ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.175 by root, Tue Dec 11 04:08:54 2007 UTC vs.
Revision 1.284 by root, Wed Apr 15 17:49:26 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
228#else 371#else
229# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
230# define noinline 373# define noinline
231# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 375# define inline
233# endif 376# endif
234#endif 377#endif
235 378
236#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
251 394
252typedef ev_watcher *W; 395typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
255 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
257 411
258#ifdef _WIN32 412#ifdef _WIN32
259# include "ev_win32.c" 413# include "ev_win32.c"
260#endif 414#endif
261 415
268{ 422{
269 syserr_cb = cb; 423 syserr_cb = cb;
270} 424}
271 425
272static void noinline 426static void noinline
273syserr (const char *msg) 427ev_syserr (const char *msg)
274{ 428{
275 if (!msg) 429 if (!msg)
276 msg = "(libev) system error"; 430 msg = "(libev) system error";
277 431
278 if (syserr_cb) 432 if (syserr_cb)
282 perror (msg); 436 perror (msg);
283 abort (); 437 abort ();
284 } 438 }
285} 439}
286 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
287static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 457
289void 458void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 460{
292 alloc = cb; 461 alloc = cb;
293} 462}
294 463
295inline_speed void * 464inline_speed void *
296ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
297{ 466{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
299 468
300 if (!ptr && size) 469 if (!ptr && size)
301 { 470 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 472 abort ();
314typedef struct 483typedef struct
315{ 484{
316 WL head; 485 WL head;
317 unsigned char events; 486 unsigned char events;
318 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
319#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 494 SOCKET handle;
321#endif 495#endif
322} ANFD; 496} ANFD;
323 497
326 W w; 500 W w;
327 int events; 501 int events;
328} ANPENDING; 502} ANPENDING;
329 503
330#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
331typedef struct 506typedef struct
332{ 507{
333 WL head; 508 WL head;
334} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
335#endif 528#endif
336 529
337#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
338 531
339 struct ev_loop 532 struct ev_loop
364 557
365ev_tstamp 558ev_tstamp
366ev_time (void) 559ev_time (void)
367{ 560{
368#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
369 struct timespec ts; 564 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 567 }
568#endif
569
373 struct timeval tv; 570 struct timeval tv;
374 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 573}
378 574
379ev_tstamp inline_size 575inline_size ev_tstamp
380get_clock (void) 576get_clock (void)
381{ 577{
382#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
384 { 580 {
397{ 593{
398 return ev_rt_now; 594 return ev_rt_now;
399} 595}
400#endif 596#endif
401 597
402int inline_size 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
403array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
404{ 632{
405 int ncur = cur + 1; 633 int ncur = cur + 1;
406 634
407 do 635 do
408 ncur <<= 1; 636 ncur <<= 1;
409 while (cnt > ncur); 637 while (cnt > ncur);
410 638
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 641 {
414 ncur *= elem; 642 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 645 ncur /= elem;
418 } 646 }
419 647
420 return ncur; 648 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
425{ 653{
426 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
428} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 660
430#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
432 { \ 663 { \
433 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 677 }
447#endif 678#endif
448 679
449#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 682
452/*****************************************************************************/ 683/*****************************************************************************/
453 684
454void noinline 685void noinline
455ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
466 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
468 } 699 }
469} 700}
470 701
471void inline_size 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 719{
474 int i; 720 int i;
475 721
476 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
478} 724}
479 725
480/*****************************************************************************/ 726/*****************************************************************************/
481 727
482void inline_size 728inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
497{ 730{
498 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
499 ev_io *w; 732 ev_io *w;
500 733
512{ 745{
513 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
515} 748}
516 749
517void inline_size 750inline_size void
518fd_reify (EV_P) 751fd_reify (EV_P)
519{ 752{
520 int i; 753 int i;
521 754
522 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
523 { 756 {
524 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
526 ev_io *w; 759 ev_io *w;
527 760
528 int events = 0; 761 unsigned char events = 0;
529 762
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 764 events |= (unsigned char)w->events;
532 765
533#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
534 if (events) 767 if (events)
535 { 768 {
536 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
537 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 776 }
540#endif 777#endif
541 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
542 anfd->reify = 0; 783 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
546 } 789 }
547 790
548 fdchangecnt = 0; 791 fdchangecnt = 0;
549} 792}
550 793
551void inline_size 794inline_size void
552fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
553{ 796{
554 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
558 799
800 if (expect_true (!reify))
801 {
559 ++fdchangecnt; 802 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
562} 806}
563 807
564void inline_speed 808inline_speed void
565fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
566{ 810{
567 ev_io *w; 811 ev_io *w;
568 812
569 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 817 }
574} 818}
575 819
576int inline_size 820inline_size int
577fd_valid (int fd) 821fd_valid (int fd)
578{ 822{
579#ifdef _WIN32 823#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
581#else 825#else
589{ 833{
590 int fd; 834 int fd;
591 835
592 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 837 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
596} 840}
597 841
598/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 843static void noinline
617 861
618 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 863 if (anfds [fd].events)
620 { 864 {
621 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
622 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
623 } 868 }
624} 869}
625 870
626/*****************************************************************************/ 871/*****************************************************************************/
627 872
628void inline_speed 873/*
629upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
630{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
631 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
632 878
633 while (k && heap [k >> 1]->at > w->at) 879/*
634 { 880 * at the moment we allow libev the luxury of two heaps,
635 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
636 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
637 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
638 } 884 */
885#if EV_USE_4HEAP
639 886
640 heap [k] = w; 887#define DHEAP 4
641 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
642 891
643} 892/* away from the root */
644 893inline_speed void
645void inline_speed
646downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
647{ 895{
648 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
649 898
650 while (k < (N >> 1)) 899 for (;;)
651 { 900 {
652 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 904
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
655 ++j; 907 {
656 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
657 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
658 break; 921 break;
659 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
660 heap [k] = heap [j]; 961 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
662 k = j; 964 k = c;
663 } 965 }
664 966
665 heap [k] = w; 967 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
667} 969}
970#endif
668 971
669void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
670adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
671{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 998 upheap (heap, k);
999 else
673 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
674} 1013}
675 1014
676/*****************************************************************************/ 1015/*****************************************************************************/
677 1016
678typedef struct 1017typedef struct
679{ 1018{
680 WL head; 1019 WL head;
681 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
682} ANSIG; 1021} ANSIG;
683 1022
684static ANSIG *signals; 1023static ANSIG *signals;
685static int signalmax; 1024static int signalmax;
686 1025
687static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 1027
691void inline_size 1028/*****************************************************************************/
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698 1029
699 ++base; 1030inline_speed void
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1031fd_intern (int fd)
756{ 1032{
757#ifdef _WIN32 1033#ifdef _WIN32
758 int arg = 1; 1034 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else 1036#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1039#endif
764} 1040}
765 1041
766static void noinline 1042static void noinline
767siginit (EV_P) 1043evpipe_init (EV_P)
768{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
769 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
771 1064
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
775} 1133}
776 1134
777/*****************************************************************************/ 1135/*****************************************************************************/
778 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
779static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
780 1175
781#ifndef _WIN32 1176#ifndef _WIN32
782 1177
783static ev_signal childev; 1178static ev_signal childev;
784 1179
785void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
787{ 1186{
788 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1189
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
791 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
792 { 1194 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1196 w->rpid = pid;
795 w->rstatus = status; 1197 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1199 }
1200 }
798} 1201}
799 1202
800#ifndef WCONTINUED 1203#ifndef WCONTINUED
801# define WCONTINUED 0 1204# define WCONTINUED 0
802#endif 1205#endif
811 if (!WCONTINUED 1214 if (!WCONTINUED
812 || errno != EINVAL 1215 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1217 return;
815 1218
816 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1222
820 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1226}
824 1227
825#endif 1228#endif
826 1229
827/*****************************************************************************/ 1230/*****************************************************************************/
889 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
892#endif 1295#endif
893#ifdef __APPLE__ 1296#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
896#endif 1300#endif
897 1301
898 return flags; 1302 return flags;
899} 1303}
900 1304
901unsigned int 1305unsigned int
902ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
903{ 1307{
904 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1309
906 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
907} 1315}
908 1316
909unsigned int 1317unsigned int
910ev_backend (EV_P) 1318ev_backend (EV_P)
911{ 1319{
916ev_loop_count (EV_P) 1324ev_loop_count (EV_P)
917{ 1325{
918 return loop_count; 1326 return loop_count;
919} 1327}
920 1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
921static void noinline 1341static void noinline
922loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
923{ 1343{
924 if (!backend) 1344 if (!backend)
925 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
926#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
927 { 1358 {
928 struct timespec ts; 1359 struct timespec ts;
1360
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1362 have_monotonic = 1;
931 } 1363 }
932#endif 1364#endif
933 1365
934 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1367 mn_now = get_clock ();
936 now_floor = mn_now; 1368 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
938 1379
939 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
940#ifndef _WIN32 1381#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1383 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1387 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1390
950 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1393
959#if EV_USE_PORT 1394#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1396#endif
962#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
970#endif 1405#endif
971#if EV_USE_SELECT 1406#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1408#endif
974 1409
975 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1412 }
978} 1413}
979 1414
980static void noinline 1415static void noinline
981loop_destroy (EV_P) 1416loop_destroy (EV_P)
982{ 1417{
983 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
984 1436
985#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
987 close (fs_fd); 1439 close (fs_fd);
988#endif 1440#endif
1012#if EV_IDLE_ENABLE 1464#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1465 array_free (idle, [i]);
1014#endif 1466#endif
1015 } 1467 }
1016 1468
1469 ev_free (anfds); anfdmax = 0;
1470
1017 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1022#endif 1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1023 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1025 1486
1026 backend = 0; 1487 backend = 0;
1027} 1488}
1028 1489
1490#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1030 1493
1031void inline_size 1494inline_size void
1032loop_fork (EV_P) 1495loop_fork (EV_P)
1033{ 1496{
1034#if EV_USE_PORT 1497#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1499#endif
1042#endif 1505#endif
1043#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1507 infy_fork (EV_A);
1045#endif 1508#endif
1046 1509
1047 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1048 { 1511 {
1049 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1050 1518
1051 ev_ref (EV_A); 1519 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1053 close (sigpipe [0]); 1529 close (evpipe [0]);
1054 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1055 1532
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1536 }
1061 1537
1062 postfork = 0; 1538 postfork = 0;
1063} 1539}
1064 1540
1065#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1066struct ev_loop * 1543struct ev_loop *
1067ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1068{ 1545{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1547
1086} 1563}
1087 1564
1088void 1565void
1089ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1090{ 1567{
1091 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1092} 1569}
1093 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1094#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1095 1671
1096#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1097struct ev_loop * 1673struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1099#else 1675#else
1100int 1676int
1101ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1102#endif 1678#endif
1103{ 1679{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1109 { 1681 {
1110#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1684#else
1115 1687
1116 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1117 1689
1118 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1119 { 1691 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1692#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138{ 1708{
1139#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif 1711#endif
1142 1712
1713 ev_default_loop_ptr = 0;
1714
1143#ifndef _WIN32 1715#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1146#endif 1718#endif
1147 1719
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1155} 1721}
1156 1722
1157void 1723void
1158ev_default_fork (void) 1724ev_default_fork (void)
1159{ 1725{
1160#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1728#endif
1163 1729
1164 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 1731}
1167 1732
1168/*****************************************************************************/ 1733/*****************************************************************************/
1169 1734
1170void 1735void
1171ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1172{ 1737{
1173 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1174} 1739}
1175 1740
1176void inline_speed 1741inline_speed void
1177call_pending (EV_P) 1742call_pending (EV_P)
1178{ 1743{
1179 int pri; 1744 int pri;
1180 1745
1181 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1183 { 1748 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1750
1186 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1187 { 1752 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1189 1754
1190 p->w->pending = 0; 1755 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1192 } 1758 }
1193 } 1759 }
1194} 1760}
1195 1761
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001220703125 /* 1/8192 */);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + (floor ((ev_rt_now - w->offset) / w->interval) + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1276void inline_size 1763inline_size void
1277idle_reify (EV_P) 1764idle_reify (EV_P)
1278{ 1765{
1279 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1280 { 1767 {
1281 int pri; 1768 int pri;
1293 } 1780 }
1294 } 1781 }
1295} 1782}
1296#endif 1783#endif
1297 1784
1298int inline_size 1785inline_size void
1299time_update_monotonic (EV_P) 1786timers_reify (EV_P)
1300{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901inline_speed void
1902time_update (EV_P_ ev_tstamp max_block)
1903{
1904 int i;
1905
1906#if EV_USE_MONOTONIC
1907 if (expect_true (have_monotonic))
1908 {
1909 ev_tstamp odiff = rtmn_diff;
1910
1301 mn_now = get_clock (); 1911 mn_now = get_clock ();
1302 1912
1913 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1914 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1915 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1916 {
1305 ev_rt_now = rtmn_diff + mn_now; 1917 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1918 return;
1307 } 1919 }
1308 else 1920
1309 {
1310 now_floor = mn_now; 1921 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1922 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1923
1316void inline_size 1924 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1925 * on the choice of "4": one iteration isn't enough,
1318{ 1926 * in case we get preempted during the calls to
1319 int i; 1927 * ev_time and get_clock. a second call is almost guaranteed
1320 1928 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1929 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1930 * in the unlikely event of having been preempted here.
1323 { 1931 */
1324 if (time_update_monotonic (EV_A)) 1932 for (i = 4; --i; )
1325 { 1933 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1934 rtmn_diff = ev_rt_now - mn_now;
1339 1935
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1936 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1937 return; /* all is well */
1342 1938
1343 ev_rt_now = ev_time (); 1939 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1940 mn_now = get_clock ();
1345 now_floor = mn_now; 1941 now_floor = mn_now;
1346 } 1942 }
1347 1943
1348# if EV_PERIODIC_ENABLE 1944# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1945 periodics_reschedule (EV_A);
1350# endif 1946# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1947 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1948 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1949 }
1355 else 1950 else
1356#endif 1951#endif
1357 { 1952 {
1358 ev_rt_now = ev_time (); 1953 ev_rt_now = ev_time ();
1359 1954
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1955 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1956 {
1362#if EV_PERIODIC_ENABLE 1957#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1958 periodics_reschedule (EV_A);
1364#endif 1959#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1960 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1964 ANHE_w (*he)->at += ev_rt_now - mn_now;
1965 ANHE_at_cache (*he);
1966 }
1369 } 1967 }
1370 1968
1371 mn_now = ev_rt_now; 1969 mn_now = ev_rt_now;
1372 } 1970 }
1373} 1971}
1382ev_unref (EV_P) 1980ev_unref (EV_P)
1383{ 1981{
1384 --activecnt; 1982 --activecnt;
1385} 1983}
1386 1984
1985void
1986ev_now_update (EV_P)
1987{
1988 time_update (EV_A_ 1e100);
1989}
1990
1387static int loop_done; 1991static int loop_done;
1388 1992
1389void 1993void
1390ev_loop (EV_P_ int flags) 1994ev_loop (EV_P_ int flags)
1391{ 1995{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1996 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1997
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1998 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1999
1398 do 2000 do
1399 { 2001 {
2002#if EV_VERIFY >= 2
2003 ev_loop_verify (EV_A);
2004#endif
2005
1400#ifndef _WIN32 2006#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2007 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2008 if (expect_false (getpid () != curpid))
1403 { 2009 {
1404 curpid = getpid (); 2010 curpid = getpid ();
1421 { 2027 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2028 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2029 call_pending (EV_A);
1424 } 2030 }
1425 2031
1426 if (expect_false (!activecnt))
1427 break;
1428
1429 /* we might have forked, so reify kernel state if necessary */ 2032 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2033 if (expect_false (postfork))
1431 loop_fork (EV_A); 2034 loop_fork (EV_A);
1432 2035
1433 /* update fd-related kernel structures */ 2036 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2037 fd_reify (EV_A);
1435 2038
1436 /* calculate blocking time */ 2039 /* calculate blocking time */
1437 { 2040 {
1438 ev_tstamp block; 2041 ev_tstamp waittime = 0.;
2042 ev_tstamp sleeptime = 0.;
1439 2043
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2044 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2045 {
1444 /* update time to cancel out callback processing overhead */ 2046 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 2047 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME;
1456 2048
1457 if (timercnt) 2049 if (timercnt)
1458 { 2050 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2051 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2052 if (waittime > to) waittime = to;
1461 } 2053 }
1462 2054
1463#if EV_PERIODIC_ENABLE 2055#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2056 if (periodiccnt)
1465 { 2057 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2058 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2059 if (waittime > to) waittime = to;
1468 } 2060 }
1469#endif 2061#endif
1470 2062
1471 if (expect_false (block < 0.)) block = 0.; 2063 if (expect_false (waittime < timeout_blocktime))
2064 waittime = timeout_blocktime;
2065
2066 sleeptime = waittime - backend_fudge;
2067
2068 if (expect_true (sleeptime > io_blocktime))
2069 sleeptime = io_blocktime;
2070
2071 if (sleeptime)
2072 {
2073 ev_sleep (sleeptime);
2074 waittime -= sleeptime;
2075 }
1472 } 2076 }
1473 2077
1474 ++loop_count; 2078 ++loop_count;
1475 backend_poll (EV_A_ block); 2079 backend_poll (EV_A_ waittime);
2080
2081 /* update ev_rt_now, do magic */
2082 time_update (EV_A_ waittime + sleeptime);
1476 } 2083 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2084
1481 /* queue pending timers and reschedule them */ 2085 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2086 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2087#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2088 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 2096 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2097 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2098 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2099
1496 call_pending (EV_A); 2100 call_pending (EV_A);
1497
1498 } 2101 }
1499 while (expect_true (activecnt && !loop_done)); 2102 while (expect_true (
2103 activecnt
2104 && !loop_done
2105 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2106 ));
1500 2107
1501 if (loop_done == EVUNLOOP_ONE) 2108 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2109 loop_done = EVUNLOOP_CANCEL;
1503} 2110}
1504 2111
1508 loop_done = how; 2115 loop_done = how;
1509} 2116}
1510 2117
1511/*****************************************************************************/ 2118/*****************************************************************************/
1512 2119
1513void inline_size 2120inline_size void
1514wlist_add (WL *head, WL elem) 2121wlist_add (WL *head, WL elem)
1515{ 2122{
1516 elem->next = *head; 2123 elem->next = *head;
1517 *head = elem; 2124 *head = elem;
1518} 2125}
1519 2126
1520void inline_size 2127inline_size void
1521wlist_del (WL *head, WL elem) 2128wlist_del (WL *head, WL elem)
1522{ 2129{
1523 while (*head) 2130 while (*head)
1524 { 2131 {
1525 if (*head == elem) 2132 if (*head == elem)
1530 2137
1531 head = &(*head)->next; 2138 head = &(*head)->next;
1532 } 2139 }
1533} 2140}
1534 2141
1535void inline_speed 2142inline_speed void
1536clear_pending (EV_P_ W w) 2143clear_pending (EV_P_ W w)
1537{ 2144{
1538 if (w->pending) 2145 if (w->pending)
1539 { 2146 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2147 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1557 } 2164 }
1558 else 2165 else
1559 return 0; 2166 return 0;
1560} 2167}
1561 2168
1562void inline_size 2169inline_size void
1563pri_adjust (EV_P_ W w) 2170pri_adjust (EV_P_ W w)
1564{ 2171{
1565 int pri = w->priority; 2172 int pri = w->priority;
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2173 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2174 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 2175 w->priority = pri;
1569} 2176}
1570 2177
1571void inline_speed 2178inline_speed void
1572ev_start (EV_P_ W w, int active) 2179ev_start (EV_P_ W w, int active)
1573{ 2180{
1574 pri_adjust (EV_A_ w); 2181 pri_adjust (EV_A_ w);
1575 w->active = active; 2182 w->active = active;
1576 ev_ref (EV_A); 2183 ev_ref (EV_A);
1577} 2184}
1578 2185
1579void inline_size 2186inline_size void
1580ev_stop (EV_P_ W w) 2187ev_stop (EV_P_ W w)
1581{ 2188{
1582 ev_unref (EV_A); 2189 ev_unref (EV_A);
1583 w->active = 0; 2190 w->active = 0;
1584} 2191}
1591 int fd = w->fd; 2198 int fd = w->fd;
1592 2199
1593 if (expect_false (ev_is_active (w))) 2200 if (expect_false (ev_is_active (w)))
1594 return; 2201 return;
1595 2202
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 2203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2204 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2205
2206 EV_FREQUENT_CHECK;
1597 2207
1598 ev_start (EV_A_ (W)w, 1); 2208 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2209 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2210 wlist_add (&anfds[fd].head, (WL)w);
1601 2211
1602 fd_change (EV_A_ fd); 2212 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2213 w->events &= ~EV__IOFDSET;
2214
2215 EV_FREQUENT_CHECK;
1603} 2216}
1604 2217
1605void noinline 2218void noinline
1606ev_io_stop (EV_P_ ev_io *w) 2219ev_io_stop (EV_P_ ev_io *w)
1607{ 2220{
1608 clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 2222 if (expect_false (!ev_is_active (w)))
1610 return; 2223 return;
1611 2224
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2225 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 2226
2227 EV_FREQUENT_CHECK;
2228
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2229 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 2230 ev_stop (EV_A_ (W)w);
1616 2231
1617 fd_change (EV_A_ w->fd); 2232 fd_change (EV_A_ w->fd, 1);
2233
2234 EV_FREQUENT_CHECK;
1618} 2235}
1619 2236
1620void noinline 2237void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 2238ev_timer_start (EV_P_ ev_timer *w)
1622{ 2239{
1623 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1624 return; 2241 return;
1625 2242
1626 ((WT)w)->at += mn_now; 2243 ev_at (w) += mn_now;
1627 2244
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2245 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 2246
2247 EV_FREQUENT_CHECK;
2248
2249 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 2250 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2251 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 2252 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 2253 ANHE_at_cache (timers [ev_active (w)]);
2254 upheap (timers, ev_active (w));
1634 2255
2256 EV_FREQUENT_CHECK;
2257
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2258 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 2259}
1637 2260
1638void noinline 2261void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 2262ev_timer_stop (EV_P_ ev_timer *w)
1640{ 2263{
1641 clear_pending (EV_A_ (W)w); 2264 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 2265 if (expect_false (!ev_is_active (w)))
1643 return; 2266 return;
1644 2267
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2268 EV_FREQUENT_CHECK;
1646 2269
1647 { 2270 {
1648 int active = ((W)w)->active; 2271 int active = ev_active (w);
1649 2272
2273 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2274
2275 --timercnt;
2276
1650 if (expect_true (--active < --timercnt)) 2277 if (expect_true (active < timercnt + HEAP0))
1651 { 2278 {
1652 timers [active] = timers [timercnt]; 2279 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 2280 adjustheap (timers, timercnt, active);
1654 } 2281 }
1655 } 2282 }
1656 2283
1657 ((WT)w)->at -= mn_now; 2284 EV_FREQUENT_CHECK;
2285
2286 ev_at (w) -= mn_now;
1658 2287
1659 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1660} 2289}
1661 2290
1662void noinline 2291void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 2292ev_timer_again (EV_P_ ev_timer *w)
1664{ 2293{
2294 EV_FREQUENT_CHECK;
2295
1665 if (ev_is_active (w)) 2296 if (ev_is_active (w))
1666 { 2297 {
1667 if (w->repeat) 2298 if (w->repeat)
1668 { 2299 {
1669 ((WT)w)->at = mn_now + w->repeat; 2300 ev_at (w) = mn_now + w->repeat;
2301 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2302 adjustheap (timers, timercnt, ev_active (w));
1671 } 2303 }
1672 else 2304 else
1673 ev_timer_stop (EV_A_ w); 2305 ev_timer_stop (EV_A_ w);
1674 } 2306 }
1675 else if (w->repeat) 2307 else if (w->repeat)
1676 { 2308 {
1677 w->at = w->repeat; 2309 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 2310 ev_timer_start (EV_A_ w);
1679 } 2311 }
2312
2313 EV_FREQUENT_CHECK;
1680} 2314}
1681 2315
1682#if EV_PERIODIC_ENABLE 2316#if EV_PERIODIC_ENABLE
1683void noinline 2317void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 2318ev_periodic_start (EV_P_ ev_periodic *w)
1685{ 2319{
1686 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1687 return; 2321 return;
1688 2322
1689 if (w->reschedule_cb) 2323 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2324 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 2325 else if (w->interval)
1692 { 2326 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2327 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 2328 /* this formula differs from the one in periodic_reify because we do not always round up */
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2329 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 2330 }
1697 else 2331 else
1698 ((WT)w)->at = w->offset; 2332 ev_at (w) = w->offset;
1699 2333
2334 EV_FREQUENT_CHECK;
2335
2336 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 2337 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2338 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 2339 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 2340 ANHE_at_cache (periodics [ev_active (w)]);
2341 upheap (periodics, ev_active (w));
1704 2342
2343 EV_FREQUENT_CHECK;
2344
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2345 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 2346}
1707 2347
1708void noinline 2348void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 2349ev_periodic_stop (EV_P_ ev_periodic *w)
1710{ 2350{
1711 clear_pending (EV_A_ (W)w); 2351 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2352 if (expect_false (!ev_is_active (w)))
1713 return; 2353 return;
1714 2354
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2355 EV_FREQUENT_CHECK;
1716 2356
1717 { 2357 {
1718 int active = ((W)w)->active; 2358 int active = ev_active (w);
1719 2359
2360 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2361
2362 --periodiccnt;
2363
1720 if (expect_true (--active < --periodiccnt)) 2364 if (expect_true (active < periodiccnt + HEAP0))
1721 { 2365 {
1722 periodics [active] = periodics [periodiccnt]; 2366 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 2367 adjustheap (periodics, periodiccnt, active);
1724 } 2368 }
1725 } 2369 }
2370
2371 EV_FREQUENT_CHECK;
1726 2372
1727 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1728} 2374}
1729 2375
1730void noinline 2376void noinline
1742 2388
1743void noinline 2389void noinline
1744ev_signal_start (EV_P_ ev_signal *w) 2390ev_signal_start (EV_P_ ev_signal *w)
1745{ 2391{
1746#if EV_MULTIPLICITY 2392#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2393 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif 2394#endif
1749 if (expect_false (ev_is_active (w))) 2395 if (expect_false (ev_is_active (w)))
1750 return; 2396 return;
1751 2397
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2398 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2399
2400 evpipe_init (EV_A);
2401
2402 EV_FREQUENT_CHECK;
2403
2404 {
2405#ifndef _WIN32
2406 sigset_t full, prev;
2407 sigfillset (&full);
2408 sigprocmask (SIG_SETMASK, &full, &prev);
2409#endif
2410
2411 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2412
2413#ifndef _WIN32
2414 sigprocmask (SIG_SETMASK, &prev, 0);
2415#endif
2416 }
1753 2417
1754 ev_start (EV_A_ (W)w, 1); 2418 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2419 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 2420
1758 if (!((WL)w)->next) 2421 if (!((WL)w)->next)
1759 { 2422 {
1760#if _WIN32 2423#if _WIN32
1761 signal (w->signum, sighandler); 2424 signal (w->signum, ev_sighandler);
1762#else 2425#else
1763 struct sigaction sa; 2426 struct sigaction sa;
1764 sa.sa_handler = sighandler; 2427 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 2428 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2429 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 2430 sigaction (w->signum, &sa, 0);
1768#endif 2431#endif
1769 } 2432 }
2433
2434 EV_FREQUENT_CHECK;
1770} 2435}
1771 2436
1772void noinline 2437void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 2438ev_signal_stop (EV_P_ ev_signal *w)
1774{ 2439{
1775 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1777 return; 2442 return;
1778 2443
2444 EV_FREQUENT_CHECK;
2445
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2446 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 2447 ev_stop (EV_A_ (W)w);
1781 2448
1782 if (!signals [w->signum - 1].head) 2449 if (!signals [w->signum - 1].head)
1783 signal (w->signum, SIG_DFL); 2450 signal (w->signum, SIG_DFL);
2451
2452 EV_FREQUENT_CHECK;
1784} 2453}
1785 2454
1786void 2455void
1787ev_child_start (EV_P_ ev_child *w) 2456ev_child_start (EV_P_ ev_child *w)
1788{ 2457{
1789#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 2460#endif
1792 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1793 return; 2462 return;
1794 2463
2464 EV_FREQUENT_CHECK;
2465
1795 ev_start (EV_A_ (W)w, 1); 2466 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2467 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2468
2469 EV_FREQUENT_CHECK;
1797} 2470}
1798 2471
1799void 2472void
1800ev_child_stop (EV_P_ ev_child *w) 2473ev_child_stop (EV_P_ ev_child *w)
1801{ 2474{
1802 clear_pending (EV_A_ (W)w); 2475 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2476 if (expect_false (!ev_is_active (w)))
1804 return; 2477 return;
1805 2478
2479 EV_FREQUENT_CHECK;
2480
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2481 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 2482 ev_stop (EV_A_ (W)w);
2483
2484 EV_FREQUENT_CHECK;
1808} 2485}
1809 2486
1810#if EV_STAT_ENABLE 2487#if EV_STAT_ENABLE
1811 2488
1812# ifdef _WIN32 2489# ifdef _WIN32
1813# undef lstat 2490# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 2491# define lstat(a,b) _stati64 (a,b)
1815# endif 2492# endif
1816 2493
1817#define DEF_STAT_INTERVAL 5.0074891 2494#define DEF_STAT_INTERVAL 5.0074891
2495#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 2496#define MIN_STAT_INTERVAL 0.1074891
1819 2497
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2498static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 2499
1822#if EV_USE_INOTIFY 2500#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 2501# define EV_INOTIFY_BUFSIZE 8192
1827{ 2505{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2506 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 2507
1830 if (w->wd < 0) 2508 if (w->wd < 0)
1831 { 2509 {
2510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2511 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1833 2512
1834 /* monitor some parent directory for speedup hints */ 2513 /* monitor some parent directory for speedup hints */
2514 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2515 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2516 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 2517 {
1837 char path [4096]; 2518 char path [4096];
1838 strcpy (path, w->path); 2519 strcpy (path, w->path);
1839 2520
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2523 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2524 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 2525
1845 char *pend = strrchr (path, '/'); 2526 char *pend = strrchr (path, '/');
1846 2527
1847 if (!pend) 2528 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 2529 break;
1849 2530
1850 *pend = 0; 2531 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 2532 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 2533 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2534 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 2535 }
1855 } 2536 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 2537
1859 if (w->wd >= 0) 2538 if (w->wd >= 0)
2539 {
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2540 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2541
2542 /* now local changes will be tracked by inotify, but remote changes won't */
2543 /* unless the filesystem it known to be local, we therefore still poll */
2544 /* also do poll on <2.6.25, but with normal frequency */
2545 struct statfs sfs;
2546
2547 if (fs_2625 && !statfs (w->path, &sfs))
2548 if (sfs.f_type == 0x1373 /* devfs */
2549 || sfs.f_type == 0xEF53 /* ext2/3 */
2550 || sfs.f_type == 0x3153464a /* jfs */
2551 || sfs.f_type == 0x52654973 /* reiser3 */
2552 || sfs.f_type == 0x01021994 /* tempfs */
2553 || sfs.f_type == 0x58465342 /* xfs */)
2554 return;
2555
2556 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2557 ev_timer_again (EV_A_ &w->timer);
2558 }
1861} 2559}
1862 2560
1863static void noinline 2561static void noinline
1864infy_del (EV_P_ ev_stat *w) 2562infy_del (EV_P_ ev_stat *w)
1865{ 2563{
1879 2577
1880static void noinline 2578static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 2580{
1883 if (slot < 0) 2581 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 2582 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2583 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 2584 infy_wd (EV_A_ slot, wd, ev);
1887 else 2585 else
1888 { 2586 {
1889 WL w_; 2587 WL w_;
1895 2593
1896 if (w->wd == wd || wd == -1) 2594 if (w->wd == wd || wd == -1)
1897 { 2595 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 2597 {
2598 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1900 w->wd = -1; 2599 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 2600 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 2601 }
1903 2602
1904 stat_timer_cb (EV_A_ &w->timer, 0); 2603 stat_timer_cb (EV_A_ &w->timer, 0);
1917 2616
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2617 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2618 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1920} 2619}
1921 2620
1922void inline_size 2621inline_size void
2622check_2625 (EV_P)
2623{
2624 /* kernels < 2.6.25 are borked
2625 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2626 */
2627 struct utsname buf;
2628 int major, minor, micro;
2629
2630 if (uname (&buf))
2631 return;
2632
2633 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2634 return;
2635
2636 if (major < 2
2637 || (major == 2 && minor < 6)
2638 || (major == 2 && minor == 6 && micro < 25))
2639 return;
2640
2641 fs_2625 = 1;
2642}
2643
2644inline_size void
1923infy_init (EV_P) 2645infy_init (EV_P)
1924{ 2646{
1925 if (fs_fd != -2) 2647 if (fs_fd != -2)
1926 return; 2648 return;
2649
2650 fs_fd = -1;
2651
2652 check_2625 (EV_A);
1927 2653
1928 fs_fd = inotify_init (); 2654 fs_fd = inotify_init ();
1929 2655
1930 if (fs_fd >= 0) 2656 if (fs_fd >= 0)
1931 { 2657 {
1933 ev_set_priority (&fs_w, EV_MAXPRI); 2659 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 2660 ev_io_start (EV_A_ &fs_w);
1935 } 2661 }
1936} 2662}
1937 2663
1938void inline_size 2664inline_size void
1939infy_fork (EV_P) 2665infy_fork (EV_P)
1940{ 2666{
1941 int slot; 2667 int slot;
1942 2668
1943 if (fs_fd < 0) 2669 if (fs_fd < 0)
1959 w->wd = -1; 2685 w->wd = -1;
1960 2686
1961 if (fs_fd >= 0) 2687 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 2688 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 2689 else
1964 ev_timer_start (EV_A_ &w->timer); 2690 ev_timer_again (EV_A_ &w->timer);
1965 } 2691 }
1966
1967 } 2692 }
1968} 2693}
1969 2694
2695#endif
2696
2697#ifdef _WIN32
2698# define EV_LSTAT(p,b) _stati64 (p, b)
2699#else
2700# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 2701#endif
1971 2702
1972void 2703void
1973ev_stat_stat (EV_P_ ev_stat *w) 2704ev_stat_stat (EV_P_ ev_stat *w)
1974{ 2705{
2001 || w->prev.st_atime != w->attr.st_atime 2732 || w->prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 2733 || w->prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 2734 || w->prev.st_ctime != w->attr.st_ctime
2004 ) { 2735 ) {
2005 #if EV_USE_INOTIFY 2736 #if EV_USE_INOTIFY
2737 if (fs_fd >= 0)
2738 {
2006 infy_del (EV_A_ w); 2739 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 2740 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 2741 ev_stat_stat (EV_A_ w); /* avoid race... */
2742 }
2009 #endif 2743 #endif
2010 2744
2011 ev_feed_event (EV_A_ w, EV_STAT); 2745 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 2746 }
2013} 2747}
2016ev_stat_start (EV_P_ ev_stat *w) 2750ev_stat_start (EV_P_ ev_stat *w)
2017{ 2751{
2018 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
2019 return; 2753 return;
2020 2754
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 2755 ev_stat_stat (EV_A_ w);
2026 2756
2757 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 2758 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 2759
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2760 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 2761 ev_set_priority (&w->timer, ev_priority (w));
2032 2762
2033#if EV_USE_INOTIFY 2763#if EV_USE_INOTIFY
2034 infy_init (EV_A); 2764 infy_init (EV_A);
2035 2765
2036 if (fs_fd >= 0) 2766 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 2767 infy_add (EV_A_ w);
2038 else 2768 else
2039#endif 2769#endif
2040 ev_timer_start (EV_A_ &w->timer); 2770 ev_timer_again (EV_A_ &w->timer);
2041 2771
2042 ev_start (EV_A_ (W)w, 1); 2772 ev_start (EV_A_ (W)w, 1);
2773
2774 EV_FREQUENT_CHECK;
2043} 2775}
2044 2776
2045void 2777void
2046ev_stat_stop (EV_P_ ev_stat *w) 2778ev_stat_stop (EV_P_ ev_stat *w)
2047{ 2779{
2048 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2050 return; 2782 return;
2051 2783
2784 EV_FREQUENT_CHECK;
2785
2052#if EV_USE_INOTIFY 2786#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 2787 infy_del (EV_A_ w);
2054#endif 2788#endif
2055 ev_timer_stop (EV_A_ &w->timer); 2789 ev_timer_stop (EV_A_ &w->timer);
2056 2790
2057 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2058} 2794}
2059#endif 2795#endif
2060 2796
2061#if EV_IDLE_ENABLE 2797#if EV_IDLE_ENABLE
2062void 2798void
2064{ 2800{
2065 if (expect_false (ev_is_active (w))) 2801 if (expect_false (ev_is_active (w)))
2066 return; 2802 return;
2067 2803
2068 pri_adjust (EV_A_ (W)w); 2804 pri_adjust (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2069 2807
2070 { 2808 {
2071 int active = ++idlecnt [ABSPRI (w)]; 2809 int active = ++idlecnt [ABSPRI (w)];
2072 2810
2073 ++idleall; 2811 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 2812 ev_start (EV_A_ (W)w, active);
2075 2813
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2814 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 2815 idles [ABSPRI (w)][active - 1] = w;
2078 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
2079} 2819}
2080 2820
2081void 2821void
2082ev_idle_stop (EV_P_ ev_idle *w) 2822ev_idle_stop (EV_P_ ev_idle *w)
2083{ 2823{
2084 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
2086 return; 2826 return;
2087 2827
2828 EV_FREQUENT_CHECK;
2829
2088 { 2830 {
2089 int active = ((W)w)->active; 2831 int active = ev_active (w);
2090 2832
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2833 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2834 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 2835
2094 ev_stop (EV_A_ (W)w); 2836 ev_stop (EV_A_ (W)w);
2095 --idleall; 2837 --idleall;
2096 } 2838 }
2839
2840 EV_FREQUENT_CHECK;
2097} 2841}
2098#endif 2842#endif
2099 2843
2100void 2844void
2101ev_prepare_start (EV_P_ ev_prepare *w) 2845ev_prepare_start (EV_P_ ev_prepare *w)
2102{ 2846{
2103 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
2104 return; 2848 return;
2849
2850 EV_FREQUENT_CHECK;
2105 2851
2106 ev_start (EV_A_ (W)w, ++preparecnt); 2852 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2853 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 2854 prepares [preparecnt - 1] = w;
2855
2856 EV_FREQUENT_CHECK;
2109} 2857}
2110 2858
2111void 2859void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 2860ev_prepare_stop (EV_P_ ev_prepare *w)
2113{ 2861{
2114 clear_pending (EV_A_ (W)w); 2862 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2863 if (expect_false (!ev_is_active (w)))
2116 return; 2864 return;
2117 2865
2866 EV_FREQUENT_CHECK;
2867
2118 { 2868 {
2119 int active = ((W)w)->active; 2869 int active = ev_active (w);
2870
2120 prepares [active - 1] = prepares [--preparecnt]; 2871 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 2872 ev_active (prepares [active - 1]) = active;
2122 } 2873 }
2123 2874
2124 ev_stop (EV_A_ (W)w); 2875 ev_stop (EV_A_ (W)w);
2876
2877 EV_FREQUENT_CHECK;
2125} 2878}
2126 2879
2127void 2880void
2128ev_check_start (EV_P_ ev_check *w) 2881ev_check_start (EV_P_ ev_check *w)
2129{ 2882{
2130 if (expect_false (ev_is_active (w))) 2883 if (expect_false (ev_is_active (w)))
2131 return; 2884 return;
2885
2886 EV_FREQUENT_CHECK;
2132 2887
2133 ev_start (EV_A_ (W)w, ++checkcnt); 2888 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2889 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 2890 checks [checkcnt - 1] = w;
2891
2892 EV_FREQUENT_CHECK;
2136} 2893}
2137 2894
2138void 2895void
2139ev_check_stop (EV_P_ ev_check *w) 2896ev_check_stop (EV_P_ ev_check *w)
2140{ 2897{
2141 clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 2899 if (expect_false (!ev_is_active (w)))
2143 return; 2900 return;
2144 2901
2902 EV_FREQUENT_CHECK;
2903
2145 { 2904 {
2146 int active = ((W)w)->active; 2905 int active = ev_active (w);
2906
2147 checks [active - 1] = checks [--checkcnt]; 2907 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 2908 ev_active (checks [active - 1]) = active;
2149 } 2909 }
2150 2910
2151 ev_stop (EV_A_ (W)w); 2911 ev_stop (EV_A_ (W)w);
2912
2913 EV_FREQUENT_CHECK;
2152} 2914}
2153 2915
2154#if EV_EMBED_ENABLE 2916#if EV_EMBED_ENABLE
2155void noinline 2917void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 2918ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 2919{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 2920 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2921}
2160 2922
2161static void 2923static void
2162embed_cb (EV_P_ ev_io *io, int revents) 2924embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 2925{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2926 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 2927
2166 if (ev_cb (w)) 2928 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2929 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 2930 else
2169 ev_embed_sweep (loop, w); 2931 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2932}
2933
2934static void
2935embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2936{
2937 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2938
2939 {
2940 struct ev_loop *loop = w->other;
2941
2942 while (fdchangecnt)
2943 {
2944 fd_reify (EV_A);
2945 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2946 }
2947 }
2948}
2949
2950static void
2951embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2952{
2953 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2954
2955 ev_embed_stop (EV_A_ w);
2956
2957 {
2958 struct ev_loop *loop = w->other;
2959
2960 ev_loop_fork (EV_A);
2961 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2962 }
2963
2964 ev_embed_start (EV_A_ w);
2965}
2966
2967#if 0
2968static void
2969embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2970{
2971 ev_idle_stop (EV_A_ idle);
2972}
2973#endif
2171 2974
2172void 2975void
2173ev_embed_start (EV_P_ ev_embed *w) 2976ev_embed_start (EV_P_ ev_embed *w)
2174{ 2977{
2175 if (expect_false (ev_is_active (w))) 2978 if (expect_false (ev_is_active (w)))
2176 return; 2979 return;
2177 2980
2178 { 2981 {
2179 struct ev_loop *loop = w->loop; 2982 struct ev_loop *loop = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2983 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2984 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 2985 }
2986
2987 EV_FREQUENT_CHECK;
2183 2988
2184 ev_set_priority (&w->io, ev_priority (w)); 2989 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 2990 ev_io_start (EV_A_ &w->io);
2186 2991
2992 ev_prepare_init (&w->prepare, embed_prepare_cb);
2993 ev_set_priority (&w->prepare, EV_MINPRI);
2994 ev_prepare_start (EV_A_ &w->prepare);
2995
2996 ev_fork_init (&w->fork, embed_fork_cb);
2997 ev_fork_start (EV_A_ &w->fork);
2998
2999 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3000
2187 ev_start (EV_A_ (W)w, 1); 3001 ev_start (EV_A_ (W)w, 1);
3002
3003 EV_FREQUENT_CHECK;
2188} 3004}
2189 3005
2190void 3006void
2191ev_embed_stop (EV_P_ ev_embed *w) 3007ev_embed_stop (EV_P_ ev_embed *w)
2192{ 3008{
2193 clear_pending (EV_A_ (W)w); 3009 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3010 if (expect_false (!ev_is_active (w)))
2195 return; 3011 return;
2196 3012
3013 EV_FREQUENT_CHECK;
3014
2197 ev_io_stop (EV_A_ &w->io); 3015 ev_io_stop (EV_A_ &w->io);
3016 ev_prepare_stop (EV_A_ &w->prepare);
3017 ev_fork_stop (EV_A_ &w->fork);
2198 3018
2199 ev_stop (EV_A_ (W)w); 3019 EV_FREQUENT_CHECK;
2200} 3020}
2201#endif 3021#endif
2202 3022
2203#if EV_FORK_ENABLE 3023#if EV_FORK_ENABLE
2204void 3024void
2205ev_fork_start (EV_P_ ev_fork *w) 3025ev_fork_start (EV_P_ ev_fork *w)
2206{ 3026{
2207 if (expect_false (ev_is_active (w))) 3027 if (expect_false (ev_is_active (w)))
2208 return; 3028 return;
3029
3030 EV_FREQUENT_CHECK;
2209 3031
2210 ev_start (EV_A_ (W)w, ++forkcnt); 3032 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3033 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 3034 forks [forkcnt - 1] = w;
3035
3036 EV_FREQUENT_CHECK;
2213} 3037}
2214 3038
2215void 3039void
2216ev_fork_stop (EV_P_ ev_fork *w) 3040ev_fork_stop (EV_P_ ev_fork *w)
2217{ 3041{
2218 clear_pending (EV_A_ (W)w); 3042 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 3043 if (expect_false (!ev_is_active (w)))
2220 return; 3044 return;
2221 3045
3046 EV_FREQUENT_CHECK;
3047
2222 { 3048 {
2223 int active = ((W)w)->active; 3049 int active = ev_active (w);
3050
2224 forks [active - 1] = forks [--forkcnt]; 3051 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 3052 ev_active (forks [active - 1]) = active;
2226 } 3053 }
2227 3054
2228 ev_stop (EV_A_ (W)w); 3055 ev_stop (EV_A_ (W)w);
3056
3057 EV_FREQUENT_CHECK;
3058}
3059#endif
3060
3061#if EV_ASYNC_ENABLE
3062void
3063ev_async_start (EV_P_ ev_async *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 evpipe_init (EV_A);
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_start (EV_A_ (W)w, ++asynccnt);
3073 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3074 asyncs [asynccnt - 1] = w;
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_async_stop (EV_P_ ev_async *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 {
3089 int active = ev_active (w);
3090
3091 asyncs [active - 1] = asyncs [--asynccnt];
3092 ev_active (asyncs [active - 1]) = active;
3093 }
3094
3095 ev_stop (EV_A_ (W)w);
3096
3097 EV_FREQUENT_CHECK;
3098}
3099
3100void
3101ev_async_send (EV_P_ ev_async *w)
3102{
3103 w->sent = 1;
3104 evpipe_write (EV_A_ &gotasync);
2229} 3105}
2230#endif 3106#endif
2231 3107
2232/*****************************************************************************/ 3108/*****************************************************************************/
2233 3109
2243once_cb (EV_P_ struct ev_once *once, int revents) 3119once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 3120{
2245 void (*cb)(int revents, void *arg) = once->cb; 3121 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 3122 void *arg = once->arg;
2247 3123
2248 ev_io_stop (EV_A_ &once->io); 3124 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 3125 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 3126 ev_free (once);
2251 3127
2252 cb (revents, arg); 3128 cb (revents, arg);
2253} 3129}
2254 3130
2255static void 3131static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 3132once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 3133{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3134 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3135
3136 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 3137}
2260 3138
2261static void 3139static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 3140once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 3141{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3142 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3143
3144 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 3145}
2266 3146
2267void 3147void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3148ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2269{ 3149{
2291 ev_timer_set (&once->to, timeout, 0.); 3171 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 3172 ev_timer_start (EV_A_ &once->to);
2293 } 3173 }
2294} 3174}
2295 3175
3176/*****************************************************************************/
3177
3178#if 0
3179void
3180ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3181{
3182 int i, j;
3183 ev_watcher_list *wl, *wn;
3184
3185 if (types & (EV_IO | EV_EMBED))
3186 for (i = 0; i < anfdmax; ++i)
3187 for (wl = anfds [i].head; wl; )
3188 {
3189 wn = wl->next;
3190
3191#if EV_EMBED_ENABLE
3192 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3193 {
3194 if (types & EV_EMBED)
3195 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3196 }
3197 else
3198#endif
3199#if EV_USE_INOTIFY
3200 if (ev_cb ((ev_io *)wl) == infy_cb)
3201 ;
3202 else
3203#endif
3204 if ((ev_io *)wl != &pipeev)
3205 if (types & EV_IO)
3206 cb (EV_A_ EV_IO, wl);
3207
3208 wl = wn;
3209 }
3210
3211 if (types & (EV_TIMER | EV_STAT))
3212 for (i = timercnt + HEAP0; i-- > HEAP0; )
3213#if EV_STAT_ENABLE
3214 /*TODO: timer is not always active*/
3215 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3216 {
3217 if (types & EV_STAT)
3218 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3219 }
3220 else
3221#endif
3222 if (types & EV_TIMER)
3223 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3224
3225#if EV_PERIODIC_ENABLE
3226 if (types & EV_PERIODIC)
3227 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3228 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3229#endif
3230
3231#if EV_IDLE_ENABLE
3232 if (types & EV_IDLE)
3233 for (j = NUMPRI; i--; )
3234 for (i = idlecnt [j]; i--; )
3235 cb (EV_A_ EV_IDLE, idles [j][i]);
3236#endif
3237
3238#if EV_FORK_ENABLE
3239 if (types & EV_FORK)
3240 for (i = forkcnt; i--; )
3241 if (ev_cb (forks [i]) != embed_fork_cb)
3242 cb (EV_A_ EV_FORK, forks [i]);
3243#endif
3244
3245#if EV_ASYNC_ENABLE
3246 if (types & EV_ASYNC)
3247 for (i = asynccnt; i--; )
3248 cb (EV_A_ EV_ASYNC, asyncs [i]);
3249#endif
3250
3251 if (types & EV_PREPARE)
3252 for (i = preparecnt; i--; )
3253#if EV_EMBED_ENABLE
3254 if (ev_cb (prepares [i]) != embed_prepare_cb)
3255#endif
3256 cb (EV_A_ EV_PREPARE, prepares [i]);
3257
3258 if (types & EV_CHECK)
3259 for (i = checkcnt; i--; )
3260 cb (EV_A_ EV_CHECK, checks [i]);
3261
3262 if (types & EV_SIGNAL)
3263 for (i = 0; i < signalmax; ++i)
3264 for (wl = signals [i].head; wl; )
3265 {
3266 wn = wl->next;
3267 cb (EV_A_ EV_SIGNAL, wl);
3268 wl = wn;
3269 }
3270
3271 if (types & EV_CHILD)
3272 for (i = EV_PID_HASHSIZE; i--; )
3273 for (wl = childs [i]; wl; )
3274 {
3275 wn = wl->next;
3276 cb (EV_A_ EV_CHILD, wl);
3277 wl = wn;
3278 }
3279/* EV_STAT 0x00001000 /* stat data changed */
3280/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3281}
3282#endif
3283
3284#if EV_MULTIPLICITY
3285 #include "ev_wrap.h"
3286#endif
3287
2296#ifdef __cplusplus 3288#ifdef __cplusplus
2297} 3289}
2298#endif 3290#endif
2299 3291

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines