 evpipe_write (EV_A_ &gotasync);
3105}
3106#endif
1630 3107
1631/*****************************************************************************/ 3108/*****************************************************************************/
1632 3109
1633struct ev_once 3110struct ev_once
1634{ 3111{
1635 struct ev_io io; 3112 ev_io io;
1636 struct ev_timer to; 3113 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3114 void (*cb)(int revents, void *arg);
1638 void *arg; 3115 void *arg;
1639}; 3116};
1640 3117
1641static void 3118static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3119once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3120{
1644 void (*cb)(int revents, void *arg) = once->cb; 3121 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3122 void *arg = once->arg;
1646 3123
1647 ev_io_stop (EV_A_ &once->io); 3124 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3125 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3126 ev_free (once);
1650 3127
1651 cb (revents, arg); 3128 cb (revents, arg);
1652} 3129}
1653 3130
1654static void 3131static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3132once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3133{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3134 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3135
3136 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3137}
1659 3138
1660static void 3139static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3140once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3141{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3142 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3143
3144 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3145}
1665 3146
1666void 3147void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3148ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3149{
1690 ev_timer_set (&once->to, timeout, 0.); 3171 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3172 ev_timer_start (EV_A_ &once->to);
1692 } 3173 }
1693} 3174}
1694 3175
3176/*****************************************************************************/
3177
3178#if 0
3179void
3180ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3181{
3182 int i, j;
3183 ev_watcher_list *wl, *wn;
3184
3185 if (types & (EV_IO | EV_EMBED))
3186 for (i = 0; i < anfdmax; ++i)
3187 for (wl = anfds [i].head; wl; )
3188 {
3189 wn = wl->next;
3190
3191#if EV_EMBED_ENABLE
3192 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3193 {
3194 if (types & EV_EMBED)
3195 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3196 }
3197 else
3198#endif
3199#if EV_USE_INOTIFY
3200 if (ev_cb ((ev_io *)wl) == infy_cb)
3201 ;
3202 else
3203#endif
3204 if ((ev_io *)wl != &pipeev)
3205 if (types & EV_IO)
3206 cb (EV_A_ EV_IO, wl);
3207
3208 wl = wn;
3209 }
3210
3211 if (types & (EV_TIMER | EV_STAT))
3212 for (i = timercnt + HEAP0; i-- > HEAP0; )
3213#if EV_STAT_ENABLE
3214 /*TODO: timer is not always active*/
3215 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3216 {
3217 if (types & EV_STAT)
3218 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3219 }
3220 else
3221#endif
3222 if (types & EV_TIMER)
3223 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3224
3225#if EV_PERIODIC_ENABLE
3226 if (types & EV_PERIODIC)
3227 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3228 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3229#endif
3230
3231#if EV_IDLE_ENABLE
3232 if (types & EV_IDLE)
3233 for (j = NUMPRI; i--; )
3234 for (i = idlecnt [j]; i--; )
3235 cb (EV_A_ EV_IDLE, idles [j][i]);
3236#endif
3237
3238#if EV_FORK_ENABLE
3239 if (types & EV_FORK)
3240 for (i = forkcnt; i--; )
3241 if (ev_cb (forks [i]) != embed_fork_cb)
3242 cb (EV_A_ EV_FORK, forks [i]);
3243#endif
3244
3245#if EV_ASYNC_ENABLE
3246 if (types & EV_ASYNC)
3247 for (i = asynccnt; i--; )
3248 cb (EV_A_ EV_ASYNC, asyncs [i]);
3249#endif
3250
3251 if (types & EV_PREPARE)
3252 for (i = preparecnt; i--; )
3253#if EV_EMBED_ENABLE
3254 if (ev_cb (prepares [i]) != embed_prepare_cb)
3255#endif
3256 cb (EV_A_ EV_PREPARE, prepares [i]);
3257
3258 if (types & EV_CHECK)
3259 for (i = checkcnt; i--; )
3260 cb (EV_A_ EV_CHECK, checks [i]);
3261
3262 if (types & EV_SIGNAL)
3263 for (i = 0; i < signalmax; ++i)
3264 for (wl = signals [i].head; wl; )
3265 {
3266 wn = wl->next;
3267 cb (EV_A_ EV_SIGNAL, wl);
3268 wl = wn;
3269 }
3270
3271 if (types & EV_CHILD)
3272 for (i = EV_PID_HASHSIZE; i--; )
3273 for (wl = childs [i]; wl; )
3274 {
3275 wn = wl->next;
3276 cb (EV_A_ EV_CHILD, wl);
3277 wl = wn;
3278 }
3279/* EV_STAT 0x00001000 /* stat data changed */
3280/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3281}
3282#endif
3283
3284#if EV_MULTIPLICITY
3285 #include "ev_wrap.h"
3286#endif
3287
1695#ifdef __cplusplus 3288#ifdef __cplusplus
1696} 3289}
1697#endif 3290#endif
1698 3291

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines