ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.26 by root, Wed Oct 31 21:50:15 2007 UTC vs.
Revision 1.284 by root, Wed Apr 15 17:49:26 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
86# endif
87
88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
102# endif
103
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
144#endif
29 145
30#include <math.h> 146#include <math.h>
31#include <stdlib.h> 147#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 148#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 149#include <stddef.h>
36 150
37#include <stdio.h> 151#include <stdio.h>
38 152
39#include <assert.h> 153#include <assert.h>
40#include <errno.h> 154#include <errno.h>
41#include <sys/types.h> 155#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 156#include <time.h>
45 157
46#ifndef HAVE_MONOTONIC 158#include <signal.h>
47# ifdef CLOCK_MONOTONIC 159
48# define HAVE_MONOTONIC 1 160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#ifndef _WIN32
167# include <sys/time.h>
168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
49# endif 176# endif
50#endif 177#endif
51 178
52#ifndef HAVE_SELECT 179/* this block tries to deduce configuration from header-defined symbols and defaults */
53# define HAVE_SELECT 1 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
54#endif 186# endif
187#endif
55 188
56#ifndef HAVE_EPOLL 189#ifndef EV_USE_MONOTONIC
57# define HAVE_EPOLL 0 190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
58#endif 194# endif
195#endif
59 196
60#ifndef HAVE_REALTIME 197#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
62#endif 206# endif
207#endif
208
209#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1
211#endif
212
213#ifndef EV_USE_POLL
214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
219#endif
220
221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
225# define EV_USE_EPOLL 0
226# endif
227#endif
228
229#ifndef EV_USE_KQUEUE
230# define EV_USE_KQUEUE 0
231#endif
232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0
292#endif
293
294#ifndef CLOCK_REALTIME
295# undef EV_USE_REALTIME
296# define EV_USE_REALTIME 0
297#endif
298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 363
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
67 367
68#include "ev.h" 368#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline))
371#else
372# define expect(expr,value) (expr)
373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
377#endif
69 378
379#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
70typedef struct ev_watcher *W; 395typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
73 398
74static ev_tstamp now, diff; /* monotonic clock */ 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
411
412#ifdef _WIN32
413# include "ev_win32.c"
414#endif
415
416/*****************************************************************************/
417
418static void (*syserr_cb)(const char *msg);
419
420void
421ev_set_syserr_cb (void (*cb)(const char *msg))
422{
423 syserr_cb = cb;
424}
425
426static void noinline
427ev_syserr (const char *msg)
428{
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439}
440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458void
459ev_set_allocator (void *(*cb)(void *ptr, long size))
460{
461 alloc = cb;
462}
463
464inline_speed void *
465ev_realloc (void *ptr, long size)
466{
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476}
477
478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0)
480
481/*****************************************************************************/
482
483typedef struct
484{
485 WL head;
486 unsigned char events;
487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
496} ANFD;
497
498typedef struct
499{
500 W w;
501 int events;
502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
530#if EV_MULTIPLICITY
531
532 struct ev_loop
533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
536 #define VAR(name,decl) decl;
537 #include "ev_vars.h"
538 #undef VAR
539 };
540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
544
545#else
546
75ev_tstamp ev_now; 547 ev_tstamp ev_rt_now;
76int ev_method; 548 #define VAR(name,decl) static decl;
549 #include "ev_vars.h"
550 #undef VAR
77 551
78static int have_monotonic; /* runtime */ 552 static int ev_default_loop_ptr;
79 553
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 554#endif
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 555
84/*****************************************************************************/ 556/*****************************************************************************/
85 557
86ev_tstamp 558ev_tstamp
87ev_time (void) 559ev_time (void)
88{ 560{
89#if HAVE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
90 struct timespec ts; 564 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 567 }
568#endif
569
94 struct timeval tv; 570 struct timeval tv;
95 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif
98} 573}
99 574
100static ev_tstamp 575inline_size ev_tstamp
101get_clock (void) 576get_clock (void)
102{ 577{
103#if HAVE_MONOTONIC 578#if EV_USE_MONOTONIC
104 if (have_monotonic) 579 if (expect_true (have_monotonic))
105 { 580 {
106 struct timespec ts; 581 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 582 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 584 }
110#endif 585#endif
111 586
112 return ev_time (); 587 return ev_time ();
113} 588}
114 589
115#define array_needsize(base,cur,cnt,init) \ 590#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 591ev_tstamp
117 { \ 592ev_now (EV_P)
118 int newcnt = cur; \ 593{
119 do \ 594 return ev_rt_now;
120 { \ 595}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 596#endif
122 } \ 597
123 while ((cnt) > newcnt); \ 598void
124 \ 599ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 600{
126 init (base + cur, newcnt - cur); \ 601 if (delay > 0.)
127 cur = newcnt; \
128 } 602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
129 625
130/*****************************************************************************/ 626/*****************************************************************************/
131 627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670#if 0
671#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678#endif
679
680#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682
683/*****************************************************************************/
684
685void noinline
686ev_feed_event (EV_P_ void *w, int revents)
687{
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents;
699 }
700}
701
702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
718queue_events (EV_P_ W *events, int eventcnt, int type)
719{
720 int i;
721
722 for (i = 0; i < eventcnt; ++i)
723 ev_feed_event (EV_A_ events [i], type);
724}
725
726/*****************************************************************************/
727
728inline_speed void
729fd_event (EV_P_ int fd, int revents)
730{
731 ANFD *anfd = anfds + fd;
732 ev_io *w;
733
734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
735 {
736 int ev = w->events & revents;
737
738 if (ev)
739 ev_feed_event (EV_A_ (W)w, ev);
740 }
741}
742
743void
744ev_feed_fd_event (EV_P_ int fd, int revents)
745{
746 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents);
748}
749
750inline_size void
751fd_reify (EV_P)
752{
753 int i;
754
755 for (i = 0; i < fdchangecnt; ++i)
756 {
757 int fd = fdchanges [i];
758 ANFD *anfd = anfds + fd;
759 ev_io *w;
760
761 unsigned char events = 0;
762
763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
764 events |= (unsigned char)w->events;
765
766#if EV_SELECT_IS_WINSOCKET
767 if (events)
768 {
769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
773 anfd->handle = _get_osfhandle (fd);
774 #endif
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
776 }
777#endif
778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
783 anfd->reify = 0;
784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
789 }
790
791 fdchangecnt = 0;
792}
793
794inline_size void
795fd_change (EV_P_ int fd, int flags)
796{
797 unsigned char reify = anfds [fd].reify;
798 anfds [fd].reify |= flags;
799
800 if (expect_true (!reify))
801 {
802 ++fdchangecnt;
803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
804 fdchanges [fdchangecnt - 1] = fd;
805 }
806}
807
808inline_speed void
809fd_kill (EV_P_ int fd)
810{
811 ev_io *w;
812
813 while ((w = (ev_io *)anfds [fd].head))
814 {
815 ev_io_stop (EV_A_ w);
816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
817 }
818}
819
820inline_size int
821fd_valid (int fd)
822{
823#ifdef _WIN32
824 return _get_osfhandle (fd) != -1;
825#else
826 return fcntl (fd, F_GETFD) != -1;
827#endif
828}
829
830/* called on EBADF to verify fds */
831static void noinline
832fd_ebadf (EV_P)
833{
834 int fd;
835
836 for (fd = 0; fd < anfdmax; ++fd)
837 if (anfds [fd].events)
838 if (!fd_valid (fd) && errno == EBADF)
839 fd_kill (EV_A_ fd);
840}
841
842/* called on ENOMEM in select/poll to kill some fds and retry */
843static void noinline
844fd_enomem (EV_P)
845{
846 int fd;
847
848 for (fd = anfdmax; fd--; )
849 if (anfds [fd].events)
850 {
851 fd_kill (EV_A_ fd);
852 return;
853 }
854}
855
856/* usually called after fork if backend needs to re-arm all fds from scratch */
857static void noinline
858fd_rearm_all (EV_P)
859{
860 int fd;
861
862 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events)
864 {
865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
868 }
869}
870
871/*****************************************************************************/
872
873/*
874 * the heap functions want a real array index. array index 0 uis guaranteed to not
875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
876 * the branching factor of the d-tree.
877 */
878
879/*
880 * at the moment we allow libev the luxury of two heaps,
881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885#if EV_USE_4HEAP
886
887#define DHEAP 4
888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
891
892/* away from the root */
893inline_speed void
894downheap (ANHE *heap, int N, int k)
895{
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
921 break;
922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
995adjustheap (ANHE *heap, int N, int k)
996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
998 upheap (heap, k);
999 else
1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
1013}
1014
1015/*****************************************************************************/
1016
132typedef struct 1017typedef struct
133{ 1018{
134 struct ev_io *head; 1019 WL head;
135 unsigned char wev, rev; /* want, received event set */ 1020 EV_ATOMIC_T gotsig;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void
145anfds_init (ANFD *base, int count)
146{
147 while (count--)
148 {
149 base->head = 0;
150 base->wev = base->rev = EV_NONE;
151 ++base;
152 }
153}
154
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 }
174}
175
176static void
177fd_event (int fd, int events)
178{
179 ANFD *anfd = anfds + fd;
180 struct ev_io *w;
181
182 for (w = anfd->head; w; w = w->next)
183 {
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 }
189}
190
191static void
192queue_events (W *events, int eventcnt, int type)
193{
194 int i;
195
196 for (i = 0; i < eventcnt; ++i)
197 event (events [i], type);
198}
199
200/* called on EBADF to verify fds */
201static void
202fd_recheck (void)
203{
204 int fd;
205
206 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214}
215
216/*****************************************************************************/
217
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG; 1021} ANSIG;
272 1022
273static ANSIG *signals; 1023static ANSIG *signals;
274static int signalmax; 1024static int signalmax;
275 1025
276static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
277static sig_atomic_t gotsig; 1027
278static struct ev_io sigev; 1028/*****************************************************************************/
1029
1030inline_speed void
1031fd_intern (int fd)
1032{
1033#ifdef _WIN32
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036#else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039#endif
1040}
1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
279 1092
280static void 1093static void
281signals_init (ANSIG *base, int count) 1094pipecb (EV_P_ ev_io *iow, int revents)
282{ 1095{
283 while (count--) 1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
284 { 1101 }
285 base->head = 0; 1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
286 base->gotsig = 0; 1112 gotsig = 0;
287 ++base; 1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
288 } 1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
289} 1133}
1134
1135/*****************************************************************************/
290 1136
291static void 1137static void
292sighandler (int signum) 1138ev_sighandler (int signum)
293{ 1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
294 signals [signum - 1].gotsig = 1; 1148 signals [signum - 1].gotsig = 1;
295 1149 evpipe_write (EV_A_ &gotsig);
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301} 1150}
302 1151
303static void 1152void noinline
304sigcb (struct ev_io *iow, int revents) 1153ev_feed_signal_event (EV_P_ int signum)
305{ 1154{
306 struct ev_signal *w; 1155 WL w;
307 int sig;
308 1156
309 gotsig = 0; 1157#if EV_MULTIPLICITY
310 read (sigpipe [0], &revents, 1); 1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
311 1160
312 for (sig = signalmax; sig--; ) 1161 --signum;
313 if (signals [sig].gotsig) 1162
314 { 1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
315 signals [sig].gotsig = 0; 1166 signals [signum].gotsig = 0;
316 1167
317 for (w = signals [sig].head; w; w = w->next) 1168 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334} 1170}
335 1171
336/*****************************************************************************/ 1172/*****************************************************************************/
337 1173
338static struct ev_idle **idles; 1174static WL childs [EV_PID_HASHSIZE];
339static int idlemax, idlecnt;
340 1175
341static struct ev_prepare **prepares; 1176#ifndef _WIN32
342static int preparemax, preparecnt;
343 1177
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
351 1202
352#ifndef WCONTINUED 1203#ifndef WCONTINUED
353# define WCONTINUED 0 1204# define WCONTINUED 0
354#endif 1205#endif
355 1206
356static void 1207static void
357childcb (struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
358{ 1209{
359 struct ev_child *w;
360 int pid, status; 1210 int pid, status;
361 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1214 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 1215 || errno != EINVAL
365 { 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
366 w->status = status; 1217 return;
367 event ((W)w, EV_CHILD); 1218
368 } 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1222
1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
369} 1226}
1227
1228#endif
370 1229
371/*****************************************************************************/ 1230/*****************************************************************************/
372 1231
1232#if EV_USE_PORT
1233# include "ev_port.c"
1234#endif
1235#if EV_USE_KQUEUE
1236# include "ev_kqueue.c"
1237#endif
373#if HAVE_EPOLL 1238#if EV_USE_EPOLL
374# include "ev_epoll.c" 1239# include "ev_epoll.c"
375#endif 1240#endif
1241#if EV_USE_POLL
1242# include "ev_poll.c"
1243#endif
376#if HAVE_SELECT 1244#if EV_USE_SELECT
377# include "ev_select.c" 1245# include "ev_select.c"
378#endif 1246#endif
379 1247
380int 1248int
381ev_version_major (void) 1249ev_version_major (void)
387ev_version_minor (void) 1255ev_version_minor (void)
388{ 1256{
389 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
390} 1258}
391 1259
392int ev_init (int flags) 1260/* return true if we are running with elevated privileges and should ignore env variables */
1261int inline_size
1262enable_secure (void)
393{ 1263{
394 if (!ev_method) 1264#ifdef _WIN32
1265 return 0;
1266#else
1267 return getuid () != geteuid ()
1268 || getgid () != getegid ();
1269#endif
1270}
1271
1272unsigned int
1273ev_supported_backends (void)
1274{
1275 unsigned int flags = 0;
1276
1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
1288{
1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
1342loop_init (EV_P_ unsigned int flags)
1343{
1344 if (!backend)
395 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
396#if HAVE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1358 {
1359 struct timespec ts;
1360
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1;
1363 }
1364#endif
1365
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1390
1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif
1397#if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1399#endif
1400#if EV_USE_EPOLL
1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1402#endif
1403#if EV_USE_POLL
1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1405#endif
1406#if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408#endif
1409
1410 ev_init (&pipeev, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI);
1412 }
1413}
1414
1415static void noinline
1416loop_destroy (EV_P)
1417{
1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif
1448#if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1450#endif
1451#if EV_USE_EPOLL
1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1453#endif
1454#if EV_USE_POLL
1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1456#endif
1457#if EV_USE_SELECT
1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1459#endif
1460
1461 for (i = NUMPRI; i--; )
1462 {
1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
1470
1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY);
1475#if EV_PERIODIC_ENABLE
1476 array_free (periodic, EMPTY);
1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1481 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1486
1487 backend = 0;
1488}
1489
1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
1495loop_fork (EV_P)
1496{
1497#if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499#endif
1500#if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502#endif
1503#if EV_USE_EPOLL
1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1505#endif
1506#if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508#endif
1509
1510 if (ev_is_active (&pipeev))
1511 {
1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1518
1519 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532
1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1536 }
1537
1538 postfork = 0;
1539}
1540
1541#if EV_MULTIPLICITY
1542
1543struct ev_loop *
1544ev_loop_new (unsigned int flags)
1545{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556}
1557
1558void
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
397 { 1623 {
398 struct timespec ts; 1624 verify_watcher (EV_A_ (W)w);
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
400 have_monotonic = 1; 1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
401 } 1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
402#endif 1666# endif
403
404 ev_now = ev_time ();
405 now = get_clock ();
406 diff = ev_now - now;
407
408 if (pipe (sigpipe))
409 return 0;
410
411 ev_method = EVMETHOD_NONE;
412#if HAVE_EPOLL
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
414#endif 1667#endif
415#if HAVE_SELECT 1668}
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 1669
419 if (ev_method) 1670#endif /* multiplicity */
1671
1672#if EV_MULTIPLICITY
1673struct ev_loop *
1674ev_default_loop_init (unsigned int flags)
1675#else
1676int
1677ev_default_loop (unsigned int flags)
1678#endif
1679{
1680 if (!ev_default_loop_ptr)
1681 {
1682#if EV_MULTIPLICITY
1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1684#else
1685 ev_default_loop_ptr = 1;
1686#endif
1687
1688 loop_init (EV_A_ flags);
1689
1690 if (ev_backend (EV_A))
420 { 1691 {
421 evw_init (&sigev, sigcb); 1692#ifndef _WIN32
422 siginit ();
423
424 evsignal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1694 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 1695 ev_signal_start (EV_A_ &childev);
426 } 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
427 }
428
429 return ev_method;
430}
431
432/*****************************************************************************/
433
434void
435ev_prefork (void)
436{
437 /* nop */
438}
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif 1697#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void
464fd_reify (void)
465{
466 int i;
467
468 for (i = 0; i < fdchangecnt; ++i)
469 {
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt;
495
496 if (p->w)
497 {
498 p->w->pending = 0;
499 p->w->cb (p->w, p->events);
500 }
501 }
502}
503
504static void
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512
513 /* first reschedule or stop timer */
514 if (w->repeat)
515 {
516 w->at = now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0);
519 } 1698 }
520 else 1699 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 1700 ev_default_loop_ptr = 0;
522 } 1701 }
523}
524 1702
525static void 1703 return ev_default_loop_ptr;
526periodics_reify (void) 1704}
1705
1706void
1707ev_default_destroy (void)
527{ 1708{
528 while (periodiccnt && periodics [0]->at <= ev_now) 1709#if EV_MULTIPLICITY
1710 struct ev_loop *loop = ev_default_loop_ptr;
1711#endif
1712
1713 ev_default_loop_ptr = 0;
1714
1715#ifndef _WIN32
1716 ev_ref (EV_A); /* child watcher */
1717 ev_signal_stop (EV_A_ &childev);
1718#endif
1719
1720 loop_destroy (EV_A);
1721}
1722
1723void
1724ev_default_fork (void)
1725{
1726#if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr;
1728#endif
1729
1730 postfork = 1; /* must be in line with ev_loop_fork */
1731}
1732
1733/*****************************************************************************/
1734
1735void
1736ev_invoke (EV_P_ void *w, int revents)
1737{
1738 EV_CB_INVOKE ((W)w, revents);
1739}
1740
1741inline_speed void
1742call_pending (EV_P)
1743{
1744 int pri;
1745
1746 for (pri = NUMPRI; pri--; )
1747 while (pendingcnt [pri])
529 { 1748 {
530 struct ev_periodic *w = periodics [0]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
531 1750
532 /* first reschedule or stop timer */ 1751 if (expect_true (p->w))
533 if (w->interval) 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
1755 p->w->pending = 0;
1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1758 }
1759 }
1760}
1761
1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
534 { 1771 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1772 if (pendingcnt [pri])
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1773 break;
537 downheap ((WT *)periodics, periodiccnt, 0);
538 }
539 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */
541 1774
542 event ((W)w, EV_TIMEOUT); 1775 if (idlecnt [pri])
543 }
544}
545
546static void
547periodics_reschedule (ev_tstamp diff)
548{
549 int i;
550
551 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i)
553 {
554 struct ev_periodic *w = periodics [i];
555
556 if (w->interval)
557 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
559
560 if (fabs (diff) >= 1e-4)
561 { 1776 {
562 evperiodic_stop (w); 1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
563 evperiodic_start (w); 1778 break;
564
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 1779 }
567 } 1780 }
568 } 1781 }
569} 1782}
1783#endif
570 1784
571static void 1785inline_size void
572time_update (void) 1786timers_reify (EV_P)
1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
573{ 1881{
574 int i; 1882 int i;
575 1883
576 ev_now = ev_time (); 1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
577 1888
578 if (have_monotonic) 1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
579 { 1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901inline_speed void
1902time_update (EV_P_ ev_tstamp max_block)
1903{
1904 int i;
1905
1906#if EV_USE_MONOTONIC
1907 if (expect_true (have_monotonic))
1908 {
580 ev_tstamp odiff = diff; 1909 ev_tstamp odiff = rtmn_diff;
581 1910
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1911 mn_now = get_clock ();
1912
1913 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1914 /* interpolate in the meantime */
1915 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
583 { 1916 {
584 now = get_clock (); 1917 ev_rt_now = rtmn_diff + mn_now;
1918 return;
1919 }
1920
1921 now_floor = mn_now;
1922 ev_rt_now = ev_time ();
1923
1924 /* loop a few times, before making important decisions.
1925 * on the choice of "4": one iteration isn't enough,
1926 * in case we get preempted during the calls to
1927 * ev_time and get_clock. a second call is almost guaranteed
1928 * to succeed in that case, though. and looping a few more times
1929 * doesn't hurt either as we only do this on time-jumps or
1930 * in the unlikely event of having been preempted here.
1931 */
1932 for (i = 4; --i; )
1933 {
585 diff = ev_now - now; 1934 rtmn_diff = ev_rt_now - mn_now;
586 1935
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1936 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
588 return; /* all is well */ 1937 return; /* all is well */
589 1938
590 ev_now = ev_time (); 1939 ev_rt_now = ev_time ();
1940 mn_now = get_clock ();
1941 now_floor = mn_now;
591 } 1942 }
592 1943
1944# if EV_PERIODIC_ENABLE
593 periodics_reschedule (diff - odiff); 1945 periodics_reschedule (EV_A);
1946# endif
594 /* no timer adjustment, as the monotonic clock doesn't jump */ 1947 /* no timer adjustment, as the monotonic clock doesn't jump */
1948 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
595 } 1949 }
596 else 1950 else
1951#endif
597 { 1952 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1953 ev_rt_now = ev_time ();
1954
1955 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
599 { 1956 {
1957#if EV_PERIODIC_ENABLE
600 periodics_reschedule (ev_now - now); 1958 periodics_reschedule (EV_A);
601 1959#endif
602 /* adjust timers. this is easy, as the offset is the same for all */ 1960 /* adjust timers. this is easy, as the offset is the same for all of them */
603 for (i = 0; i < timercnt; ++i) 1961 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += ev_rt_now - mn_now;
1965 ANHE_at_cache (*he);
1966 }
605 } 1967 }
606 1968
607 now = ev_now; 1969 mn_now = ev_rt_now;
608 } 1970 }
609} 1971}
610 1972
611int ev_loop_done; 1973void
1974ev_ref (EV_P)
1975{
1976 ++activecnt;
1977}
612 1978
1979void
1980ev_unref (EV_P)
1981{
1982 --activecnt;
1983}
1984
1985void
1986ev_now_update (EV_P)
1987{
1988 time_update (EV_A_ 1e100);
1989}
1990
1991static int loop_done;
1992
1993void
613void ev_loop (int flags) 1994ev_loop (EV_P_ int flags)
614{ 1995{
615 double block; 1996 loop_done = EVUNLOOP_CANCEL;
616 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1997
1998 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
617 1999
618 do 2000 do
619 { 2001 {
2002#if EV_VERIFY >= 2
2003 ev_loop_verify (EV_A);
2004#endif
2005
2006#ifndef _WIN32
2007 if (expect_false (curpid)) /* penalise the forking check even more */
2008 if (expect_false (getpid () != curpid))
2009 {
2010 curpid = getpid ();
2011 postfork = 1;
2012 }
2013#endif
2014
2015#if EV_FORK_ENABLE
2016 /* we might have forked, so queue fork handlers */
2017 if (expect_false (postfork))
2018 if (forkcnt)
2019 {
2020 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2021 call_pending (EV_A);
2022 }
2023#endif
2024
620 /* queue check watchers (and execute them) */ 2025 /* queue prepare watchers (and execute them) */
621 if (preparecnt) 2026 if (expect_false (preparecnt))
622 { 2027 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2028 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 2029 call_pending (EV_A);
625 } 2030 }
626 2031
2032 /* we might have forked, so reify kernel state if necessary */
2033 if (expect_false (postfork))
2034 loop_fork (EV_A);
2035
627 /* update fd-related kernel structures */ 2036 /* update fd-related kernel structures */
628 fd_reify (); 2037 fd_reify (EV_A);
629 2038
630 /* calculate blocking time */ 2039 /* calculate blocking time */
2040 {
2041 ev_tstamp waittime = 0.;
2042 ev_tstamp sleeptime = 0.;
631 2043
632 /* we only need this for !monotonic clockor timers, but as we basically 2044 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 { 2045 {
640 block = MAX_BLOCKTIME; 2046 /* update time to cancel out callback processing overhead */
2047 time_update (EV_A_ 1e100);
641 2048
642 if (timercnt) 2049 if (timercnt)
643 { 2050 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2051 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
645 if (block > to) block = to; 2052 if (waittime > to) waittime = to;
646 } 2053 }
647 2054
2055#if EV_PERIODIC_ENABLE
648 if (periodiccnt) 2056 if (periodiccnt)
649 { 2057 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2058 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
651 if (block > to) block = to; 2059 if (waittime > to) waittime = to;
652 } 2060 }
2061#endif
653 2062
654 if (block < 0.) block = 0.; 2063 if (expect_false (waittime < timeout_blocktime))
2064 waittime = timeout_blocktime;
2065
2066 sleeptime = waittime - backend_fudge;
2067
2068 if (expect_true (sleeptime > io_blocktime))
2069 sleeptime = io_blocktime;
2070
2071 if (sleeptime)
2072 {
2073 ev_sleep (sleeptime);
2074 waittime -= sleeptime;
2075 }
655 } 2076 }
656 2077
657 method_poll (block); 2078 ++loop_count;
2079 backend_poll (EV_A_ waittime);
658 2080
659 /* update ev_now, do magic */ 2081 /* update ev_rt_now, do magic */
660 time_update (); 2082 time_update (EV_A_ waittime + sleeptime);
2083 }
661 2084
662 /* queue pending timers and reschedule them */ 2085 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 2086 timers_reify (EV_A); /* relative timers called last */
2087#if EV_PERIODIC_ENABLE
664 periodics_reify (); /* absolute timers called first */ 2088 periodics_reify (EV_A); /* absolute timers called first */
2089#endif
665 2090
2091#if EV_IDLE_ENABLE
666 /* queue idle watchers unless io or timers are pending */ 2092 /* queue idle watchers unless other events are pending */
667 if (!pendingcnt) 2093 idle_reify (EV_A);
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 2094#endif
669 2095
670 /* queue check watchers, to be executed first */ 2096 /* queue check watchers, to be executed first */
671 if (checkcnt) 2097 if (expect_false (checkcnt))
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 2098 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 2099
674 call_pending (); 2100 call_pending (EV_A);
675 } 2101 }
676 while (!ev_loop_done); 2102 while (expect_true (
2103 activecnt
2104 && !loop_done
2105 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2106 ));
677 2107
678 if (ev_loop_done != 2) 2108 if (loop_done == EVUNLOOP_ONE)
2109 loop_done = EVUNLOOP_CANCEL;
2110}
2111
2112void
2113ev_unloop (EV_P_ int how)
2114{
679 ev_loop_done = 0; 2115 loop_done = how;
680} 2116}
681 2117
682/*****************************************************************************/ 2118/*****************************************************************************/
683 2119
684static void 2120inline_size void
685wlist_add (WL *head, WL elem) 2121wlist_add (WL *head, WL elem)
686{ 2122{
687 elem->next = *head; 2123 elem->next = *head;
688 *head = elem; 2124 *head = elem;
689} 2125}
690 2126
691static void 2127inline_size void
692wlist_del (WL *head, WL elem) 2128wlist_del (WL *head, WL elem)
693{ 2129{
694 while (*head) 2130 while (*head)
695 { 2131 {
696 if (*head == elem) 2132 if (*head == elem)
701 2137
702 head = &(*head)->next; 2138 head = &(*head)->next;
703 } 2139 }
704} 2140}
705 2141
706static void 2142inline_speed void
707ev_clear (W w) 2143clear_pending (EV_P_ W w)
708{ 2144{
709 if (w->pending) 2145 if (w->pending)
710 { 2146 {
711 pendings [w->pending - 1].w = 0; 2147 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 2148 w->pending = 0;
713 } 2149 }
714} 2150}
715 2151
716static void 2152int
2153ev_clear_pending (EV_P_ void *w)
2154{
2155 W w_ = (W)w;
2156 int pending = w_->pending;
2157
2158 if (expect_true (pending))
2159 {
2160 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2161 w_->pending = 0;
2162 p->w = 0;
2163 return p->events;
2164 }
2165 else
2166 return 0;
2167}
2168
2169inline_size void
2170pri_adjust (EV_P_ W w)
2171{
2172 int pri = w->priority;
2173 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2174 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2175 w->priority = pri;
2176}
2177
2178inline_speed void
717ev_start (W w, int active) 2179ev_start (EV_P_ W w, int active)
718{ 2180{
2181 pri_adjust (EV_A_ w);
719 w->active = active; 2182 w->active = active;
2183 ev_ref (EV_A);
720} 2184}
721 2185
722static void 2186inline_size void
723ev_stop (W w) 2187ev_stop (EV_P_ W w)
724{ 2188{
2189 ev_unref (EV_A);
725 w->active = 0; 2190 w->active = 0;
726} 2191}
727 2192
728/*****************************************************************************/ 2193/*****************************************************************************/
729 2194
730void 2195void noinline
731evio_start (struct ev_io *w) 2196ev_io_start (EV_P_ ev_io *w)
732{ 2197{
2198 int fd = w->fd;
2199
733 if (ev_is_active (w)) 2200 if (expect_false (ev_is_active (w)))
734 return; 2201 return;
735 2202
736 int fd = w->fd; 2203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2204 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
737 2205
2206 EV_FREQUENT_CHECK;
2207
738 ev_start ((W)w, 1); 2208 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2209 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2210 wlist_add (&anfds[fd].head, (WL)w);
741 2211
742 ++fdchangecnt; 2212 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2213 w->events &= ~EV__IOFDSET;
744 fdchanges [fdchangecnt - 1] = fd;
745 2214
746 if (w->fd == 9) 2215 EV_FREQUENT_CHECK;
747 printf ("start %p:%x\n", w, w->events);//D
748} 2216}
749 2217
750void 2218void noinline
751evio_stop (struct ev_io *w) 2219ev_io_stop (EV_P_ ev_io *w)
752{ 2220{
753 if (w->fd == 9) 2221 clear_pending (EV_A_ (W)w);
754 printf ("stop %p:%x\n", w, w->events);//D
755 ev_clear ((W)w);
756 if (!ev_is_active (w)) 2222 if (expect_false (!ev_is_active (w)))
757 return; 2223 return;
758 2224
2225 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2226
2227 EV_FREQUENT_CHECK;
2228
759 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2229 wlist_del (&anfds[w->fd].head, (WL)w);
760 ev_stop ((W)w); 2230 ev_stop (EV_A_ (W)w);
761 2231
762 ++fdchangecnt; 2232 fd_change (EV_A_ w->fd, 1);
763 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
764 fdchanges [fdchangecnt - 1] = w->fd;
765}
766 2233
767void 2234 EV_FREQUENT_CHECK;
2235}
2236
2237void noinline
768evtimer_start (struct ev_timer *w) 2238ev_timer_start (EV_P_ ev_timer *w)
769{ 2239{
770 if (ev_is_active (w)) 2240 if (expect_false (ev_is_active (w)))
771 return; 2241 return;
772 2242
773 w->at += now; 2243 ev_at (w) += mn_now;
774 2244
775 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2245 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
776 2246
777 ev_start ((W)w, ++timercnt); 2247 EV_FREQUENT_CHECK;
778 array_needsize (timers, timermax, timercnt, );
779 timers [timercnt - 1] = w;
780 upheap ((WT *)timers, timercnt - 1);
781}
782 2248
783void 2249 ++timercnt;
2250 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2251 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2252 ANHE_w (timers [ev_active (w)]) = (WT)w;
2253 ANHE_at_cache (timers [ev_active (w)]);
2254 upheap (timers, ev_active (w));
2255
2256 EV_FREQUENT_CHECK;
2257
2258 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2259}
2260
2261void noinline
784evtimer_stop (struct ev_timer *w) 2262ev_timer_stop (EV_P_ ev_timer *w)
785{ 2263{
786 ev_clear ((W)w); 2264 clear_pending (EV_A_ (W)w);
787 if (!ev_is_active (w)) 2265 if (expect_false (!ev_is_active (w)))
788 return; 2266 return;
789 2267
790 if (w->active < timercnt--) 2268 EV_FREQUENT_CHECK;
2269
2270 {
2271 int active = ev_active (w);
2272
2273 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2274
2275 --timercnt;
2276
2277 if (expect_true (active < timercnt + HEAP0))
791 { 2278 {
792 timers [w->active - 1] = timers [timercnt]; 2279 timers [active] = timers [timercnt + HEAP0];
793 downheap ((WT *)timers, timercnt, w->active - 1); 2280 adjustheap (timers, timercnt, active);
794 } 2281 }
2282 }
795 2283
796 w->at = w->repeat; 2284 EV_FREQUENT_CHECK;
797 2285
2286 ev_at (w) -= mn_now;
2287
798 ev_stop ((W)w); 2288 ev_stop (EV_A_ (W)w);
799} 2289}
800 2290
801void 2291void noinline
802evtimer_again (struct ev_timer *w) 2292ev_timer_again (EV_P_ ev_timer *w)
803{ 2293{
2294 EV_FREQUENT_CHECK;
2295
804 if (ev_is_active (w)) 2296 if (ev_is_active (w))
805 { 2297 {
806 if (w->repeat) 2298 if (w->repeat)
807 { 2299 {
808 w->at = now + w->repeat; 2300 ev_at (w) = mn_now + w->repeat;
2301 ANHE_at_cache (timers [ev_active (w)]);
809 downheap ((WT *)timers, timercnt, w->active - 1); 2302 adjustheap (timers, timercnt, ev_active (w));
810 } 2303 }
811 else 2304 else
812 evtimer_stop (w); 2305 ev_timer_stop (EV_A_ w);
813 } 2306 }
814 else if (w->repeat) 2307 else if (w->repeat)
2308 {
2309 ev_at (w) = w->repeat;
815 evtimer_start (w); 2310 ev_timer_start (EV_A_ w);
816} 2311 }
817 2312
818void 2313 EV_FREQUENT_CHECK;
2314}
2315
2316#if EV_PERIODIC_ENABLE
2317void noinline
819evperiodic_start (struct ev_periodic *w) 2318ev_periodic_start (EV_P_ ev_periodic *w)
820{ 2319{
821 if (ev_is_active (w)) 2320 if (expect_false (ev_is_active (w)))
822 return; 2321 return;
823 2322
824 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2323 if (w->reschedule_cb)
825 2324 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2325 else if (w->interval)
2326 {
2327 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
826 /* this formula differs from the one in periodic_reify because we do not always round up */ 2328 /* this formula differs from the one in periodic_reify because we do not always round up */
827 if (w->interval)
828 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2329 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2330 }
2331 else
2332 ev_at (w) = w->offset;
829 2333
2334 EV_FREQUENT_CHECK;
2335
2336 ++periodiccnt;
830 ev_start ((W)w, ++periodiccnt); 2337 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
831 array_needsize (periodics, periodicmax, periodiccnt, ); 2338 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
832 periodics [periodiccnt - 1] = w; 2339 ANHE_w (periodics [ev_active (w)]) = (WT)w;
833 upheap ((WT *)periodics, periodiccnt - 1); 2340 ANHE_at_cache (periodics [ev_active (w)]);
834} 2341 upheap (periodics, ev_active (w));
835 2342
836void 2343 EV_FREQUENT_CHECK;
2344
2345 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2346}
2347
2348void noinline
837evperiodic_stop (struct ev_periodic *w) 2349ev_periodic_stop (EV_P_ ev_periodic *w)
838{ 2350{
839 ev_clear ((W)w); 2351 clear_pending (EV_A_ (W)w);
840 if (!ev_is_active (w)) 2352 if (expect_false (!ev_is_active (w)))
841 return; 2353 return;
842 2354
843 if (w->active < periodiccnt--) 2355 EV_FREQUENT_CHECK;
2356
2357 {
2358 int active = ev_active (w);
2359
2360 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2361
2362 --periodiccnt;
2363
2364 if (expect_true (active < periodiccnt + HEAP0))
844 { 2365 {
845 periodics [w->active - 1] = periodics [periodiccnt]; 2366 periodics [active] = periodics [periodiccnt + HEAP0];
846 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2367 adjustheap (periodics, periodiccnt, active);
847 } 2368 }
2369 }
848 2370
2371 EV_FREQUENT_CHECK;
2372
849 ev_stop ((W)w); 2373 ev_stop (EV_A_ (W)w);
850} 2374}
851 2375
852void 2376void noinline
2377ev_periodic_again (EV_P_ ev_periodic *w)
2378{
2379 /* TODO: use adjustheap and recalculation */
2380 ev_periodic_stop (EV_A_ w);
2381 ev_periodic_start (EV_A_ w);
2382}
2383#endif
2384
2385#ifndef SA_RESTART
2386# define SA_RESTART 0
2387#endif
2388
2389void noinline
853evsignal_start (struct ev_signal *w) 2390ev_signal_start (EV_P_ ev_signal *w)
854{ 2391{
2392#if EV_MULTIPLICITY
2393 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2394#endif
855 if (ev_is_active (w)) 2395 if (expect_false (ev_is_active (w)))
856 return; 2396 return;
857 2397
2398 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2399
2400 evpipe_init (EV_A);
2401
2402 EV_FREQUENT_CHECK;
2403
2404 {
2405#ifndef _WIN32
2406 sigset_t full, prev;
2407 sigfillset (&full);
2408 sigprocmask (SIG_SETMASK, &full, &prev);
2409#endif
2410
2411 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2412
2413#ifndef _WIN32
2414 sigprocmask (SIG_SETMASK, &prev, 0);
2415#endif
2416 }
2417
858 ev_start ((W)w, 1); 2418 ev_start (EV_A_ (W)w, 1);
859 array_needsize (signals, signalmax, w->signum, signals_init);
860 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2419 wlist_add (&signals [w->signum - 1].head, (WL)w);
861 2420
862 if (!w->next) 2421 if (!((WL)w)->next)
863 { 2422 {
2423#if _WIN32
2424 signal (w->signum, ev_sighandler);
2425#else
864 struct sigaction sa; 2426 struct sigaction sa;
865 sa.sa_handler = sighandler; 2427 sa.sa_handler = ev_sighandler;
866 sigfillset (&sa.sa_mask); 2428 sigfillset (&sa.sa_mask);
867 sa.sa_flags = 0; 2429 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
868 sigaction (w->signum, &sa, 0); 2430 sigaction (w->signum, &sa, 0);
2431#endif
869 } 2432 }
870}
871 2433
872void 2434 EV_FREQUENT_CHECK;
2435}
2436
2437void noinline
873evsignal_stop (struct ev_signal *w) 2438ev_signal_stop (EV_P_ ev_signal *w)
874{ 2439{
875 ev_clear ((W)w); 2440 clear_pending (EV_A_ (W)w);
876 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
877 return; 2442 return;
878 2443
2444 EV_FREQUENT_CHECK;
2445
879 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2446 wlist_del (&signals [w->signum - 1].head, (WL)w);
880 ev_stop ((W)w); 2447 ev_stop (EV_A_ (W)w);
881 2448
882 if (!signals [w->signum - 1].head) 2449 if (!signals [w->signum - 1].head)
883 signal (w->signum, SIG_DFL); 2450 signal (w->signum, SIG_DFL);
884}
885 2451
886void evidle_start (struct ev_idle *w) 2452 EV_FREQUENT_CHECK;
2453}
2454
2455void
2456ev_child_start (EV_P_ ev_child *w)
887{ 2457{
2458#if EV_MULTIPLICITY
2459 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2460#endif
888 if (ev_is_active (w)) 2461 if (expect_false (ev_is_active (w)))
889 return; 2462 return;
890 2463
891 ev_start ((W)w, ++idlecnt); 2464 EV_FREQUENT_CHECK;
892 array_needsize (idles, idlemax, idlecnt, );
893 idles [idlecnt - 1] = w;
894}
895 2465
896void evidle_stop (struct ev_idle *w) 2466 ev_start (EV_A_ (W)w, 1);
2467 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2468
2469 EV_FREQUENT_CHECK;
2470}
2471
2472void
2473ev_child_stop (EV_P_ ev_child *w)
897{ 2474{
898 ev_clear ((W)w); 2475 clear_pending (EV_A_ (W)w);
899 if (ev_is_active (w)) 2476 if (expect_false (!ev_is_active (w)))
900 return; 2477 return;
901 2478
902 idles [w->active - 1] = idles [--idlecnt]; 2479 EV_FREQUENT_CHECK;
2480
2481 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
903 ev_stop ((W)w); 2482 ev_stop (EV_A_ (W)w);
904}
905 2483
906void evprepare_start (struct ev_prepare *w) 2484 EV_FREQUENT_CHECK;
2485}
2486
2487#if EV_STAT_ENABLE
2488
2489# ifdef _WIN32
2490# undef lstat
2491# define lstat(a,b) _stati64 (a,b)
2492# endif
2493
2494#define DEF_STAT_INTERVAL 5.0074891
2495#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2496#define MIN_STAT_INTERVAL 0.1074891
2497
2498static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2499
2500#if EV_USE_INOTIFY
2501# define EV_INOTIFY_BUFSIZE 8192
2502
2503static void noinline
2504infy_add (EV_P_ ev_stat *w)
907{ 2505{
908 if (ev_is_active (w)) 2506 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2507
2508 if (w->wd < 0)
2509 {
2510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2512
2513 /* monitor some parent directory for speedup hints */
2514 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2515 /* but an efficiency issue only */
2516 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2517 {
2518 char path [4096];
2519 strcpy (path, w->path);
2520
2521 do
2522 {
2523 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2524 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2525
2526 char *pend = strrchr (path, '/');
2527
2528 if (!pend || pend == path)
2529 break;
2530
2531 *pend = 0;
2532 w->wd = inotify_add_watch (fs_fd, path, mask);
2533 }
2534 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2535 }
2536 }
2537
2538 if (w->wd >= 0)
2539 {
2540 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2541
2542 /* now local changes will be tracked by inotify, but remote changes won't */
2543 /* unless the filesystem it known to be local, we therefore still poll */
2544 /* also do poll on <2.6.25, but with normal frequency */
2545 struct statfs sfs;
2546
2547 if (fs_2625 && !statfs (w->path, &sfs))
2548 if (sfs.f_type == 0x1373 /* devfs */
2549 || sfs.f_type == 0xEF53 /* ext2/3 */
2550 || sfs.f_type == 0x3153464a /* jfs */
2551 || sfs.f_type == 0x52654973 /* reiser3 */
2552 || sfs.f_type == 0x01021994 /* tempfs */
2553 || sfs.f_type == 0x58465342 /* xfs */)
2554 return;
2555
2556 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2557 ev_timer_again (EV_A_ &w->timer);
2558 }
2559}
2560
2561static void noinline
2562infy_del (EV_P_ ev_stat *w)
2563{
2564 int slot;
2565 int wd = w->wd;
2566
2567 if (wd < 0)
909 return; 2568 return;
910 2569
2570 w->wd = -2;
2571 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2572 wlist_del (&fs_hash [slot].head, (WL)w);
2573
2574 /* remove this watcher, if others are watching it, they will rearm */
2575 inotify_rm_watch (fs_fd, wd);
2576}
2577
2578static void noinline
2579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2580{
2581 if (slot < 0)
2582 /* overflow, need to check for all hash slots */
2583 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2584 infy_wd (EV_A_ slot, wd, ev);
2585 else
2586 {
2587 WL w_;
2588
2589 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2590 {
2591 ev_stat *w = (ev_stat *)w_;
2592 w_ = w_->next; /* lets us remove this watcher and all before it */
2593
2594 if (w->wd == wd || wd == -1)
2595 {
2596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2597 {
2598 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2599 w->wd = -1;
2600 infy_add (EV_A_ w); /* re-add, no matter what */
2601 }
2602
2603 stat_timer_cb (EV_A_ &w->timer, 0);
2604 }
2605 }
2606 }
2607}
2608
2609static void
2610infy_cb (EV_P_ ev_io *w, int revents)
2611{
2612 char buf [EV_INOTIFY_BUFSIZE];
2613 struct inotify_event *ev = (struct inotify_event *)buf;
2614 int ofs;
2615 int len = read (fs_fd, buf, sizeof (buf));
2616
2617 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2618 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2619}
2620
2621inline_size void
2622check_2625 (EV_P)
2623{
2624 /* kernels < 2.6.25 are borked
2625 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2626 */
2627 struct utsname buf;
2628 int major, minor, micro;
2629
2630 if (uname (&buf))
2631 return;
2632
2633 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2634 return;
2635
2636 if (major < 2
2637 || (major == 2 && minor < 6)
2638 || (major == 2 && minor == 6 && micro < 25))
2639 return;
2640
2641 fs_2625 = 1;
2642}
2643
2644inline_size void
2645infy_init (EV_P)
2646{
2647 if (fs_fd != -2)
2648 return;
2649
2650 fs_fd = -1;
2651
2652 check_2625 (EV_A);
2653
2654 fs_fd = inotify_init ();
2655
2656 if (fs_fd >= 0)
2657 {
2658 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2659 ev_set_priority (&fs_w, EV_MAXPRI);
2660 ev_io_start (EV_A_ &fs_w);
2661 }
2662}
2663
2664inline_size void
2665infy_fork (EV_P)
2666{
2667 int slot;
2668
2669 if (fs_fd < 0)
2670 return;
2671
2672 close (fs_fd);
2673 fs_fd = inotify_init ();
2674
2675 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2676 {
2677 WL w_ = fs_hash [slot].head;
2678 fs_hash [slot].head = 0;
2679
2680 while (w_)
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us add this watcher */
2684
2685 w->wd = -1;
2686
2687 if (fs_fd >= 0)
2688 infy_add (EV_A_ w); /* re-add, no matter what */
2689 else
2690 ev_timer_again (EV_A_ &w->timer);
2691 }
2692 }
2693}
2694
2695#endif
2696
2697#ifdef _WIN32
2698# define EV_LSTAT(p,b) _stati64 (p, b)
2699#else
2700# define EV_LSTAT(p,b) lstat (p, b)
2701#endif
2702
2703void
2704ev_stat_stat (EV_P_ ev_stat *w)
2705{
2706 if (lstat (w->path, &w->attr) < 0)
2707 w->attr.st_nlink = 0;
2708 else if (!w->attr.st_nlink)
2709 w->attr.st_nlink = 1;
2710}
2711
2712static void noinline
2713stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2714{
2715 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2716
2717 /* we copy this here each the time so that */
2718 /* prev has the old value when the callback gets invoked */
2719 w->prev = w->attr;
2720 ev_stat_stat (EV_A_ w);
2721
2722 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2723 if (
2724 w->prev.st_dev != w->attr.st_dev
2725 || w->prev.st_ino != w->attr.st_ino
2726 || w->prev.st_mode != w->attr.st_mode
2727 || w->prev.st_nlink != w->attr.st_nlink
2728 || w->prev.st_uid != w->attr.st_uid
2729 || w->prev.st_gid != w->attr.st_gid
2730 || w->prev.st_rdev != w->attr.st_rdev
2731 || w->prev.st_size != w->attr.st_size
2732 || w->prev.st_atime != w->attr.st_atime
2733 || w->prev.st_mtime != w->attr.st_mtime
2734 || w->prev.st_ctime != w->attr.st_ctime
2735 ) {
2736 #if EV_USE_INOTIFY
2737 if (fs_fd >= 0)
2738 {
2739 infy_del (EV_A_ w);
2740 infy_add (EV_A_ w);
2741 ev_stat_stat (EV_A_ w); /* avoid race... */
2742 }
2743 #endif
2744
2745 ev_feed_event (EV_A_ w, EV_STAT);
2746 }
2747}
2748
2749void
2750ev_stat_start (EV_P_ ev_stat *w)
2751{
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 ev_stat_stat (EV_A_ w);
2756
2757 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2758 w->interval = MIN_STAT_INTERVAL;
2759
2760 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2761 ev_set_priority (&w->timer, ev_priority (w));
2762
2763#if EV_USE_INOTIFY
2764 infy_init (EV_A);
2765
2766 if (fs_fd >= 0)
2767 infy_add (EV_A_ w);
2768 else
2769#endif
2770 ev_timer_again (EV_A_ &w->timer);
2771
2772 ev_start (EV_A_ (W)w, 1);
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_stat_stop (EV_P_ ev_stat *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_INOTIFY
2787 infy_del (EV_A_ w);
2788#endif
2789 ev_timer_stop (EV_A_ &w->timer);
2790
2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2794}
2795#endif
2796
2797#if EV_IDLE_ENABLE
2798void
2799ev_idle_start (EV_P_ ev_idle *w)
2800{
2801 if (expect_false (ev_is_active (w)))
2802 return;
2803
2804 pri_adjust (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807
2808 {
2809 int active = ++idlecnt [ABSPRI (w)];
2810
2811 ++idleall;
2812 ev_start (EV_A_ (W)w, active);
2813
2814 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2815 idles [ABSPRI (w)][active - 1] = w;
2816 }
2817
2818 EV_FREQUENT_CHECK;
2819}
2820
2821void
2822ev_idle_stop (EV_P_ ev_idle *w)
2823{
2824 clear_pending (EV_A_ (W)w);
2825 if (expect_false (!ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
2829
2830 {
2831 int active = ev_active (w);
2832
2833 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2834 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2835
2836 ev_stop (EV_A_ (W)w);
2837 --idleall;
2838 }
2839
2840 EV_FREQUENT_CHECK;
2841}
2842#endif
2843
2844void
2845ev_prepare_start (EV_P_ ev_prepare *w)
2846{
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
2851
911 ev_start ((W)w, ++preparecnt); 2852 ev_start (EV_A_ (W)w, ++preparecnt);
912 array_needsize (prepares, preparemax, preparecnt, ); 2853 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
913 prepares [preparecnt - 1] = w; 2854 prepares [preparecnt - 1] = w;
914}
915 2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859void
916void evprepare_stop (struct ev_prepare *w) 2860ev_prepare_stop (EV_P_ ev_prepare *w)
917{ 2861{
918 ev_clear ((W)w); 2862 clear_pending (EV_A_ (W)w);
919 if (ev_is_active (w)) 2863 if (expect_false (!ev_is_active (w)))
920 return; 2864 return;
921 2865
2866 EV_FREQUENT_CHECK;
2867
2868 {
2869 int active = ev_active (w);
2870
922 prepares [w->active - 1] = prepares [--preparecnt]; 2871 prepares [active - 1] = prepares [--preparecnt];
2872 ev_active (prepares [active - 1]) = active;
2873 }
2874
923 ev_stop ((W)w); 2875 ev_stop (EV_A_ (W)w);
924}
925 2876
2877 EV_FREQUENT_CHECK;
2878}
2879
2880void
926void evcheck_start (struct ev_check *w) 2881ev_check_start (EV_P_ ev_check *w)
927{ 2882{
928 if (ev_is_active (w)) 2883 if (expect_false (ev_is_active (w)))
929 return; 2884 return;
930 2885
2886 EV_FREQUENT_CHECK;
2887
931 ev_start ((W)w, ++checkcnt); 2888 ev_start (EV_A_ (W)w, ++checkcnt);
932 array_needsize (checks, checkmax, checkcnt, ); 2889 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
933 checks [checkcnt - 1] = w; 2890 checks [checkcnt - 1] = w;
934}
935 2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
936void evcheck_stop (struct ev_check *w) 2896ev_check_stop (EV_P_ ev_check *w)
937{ 2897{
938 ev_clear ((W)w); 2898 clear_pending (EV_A_ (W)w);
939 if (ev_is_active (w)) 2899 if (expect_false (!ev_is_active (w)))
940 return; 2900 return;
941 2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ev_active (w);
2906
942 checks [w->active - 1] = checks [--checkcnt]; 2907 checks [active - 1] = checks [--checkcnt];
2908 ev_active (checks [active - 1]) = active;
2909 }
2910
943 ev_stop ((W)w); 2911 ev_stop (EV_A_ (W)w);
944}
945 2912
946void evchild_start (struct ev_child *w) 2913 EV_FREQUENT_CHECK;
2914}
2915
2916#if EV_EMBED_ENABLE
2917void noinline
2918ev_embed_sweep (EV_P_ ev_embed *w)
947{ 2919{
2920 ev_loop (w->other, EVLOOP_NONBLOCK);
2921}
2922
2923static void
2924embed_io_cb (EV_P_ ev_io *io, int revents)
2925{
2926 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2927
948 if (ev_is_active (w)) 2928 if (ev_cb (w))
2929 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2930 else
2931 ev_loop (w->other, EVLOOP_NONBLOCK);
2932}
2933
2934static void
2935embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2936{
2937 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2938
2939 {
2940 struct ev_loop *loop = w->other;
2941
2942 while (fdchangecnt)
2943 {
2944 fd_reify (EV_A);
2945 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2946 }
2947 }
2948}
2949
2950static void
2951embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2952{
2953 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2954
2955 ev_embed_stop (EV_A_ w);
2956
2957 {
2958 struct ev_loop *loop = w->other;
2959
2960 ev_loop_fork (EV_A);
2961 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2962 }
2963
2964 ev_embed_start (EV_A_ w);
2965}
2966
2967#if 0
2968static void
2969embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2970{
2971 ev_idle_stop (EV_A_ idle);
2972}
2973#endif
2974
2975void
2976ev_embed_start (EV_P_ ev_embed *w)
2977{
2978 if (expect_false (ev_is_active (w)))
949 return; 2979 return;
950 2980
2981 {
2982 struct ev_loop *loop = w->other;
2983 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2984 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988
2989 ev_set_priority (&w->io, ev_priority (w));
2990 ev_io_start (EV_A_ &w->io);
2991
2992 ev_prepare_init (&w->prepare, embed_prepare_cb);
2993 ev_set_priority (&w->prepare, EV_MINPRI);
2994 ev_prepare_start (EV_A_ &w->prepare);
2995
2996 ev_fork_init (&w->fork, embed_fork_cb);
2997 ev_fork_start (EV_A_ &w->fork);
2998
2999 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3000
951 ev_start ((W)w, 1); 3001 ev_start (EV_A_ (W)w, 1);
952 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
953}
954 3002
955void evchild_stop (struct ev_child *w) 3003 EV_FREQUENT_CHECK;
3004}
3005
3006void
3007ev_embed_stop (EV_P_ ev_embed *w)
956{ 3008{
957 ev_clear ((W)w); 3009 clear_pending (EV_A_ (W)w);
958 if (ev_is_active (w)) 3010 if (expect_false (!ev_is_active (w)))
959 return; 3011 return;
960 3012
961 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3013 EV_FREQUENT_CHECK;
3014
3015 ev_io_stop (EV_A_ &w->io);
3016 ev_prepare_stop (EV_A_ &w->prepare);
3017 ev_fork_stop (EV_A_ &w->fork);
3018
3019 EV_FREQUENT_CHECK;
3020}
3021#endif
3022
3023#if EV_FORK_ENABLE
3024void
3025ev_fork_start (EV_P_ ev_fork *w)
3026{
3027 if (expect_false (ev_is_active (w)))
3028 return;
3029
3030 EV_FREQUENT_CHECK;
3031
3032 ev_start (EV_A_ (W)w, ++forkcnt);
3033 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3034 forks [forkcnt - 1] = w;
3035
3036 EV_FREQUENT_CHECK;
3037}
3038
3039void
3040ev_fork_stop (EV_P_ ev_fork *w)
3041{
3042 clear_pending (EV_A_ (W)w);
3043 if (expect_false (!ev_is_active (w)))
3044 return;
3045
3046 EV_FREQUENT_CHECK;
3047
3048 {
3049 int active = ev_active (w);
3050
3051 forks [active - 1] = forks [--forkcnt];
3052 ev_active (forks [active - 1]) = active;
3053 }
3054
962 ev_stop ((W)w); 3055 ev_stop (EV_A_ (W)w);
3056
3057 EV_FREQUENT_CHECK;
963} 3058}
3059#endif
3060
3061#if EV_ASYNC_ENABLE
3062void
3063ev_async_start (EV_P_ ev_async *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 evpipe_init (EV_A);
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_start (EV_A_ (W)w, ++asynccnt);
3073 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3074 asyncs [asynccnt - 1] = w;
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_async_stop (EV_P_ ev_async *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 {
3089 int active = ev_active (w);
3090
3091 asyncs [active - 1] = asyncs [--asynccnt];
3092 ev_active (asyncs [active - 1]) = active;
3093 }
3094
3095 ev_stop (EV_A_ (W)w);
3096
3097 EV_FREQUENT_CHECK;
3098}
3099
3100void
3101ev_async_send (EV_P_ ev_async *w)
3102{
3103 w->sent = 1;
3104 evpipe_write (EV_A_ &gotasync);
3105}
3106#endif
964 3107
965/*****************************************************************************/ 3108/*****************************************************************************/
966 3109
967struct ev_once 3110struct ev_once
968{ 3111{
969 struct ev_io io; 3112 ev_io io;
970 struct ev_timer to; 3113 ev_timer to;
971 void (*cb)(int revents, void *arg); 3114 void (*cb)(int revents, void *arg);
972 void *arg; 3115 void *arg;
973}; 3116};
974 3117
975static void 3118static void
976once_cb (struct ev_once *once, int revents) 3119once_cb (EV_P_ struct ev_once *once, int revents)
977{ 3120{
978 void (*cb)(int revents, void *arg) = once->cb; 3121 void (*cb)(int revents, void *arg) = once->cb;
979 void *arg = once->arg; 3122 void *arg = once->arg;
980 3123
981 evio_stop (&once->io); 3124 ev_io_stop (EV_A_ &once->io);
982 evtimer_stop (&once->to); 3125 ev_timer_stop (EV_A_ &once->to);
983 free (once); 3126 ev_free (once);
984 3127
985 cb (revents, arg); 3128 cb (revents, arg);
986} 3129}
987 3130
988static void 3131static void
989once_cb_io (struct ev_io *w, int revents) 3132once_cb_io (EV_P_ ev_io *w, int revents)
990{ 3133{
991 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3134 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3135
3136 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
992} 3137}
993 3138
994static void 3139static void
995once_cb_to (struct ev_timer *w, int revents) 3140once_cb_to (EV_P_ ev_timer *w, int revents)
996{ 3141{
997 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3142 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
998}
999 3143
3144 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3145}
3146
1000void 3147void
1001ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3148ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1002{ 3149{
1003 struct ev_once *once = malloc (sizeof (struct ev_once)); 3150 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1004 3151
1005 if (!once) 3152 if (expect_false (!once))
1006 cb (EV_ERROR, arg); 3153 {
1007 else 3154 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3155 return;
1008 { 3156 }
3157
1009 once->cb = cb; 3158 once->cb = cb;
1010 once->arg = arg; 3159 once->arg = arg;
1011 3160
1012 evw_init (&once->io, once_cb_io); 3161 ev_init (&once->io, once_cb_io);
1013
1014 if (fd >= 0) 3162 if (fd >= 0)
3163 {
3164 ev_io_set (&once->io, fd, events);
3165 ev_io_start (EV_A_ &once->io);
3166 }
3167
3168 ev_init (&once->to, once_cb_to);
3169 if (timeout >= 0.)
3170 {
3171 ev_timer_set (&once->to, timeout, 0.);
3172 ev_timer_start (EV_A_ &once->to);
3173 }
3174}
3175
3176/*****************************************************************************/
3177
3178#if 0
3179void
3180ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3181{
3182 int i, j;
3183 ev_watcher_list *wl, *wn;
3184
3185 if (types & (EV_IO | EV_EMBED))
3186 for (i = 0; i < anfdmax; ++i)
3187 for (wl = anfds [i].head; wl; )
1015 { 3188 {
1016 evio_set (&once->io, fd, events); 3189 wn = wl->next;
1017 evio_start (&once->io); 3190
3191#if EV_EMBED_ENABLE
3192 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3193 {
3194 if (types & EV_EMBED)
3195 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3196 }
3197 else
3198#endif
3199#if EV_USE_INOTIFY
3200 if (ev_cb ((ev_io *)wl) == infy_cb)
3201 ;
3202 else
3203#endif
3204 if ((ev_io *)wl != &pipeev)
3205 if (types & EV_IO)
3206 cb (EV_A_ EV_IO, wl);
3207
3208 wl = wn;
1018 } 3209 }
1019 3210
1020 evw_init (&once->to, once_cb_to); 3211 if (types & (EV_TIMER | EV_STAT))
1021 3212 for (i = timercnt + HEAP0; i-- > HEAP0; )
1022 if (timeout >= 0.) 3213#if EV_STAT_ENABLE
3214 /*TODO: timer is not always active*/
3215 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1023 { 3216 {
1024 evtimer_set (&once->to, timeout, 0.); 3217 if (types & EV_STAT)
1025 evtimer_start (&once->to); 3218 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1026 } 3219 }
1027 } 3220 else
1028} 3221#endif
3222 if (types & EV_TIMER)
3223 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1029 3224
1030/*****************************************************************************/ 3225#if EV_PERIODIC_ENABLE
3226 if (types & EV_PERIODIC)
3227 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3228 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3229#endif
1031 3230
1032#if 0 3231#if EV_IDLE_ENABLE
3232 if (types & EV_IDLE)
3233 for (j = NUMPRI; i--; )
3234 for (i = idlecnt [j]; i--; )
3235 cb (EV_A_ EV_IDLE, idles [j][i]);
3236#endif
1033 3237
1034struct ev_io wio; 3238#if EV_FORK_ENABLE
3239 if (types & EV_FORK)
3240 for (i = forkcnt; i--; )
3241 if (ev_cb (forks [i]) != embed_fork_cb)
3242 cb (EV_A_ EV_FORK, forks [i]);
3243#endif
1035 3244
1036static void 3245#if EV_ASYNC_ENABLE
1037sin_cb (struct ev_io *w, int revents) 3246 if (types & EV_ASYNC)
1038{ 3247 for (i = asynccnt; i--; )
1039 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3248 cb (EV_A_ EV_ASYNC, asyncs [i]);
1040} 3249#endif
1041 3250
1042static void 3251 if (types & EV_PREPARE)
1043ocb (struct ev_timer *w, int revents) 3252 for (i = preparecnt; i--; )
1044{ 3253#if EV_EMBED_ENABLE
1045 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3254 if (ev_cb (prepares [i]) != embed_prepare_cb)
1046 evtimer_stop (w); 3255#endif
1047 evtimer_start (w); 3256 cb (EV_A_ EV_PREPARE, prepares [i]);
1048}
1049 3257
1050static void 3258 if (types & EV_CHECK)
1051scb (struct ev_signal *w, int revents) 3259 for (i = checkcnt; i--; )
1052{ 3260 cb (EV_A_ EV_CHECK, checks [i]);
1053 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1054 evio_stop (&wio);
1055 evio_start (&wio);
1056}
1057 3261
1058static void 3262 if (types & EV_SIGNAL)
1059gcb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "generic %x\n", revents);
1062
1063}
1064
1065int main (void)
1066{
1067 ev_init (0);
1068
1069 evio_init (&wio, sin_cb, 0, EV_READ);
1070 evio_start (&wio);
1071
1072 struct ev_timer t[10000];
1073
1074#if 0
1075 int i;
1076 for (i = 0; i < 10000; ++i) 3263 for (i = 0; i < signalmax; ++i)
1077 { 3264 for (wl = signals [i].head; wl; )
1078 struct ev_timer *w = t + i; 3265 {
1079 evw_init (w, ocb, i); 3266 wn = wl->next;
1080 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 3267 cb (EV_A_ EV_SIGNAL, wl);
1081 evtimer_start (w); 3268 wl = wn;
1082 if (drand48 () < 0.5) 3269 }
1083 evtimer_stop (w);
1084 }
1085#endif
1086 3270
1087 struct ev_timer t1; 3271 if (types & EV_CHILD)
1088 evtimer_init (&t1, ocb, 5, 10); 3272 for (i = EV_PID_HASHSIZE; i--; )
1089 evtimer_start (&t1); 3273 for (wl = childs [i]; wl; )
1090 3274 {
1091 struct ev_signal sig; 3275 wn = wl->next;
1092 evsignal_init (&sig, scb, SIGQUIT); 3276 cb (EV_A_ EV_CHILD, wl);
1093 evsignal_start (&sig); 3277 wl = wn;
1094 3278 }
1095 struct ev_check cw; 3279/* EV_STAT 0x00001000 /* stat data changed */
1096 evcheck_init (&cw, gcb); 3280/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1097 evcheck_start (&cw);
1098
1099 struct ev_idle iw;
1100 evidle_init (&iw, gcb);
1101 evidle_start (&iw);
1102
1103 ev_loop (0);
1104
1105 return 0;
1106} 3281}
1107
1108#endif 3282#endif
1109 3283
3284#if EV_MULTIPLICITY
3285 #include "ev_wrap.h"
3286#endif
1110 3287
3288#ifdef __cplusplus
3289}
3290#endif
1111 3291
1112

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines