ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.284 by root, Wed Apr 15 17:49:26 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31#ifndef EV_EMBED 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
86# endif
87
88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
102# endif
103
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
33#endif 144#endif
34 145
35#include <math.h> 146#include <math.h>
36#include <stdlib.h> 147#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 148#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 149#include <stddef.h>
41 150
42#include <stdio.h> 151#include <stdio.h>
43 152
44#include <assert.h> 153#include <assert.h>
45#include <errno.h> 154#include <errno.h>
46#include <sys/types.h> 155#include <sys/types.h>
156#include <time.h>
157
158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
47#ifndef WIN32 166#ifndef _WIN32
167# include <sys/time.h>
48# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
49#endif 176# endif
50#include <sys/time.h> 177#endif
51#include <time.h>
52 178
53/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
54 188
55#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
57#endif 207#endif
58 208
59#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
61#endif 211#endif
62 212
63#ifndef EV_USEV_POLL 213#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
65#endif 219#endif
66 220
67#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
68# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
69#endif 227#endif
70 228
71#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
73#endif 231#endif
74 232
75#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
77#endif 242# endif
243#endif
78 244
79/**/ 245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 288
81#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
84#endif 292#endif
86#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
89#endif 297#endif
90 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
91/**/ 346/**/
92 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 367
98#ifndef EV_EMBED
99# include "ev.h"
100#endif
101
102#if __GNUC__ >= 3 368#if __GNUC__ >= 4
103# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 370# define noinline __attribute__ ((noinline))
105#else 371#else
106# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
107# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
108#endif 377#endif
109 378
110#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
111#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
112 388
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
115 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
116typedef struct ev_watcher *W; 395typedef ev_watcher *W;
117typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
119 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
411
412#ifdef _WIN32
413# include "ev_win32.c"
414#endif
121 415
122/*****************************************************************************/ 416/*****************************************************************************/
123 417
418static void (*syserr_cb)(const char *msg);
419
420void
421ev_set_syserr_cb (void (*cb)(const char *msg))
422{
423 syserr_cb = cb;
424}
425
426static void noinline
427ev_syserr (const char *msg)
428{
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439}
440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458void
459ev_set_allocator (void *(*cb)(void *ptr, long size))
460{
461 alloc = cb;
462}
463
464inline_speed void *
465ev_realloc (void *ptr, long size)
466{
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476}
477
478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0)
480
481/*****************************************************************************/
482
124typedef struct 483typedef struct
125{ 484{
126 struct ev_watcher_list *head; 485 WL head;
127 unsigned char events; 486 unsigned char events;
128 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
129} ANFD; 496} ANFD;
130 497
131typedef struct 498typedef struct
132{ 499{
133 W w; 500 W w;
134 int events; 501 int events;
135} ANPENDING; 502} ANPENDING;
136 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
137#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
138 531
139struct ev_loop 532 struct ev_loop
140{ 533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
141# define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
142# include "ev_vars.h" 537 #include "ev_vars.h"
143};
144# undef VAR 538 #undef VAR
539 };
145# include "ev_wrap.h" 540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
146 544
147#else 545#else
148 546
547 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 549 #include "ev_vars.h"
151# undef VAR 550 #undef VAR
551
552 static int ev_default_loop_ptr;
152 553
153#endif 554#endif
154 555
155/*****************************************************************************/ 556/*****************************************************************************/
156 557
157inline ev_tstamp 558ev_tstamp
158ev_time (void) 559ev_time (void)
159{ 560{
160#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
161 struct timespec ts; 564 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
163 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
164#else 567 }
568#endif
569
165 struct timeval tv; 570 struct timeval tv;
166 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
167 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
168#endif
169} 573}
170 574
171inline ev_tstamp 575inline_size ev_tstamp
172get_clock (void) 576get_clock (void)
173{ 577{
174#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
175 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
176 { 580 {
181#endif 585#endif
182 586
183 return ev_time (); 587 return ev_time ();
184} 588}
185 589
590#if EV_MULTIPLICITY
186ev_tstamp 591ev_tstamp
187ev_now (EV_P) 592ev_now (EV_P)
188{ 593{
189 return rt_now; 594 return ev_rt_now;
190} 595}
596#endif
191 597
192#define array_roundsize(base,n) ((n) | 4 & ~3) 598void
193 599ev_sleep (ev_tstamp delay)
194#define array_needsize(base,cur,cnt,init) \ 600{
195 if (expect_false ((cnt) > cur)) \ 601 if (delay > 0.)
196 { \
197 int newcnt = cur; \
198 do \
199 { \
200 newcnt = array_roundsize (base, newcnt << 1); \
201 } \
202 while ((cnt) > newcnt); \
203 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \
206 cur = newcnt; \
207 } 602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
208 625
209/*****************************************************************************/ 626/*****************************************************************************/
210 627
211static void 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
212anfds_init (ANFD *base, int count)
213{
214 while (count--)
215 {
216 base->head = 0;
217 base->events = EV_NONE;
218 base->reify = 0;
219 629
220 ++base; 630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
221 } 641 {
222} 642 ncur *= elem;
223 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
224static void 644 ncur = ncur - sizeof (void *) * 4;
225event (EV_P_ W w, int events) 645 ncur /= elem;
226{
227 if (w->pending)
228 { 646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670#if 0
671#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678#endif
679
680#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682
683/*****************************************************************************/
684
685void noinline
686ev_feed_event (EV_P_ void *w, int revents)
687{
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 698 pendings [pri][w_->pending - 1].events = revents;
230 return;
231 } 699 }
232
233 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 700}
238 701
239static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
240queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 719{
242 int i; 720 int i;
243 721
244 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
246} 724}
247 725
248static void 726/*****************************************************************************/
727
728inline_speed void
249fd_event (EV_P_ int fd, int events) 729fd_event (EV_P_ int fd, int revents)
250{ 730{
251 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 732 ev_io *w;
253 733
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
255 { 735 {
256 int ev = w->events & events; 736 int ev = w->events & revents;
257 737
258 if (ev) 738 if (ev)
259 event (EV_A_ (W)w, ev); 739 ev_feed_event (EV_A_ (W)w, ev);
260 } 740 }
261} 741}
262 742
263/*****************************************************************************/ 743void
744ev_feed_fd_event (EV_P_ int fd, int revents)
745{
746 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents);
748}
264 749
265static void 750inline_size void
266fd_reify (EV_P) 751fd_reify (EV_P)
267{ 752{
268 int i; 753 int i;
269 754
270 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
271 { 756 {
272 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
273 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
274 struct ev_io *w; 759 ev_io *w;
275 760
276 int events = 0; 761 unsigned char events = 0;
277 762
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
279 events |= w->events; 764 events |= (unsigned char)w->events;
280 765
281 anfd->reify = 0; 766#if EV_SELECT_IS_WINSOCKET
282 767 if (events)
283 if (anfd->events != events)
284 { 768 {
285 method_modify (EV_A_ fd, anfd->events, events); 769 unsigned long arg;
286 anfd->events = events; 770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
773 anfd->handle = _get_osfhandle (fd);
774 #endif
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
287 } 776 }
777#endif
778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
783 anfd->reify = 0;
784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
288 } 789 }
289 790
290 fdchangecnt = 0; 791 fdchangecnt = 0;
291} 792}
292 793
293static void 794inline_size void
294fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
295{ 796{
296 if (anfds [fd].reify || fdchangecnt < 0) 797 unsigned char reify = anfds [fd].reify;
297 return;
298
299 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
300 799
800 if (expect_true (!reify))
801 {
301 ++fdchangecnt; 802 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
303 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
304} 806}
305 807
306static void 808inline_speed void
307fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
308{ 810{
309 struct ev_io *w; 811 ev_io *w;
310 812
311 while ((w = (struct ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
312 { 814 {
313 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 817 }
818}
819
820inline_size int
821fd_valid (int fd)
822{
823#ifdef _WIN32
824 return _get_osfhandle (fd) != -1;
825#else
826 return fcntl (fd, F_GETFD) != -1;
827#endif
316} 828}
317 829
318/* called on EBADF to verify fds */ 830/* called on EBADF to verify fds */
319static void 831static void noinline
320fd_ebadf (EV_P) 832fd_ebadf (EV_P)
321{ 833{
322 int fd; 834 int fd;
323 835
324 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 837 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
327 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
328} 840}
329 841
330/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 843static void noinline
332fd_enomem (EV_P) 844fd_enomem (EV_P)
333{ 845{
334 int fd = anfdmax; 846 int fd;
335 847
336 while (fd--) 848 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 849 if (anfds [fd].events)
338 { 850 {
339 close (fd);
340 fd_kill (EV_A_ fd); 851 fd_kill (EV_A_ fd);
341 return; 852 return;
342 } 853 }
343} 854}
344 855
345/* susually called after fork if method needs to re-arm all fds from scratch */ 856/* usually called after fork if backend needs to re-arm all fds from scratch */
346static void 857static void noinline
347fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
348{ 859{
349 int fd; 860 int fd;
350 861
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 863 if (anfds [fd].events)
354 { 864 {
355 anfds [fd].events = 0; 865 anfds [fd].events = 0;
356 fd_change (fd); 866 anfds [fd].emask = 0;
867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
357 } 868 }
358} 869}
359 870
360/*****************************************************************************/ 871/*****************************************************************************/
361 872
362static void 873/*
363upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
364{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
365 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
366 878
367 while (k && heap [k >> 1]->at > w->at) 879/*
368 { 880 * at the moment we allow libev the luxury of two heaps,
369 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
370 heap [k]->active = k + 1; 882 * which is more cache-efficient.
371 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
372 } 884 */
885#if EV_USE_4HEAP
373 886
374 heap [k] = w; 887#define DHEAP 4
375 heap [k]->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
376 891
377} 892/* away from the root */
378 893inline_speed void
379static void
380downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
381{ 895{
382 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
383 898
384 while (k < (N >> 1)) 899 for (;;)
385 { 900 {
386 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
387 904
388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
389 ++j; 907 {
390 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
391 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
392 break; 921 break;
393 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
394 heap [k] = heap [j]; 961 heap [k] = heap [c];
395 heap [k]->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
396 k = j; 964 k = c;
397 } 965 }
398 966
399 heap [k] = w; 967 heap [k] = he;
400 heap [k]->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
995adjustheap (ANHE *heap, int N, int k)
996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
998 upheap (heap, k);
999 else
1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
401} 1013}
402 1014
403/*****************************************************************************/ 1015/*****************************************************************************/
404 1016
405typedef struct 1017typedef struct
406{ 1018{
407 struct ev_watcher_list *head; 1019 WL head;
408 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
409} ANSIG; 1021} ANSIG;
410 1022
411static ANSIG *signals; 1023static ANSIG *signals;
412static int signalmax; 1024static int signalmax;
413 1025
414static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
415static sig_atomic_t volatile gotsig; 1027
1028/*****************************************************************************/
1029
1030inline_speed void
1031fd_intern (int fd)
1032{
1033#ifdef _WIN32
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036#else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039#endif
1040}
1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
416 1092
417static void 1093static void
418signals_init (ANSIG *base, int count) 1094pipecb (EV_P_ ev_io *iow, int revents)
419{ 1095{
420 while (count--) 1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
421 { 1101 }
422 base->head = 0; 1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
423 base->gotsig = 0; 1112 gotsig = 0;
424 1113
425 ++base; 1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
426 } 1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
427} 1133}
1134
1135/*****************************************************************************/
428 1136
429static void 1137static void
430sighandler (int signum) 1138ev_sighandler (int signum)
431{ 1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
432 signals [signum - 1].gotsig = 1; 1148 signals [signum - 1].gotsig = 1;
433 1149 evpipe_write (EV_A_ &gotsig);
434 if (!gotsig)
435 {
436 int old_errno = errno;
437 gotsig = 1;
438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
440 }
441} 1150}
442 1151
443static void 1152void noinline
444sigcb (EV_P_ struct ev_io *iow, int revents) 1153ev_feed_signal_event (EV_P_ int signum)
445{ 1154{
446 struct ev_watcher_list *w; 1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
447 int signum; 1161 --signum;
448 1162
449 read (sigpipe [0], &revents, 1); 1163 if (signum < 0 || signum >= signalmax)
450 gotsig = 0; 1164 return;
451 1165
452 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig)
454 {
455 signals [signum].gotsig = 0; 1166 signals [signum].gotsig = 0;
456 1167
457 for (w = signals [signum].head; w; w = w->next) 1168 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
459 }
460}
461
462static void
463siginit (EV_P)
464{
465#ifndef WIN32
466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
468
469 /* rather than sort out wether we really need nb, set it */
470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
473
474 ev_io_set (&sigev, sigpipe [0], EV_READ);
475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 1170}
478 1171
479/*****************************************************************************/ 1172/*****************************************************************************/
480 1173
1174static WL childs [EV_PID_HASHSIZE];
1175
481#ifndef WIN32 1176#ifndef _WIN32
1177
1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
482 1202
483#ifndef WCONTINUED 1203#ifndef WCONTINUED
484# define WCONTINUED 0 1204# define WCONTINUED 0
485#endif 1205#endif
486 1206
487static void 1207static void
488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
489{
490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
504{ 1209{
505 int pid, status; 1210 int pid, status;
506 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
509 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
510 event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 1222
512 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
514 }
515} 1226}
516 1227
517#endif 1228#endif
518 1229
519/*****************************************************************************/ 1230/*****************************************************************************/
520 1231
1232#if EV_USE_PORT
1233# include "ev_port.c"
1234#endif
521#if EV_USE_KQUEUE 1235#if EV_USE_KQUEUE
522# include "ev_kqueue.c" 1236# include "ev_kqueue.c"
523#endif 1237#endif
524#if EV_USE_EPOLL 1238#if EV_USE_EPOLL
525# include "ev_epoll.c" 1239# include "ev_epoll.c"
526#endif 1240#endif
527#if EV_USEV_POLL 1241#if EV_USE_POLL
528# include "ev_poll.c" 1242# include "ev_poll.c"
529#endif 1243#endif
530#if EV_USE_SELECT 1244#if EV_USE_SELECT
531# include "ev_select.c" 1245# include "ev_select.c"
532#endif 1246#endif
542{ 1256{
543 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
544} 1258}
545 1259
546/* return true if we are running with elevated privileges and should ignore env variables */ 1260/* return true if we are running with elevated privileges and should ignore env variables */
547static int 1261int inline_size
548enable_secure (void) 1262enable_secure (void)
549{ 1263{
550#ifdef WIN32 1264#ifdef _WIN32
551 return 0; 1265 return 0;
552#else 1266#else
553 return getuid () != geteuid () 1267 return getuid () != geteuid ()
554 || getgid () != getegid (); 1268 || getgid () != getegid ();
555#endif 1269#endif
556} 1270}
557 1271
558int 1272unsigned int
559ev_method (EV_P) 1273ev_supported_backends (void)
560{ 1274{
561 return method; 1275 unsigned int flags = 0;
562}
563 1276
564static void 1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
565loop_init (EV_P_ int methods) 1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
566{ 1288{
567 if (!method) 1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
1342loop_init (EV_P_ unsigned int flags)
1343{
1344 if (!backend)
568 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
569#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1358 {
1359 struct timespec ts;
1360
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1;
1363 }
1364#endif
1365
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1390
1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif
1397#if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1399#endif
1400#if EV_USE_EPOLL
1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1402#endif
1403#if EV_USE_POLL
1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1405#endif
1406#if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408#endif
1409
1410 ev_init (&pipeev, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI);
1412 }
1413}
1414
1415static void noinline
1416loop_destroy (EV_P)
1417{
1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif
1448#if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1450#endif
1451#if EV_USE_EPOLL
1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1453#endif
1454#if EV_USE_POLL
1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1456#endif
1457#if EV_USE_SELECT
1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1459#endif
1460
1461 for (i = NUMPRI; i--; )
1462 {
1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
1470
1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY);
1475#if EV_PERIODIC_ENABLE
1476 array_free (periodic, EMPTY);
1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1481 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1486
1487 backend = 0;
1488}
1489
1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
1495loop_fork (EV_P)
1496{
1497#if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499#endif
1500#if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502#endif
1503#if EV_USE_EPOLL
1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1505#endif
1506#if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508#endif
1509
1510 if (ev_is_active (&pipeev))
1511 {
1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1518
1519 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532
1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1536 }
1537
1538 postfork = 0;
1539}
1540
1541#if EV_MULTIPLICITY
1542
1543struct ev_loop *
1544ev_loop_new (unsigned int flags)
1545{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556}
1557
1558void
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
570 { 1623 {
571 struct timespec ts; 1624 verify_watcher (EV_A_ (W)w);
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
573 have_monotonic = 1; 1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
574 } 1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
575#endif 1666# endif
576
577 rt_now = ev_time ();
578 mn_now = get_clock ();
579 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now;
581
582 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 1667#endif
592#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif
598#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif
601 }
602} 1668}
603 1669
604void 1670#endif /* multiplicity */
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635 1671
636#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
637struct ev_loop * 1673struct ev_loop *
638ev_loop_new (int methods) 1674ev_default_loop_init (unsigned int flags)
639{ 1675#else
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1676int
641 1677ev_default_loop (unsigned int flags)
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif 1678#endif
664 1679{
1680 if (!ev_default_loop_ptr)
1681 {
665#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else 1684#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1; 1685 ev_default_loop_ptr = 1;
687#endif 1686#endif
688 1687
689 loop_init (EV_A_ methods); 1688 loop_init (EV_A_ flags);
690 1689
691 if (ev_method (EV_A)) 1690 if (ev_backend (EV_A))
692 { 1691 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A);
696
697#ifndef WIN32 1692#ifndef _WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
700 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif 1697#endif
703 } 1698 }
704 else 1699 else
705 default_loop = 0; 1700 ev_default_loop_ptr = 0;
706 } 1701 }
707 1702
708 return default_loop; 1703 return ev_default_loop_ptr;
709} 1704}
710 1705
711void 1706void
712ev_default_destroy (void) 1707ev_default_destroy (void)
713{ 1708{
714#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 1710 struct ev_loop *loop = ev_default_loop_ptr;
716#endif 1711#endif
717 1712
1713 ev_default_loop_ptr = 0;
1714
1715#ifndef _WIN32
718 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
720 1718#endif
721 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726 1719
727 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
728} 1721}
729 1722
730void 1723void
731ev_default_fork (EV_P) 1724ev_default_fork (void)
732{ 1725{
733 loop_fork (EV_A); 1726#if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr;
1728#endif
734 1729
735 ev_io_stop (EV_A_ &sigev); 1730 postfork = 1; /* must be in line with ev_loop_fork */
736 close (sigpipe [0]);
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 1731}
743 1732
744/*****************************************************************************/ 1733/*****************************************************************************/
745 1734
746static void 1735void
1736ev_invoke (EV_P_ void *w, int revents)
1737{
1738 EV_CB_INVOKE ((W)w, revents);
1739}
1740
1741inline_speed void
747call_pending (EV_P) 1742call_pending (EV_P)
748{ 1743{
749 int pri; 1744 int pri;
750 1745
751 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
752 while (pendingcnt [pri]) 1747 while (pendingcnt [pri])
753 { 1748 {
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 1750
756 if (p->w) 1751 if (expect_true (p->w))
757 { 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
758 p->w->pending = 0; 1755 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
760 } 1758 }
761 } 1759 }
762} 1760}
763 1761
764static void 1762#if EV_IDLE_ENABLE
1763inline_size void
765timers_reify (EV_P) 1764idle_reify (EV_P)
766{ 1765{
767 while (timercnt && timers [0]->at <= mn_now) 1766 if (expect_false (idleall))
768 { 1767 {
769 struct ev_timer *w = timers [0]; 1768 int pri;
770 1769
771 /* first reschedule or stop timer */ 1770 for (pri = NUMPRI; pri--; )
772 if (w->repeat)
773 { 1771 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1772 if (pendingcnt [pri])
775 w->at = mn_now + w->repeat; 1773 break;
776 downheap ((WT *)timers, timercnt, 0);
777 }
778 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 1774
781 event (EV_A_ (W)w, EV_TIMEOUT); 1775 if (idlecnt [pri])
782 }
783}
784
785static void
786periodics_reify (EV_P)
787{
788 while (periodiccnt && periodics [0]->at <= rt_now)
789 {
790 struct ev_periodic *w = periodics [0];
791
792 /* first reschedule or stop timer */
793 if (w->interval)
794 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0);
798 }
799 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801
802 event (EV_A_ (W)w, EV_PERIODIC);
803 }
804}
805
806static void
807periodics_reschedule (EV_P)
808{
809 int i;
810
811 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i)
813 {
814 struct ev_periodic *w = periodics [i];
815
816 if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 { 1776 {
822 ev_periodic_stop (EV_A_ w); 1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
823 ev_periodic_start (EV_A_ w); 1778 break;
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 } 1779 }
827 } 1780 }
828 } 1781 }
829} 1782}
1783#endif
830 1784
831inline int 1785inline_size void
832time_update_monotonic (EV_P) 1786timers_reify (EV_P)
833{ 1787{
834 mn_now = get_clock (); 1788 EV_FREQUENT_CHECK;
835 1789
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 } 1791 {
841 else 1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
842 { 1819 }
843 now_floor = mn_now; 1820}
844 rt_now = ev_time (); 1821
845 return 1; 1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
846 } 1829 {
847} 1830 int feed_count = 0;
848 1831
849static void 1832 do
850time_update (EV_P) 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901inline_speed void
1902time_update (EV_P_ ev_tstamp max_block)
851{ 1903{
852 int i; 1904 int i;
853 1905
854#if EV_USE_MONOTONIC 1906#if EV_USE_MONOTONIC
855 if (expect_true (have_monotonic)) 1907 if (expect_true (have_monotonic))
856 { 1908 {
857 if (time_update_monotonic (EV_A)) 1909 ev_tstamp odiff = rtmn_diff;
1910
1911 mn_now = get_clock ();
1912
1913 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1914 /* interpolate in the meantime */
1915 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
858 { 1916 {
859 ev_tstamp odiff = rtmn_diff; 1917 ev_rt_now = rtmn_diff + mn_now;
1918 return;
1919 }
860 1920
1921 now_floor = mn_now;
1922 ev_rt_now = ev_time ();
1923
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1924 /* loop a few times, before making important decisions.
1925 * on the choice of "4": one iteration isn't enough,
1926 * in case we get preempted during the calls to
1927 * ev_time and get_clock. a second call is almost guaranteed
1928 * to succeed in that case, though. and looping a few more times
1929 * doesn't hurt either as we only do this on time-jumps or
1930 * in the unlikely event of having been preempted here.
1931 */
1932 for (i = 4; --i; )
1933 {
1934 rtmn_diff = ev_rt_now - mn_now;
1935
1936 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1937 return; /* all is well */
1938
1939 ev_rt_now = ev_time ();
1940 mn_now = get_clock ();
1941 now_floor = mn_now;
1942 }
1943
1944# if EV_PERIODIC_ENABLE
1945 periodics_reschedule (EV_A);
1946# endif
1947 /* no timer adjustment, as the monotonic clock doesn't jump */
1948 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1949 }
1950 else
1951#endif
1952 {
1953 ev_rt_now = ev_time ();
1954
1955 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1956 {
1957#if EV_PERIODIC_ENABLE
1958 periodics_reschedule (EV_A);
1959#endif
1960 /* adjust timers. this is easy, as the offset is the same for all of them */
1961 for (i = 0; i < timercnt; ++i)
862 { 1962 {
863 rtmn_diff = rt_now - mn_now; 1963 ANHE *he = timers + i + HEAP0;
864 1964 ANHE_w (*he)->at += ev_rt_now - mn_now;
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1965 ANHE_at_cache (*he);
866 return; /* all is well */
867
868 rt_now = ev_time ();
869 mn_now = get_clock ();
870 now_floor = mn_now;
871 } 1966 }
872
873 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 1967 }
877 }
878 else
879#endif
880 {
881 rt_now = ev_time ();
882 1968
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 {
885 periodics_reschedule (EV_A);
886
887 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now;
890 }
891
892 mn_now = rt_now; 1969 mn_now = ev_rt_now;
893 } 1970 }
894} 1971}
895 1972
896void 1973void
897ev_ref (EV_P) 1974ev_ref (EV_P)
903ev_unref (EV_P) 1980ev_unref (EV_P)
904{ 1981{
905 --activecnt; 1982 --activecnt;
906} 1983}
907 1984
1985void
1986ev_now_update (EV_P)
1987{
1988 time_update (EV_A_ 1e100);
1989}
1990
908static int loop_done; 1991static int loop_done;
909 1992
910void 1993void
911ev_loop (EV_P_ int flags) 1994ev_loop (EV_P_ int flags)
912{ 1995{
913 double block; 1996 loop_done = EVUNLOOP_CANCEL;
914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1997
1998 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
915 1999
916 do 2000 do
917 { 2001 {
2002#if EV_VERIFY >= 2
2003 ev_loop_verify (EV_A);
2004#endif
2005
2006#ifndef _WIN32
2007 if (expect_false (curpid)) /* penalise the forking check even more */
2008 if (expect_false (getpid () != curpid))
2009 {
2010 curpid = getpid ();
2011 postfork = 1;
2012 }
2013#endif
2014
2015#if EV_FORK_ENABLE
2016 /* we might have forked, so queue fork handlers */
2017 if (expect_false (postfork))
2018 if (forkcnt)
2019 {
2020 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2021 call_pending (EV_A);
2022 }
2023#endif
2024
918 /* queue check watchers (and execute them) */ 2025 /* queue prepare watchers (and execute them) */
919 if (expect_false (preparecnt)) 2026 if (expect_false (preparecnt))
920 { 2027 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2028 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 2029 call_pending (EV_A);
923 } 2030 }
924 2031
2032 /* we might have forked, so reify kernel state if necessary */
2033 if (expect_false (postfork))
2034 loop_fork (EV_A);
2035
925 /* update fd-related kernel structures */ 2036 /* update fd-related kernel structures */
926 fd_reify (EV_A); 2037 fd_reify (EV_A);
927 2038
928 /* calculate blocking time */ 2039 /* calculate blocking time */
2040 {
2041 ev_tstamp waittime = 0.;
2042 ev_tstamp sleeptime = 0.;
929 2043
930 /* we only need this for !monotonic clockor timers, but as we basically 2044 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
931 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A);
935 else
936#endif
937 { 2045 {
938 rt_now = ev_time (); 2046 /* update time to cancel out callback processing overhead */
939 mn_now = rt_now; 2047 time_update (EV_A_ 1e100);
940 }
941 2048
942 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.;
944 else
945 {
946 block = MAX_BLOCKTIME;
947
948 if (timercnt) 2049 if (timercnt)
949 { 2050 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2051 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
951 if (block > to) block = to; 2052 if (waittime > to) waittime = to;
952 } 2053 }
953 2054
2055#if EV_PERIODIC_ENABLE
954 if (periodiccnt) 2056 if (periodiccnt)
955 { 2057 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2058 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
957 if (block > to) block = to; 2059 if (waittime > to) waittime = to;
958 } 2060 }
2061#endif
959 2062
960 if (block < 0.) block = 0.; 2063 if (expect_false (waittime < timeout_blocktime))
2064 waittime = timeout_blocktime;
2065
2066 sleeptime = waittime - backend_fudge;
2067
2068 if (expect_true (sleeptime > io_blocktime))
2069 sleeptime = io_blocktime;
2070
2071 if (sleeptime)
2072 {
2073 ev_sleep (sleeptime);
2074 waittime -= sleeptime;
2075 }
961 } 2076 }
962 2077
963 method_poll (EV_A_ block); 2078 ++loop_count;
2079 backend_poll (EV_A_ waittime);
964 2080
965 /* update rt_now, do magic */ 2081 /* update ev_rt_now, do magic */
966 time_update (EV_A); 2082 time_update (EV_A_ waittime + sleeptime);
2083 }
967 2084
968 /* queue pending timers and reschedule them */ 2085 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 2086 timers_reify (EV_A); /* relative timers called last */
2087#if EV_PERIODIC_ENABLE
970 periodics_reify (EV_A); /* absolute timers called first */ 2088 periodics_reify (EV_A); /* absolute timers called first */
2089#endif
971 2090
2091#if EV_IDLE_ENABLE
972 /* queue idle watchers unless io or timers are pending */ 2092 /* queue idle watchers unless other events are pending */
973 if (!pendingcnt) 2093 idle_reify (EV_A);
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2094#endif
975 2095
976 /* queue check watchers, to be executed first */ 2096 /* queue check watchers, to be executed first */
977 if (checkcnt) 2097 if (expect_false (checkcnt))
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2098 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
979 2099
980 call_pending (EV_A); 2100 call_pending (EV_A);
981 } 2101 }
982 while (activecnt && !loop_done); 2102 while (expect_true (
2103 activecnt
2104 && !loop_done
2105 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2106 ));
983 2107
984 if (loop_done != 2) 2108 if (loop_done == EVUNLOOP_ONE)
985 loop_done = 0; 2109 loop_done = EVUNLOOP_CANCEL;
986} 2110}
987 2111
988void 2112void
989ev_unloop (EV_P_ int how) 2113ev_unloop (EV_P_ int how)
990{ 2114{
991 loop_done = how; 2115 loop_done = how;
992} 2116}
993 2117
994/*****************************************************************************/ 2118/*****************************************************************************/
995 2119
996inline void 2120inline_size void
997wlist_add (WL *head, WL elem) 2121wlist_add (WL *head, WL elem)
998{ 2122{
999 elem->next = *head; 2123 elem->next = *head;
1000 *head = elem; 2124 *head = elem;
1001} 2125}
1002 2126
1003inline void 2127inline_size void
1004wlist_del (WL *head, WL elem) 2128wlist_del (WL *head, WL elem)
1005{ 2129{
1006 while (*head) 2130 while (*head)
1007 { 2131 {
1008 if (*head == elem) 2132 if (*head == elem)
1013 2137
1014 head = &(*head)->next; 2138 head = &(*head)->next;
1015 } 2139 }
1016} 2140}
1017 2141
1018inline void 2142inline_speed void
1019ev_clear_pending (EV_P_ W w) 2143clear_pending (EV_P_ W w)
1020{ 2144{
1021 if (w->pending) 2145 if (w->pending)
1022 { 2146 {
1023 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2147 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1024 w->pending = 0; 2148 w->pending = 0;
1025 } 2149 }
1026} 2150}
1027 2151
2152int
2153ev_clear_pending (EV_P_ void *w)
2154{
2155 W w_ = (W)w;
2156 int pending = w_->pending;
2157
2158 if (expect_true (pending))
2159 {
2160 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2161 w_->pending = 0;
2162 p->w = 0;
2163 return p->events;
2164 }
2165 else
2166 return 0;
2167}
2168
1028inline void 2169inline_size void
2170pri_adjust (EV_P_ W w)
2171{
2172 int pri = w->priority;
2173 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2174 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2175 w->priority = pri;
2176}
2177
2178inline_speed void
1029ev_start (EV_P_ W w, int active) 2179ev_start (EV_P_ W w, int active)
1030{ 2180{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2181 pri_adjust (EV_A_ w);
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
1034 w->active = active; 2182 w->active = active;
1035 ev_ref (EV_A); 2183 ev_ref (EV_A);
1036} 2184}
1037 2185
1038inline void 2186inline_size void
1039ev_stop (EV_P_ W w) 2187ev_stop (EV_P_ W w)
1040{ 2188{
1041 ev_unref (EV_A); 2189 ev_unref (EV_A);
1042 w->active = 0; 2190 w->active = 0;
1043} 2191}
1044 2192
1045/*****************************************************************************/ 2193/*****************************************************************************/
1046 2194
1047void 2195void noinline
1048ev_io_start (EV_P_ struct ev_io *w) 2196ev_io_start (EV_P_ ev_io *w)
1049{ 2197{
1050 int fd = w->fd; 2198 int fd = w->fd;
1051 2199
1052 if (ev_is_active (w)) 2200 if (expect_false (ev_is_active (w)))
1053 return; 2201 return;
1054 2202
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 2203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2204 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2205
2206 EV_FREQUENT_CHECK;
1056 2207
1057 ev_start (EV_A_ (W)w, 1); 2208 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2209 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2210 wlist_add (&anfds[fd].head, (WL)w);
1060 2211
1061 fd_change (EV_A_ fd); 2212 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1062} 2213 w->events &= ~EV__IOFDSET;
1063 2214
1064void 2215 EV_FREQUENT_CHECK;
2216}
2217
2218void noinline
1065ev_io_stop (EV_P_ struct ev_io *w) 2219ev_io_stop (EV_P_ ev_io *w)
1066{ 2220{
1067 ev_clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 2222 if (expect_false (!ev_is_active (w)))
1069 return; 2223 return;
1070 2224
2225 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2226
2227 EV_FREQUENT_CHECK;
2228
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2229 wlist_del (&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 2230 ev_stop (EV_A_ (W)w);
1073 2231
1074 fd_change (EV_A_ w->fd); 2232 fd_change (EV_A_ w->fd, 1);
1075}
1076 2233
1077void 2234 EV_FREQUENT_CHECK;
2235}
2236
2237void noinline
1078ev_timer_start (EV_P_ struct ev_timer *w) 2238ev_timer_start (EV_P_ ev_timer *w)
1079{ 2239{
1080 if (ev_is_active (w)) 2240 if (expect_false (ev_is_active (w)))
1081 return; 2241 return;
1082 2242
1083 w->at += mn_now; 2243 ev_at (w) += mn_now;
1084 2244
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2245 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 2246
2247 EV_FREQUENT_CHECK;
2248
2249 ++timercnt;
1087 ev_start (EV_A_ (W)w, ++timercnt); 2250 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1088 array_needsize (timers, timermax, timercnt, ); 2251 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1089 timers [timercnt - 1] = w; 2252 ANHE_w (timers [ev_active (w)]) = (WT)w;
1090 upheap ((WT *)timers, timercnt - 1); 2253 ANHE_at_cache (timers [ev_active (w)]);
1091} 2254 upheap (timers, ev_active (w));
1092 2255
1093void 2256 EV_FREQUENT_CHECK;
2257
2258 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2259}
2260
2261void noinline
1094ev_timer_stop (EV_P_ struct ev_timer *w) 2262ev_timer_stop (EV_P_ ev_timer *w)
1095{ 2263{
1096 ev_clear_pending (EV_A_ (W)w); 2264 clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 2265 if (expect_false (!ev_is_active (w)))
1098 return; 2266 return;
1099 2267
1100 if (w->active < timercnt--) 2268 EV_FREQUENT_CHECK;
2269
2270 {
2271 int active = ev_active (w);
2272
2273 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2274
2275 --timercnt;
2276
2277 if (expect_true (active < timercnt + HEAP0))
1101 { 2278 {
1102 timers [w->active - 1] = timers [timercnt]; 2279 timers [active] = timers [timercnt + HEAP0];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 2280 adjustheap (timers, timercnt, active);
1104 } 2281 }
2282 }
1105 2283
1106 w->at = w->repeat; 2284 EV_FREQUENT_CHECK;
2285
2286 ev_at (w) -= mn_now;
1107 2287
1108 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1109} 2289}
1110 2290
1111void 2291void noinline
1112ev_timer_again (EV_P_ struct ev_timer *w) 2292ev_timer_again (EV_P_ ev_timer *w)
1113{ 2293{
2294 EV_FREQUENT_CHECK;
2295
1114 if (ev_is_active (w)) 2296 if (ev_is_active (w))
1115 { 2297 {
1116 if (w->repeat) 2298 if (w->repeat)
1117 { 2299 {
1118 w->at = mn_now + w->repeat; 2300 ev_at (w) = mn_now + w->repeat;
2301 ANHE_at_cache (timers [ev_active (w)]);
1119 downheap ((WT *)timers, timercnt, w->active - 1); 2302 adjustheap (timers, timercnt, ev_active (w));
1120 } 2303 }
1121 else 2304 else
1122 ev_timer_stop (EV_A_ w); 2305 ev_timer_stop (EV_A_ w);
1123 } 2306 }
1124 else if (w->repeat) 2307 else if (w->repeat)
2308 {
2309 ev_at (w) = w->repeat;
1125 ev_timer_start (EV_A_ w); 2310 ev_timer_start (EV_A_ w);
1126} 2311 }
1127 2312
1128void 2313 EV_FREQUENT_CHECK;
2314}
2315
2316#if EV_PERIODIC_ENABLE
2317void noinline
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 2318ev_periodic_start (EV_P_ ev_periodic *w)
1130{ 2319{
1131 if (ev_is_active (w)) 2320 if (expect_false (ev_is_active (w)))
1132 return; 2321 return;
1133 2322
2323 if (w->reschedule_cb)
2324 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2325 else if (w->interval)
2326 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2327 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 2328 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2329 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2330 }
2331 else
2332 ev_at (w) = w->offset;
1139 2333
2334 EV_FREQUENT_CHECK;
2335
2336 ++periodiccnt;
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 2337 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 2338 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1142 periodics [periodiccnt - 1] = w; 2339 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 2340 ANHE_at_cache (periodics [ev_active (w)]);
1144} 2341 upheap (periodics, ev_active (w));
1145 2342
1146void 2343 EV_FREQUENT_CHECK;
2344
2345 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2346}
2347
2348void noinline
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 2349ev_periodic_stop (EV_P_ ev_periodic *w)
1148{ 2350{
1149 ev_clear_pending (EV_A_ (W)w); 2351 clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 2352 if (expect_false (!ev_is_active (w)))
1151 return; 2353 return;
1152 2354
1153 if (w->active < periodiccnt--) 2355 EV_FREQUENT_CHECK;
2356
2357 {
2358 int active = ev_active (w);
2359
2360 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2361
2362 --periodiccnt;
2363
2364 if (expect_true (active < periodiccnt + HEAP0))
1154 { 2365 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 2366 periodics [active] = periodics [periodiccnt + HEAP0];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2367 adjustheap (periodics, periodiccnt, active);
1157 } 2368 }
2369 }
2370
2371 EV_FREQUENT_CHECK;
1158 2372
1159 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1160} 2374}
1161 2375
1162void 2376void noinline
1163ev_idle_start (EV_P_ struct ev_idle *w) 2377ev_periodic_again (EV_P_ ev_periodic *w)
1164{ 2378{
1165 if (ev_is_active (w)) 2379 /* TODO: use adjustheap and recalculation */
1166 return;
1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 2380 ev_periodic_stop (EV_A_ w);
2381 ev_periodic_start (EV_A_ w);
1182} 2382}
1183 2383#endif
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227 2384
1228#ifndef SA_RESTART 2385#ifndef SA_RESTART
1229# define SA_RESTART 0 2386# define SA_RESTART 0
1230#endif 2387#endif
1231 2388
1232void 2389void noinline
1233ev_signal_start (EV_P_ struct ev_signal *w) 2390ev_signal_start (EV_P_ ev_signal *w)
1234{ 2391{
1235#if EV_MULTIPLICITY 2392#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2393 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1237#endif 2394#endif
1238 if (ev_is_active (w)) 2395 if (expect_false (ev_is_active (w)))
1239 return; 2396 return;
1240 2397
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2398 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2399
2400 evpipe_init (EV_A);
2401
2402 EV_FREQUENT_CHECK;
2403
2404 {
2405#ifndef _WIN32
2406 sigset_t full, prev;
2407 sigfillset (&full);
2408 sigprocmask (SIG_SETMASK, &full, &prev);
2409#endif
2410
2411 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2412
2413#ifndef _WIN32
2414 sigprocmask (SIG_SETMASK, &prev, 0);
2415#endif
2416 }
1242 2417
1243 ev_start (EV_A_ (W)w, 1); 2418 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2419 wlist_add (&signals [w->signum - 1].head, (WL)w);
1246 2420
1247 if (!w->next) 2421 if (!((WL)w)->next)
1248 { 2422 {
2423#if _WIN32
2424 signal (w->signum, ev_sighandler);
2425#else
1249 struct sigaction sa; 2426 struct sigaction sa;
1250 sa.sa_handler = sighandler; 2427 sa.sa_handler = ev_sighandler;
1251 sigfillset (&sa.sa_mask); 2428 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2429 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 2430 sigaction (w->signum, &sa, 0);
2431#endif
1254 } 2432 }
1255}
1256 2433
1257void 2434 EV_FREQUENT_CHECK;
2435}
2436
2437void noinline
1258ev_signal_stop (EV_P_ struct ev_signal *w) 2438ev_signal_stop (EV_P_ ev_signal *w)
1259{ 2439{
1260 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
1262 return; 2442 return;
1263 2443
2444 EV_FREQUENT_CHECK;
2445
1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2446 wlist_del (&signals [w->signum - 1].head, (WL)w);
1265 ev_stop (EV_A_ (W)w); 2447 ev_stop (EV_A_ (W)w);
1266 2448
1267 if (!signals [w->signum - 1].head) 2449 if (!signals [w->signum - 1].head)
1268 signal (w->signum, SIG_DFL); 2450 signal (w->signum, SIG_DFL);
1269}
1270 2451
2452 EV_FREQUENT_CHECK;
2453}
2454
1271void 2455void
1272ev_child_start (EV_P_ struct ev_child *w) 2456ev_child_start (EV_P_ ev_child *w)
1273{ 2457{
1274#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2459 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1276#endif 2460#endif
1277 if (ev_is_active (w)) 2461 if (expect_false (ev_is_active (w)))
1278 return; 2462 return;
1279 2463
2464 EV_FREQUENT_CHECK;
2465
1280 ev_start (EV_A_ (W)w, 1); 2466 ev_start (EV_A_ (W)w, 1);
1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2467 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1282}
1283 2468
2469 EV_FREQUENT_CHECK;
2470}
2471
1284void 2472void
1285ev_child_stop (EV_P_ struct ev_child *w) 2473ev_child_stop (EV_P_ ev_child *w)
1286{ 2474{
1287 ev_clear_pending (EV_A_ (W)w); 2475 clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 2476 if (expect_false (!ev_is_active (w)))
1289 return; 2477 return;
1290 2478
2479 EV_FREQUENT_CHECK;
2480
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2481 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1292 ev_stop (EV_A_ (W)w); 2482 ev_stop (EV_A_ (W)w);
2483
2484 EV_FREQUENT_CHECK;
1293} 2485}
2486
2487#if EV_STAT_ENABLE
2488
2489# ifdef _WIN32
2490# undef lstat
2491# define lstat(a,b) _stati64 (a,b)
2492# endif
2493
2494#define DEF_STAT_INTERVAL 5.0074891
2495#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2496#define MIN_STAT_INTERVAL 0.1074891
2497
2498static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2499
2500#if EV_USE_INOTIFY
2501# define EV_INOTIFY_BUFSIZE 8192
2502
2503static void noinline
2504infy_add (EV_P_ ev_stat *w)
2505{
2506 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2507
2508 if (w->wd < 0)
2509 {
2510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2512
2513 /* monitor some parent directory for speedup hints */
2514 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2515 /* but an efficiency issue only */
2516 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2517 {
2518 char path [4096];
2519 strcpy (path, w->path);
2520
2521 do
2522 {
2523 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2524 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2525
2526 char *pend = strrchr (path, '/');
2527
2528 if (!pend || pend == path)
2529 break;
2530
2531 *pend = 0;
2532 w->wd = inotify_add_watch (fs_fd, path, mask);
2533 }
2534 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2535 }
2536 }
2537
2538 if (w->wd >= 0)
2539 {
2540 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2541
2542 /* now local changes will be tracked by inotify, but remote changes won't */
2543 /* unless the filesystem it known to be local, we therefore still poll */
2544 /* also do poll on <2.6.25, but with normal frequency */
2545 struct statfs sfs;
2546
2547 if (fs_2625 && !statfs (w->path, &sfs))
2548 if (sfs.f_type == 0x1373 /* devfs */
2549 || sfs.f_type == 0xEF53 /* ext2/3 */
2550 || sfs.f_type == 0x3153464a /* jfs */
2551 || sfs.f_type == 0x52654973 /* reiser3 */
2552 || sfs.f_type == 0x01021994 /* tempfs */
2553 || sfs.f_type == 0x58465342 /* xfs */)
2554 return;
2555
2556 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2557 ev_timer_again (EV_A_ &w->timer);
2558 }
2559}
2560
2561static void noinline
2562infy_del (EV_P_ ev_stat *w)
2563{
2564 int slot;
2565 int wd = w->wd;
2566
2567 if (wd < 0)
2568 return;
2569
2570 w->wd = -2;
2571 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2572 wlist_del (&fs_hash [slot].head, (WL)w);
2573
2574 /* remove this watcher, if others are watching it, they will rearm */
2575 inotify_rm_watch (fs_fd, wd);
2576}
2577
2578static void noinline
2579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2580{
2581 if (slot < 0)
2582 /* overflow, need to check for all hash slots */
2583 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2584 infy_wd (EV_A_ slot, wd, ev);
2585 else
2586 {
2587 WL w_;
2588
2589 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2590 {
2591 ev_stat *w = (ev_stat *)w_;
2592 w_ = w_->next; /* lets us remove this watcher and all before it */
2593
2594 if (w->wd == wd || wd == -1)
2595 {
2596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2597 {
2598 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2599 w->wd = -1;
2600 infy_add (EV_A_ w); /* re-add, no matter what */
2601 }
2602
2603 stat_timer_cb (EV_A_ &w->timer, 0);
2604 }
2605 }
2606 }
2607}
2608
2609static void
2610infy_cb (EV_P_ ev_io *w, int revents)
2611{
2612 char buf [EV_INOTIFY_BUFSIZE];
2613 struct inotify_event *ev = (struct inotify_event *)buf;
2614 int ofs;
2615 int len = read (fs_fd, buf, sizeof (buf));
2616
2617 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2618 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2619}
2620
2621inline_size void
2622check_2625 (EV_P)
2623{
2624 /* kernels < 2.6.25 are borked
2625 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2626 */
2627 struct utsname buf;
2628 int major, minor, micro;
2629
2630 if (uname (&buf))
2631 return;
2632
2633 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2634 return;
2635
2636 if (major < 2
2637 || (major == 2 && minor < 6)
2638 || (major == 2 && minor == 6 && micro < 25))
2639 return;
2640
2641 fs_2625 = 1;
2642}
2643
2644inline_size void
2645infy_init (EV_P)
2646{
2647 if (fs_fd != -2)
2648 return;
2649
2650 fs_fd = -1;
2651
2652 check_2625 (EV_A);
2653
2654 fs_fd = inotify_init ();
2655
2656 if (fs_fd >= 0)
2657 {
2658 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2659 ev_set_priority (&fs_w, EV_MAXPRI);
2660 ev_io_start (EV_A_ &fs_w);
2661 }
2662}
2663
2664inline_size void
2665infy_fork (EV_P)
2666{
2667 int slot;
2668
2669 if (fs_fd < 0)
2670 return;
2671
2672 close (fs_fd);
2673 fs_fd = inotify_init ();
2674
2675 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2676 {
2677 WL w_ = fs_hash [slot].head;
2678 fs_hash [slot].head = 0;
2679
2680 while (w_)
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us add this watcher */
2684
2685 w->wd = -1;
2686
2687 if (fs_fd >= 0)
2688 infy_add (EV_A_ w); /* re-add, no matter what */
2689 else
2690 ev_timer_again (EV_A_ &w->timer);
2691 }
2692 }
2693}
2694
2695#endif
2696
2697#ifdef _WIN32
2698# define EV_LSTAT(p,b) _stati64 (p, b)
2699#else
2700# define EV_LSTAT(p,b) lstat (p, b)
2701#endif
2702
2703void
2704ev_stat_stat (EV_P_ ev_stat *w)
2705{
2706 if (lstat (w->path, &w->attr) < 0)
2707 w->attr.st_nlink = 0;
2708 else if (!w->attr.st_nlink)
2709 w->attr.st_nlink = 1;
2710}
2711
2712static void noinline
2713stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2714{
2715 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2716
2717 /* we copy this here each the time so that */
2718 /* prev has the old value when the callback gets invoked */
2719 w->prev = w->attr;
2720 ev_stat_stat (EV_A_ w);
2721
2722 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2723 if (
2724 w->prev.st_dev != w->attr.st_dev
2725 || w->prev.st_ino != w->attr.st_ino
2726 || w->prev.st_mode != w->attr.st_mode
2727 || w->prev.st_nlink != w->attr.st_nlink
2728 || w->prev.st_uid != w->attr.st_uid
2729 || w->prev.st_gid != w->attr.st_gid
2730 || w->prev.st_rdev != w->attr.st_rdev
2731 || w->prev.st_size != w->attr.st_size
2732 || w->prev.st_atime != w->attr.st_atime
2733 || w->prev.st_mtime != w->attr.st_mtime
2734 || w->prev.st_ctime != w->attr.st_ctime
2735 ) {
2736 #if EV_USE_INOTIFY
2737 if (fs_fd >= 0)
2738 {
2739 infy_del (EV_A_ w);
2740 infy_add (EV_A_ w);
2741 ev_stat_stat (EV_A_ w); /* avoid race... */
2742 }
2743 #endif
2744
2745 ev_feed_event (EV_A_ w, EV_STAT);
2746 }
2747}
2748
2749void
2750ev_stat_start (EV_P_ ev_stat *w)
2751{
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 ev_stat_stat (EV_A_ w);
2756
2757 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2758 w->interval = MIN_STAT_INTERVAL;
2759
2760 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2761 ev_set_priority (&w->timer, ev_priority (w));
2762
2763#if EV_USE_INOTIFY
2764 infy_init (EV_A);
2765
2766 if (fs_fd >= 0)
2767 infy_add (EV_A_ w);
2768 else
2769#endif
2770 ev_timer_again (EV_A_ &w->timer);
2771
2772 ev_start (EV_A_ (W)w, 1);
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_stat_stop (EV_P_ ev_stat *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_INOTIFY
2787 infy_del (EV_A_ w);
2788#endif
2789 ev_timer_stop (EV_A_ &w->timer);
2790
2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2794}
2795#endif
2796
2797#if EV_IDLE_ENABLE
2798void
2799ev_idle_start (EV_P_ ev_idle *w)
2800{
2801 if (expect_false (ev_is_active (w)))
2802 return;
2803
2804 pri_adjust (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807
2808 {
2809 int active = ++idlecnt [ABSPRI (w)];
2810
2811 ++idleall;
2812 ev_start (EV_A_ (W)w, active);
2813
2814 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2815 idles [ABSPRI (w)][active - 1] = w;
2816 }
2817
2818 EV_FREQUENT_CHECK;
2819}
2820
2821void
2822ev_idle_stop (EV_P_ ev_idle *w)
2823{
2824 clear_pending (EV_A_ (W)w);
2825 if (expect_false (!ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
2829
2830 {
2831 int active = ev_active (w);
2832
2833 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2834 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2835
2836 ev_stop (EV_A_ (W)w);
2837 --idleall;
2838 }
2839
2840 EV_FREQUENT_CHECK;
2841}
2842#endif
2843
2844void
2845ev_prepare_start (EV_P_ ev_prepare *w)
2846{
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
2851
2852 ev_start (EV_A_ (W)w, ++preparecnt);
2853 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2854 prepares [preparecnt - 1] = w;
2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859void
2860ev_prepare_stop (EV_P_ ev_prepare *w)
2861{
2862 clear_pending (EV_A_ (W)w);
2863 if (expect_false (!ev_is_active (w)))
2864 return;
2865
2866 EV_FREQUENT_CHECK;
2867
2868 {
2869 int active = ev_active (w);
2870
2871 prepares [active - 1] = prepares [--preparecnt];
2872 ev_active (prepares [active - 1]) = active;
2873 }
2874
2875 ev_stop (EV_A_ (W)w);
2876
2877 EV_FREQUENT_CHECK;
2878}
2879
2880void
2881ev_check_start (EV_P_ ev_check *w)
2882{
2883 if (expect_false (ev_is_active (w)))
2884 return;
2885
2886 EV_FREQUENT_CHECK;
2887
2888 ev_start (EV_A_ (W)w, ++checkcnt);
2889 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2890 checks [checkcnt - 1] = w;
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_check_stop (EV_P_ ev_check *w)
2897{
2898 clear_pending (EV_A_ (W)w);
2899 if (expect_false (!ev_is_active (w)))
2900 return;
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ev_active (w);
2906
2907 checks [active - 1] = checks [--checkcnt];
2908 ev_active (checks [active - 1]) = active;
2909 }
2910
2911 ev_stop (EV_A_ (W)w);
2912
2913 EV_FREQUENT_CHECK;
2914}
2915
2916#if EV_EMBED_ENABLE
2917void noinline
2918ev_embed_sweep (EV_P_ ev_embed *w)
2919{
2920 ev_loop (w->other, EVLOOP_NONBLOCK);
2921}
2922
2923static void
2924embed_io_cb (EV_P_ ev_io *io, int revents)
2925{
2926 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2927
2928 if (ev_cb (w))
2929 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2930 else
2931 ev_loop (w->other, EVLOOP_NONBLOCK);
2932}
2933
2934static void
2935embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2936{
2937 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2938
2939 {
2940 struct ev_loop *loop = w->other;
2941
2942 while (fdchangecnt)
2943 {
2944 fd_reify (EV_A);
2945 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2946 }
2947 }
2948}
2949
2950static void
2951embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2952{
2953 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2954
2955 ev_embed_stop (EV_A_ w);
2956
2957 {
2958 struct ev_loop *loop = w->other;
2959
2960 ev_loop_fork (EV_A);
2961 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2962 }
2963
2964 ev_embed_start (EV_A_ w);
2965}
2966
2967#if 0
2968static void
2969embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2970{
2971 ev_idle_stop (EV_A_ idle);
2972}
2973#endif
2974
2975void
2976ev_embed_start (EV_P_ ev_embed *w)
2977{
2978 if (expect_false (ev_is_active (w)))
2979 return;
2980
2981 {
2982 struct ev_loop *loop = w->other;
2983 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2984 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988
2989 ev_set_priority (&w->io, ev_priority (w));
2990 ev_io_start (EV_A_ &w->io);
2991
2992 ev_prepare_init (&w->prepare, embed_prepare_cb);
2993 ev_set_priority (&w->prepare, EV_MINPRI);
2994 ev_prepare_start (EV_A_ &w->prepare);
2995
2996 ev_fork_init (&w->fork, embed_fork_cb);
2997 ev_fork_start (EV_A_ &w->fork);
2998
2999 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3000
3001 ev_start (EV_A_ (W)w, 1);
3002
3003 EV_FREQUENT_CHECK;
3004}
3005
3006void
3007ev_embed_stop (EV_P_ ev_embed *w)
3008{
3009 clear_pending (EV_A_ (W)w);
3010 if (expect_false (!ev_is_active (w)))
3011 return;
3012
3013 EV_FREQUENT_CHECK;
3014
3015 ev_io_stop (EV_A_ &w->io);
3016 ev_prepare_stop (EV_A_ &w->prepare);
3017 ev_fork_stop (EV_A_ &w->fork);
3018
3019 EV_FREQUENT_CHECK;
3020}
3021#endif
3022
3023#if EV_FORK_ENABLE
3024void
3025ev_fork_start (EV_P_ ev_fork *w)
3026{
3027 if (expect_false (ev_is_active (w)))
3028 return;
3029
3030 EV_FREQUENT_CHECK;
3031
3032 ev_start (EV_A_ (W)w, ++forkcnt);
3033 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3034 forks [forkcnt - 1] = w;
3035
3036 EV_FREQUENT_CHECK;
3037}
3038
3039void
3040ev_fork_stop (EV_P_ ev_fork *w)
3041{
3042 clear_pending (EV_A_ (W)w);
3043 if (expect_false (!ev_is_active (w)))
3044 return;
3045
3046 EV_FREQUENT_CHECK;
3047
3048 {
3049 int active = ev_active (w);
3050
3051 forks [active - 1] = forks [--forkcnt];
3052 ev_active (forks [active - 1]) = active;
3053 }
3054
3055 ev_stop (EV_A_ (W)w);
3056
3057 EV_FREQUENT_CHECK;
3058}
3059#endif
3060
3061#if EV_ASYNC_ENABLE
3062void
3063ev_async_start (EV_P_ ev_async *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 evpipe_init (EV_A);
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_start (EV_A_ (W)w, ++asynccnt);
3073 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3074 asyncs [asynccnt - 1] = w;
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_async_stop (EV_P_ ev_async *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 {
3089 int active = ev_active (w);
3090
3091 asyncs [active - 1] = asyncs [--asynccnt];
3092 ev_active (asyncs [active - 1]) = active;
3093 }
3094
3095 ev_stop (EV_A_ (W)w);
3096
3097 EV_FREQUENT_CHECK;
3098}
3099
3100void
3101ev_async_send (EV_P_ ev_async *w)
3102{
3103 w->sent = 1;
3104 evpipe_write (EV_A_ &gotasync);
3105}
3106#endif
1294 3107
1295/*****************************************************************************/ 3108/*****************************************************************************/
1296 3109
1297struct ev_once 3110struct ev_once
1298{ 3111{
1299 struct ev_io io; 3112 ev_io io;
1300 struct ev_timer to; 3113 ev_timer to;
1301 void (*cb)(int revents, void *arg); 3114 void (*cb)(int revents, void *arg);
1302 void *arg; 3115 void *arg;
1303}; 3116};
1304 3117
1305static void 3118static void
1306once_cb (EV_P_ struct ev_once *once, int revents) 3119once_cb (EV_P_ struct ev_once *once, int revents)
1307{ 3120{
1308 void (*cb)(int revents, void *arg) = once->cb; 3121 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 3122 void *arg = once->arg;
1310 3123
1311 ev_io_stop (EV_A_ &once->io); 3124 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 3125 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 3126 ev_free (once);
1314 3127
1315 cb (revents, arg); 3128 cb (revents, arg);
1316} 3129}
1317 3130
1318static void 3131static void
1319once_cb_io (EV_P_ struct ev_io *w, int revents) 3132once_cb_io (EV_P_ ev_io *w, int revents)
1320{ 3133{
1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3134 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3135
3136 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1322} 3137}
1323 3138
1324static void 3139static void
1325once_cb_to (EV_P_ struct ev_timer *w, int revents) 3140once_cb_to (EV_P_ ev_timer *w, int revents)
1326{ 3141{
1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3142 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3143
3144 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1328} 3145}
1329 3146
1330void 3147void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3148ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 3149{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 3150 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 3151
1335 if (!once) 3152 if (expect_false (!once))
3153 {
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3154 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 3155 return;
1338 { 3156 }
3157
1339 once->cb = cb; 3158 once->cb = cb;
1340 once->arg = arg; 3159 once->arg = arg;
1341 3160
1342 ev_watcher_init (&once->io, once_cb_io); 3161 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 3162 if (fd >= 0)
3163 {
3164 ev_io_set (&once->io, fd, events);
3165 ev_io_start (EV_A_ &once->io);
3166 }
3167
3168 ev_init (&once->to, once_cb_to);
3169 if (timeout >= 0.)
3170 {
3171 ev_timer_set (&once->to, timeout, 0.);
3172 ev_timer_start (EV_A_ &once->to);
3173 }
3174}
3175
3176/*****************************************************************************/
3177
3178#if 0
3179void
3180ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3181{
3182 int i, j;
3183 ev_watcher_list *wl, *wn;
3184
3185 if (types & (EV_IO | EV_EMBED))
3186 for (i = 0; i < anfdmax; ++i)
3187 for (wl = anfds [i].head; wl; )
1344 { 3188 {
1345 ev_io_set (&once->io, fd, events); 3189 wn = wl->next;
1346 ev_io_start (EV_A_ &once->io); 3190
3191#if EV_EMBED_ENABLE
3192 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3193 {
3194 if (types & EV_EMBED)
3195 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3196 }
3197 else
3198#endif
3199#if EV_USE_INOTIFY
3200 if (ev_cb ((ev_io *)wl) == infy_cb)
3201 ;
3202 else
3203#endif
3204 if ((ev_io *)wl != &pipeev)
3205 if (types & EV_IO)
3206 cb (EV_A_ EV_IO, wl);
3207
3208 wl = wn;
1347 } 3209 }
1348 3210
1349 ev_watcher_init (&once->to, once_cb_to); 3211 if (types & (EV_TIMER | EV_STAT))
1350 if (timeout >= 0.) 3212 for (i = timercnt + HEAP0; i-- > HEAP0; )
3213#if EV_STAT_ENABLE
3214 /*TODO: timer is not always active*/
3215 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1351 { 3216 {
1352 ev_timer_set (&once->to, timeout, 0.); 3217 if (types & EV_STAT)
1353 ev_timer_start (EV_A_ &once->to); 3218 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1354 } 3219 }
1355 } 3220 else
1356} 3221#endif
3222 if (types & EV_TIMER)
3223 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1357 3224
3225#if EV_PERIODIC_ENABLE
3226 if (types & EV_PERIODIC)
3227 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3228 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3229#endif
3230
3231#if EV_IDLE_ENABLE
3232 if (types & EV_IDLE)
3233 for (j = NUMPRI; i--; )
3234 for (i = idlecnt [j]; i--; )
3235 cb (EV_A_ EV_IDLE, idles [j][i]);
3236#endif
3237
3238#if EV_FORK_ENABLE
3239 if (types & EV_FORK)
3240 for (i = forkcnt; i--; )
3241 if (ev_cb (forks [i]) != embed_fork_cb)
3242 cb (EV_A_ EV_FORK, forks [i]);
3243#endif
3244
3245#if EV_ASYNC_ENABLE
3246 if (types & EV_ASYNC)
3247 for (i = asynccnt; i--; )
3248 cb (EV_A_ EV_ASYNC, asyncs [i]);
3249#endif
3250
3251 if (types & EV_PREPARE)
3252 for (i = preparecnt; i--; )
3253#if EV_EMBED_ENABLE
3254 if (ev_cb (prepares [i]) != embed_prepare_cb)
3255#endif
3256 cb (EV_A_ EV_PREPARE, prepares [i]);
3257
3258 if (types & EV_CHECK)
3259 for (i = checkcnt; i--; )
3260 cb (EV_A_ EV_CHECK, checks [i]);
3261
3262 if (types & EV_SIGNAL)
3263 for (i = 0; i < signalmax; ++i)
3264 for (wl = signals [i].head; wl; )
3265 {
3266 wn = wl->next;
3267 cb (EV_A_ EV_SIGNAL, wl);
3268 wl = wn;
3269 }
3270
3271 if (types & EV_CHILD)
3272 for (i = EV_PID_HASHSIZE; i--; )
3273 for (wl = childs [i]; wl; )
3274 {
3275 wn = wl->next;
3276 cb (EV_A_ EV_CHILD, wl);
3277 wl = wn;
3278 }
3279/* EV_STAT 0x00001000 /* stat data changed */
3280/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3281}
3282#endif
3283
3284#if EV_MULTIPLICITY
3285 #include "ev_wrap.h"
3286#endif
3287
3288#ifdef __cplusplus
3289}
3290#endif
3291

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines