ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.285 by root, Wed Apr 15 19:35:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
313typedef struct 483typedef struct
314{ 484{
315 WL head; 485 WL head;
316 unsigned char events; 486 unsigned char events;
317 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
318#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 494 SOCKET handle;
320#endif 495#endif
321} ANFD; 496} ANFD;
322 497
325 W w; 500 W w;
326 int events; 501 int events;
327} ANPENDING; 502} ANPENDING;
328 503
329#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
330typedef struct 506typedef struct
331{ 507{
332 WL head; 508 WL head;
333} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
334#endif 528#endif
335 529
336#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
337 531
338 struct ev_loop 532 struct ev_loop
363 557
364ev_tstamp 558ev_tstamp
365ev_time (void) 559ev_time (void)
366{ 560{
367#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
368 struct timespec ts; 564 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 567 }
568#endif
569
372 struct timeval tv; 570 struct timeval tv;
373 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 573}
377 574
378ev_tstamp inline_size 575inline_size ev_tstamp
379get_clock (void) 576get_clock (void)
380{ 577{
381#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
383 { 580 {
396{ 593{
397 return ev_rt_now; 594 return ev_rt_now;
398} 595}
399#endif 596#endif
400 597
401int inline_size 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
402array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
403{ 632{
404 int ncur = cur + 1; 633 int ncur = cur + 1;
405 634
406 do 635 do
407 ncur <<= 1; 636 ncur <<= 1;
408 while (cnt > ncur); 637 while (cnt > ncur);
409 638
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 641 {
413 ncur *= elem; 642 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 645 ncur /= elem;
417 } 646 }
418 647
419 return ncur; 648 return ncur;
420} 649}
421 650
422inline_speed void * 651static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
424{ 653{
425 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
427} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 660
429#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
431 { \ 663 { \
432 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 677 }
446#endif 678#endif
447 679
448#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 682
451/*****************************************************************************/ 683/*****************************************************************************/
452 684
453void noinline 685void noinline
454ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
455{ 687{
456 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
457 690
458 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
459 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 699 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 700}
469 701
470void inline_size 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 719{
473 int i; 720 int i;
474 721
475 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
477} 724}
478 725
479/*****************************************************************************/ 726/*****************************************************************************/
480 727
481void inline_size 728inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
496{ 730{
497 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
498 ev_io *w; 732 ev_io *w;
499 733
507} 741}
508 742
509void 743void
510ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 745{
746 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
513} 748}
514 749
515void inline_size 750inline_size void
516fd_reify (EV_P) 751fd_reify (EV_P)
517{ 752{
518 int i; 753 int i;
519 754
520 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
521 { 756 {
522 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
524 ev_io *w; 759 ev_io *w;
525 760
526 int events = 0; 761 unsigned char events = 0;
527 762
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 764 events |= (unsigned char)w->events;
530 765
531#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
532 if (events) 767 if (events)
533 { 768 {
534 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
535 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 776 }
538#endif 777#endif
539 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
540 anfd->reify = 0; 783 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
544 } 789 }
545 790
546 fdchangecnt = 0; 791 fdchangecnt = 0;
547} 792}
548 793
549void inline_size 794inline_size void
550fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
551{ 796{
552 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
556 799
800 if (expect_true (!reify))
801 {
557 ++fdchangecnt; 802 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
560} 806}
561 807
562void inline_speed 808inline_speed void
563fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
564{ 810{
565 ev_io *w; 811 ev_io *w;
566 812
567 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 817 }
572} 818}
573 819
574int inline_size 820inline_size int
575fd_valid (int fd) 821fd_valid (int fd)
576{ 822{
577#ifdef _WIN32 823#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
579#else 825#else
587{ 833{
588 int fd; 834 int fd;
589 835
590 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 837 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
594} 840}
595 841
596/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 843static void noinline
615 861
616 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 863 if (anfds [fd].events)
618 { 864 {
619 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
621 } 868 }
622} 869}
623 870
624/*****************************************************************************/ 871/*****************************************************************************/
625 872
626void inline_speed 873/*
627upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
630 878
631 while (k && heap [k >> 1]->at > w->at) 879/*
632 { 880 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
635 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
636 } 884 */
885#if EV_USE_4HEAP
637 886
638 heap [k] = w; 887#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
640 891
641} 892/* away from the root */
642 893inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
645{ 895{
646 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
647 898
648 while (k < (N >> 1)) 899 for (;;)
649 { 900 {
650 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 904
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 907 {
654 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
656 break; 921 break;
657 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
658 heap [k] = heap [j]; 961 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
660 k = j; 964 k = c;
661 } 965 }
662 966
663 heap [k] = w; 967 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
665} 969}
970#endif
666 971
667void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
668adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
669{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 998 upheap (heap, k);
999 else
671 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
672} 1013}
673 1014
674/*****************************************************************************/ 1015/*****************************************************************************/
675 1016
676typedef struct 1017typedef struct
677{ 1018{
678 WL head; 1019 WL head;
679 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
680} ANSIG; 1021} ANSIG;
681 1022
682static ANSIG *signals; 1023static ANSIG *signals;
683static int signalmax; 1024static int signalmax;
684 1025
685static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1027
689void inline_size 1028/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1029
697 ++base; 1030inline_speed void
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1031fd_intern (int fd)
754{ 1032{
755#ifdef _WIN32 1033#ifdef _WIN32
756 int arg = 1; 1034 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1036#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1039#endif
762} 1040}
763 1041
764static void noinline 1042static void noinline
765siginit (EV_P) 1043evpipe_init (EV_P)
766{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
767 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
769 1064
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
773} 1133}
774 1134
775/*****************************************************************************/ 1135/*****************************************************************************/
776 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
777static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
778 1175
779#ifndef _WIN32 1176#ifndef _WIN32
780 1177
781static ev_signal childev; 1178static ev_signal childev;
782 1179
783void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
785{ 1186{
786 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1189
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
789 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
790 { 1194 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1196 w->rpid = pid;
793 w->rstatus = status; 1197 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1199 }
1200 }
796} 1201}
797 1202
798#ifndef WCONTINUED 1203#ifndef WCONTINUED
799# define WCONTINUED 0 1204# define WCONTINUED 0
800#endif 1205#endif
809 if (!WCONTINUED 1214 if (!WCONTINUED
810 || errno != EINVAL 1215 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1217 return;
813 1218
814 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1222
818 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1226}
822 1227
823#endif 1228#endif
824 1229
825/*****************************************************************************/ 1230/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
890#endif 1295#endif
891#ifdef __APPLE__ 1296#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1300#endif
895 1301
896 return flags; 1302 return flags;
897} 1303}
898 1304
899unsigned int 1305unsigned int
900ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
901{ 1307{
902 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1309
904 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
905} 1315}
906 1316
907unsigned int 1317unsigned int
908ev_backend (EV_P) 1318ev_backend (EV_P)
909{ 1319{
914ev_loop_count (EV_P) 1324ev_loop_count (EV_P)
915{ 1325{
916 return loop_count; 1326 return loop_count;
917} 1327}
918 1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
919static void noinline 1341static void noinline
920loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
921{ 1343{
922 if (!backend) 1344 if (!backend)
923 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
924#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
925 { 1358 {
926 struct timespec ts; 1359 struct timespec ts;
1360
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1362 have_monotonic = 1;
929 } 1363 }
930#endif 1364#endif
931 1365
932 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1367 mn_now = get_clock ();
934 now_floor = mn_now; 1368 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
936 1379
937 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
938#ifndef _WIN32 1381#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1383 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1387 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1390
948 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1393
957#if EV_USE_PORT 1394#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1396#endif
960#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
968#endif 1405#endif
969#if EV_USE_SELECT 1406#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1408#endif
972 1409
973 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1412 }
976} 1413}
977 1414
978static void noinline 1415static void noinline
979loop_destroy (EV_P) 1416loop_destroy (EV_P)
980{ 1417{
981 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
982 1436
983#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
985 close (fs_fd); 1439 close (fs_fd);
986#endif 1440#endif
1003#if EV_USE_SELECT 1457#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1459#endif
1006 1460
1007 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
1008 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
1009 1470
1010 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1011 array_free (fdchange, EMPTY0); 1473 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1474 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1476 array_free (periodic, EMPTY);
1015#endif 1477#endif
1478#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1479 array_free (fork, EMPTY);
1480#endif
1017 array_free (prepare, EMPTY0); 1481 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1019 1486
1020 backend = 0; 1487 backend = 0;
1021} 1488}
1022 1489
1490#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1024 1493
1025void inline_size 1494inline_size void
1026loop_fork (EV_P) 1495loop_fork (EV_P)
1027{ 1496{
1028#if EV_USE_PORT 1497#if EV_USE_PORT
1029 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1030#endif 1499#endif
1036#endif 1505#endif
1037#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1507 infy_fork (EV_A);
1039#endif 1508#endif
1040 1509
1041 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1042 { 1511 {
1043 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1044 1518
1045 ev_ref (EV_A); 1519 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1047 close (sigpipe [0]); 1529 close (evpipe [0]);
1048 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1049 1532
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1536 }
1055 1537
1056 postfork = 0; 1538 postfork = 0;
1057} 1539}
1058 1540
1059#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1060struct ev_loop * 1543struct ev_loop *
1061ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1062{ 1545{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1547
1080} 1563}
1081 1564
1082void 1565void
1083ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1084{ 1567{
1085 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1086} 1569}
1087 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1088#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1089 1671
1090#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1091struct ev_loop * 1673struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1093#else 1675#else
1094int 1676int
1095ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1096#endif 1678#endif
1097{ 1679{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1103 { 1681 {
1104#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1684#else
1109 1687
1110 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1111 1689
1112 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1113 { 1691 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1692#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1132{ 1708{
1133#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif 1711#endif
1136 1712
1713 ev_default_loop_ptr = 0;
1714
1137#ifndef _WIN32 1715#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1140#endif 1718#endif
1141 1719
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1149} 1721}
1150 1722
1151void 1723void
1152ev_default_fork (void) 1724ev_default_fork (void)
1153{ 1725{
1154#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1728#endif
1157 1729
1158 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1731}
1161 1732
1162/*****************************************************************************/ 1733/*****************************************************************************/
1163 1734
1164int inline_size 1735void
1165any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
1166{ 1737{
1167 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1739}
1175 1740
1176void inline_speed 1741inline_speed void
1177call_pending (EV_P) 1742call_pending (EV_P)
1178{ 1743{
1179 int pri; 1744 int pri;
1180 1745
1181 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1183 { 1748 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1750
1186 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1187 { 1752 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1189 1754
1190 p->w->pending = 0; 1755 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1192 } 1758 }
1193 } 1759 }
1194} 1760}
1195 1761
1196void inline_size 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
1197timers_reify (EV_P) 1786timers_reify (EV_P)
1198{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1791 {
1201 ev_timer *w = timers [0]; 1792 do
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1806
1210 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1215 } 1815 }
1216 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1817
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1220 } 1819 }
1221} 1820}
1222 1821
1223#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1224void inline_size 1823inline_size void
1225periodics_reify (EV_P) 1824periodics_reify (EV_P)
1226{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1829 {
1229 ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1230 1831
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1239 } 1872 }
1240 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1874
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1250 } 1876 }
1251} 1877}
1252 1878
1253static void noinline 1879static void noinline
1254periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1255{ 1881{
1256 int i; 1882 int i;
1257 1883
1258 /* adjust periodics after time jump */ 1884 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1886 {
1261 ev_periodic *w = periodics [i]; 1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1888
1263 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1891 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1267 } 1907 {
1268 1908 ANHE *he = timers + i + HEAP0;
1269 /* now rebuild the heap */ 1909 ANHE_w (*he)->at += adjust;
1270 for (i = periodiccnt >> 1; i--; ) 1910 ANHE_at_cache (*he);
1271 downheap ((WT *)periodics, periodiccnt, i); 1911 }
1272} 1912}
1273#endif
1274 1913
1275int inline_size 1914inline_speed void
1276time_update_monotonic (EV_P) 1915time_update (EV_P_ ev_tstamp max_block)
1277{ 1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1278 mn_now = get_clock (); 1924 mn_now = get_clock ();
1279 1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1929 {
1282 ev_rt_now = rtmn_diff + mn_now; 1930 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1931 return;
1284 } 1932 }
1285 else 1933
1286 {
1287 now_floor = mn_now; 1934 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1936
1293void inline_size 1937 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1295{ 1939 * in case we get preempted during the calls to
1296 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1297 1941 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1300 { 1944 */
1301 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1302 { 1946 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1316 1948
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1950 return; /* all is well */
1319 1951
1320 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1953 mn_now = get_clock ();
1322 now_floor = mn_now; 1954 now_floor = mn_now;
1323 } 1955 }
1324 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1325# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1327# endif 1961# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1962 }
1332 else 1963 else
1333#endif 1964#endif
1334 { 1965 {
1335 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1336 1967
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1339#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1341#endif 1974#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 1975 }
1347 1976
1348 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1349 } 1978 }
1350} 1979}
1351 1980
1352void
1353ev_ref (EV_P)
1354{
1355 ++activecnt;
1356}
1357
1358void
1359ev_unref (EV_P)
1360{
1361 --activecnt;
1362}
1363
1364static int loop_done; 1981static int loop_done;
1365 1982
1366void 1983void
1367ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1368{ 1985{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1987
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1989
1375 do 1990 do
1376 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1377#ifndef _WIN32 1996#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1380 { 1999 {
1381 curpid = getpid (); 2000 curpid = getpid ();
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 2011 call_pending (EV_A);
1393 } 2012 }
1394#endif 2013#endif
1395 2014
1396 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
1398 { 2017 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 2019 call_pending (EV_A);
1401 } 2020 }
1402 2021
1403 if (expect_false (!activecnt))
1404 break;
1405
1406 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1407 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1408 loop_fork (EV_A); 2024 loop_fork (EV_A);
1409 2025
1410 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 2027 fd_reify (EV_A);
1412 2028
1413 /* calculate blocking time */ 2029 /* calculate blocking time */
1414 { 2030 {
1415 ev_tstamp block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1416 2033
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 2035 {
1421 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 2037 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431
1432 block = MAX_BLOCKTIME;
1433 2038
1434 if (timercnt) 2039 if (timercnt)
1435 { 2040 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2042 if (waittime > to) waittime = to;
1438 } 2043 }
1439 2044
1440#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2046 if (periodiccnt)
1442 { 2047 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2049 if (waittime > to) waittime = to;
1445 } 2050 }
1446#endif 2051#endif
1447 2052
1448 if (expect_false (block < 0.)) block = 0.; 2053 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime;
2055
2056 sleeptime = waittime - backend_fudge;
2057
2058 if (expect_true (sleeptime > io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 {
2063 ev_sleep (sleeptime);
2064 waittime -= sleeptime;
2065 }
1449 } 2066 }
1450 2067
1451 ++loop_count; 2068 ++loop_count;
1452 backend_poll (EV_A_ block); 2069 backend_poll (EV_A_ waittime);
2070
2071 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime);
1453 } 2073 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2074
1458 /* queue pending timers and reschedule them */ 2075 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2076 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2077#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2078 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2079#endif
1463 2080
2081#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2082 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2083 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2084#endif
1467 2085
1468 /* queue check watchers, to be executed first */ 2086 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2087 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2089
1472 call_pending (EV_A); 2090 call_pending (EV_A);
1473
1474 } 2091 }
1475 while (expect_true (activecnt && !loop_done)); 2092 while (expect_true (
2093 activecnt
2094 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2096 ));
1476 2097
1477 if (loop_done == EVUNLOOP_ONE) 2098 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2099 loop_done = EVUNLOOP_CANCEL;
1479} 2100}
1480 2101
1482ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1483{ 2104{
1484 loop_done = how; 2105 loop_done = how;
1485} 2106}
1486 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 printf ("update %f\n", mn_now - mn_prev);//D
2139 timers_reschedule (EV_A_ mn_now - mn_prev);
2140 periodics_reschedule (EV_A);
2141}
2142
1487/*****************************************************************************/ 2143/*****************************************************************************/
1488 2144
1489void inline_size 2145inline_size void
1490wlist_add (WL *head, WL elem) 2146wlist_add (WL *head, WL elem)
1491{ 2147{
1492 elem->next = *head; 2148 elem->next = *head;
1493 *head = elem; 2149 *head = elem;
1494} 2150}
1495 2151
1496void inline_size 2152inline_size void
1497wlist_del (WL *head, WL elem) 2153wlist_del (WL *head, WL elem)
1498{ 2154{
1499 while (*head) 2155 while (*head)
1500 { 2156 {
1501 if (*head == elem) 2157 if (*head == elem)
1506 2162
1507 head = &(*head)->next; 2163 head = &(*head)->next;
1508 } 2164 }
1509} 2165}
1510 2166
1511void inline_speed 2167inline_speed void
1512ev_clear_pending (EV_P_ W w) 2168clear_pending (EV_P_ W w)
1513{ 2169{
1514 if (w->pending) 2170 if (w->pending)
1515 { 2171 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2172 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 2173 w->pending = 0;
1518 } 2174 }
1519} 2175}
1520 2176
1521void inline_speed 2177int
2178ev_clear_pending (EV_P_ void *w)
2179{
2180 W w_ = (W)w;
2181 int pending = w_->pending;
2182
2183 if (expect_true (pending))
2184 {
2185 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2186 w_->pending = 0;
2187 p->w = 0;
2188 return p->events;
2189 }
2190 else
2191 return 0;
2192}
2193
2194inline_size void
2195pri_adjust (EV_P_ W w)
2196{
2197 int pri = w->priority;
2198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2200 w->priority = pri;
2201}
2202
2203inline_speed void
1522ev_start (EV_P_ W w, int active) 2204ev_start (EV_P_ W w, int active)
1523{ 2205{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2206 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2207 w->active = active;
1528 ev_ref (EV_A); 2208 ev_ref (EV_A);
1529} 2209}
1530 2210
1531void inline_size 2211inline_size void
1532ev_stop (EV_P_ W w) 2212ev_stop (EV_P_ W w)
1533{ 2213{
1534 ev_unref (EV_A); 2214 ev_unref (EV_A);
1535 w->active = 0; 2215 w->active = 0;
1536} 2216}
1537 2217
1538/*****************************************************************************/ 2218/*****************************************************************************/
1539 2219
1540void 2220void noinline
1541ev_io_start (EV_P_ ev_io *w) 2221ev_io_start (EV_P_ ev_io *w)
1542{ 2222{
1543 int fd = w->fd; 2223 int fd = w->fd;
1544 2224
1545 if (expect_false (ev_is_active (w))) 2225 if (expect_false (ev_is_active (w)))
1546 return; 2226 return;
1547 2227
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2229 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2230
2231 EV_FREQUENT_CHECK;
1549 2232
1550 ev_start (EV_A_ (W)w, 1); 2233 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2235 wlist_add (&anfds[fd].head, (WL)w);
1553 2236
1554 fd_change (EV_A_ fd); 2237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1555} 2238 w->events &= ~EV__IOFDSET;
1556 2239
1557void 2240 EV_FREQUENT_CHECK;
2241}
2242
2243void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2244ev_io_stop (EV_P_ ev_io *w)
1559{ 2245{
1560 ev_clear_pending (EV_A_ (W)w); 2246 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2247 if (expect_false (!ev_is_active (w)))
1562 return; 2248 return;
1563 2249
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2251
2252 EV_FREQUENT_CHECK;
2253
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2254 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2255 ev_stop (EV_A_ (W)w);
1568 2256
1569 fd_change (EV_A_ w->fd); 2257 fd_change (EV_A_ w->fd, 1);
1570}
1571 2258
1572void 2259 EV_FREQUENT_CHECK;
2260}
2261
2262void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2263ev_timer_start (EV_P_ ev_timer *w)
1574{ 2264{
1575 if (expect_false (ev_is_active (w))) 2265 if (expect_false (ev_is_active (w)))
1576 return; 2266 return;
1577 2267
1578 ((WT)w)->at += mn_now; 2268 ev_at (w) += mn_now;
1579 2269
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2277 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2278 ANHE_at_cache (timers [ev_active (w)]);
2279 upheap (timers, ev_active (w));
1586 2280
2281 EV_FREQUENT_CHECK;
2282
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2284}
1589 2285
1590void 2286void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2287ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2288{
1593 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1595 return; 2291 return;
1596 2292
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2293 EV_FREQUENT_CHECK;
1598 2294
1599 { 2295 {
1600 int active = ((W)w)->active; 2296 int active = ev_active (w);
1601 2297
2298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2299
2300 --timercnt;
2301
1602 if (expect_true (--active < --timercnt)) 2302 if (expect_true (active < timercnt + HEAP0))
1603 { 2303 {
1604 timers [active] = timers [timercnt]; 2304 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2305 adjustheap (timers, timercnt, active);
1606 } 2306 }
1607 } 2307 }
1608 2308
1609 ((WT)w)->at -= mn_now; 2309 EV_FREQUENT_CHECK;
2310
2311 ev_at (w) -= mn_now;
1610 2312
1611 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1612} 2314}
1613 2315
1614void 2316void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2317ev_timer_again (EV_P_ ev_timer *w)
1616{ 2318{
2319 EV_FREQUENT_CHECK;
2320
1617 if (ev_is_active (w)) 2321 if (ev_is_active (w))
1618 { 2322 {
1619 if (w->repeat) 2323 if (w->repeat)
1620 { 2324 {
1621 ((WT)w)->at = mn_now + w->repeat; 2325 ev_at (w) = mn_now + w->repeat;
2326 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2327 adjustheap (timers, timercnt, ev_active (w));
1623 } 2328 }
1624 else 2329 else
1625 ev_timer_stop (EV_A_ w); 2330 ev_timer_stop (EV_A_ w);
1626 } 2331 }
1627 else if (w->repeat) 2332 else if (w->repeat)
1628 { 2333 {
1629 w->at = w->repeat; 2334 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2335 ev_timer_start (EV_A_ w);
1631 } 2336 }
2337
2338 EV_FREQUENT_CHECK;
1632} 2339}
1633 2340
1634#if EV_PERIODIC_ENABLE 2341#if EV_PERIODIC_ENABLE
1635void 2342void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2343ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2344{
1638 if (expect_false (ev_is_active (w))) 2345 if (expect_false (ev_is_active (w)))
1639 return; 2346 return;
1640 2347
1641 if (w->reschedule_cb) 2348 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2349 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2350 else if (w->interval)
1644 { 2351 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2352 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2353 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2354 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2355 }
2356 else
2357 ev_at (w) = w->offset;
1649 2358
2359 EV_FREQUENT_CHECK;
2360
2361 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2362 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2363 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2364 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2365 ANHE_at_cache (periodics [ev_active (w)]);
2366 upheap (periodics, ev_active (w));
1654 2367
2368 EV_FREQUENT_CHECK;
2369
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2370 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2371}
1657 2372
1658void 2373void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2374ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2375{
1661 ev_clear_pending (EV_A_ (W)w); 2376 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2377 if (expect_false (!ev_is_active (w)))
1663 return; 2378 return;
1664 2379
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2380 EV_FREQUENT_CHECK;
1666 2381
1667 { 2382 {
1668 int active = ((W)w)->active; 2383 int active = ev_active (w);
1669 2384
2385 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2386
2387 --periodiccnt;
2388
1670 if (expect_true (--active < --periodiccnt)) 2389 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2390 {
1672 periodics [active] = periodics [periodiccnt]; 2391 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2392 adjustheap (periodics, periodiccnt, active);
1674 } 2393 }
1675 } 2394 }
1676 2395
2396 EV_FREQUENT_CHECK;
2397
1677 ev_stop (EV_A_ (W)w); 2398 ev_stop (EV_A_ (W)w);
1678} 2399}
1679 2400
1680void 2401void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2402ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2403{
1683 /* TODO: use adjustheap and recalculation */ 2404 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2405 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2406 ev_periodic_start (EV_A_ w);
1688 2409
1689#ifndef SA_RESTART 2410#ifndef SA_RESTART
1690# define SA_RESTART 0 2411# define SA_RESTART 0
1691#endif 2412#endif
1692 2413
1693void 2414void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2415ev_signal_start (EV_P_ ev_signal *w)
1695{ 2416{
1696#if EV_MULTIPLICITY 2417#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2418 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2419#endif
1699 if (expect_false (ev_is_active (w))) 2420 if (expect_false (ev_is_active (w)))
1700 return; 2421 return;
1701 2422
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2423 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2424
2425 evpipe_init (EV_A);
2426
2427 EV_FREQUENT_CHECK;
2428
2429 {
2430#ifndef _WIN32
2431 sigset_t full, prev;
2432 sigfillset (&full);
2433 sigprocmask (SIG_SETMASK, &full, &prev);
2434#endif
2435
2436 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2437
2438#ifndef _WIN32
2439 sigprocmask (SIG_SETMASK, &prev, 0);
2440#endif
2441 }
1703 2442
1704 ev_start (EV_A_ (W)w, 1); 2443 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2444 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2445
1708 if (!((WL)w)->next) 2446 if (!((WL)w)->next)
1709 { 2447 {
1710#if _WIN32 2448#if _WIN32
1711 signal (w->signum, sighandler); 2449 signal (w->signum, ev_sighandler);
1712#else 2450#else
1713 struct sigaction sa; 2451 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2452 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2453 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2455 sigaction (w->signum, &sa, 0);
1718#endif 2456#endif
1719 } 2457 }
1720}
1721 2458
1722void 2459 EV_FREQUENT_CHECK;
2460}
2461
2462void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2463ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2464{
1725 ev_clear_pending (EV_A_ (W)w); 2465 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2466 if (expect_false (!ev_is_active (w)))
1727 return; 2467 return;
1728 2468
2469 EV_FREQUENT_CHECK;
2470
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2471 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2472 ev_stop (EV_A_ (W)w);
1731 2473
1732 if (!signals [w->signum - 1].head) 2474 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2475 signal (w->signum, SIG_DFL);
2476
2477 EV_FREQUENT_CHECK;
1734} 2478}
1735 2479
1736void 2480void
1737ev_child_start (EV_P_ ev_child *w) 2481ev_child_start (EV_P_ ev_child *w)
1738{ 2482{
1739#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2485#endif
1742 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1743 return; 2487 return;
1744 2488
2489 EV_FREQUENT_CHECK;
2490
1745 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2492 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2493
2494 EV_FREQUENT_CHECK;
1747} 2495}
1748 2496
1749void 2497void
1750ev_child_stop (EV_P_ ev_child *w) 2498ev_child_stop (EV_P_ ev_child *w)
1751{ 2499{
1752 ev_clear_pending (EV_A_ (W)w); 2500 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2501 if (expect_false (!ev_is_active (w)))
1754 return; 2502 return;
1755 2503
2504 EV_FREQUENT_CHECK;
2505
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2506 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2507 ev_stop (EV_A_ (W)w);
2508
2509 EV_FREQUENT_CHECK;
1758} 2510}
1759 2511
1760#if EV_STAT_ENABLE 2512#if EV_STAT_ENABLE
1761 2513
1762# ifdef _WIN32 2514# ifdef _WIN32
1763# undef lstat 2515# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2516# define lstat(a,b) _stati64 (a,b)
1765# endif 2517# endif
1766 2518
1767#define DEF_STAT_INTERVAL 5.0074891 2519#define DEF_STAT_INTERVAL 5.0074891
2520#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2521#define MIN_STAT_INTERVAL 0.1074891
1769 2522
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2523static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2524
1772#if EV_USE_INOTIFY 2525#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2526# define EV_INOTIFY_BUFSIZE 8192
1777{ 2530{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2531 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2532
1780 if (w->wd < 0) 2533 if (w->wd < 0)
1781 { 2534 {
2535 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2536 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2537
1784 /* monitor some parent directory for speedup hints */ 2538 /* monitor some parent directory for speedup hints */
2539 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2540 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2541 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2542 {
1787 char path [4096]; 2543 char path [4096];
1788 strcpy (path, w->path); 2544 strcpy (path, w->path);
1789 2545
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2548 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2549 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 2550
1795 char *pend = strrchr (path, '/'); 2551 char *pend = strrchr (path, '/');
1796 2552
1797 if (!pend) 2553 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 2554 break;
1799 2555
1800 *pend = 0; 2556 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 2557 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 2558 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2559 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2560 }
1805 } 2561 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 2562
1809 if (w->wd >= 0) 2563 if (w->wd >= 0)
2564 {
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2565 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2566
2567 /* now local changes will be tracked by inotify, but remote changes won't */
2568 /* unless the filesystem it known to be local, we therefore still poll */
2569 /* also do poll on <2.6.25, but with normal frequency */
2570 struct statfs sfs;
2571
2572 if (fs_2625 && !statfs (w->path, &sfs))
2573 if (sfs.f_type == 0x1373 /* devfs */
2574 || sfs.f_type == 0xEF53 /* ext2/3 */
2575 || sfs.f_type == 0x3153464a /* jfs */
2576 || sfs.f_type == 0x52654973 /* reiser3 */
2577 || sfs.f_type == 0x01021994 /* tempfs */
2578 || sfs.f_type == 0x58465342 /* xfs */)
2579 return;
2580
2581 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2582 ev_timer_again (EV_A_ &w->timer);
2583 }
1811} 2584}
1812 2585
1813static void noinline 2586static void noinline
1814infy_del (EV_P_ ev_stat *w) 2587infy_del (EV_P_ ev_stat *w)
1815{ 2588{
1829 2602
1830static void noinline 2603static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2604infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2605{
1833 if (slot < 0) 2606 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2607 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2608 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2609 infy_wd (EV_A_ slot, wd, ev);
1837 else 2610 else
1838 { 2611 {
1839 WL w_; 2612 WL w_;
1845 2618
1846 if (w->wd == wd || wd == -1) 2619 if (w->wd == wd || wd == -1)
1847 { 2620 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2621 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 2622 {
2623 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1850 w->wd = -1; 2624 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 2625 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 2626 }
1853 2627
1854 stat_timer_cb (EV_A_ &w->timer, 0); 2628 stat_timer_cb (EV_A_ &w->timer, 0);
1867 2641
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2642 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2643 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2644}
1871 2645
1872void inline_size 2646inline_size void
2647check_2625 (EV_P)
2648{
2649 /* kernels < 2.6.25 are borked
2650 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2651 */
2652 struct utsname buf;
2653 int major, minor, micro;
2654
2655 if (uname (&buf))
2656 return;
2657
2658 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2659 return;
2660
2661 if (major < 2
2662 || (major == 2 && minor < 6)
2663 || (major == 2 && minor == 6 && micro < 25))
2664 return;
2665
2666 fs_2625 = 1;
2667}
2668
2669inline_size void
1873infy_init (EV_P) 2670infy_init (EV_P)
1874{ 2671{
1875 if (fs_fd != -2) 2672 if (fs_fd != -2)
1876 return; 2673 return;
2674
2675 fs_fd = -1;
2676
2677 check_2625 (EV_A);
1877 2678
1878 fs_fd = inotify_init (); 2679 fs_fd = inotify_init ();
1879 2680
1880 if (fs_fd >= 0) 2681 if (fs_fd >= 0)
1881 { 2682 {
1883 ev_set_priority (&fs_w, EV_MAXPRI); 2684 ev_set_priority (&fs_w, EV_MAXPRI);
1884 ev_io_start (EV_A_ &fs_w); 2685 ev_io_start (EV_A_ &fs_w);
1885 } 2686 }
1886} 2687}
1887 2688
1888void inline_size 2689inline_size void
1889infy_fork (EV_P) 2690infy_fork (EV_P)
1890{ 2691{
1891 int slot; 2692 int slot;
1892 2693
1893 if (fs_fd < 0) 2694 if (fs_fd < 0)
1909 w->wd = -1; 2710 w->wd = -1;
1910 2711
1911 if (fs_fd >= 0) 2712 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2713 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 2714 else
1914 ev_timer_start (EV_A_ &w->timer); 2715 ev_timer_again (EV_A_ &w->timer);
1915 } 2716 }
1916
1917 } 2717 }
1918} 2718}
1919 2719
2720#endif
2721
2722#ifdef _WIN32
2723# define EV_LSTAT(p,b) _stati64 (p, b)
2724#else
2725# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 2726#endif
1921 2727
1922void 2728void
1923ev_stat_stat (EV_P_ ev_stat *w) 2729ev_stat_stat (EV_P_ ev_stat *w)
1924{ 2730{
1951 || w->prev.st_atime != w->attr.st_atime 2757 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 2758 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 2759 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 2760 ) {
1955 #if EV_USE_INOTIFY 2761 #if EV_USE_INOTIFY
2762 if (fs_fd >= 0)
2763 {
1956 infy_del (EV_A_ w); 2764 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 2765 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 2766 ev_stat_stat (EV_A_ w); /* avoid race... */
2767 }
1959 #endif 2768 #endif
1960 2769
1961 ev_feed_event (EV_A_ w, EV_STAT); 2770 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 2771 }
1963} 2772}
1966ev_stat_start (EV_P_ ev_stat *w) 2775ev_stat_start (EV_P_ ev_stat *w)
1967{ 2776{
1968 if (expect_false (ev_is_active (w))) 2777 if (expect_false (ev_is_active (w)))
1969 return; 2778 return;
1970 2779
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 2780 ev_stat_stat (EV_A_ w);
1976 2781
2782 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 2783 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 2784
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2785 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 2786 ev_set_priority (&w->timer, ev_priority (w));
1982 2787
1983#if EV_USE_INOTIFY 2788#if EV_USE_INOTIFY
1984 infy_init (EV_A); 2789 infy_init (EV_A);
1985 2790
1986 if (fs_fd >= 0) 2791 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 2792 infy_add (EV_A_ w);
1988 else 2793 else
1989#endif 2794#endif
1990 ev_timer_start (EV_A_ &w->timer); 2795 ev_timer_again (EV_A_ &w->timer);
1991 2796
1992 ev_start (EV_A_ (W)w, 1); 2797 ev_start (EV_A_ (W)w, 1);
2798
2799 EV_FREQUENT_CHECK;
1993} 2800}
1994 2801
1995void 2802void
1996ev_stat_stop (EV_P_ ev_stat *w) 2803ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2804{
1998 ev_clear_pending (EV_A_ (W)w); 2805 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2806 if (expect_false (!ev_is_active (w)))
2000 return; 2807 return;
2001 2808
2809 EV_FREQUENT_CHECK;
2810
2002#if EV_USE_INOTIFY 2811#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2812 infy_del (EV_A_ w);
2004#endif 2813#endif
2005 ev_timer_stop (EV_A_ &w->timer); 2814 ev_timer_stop (EV_A_ &w->timer);
2006 2815
2007 ev_stop (EV_A_ (W)w); 2816 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 2817
2818 EV_FREQUENT_CHECK;
2819}
2820#endif
2821
2822#if EV_IDLE_ENABLE
2011void 2823void
2012ev_idle_start (EV_P_ ev_idle *w) 2824ev_idle_start (EV_P_ ev_idle *w)
2013{ 2825{
2014 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
2015 return; 2827 return;
2016 2828
2829 pri_adjust (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
2832
2833 {
2834 int active = ++idlecnt [ABSPRI (w)];
2835
2836 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2837 ev_start (EV_A_ (W)w, active);
2838
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2839 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2840 idles [ABSPRI (w)][active - 1] = w;
2841 }
2842
2843 EV_FREQUENT_CHECK;
2020} 2844}
2021 2845
2022void 2846void
2023ev_idle_stop (EV_P_ ev_idle *w) 2847ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2848{
2025 ev_clear_pending (EV_A_ (W)w); 2849 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2850 if (expect_false (!ev_is_active (w)))
2027 return; 2851 return;
2028 2852
2853 EV_FREQUENT_CHECK;
2854
2029 { 2855 {
2030 int active = ((W)w)->active; 2856 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2857
2032 ((W)idles [active - 1])->active = active; 2858 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2859 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2860
2861 ev_stop (EV_A_ (W)w);
2862 --idleall;
2033 } 2863 }
2034 2864
2035 ev_stop (EV_A_ (W)w); 2865 EV_FREQUENT_CHECK;
2036} 2866}
2867#endif
2037 2868
2038void 2869void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2870ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2871{
2041 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2042 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2043 2876
2044 ev_start (EV_A_ (W)w, ++preparecnt); 2877 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2878 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 2879 prepares [preparecnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2047} 2882}
2048 2883
2049void 2884void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2885ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2886{
2052 ev_clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2054 return; 2889 return;
2055 2890
2891 EV_FREQUENT_CHECK;
2892
2056 { 2893 {
2057 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2058 prepares [active - 1] = prepares [--preparecnt]; 2896 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2897 ev_active (prepares [active - 1]) = active;
2060 } 2898 }
2061 2899
2062 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2063} 2903}
2064 2904
2065void 2905void
2066ev_check_start (EV_P_ ev_check *w) 2906ev_check_start (EV_P_ ev_check *w)
2067{ 2907{
2068 if (expect_false (ev_is_active (w))) 2908 if (expect_false (ev_is_active (w)))
2069 return; 2909 return;
2910
2911 EV_FREQUENT_CHECK;
2070 2912
2071 ev_start (EV_A_ (W)w, ++checkcnt); 2913 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2914 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 2915 checks [checkcnt - 1] = w;
2916
2917 EV_FREQUENT_CHECK;
2074} 2918}
2075 2919
2076void 2920void
2077ev_check_stop (EV_P_ ev_check *w) 2921ev_check_stop (EV_P_ ev_check *w)
2078{ 2922{
2079 ev_clear_pending (EV_A_ (W)w); 2923 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2924 if (expect_false (!ev_is_active (w)))
2081 return; 2925 return;
2082 2926
2927 EV_FREQUENT_CHECK;
2928
2083 { 2929 {
2084 int active = ((W)w)->active; 2930 int active = ev_active (w);
2931
2085 checks [active - 1] = checks [--checkcnt]; 2932 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2933 ev_active (checks [active - 1]) = active;
2087 } 2934 }
2088 2935
2089 ev_stop (EV_A_ (W)w); 2936 ev_stop (EV_A_ (W)w);
2937
2938 EV_FREQUENT_CHECK;
2090} 2939}
2091 2940
2092#if EV_EMBED_ENABLE 2941#if EV_EMBED_ENABLE
2093void noinline 2942void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2943ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2944{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2945 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2946}
2098 2947
2099static void 2948static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2949embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2950{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2951 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2952
2104 if (ev_cb (w)) 2953 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2954 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2955 else
2107 ev_embed_sweep (loop, w); 2956 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2957}
2958
2959static void
2960embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2961{
2962 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2963
2964 {
2965 struct ev_loop *loop = w->other;
2966
2967 while (fdchangecnt)
2968 {
2969 fd_reify (EV_A);
2970 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2971 }
2972 }
2973}
2974
2975static void
2976embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2977{
2978 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2979
2980 ev_embed_stop (EV_A_ w);
2981
2982 {
2983 struct ev_loop *loop = w->other;
2984
2985 ev_loop_fork (EV_A);
2986 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2987 }
2988
2989 ev_embed_start (EV_A_ w);
2990}
2991
2992#if 0
2993static void
2994embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2995{
2996 ev_idle_stop (EV_A_ idle);
2997}
2998#endif
2109 2999
2110void 3000void
2111ev_embed_start (EV_P_ ev_embed *w) 3001ev_embed_start (EV_P_ ev_embed *w)
2112{ 3002{
2113 if (expect_false (ev_is_active (w))) 3003 if (expect_false (ev_is_active (w)))
2114 return; 3004 return;
2115 3005
2116 { 3006 {
2117 struct ev_loop *loop = w->loop; 3007 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3008 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3009 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 3010 }
3011
3012 EV_FREQUENT_CHECK;
2121 3013
2122 ev_set_priority (&w->io, ev_priority (w)); 3014 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 3015 ev_io_start (EV_A_ &w->io);
2124 3016
3017 ev_prepare_init (&w->prepare, embed_prepare_cb);
3018 ev_set_priority (&w->prepare, EV_MINPRI);
3019 ev_prepare_start (EV_A_ &w->prepare);
3020
3021 ev_fork_init (&w->fork, embed_fork_cb);
3022 ev_fork_start (EV_A_ &w->fork);
3023
3024 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3025
2125 ev_start (EV_A_ (W)w, 1); 3026 ev_start (EV_A_ (W)w, 1);
3027
3028 EV_FREQUENT_CHECK;
2126} 3029}
2127 3030
2128void 3031void
2129ev_embed_stop (EV_P_ ev_embed *w) 3032ev_embed_stop (EV_P_ ev_embed *w)
2130{ 3033{
2131 ev_clear_pending (EV_A_ (W)w); 3034 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3035 if (expect_false (!ev_is_active (w)))
2133 return; 3036 return;
2134 3037
3038 EV_FREQUENT_CHECK;
3039
2135 ev_io_stop (EV_A_ &w->io); 3040 ev_io_stop (EV_A_ &w->io);
3041 ev_prepare_stop (EV_A_ &w->prepare);
3042 ev_fork_stop (EV_A_ &w->fork);
2136 3043
2137 ev_stop (EV_A_ (W)w); 3044 EV_FREQUENT_CHECK;
2138} 3045}
2139#endif 3046#endif
2140 3047
2141#if EV_FORK_ENABLE 3048#if EV_FORK_ENABLE
2142void 3049void
2143ev_fork_start (EV_P_ ev_fork *w) 3050ev_fork_start (EV_P_ ev_fork *w)
2144{ 3051{
2145 if (expect_false (ev_is_active (w))) 3052 if (expect_false (ev_is_active (w)))
2146 return; 3053 return;
3054
3055 EV_FREQUENT_CHECK;
2147 3056
2148 ev_start (EV_A_ (W)w, ++forkcnt); 3057 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3058 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 3059 forks [forkcnt - 1] = w;
3060
3061 EV_FREQUENT_CHECK;
2151} 3062}
2152 3063
2153void 3064void
2154ev_fork_stop (EV_P_ ev_fork *w) 3065ev_fork_stop (EV_P_ ev_fork *w)
2155{ 3066{
2156 ev_clear_pending (EV_A_ (W)w); 3067 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3068 if (expect_false (!ev_is_active (w)))
2158 return; 3069 return;
2159 3070
3071 EV_FREQUENT_CHECK;
3072
2160 { 3073 {
2161 int active = ((W)w)->active; 3074 int active = ev_active (w);
3075
2162 forks [active - 1] = forks [--forkcnt]; 3076 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3077 ev_active (forks [active - 1]) = active;
2164 } 3078 }
2165 3079
2166 ev_stop (EV_A_ (W)w); 3080 ev_stop (EV_A_ (W)w);
3081
3082 EV_FREQUENT_CHECK;
3083}
3084#endif
3085
3086#if EV_ASYNC_ENABLE
3087void
3088ev_async_start (EV_P_ ev_async *w)
3089{
3090 if (expect_false (ev_is_active (w)))
3091 return;
3092
3093 evpipe_init (EV_A);
3094
3095 EV_FREQUENT_CHECK;
3096
3097 ev_start (EV_A_ (W)w, ++asynccnt);
3098 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3099 asyncs [asynccnt - 1] = w;
3100
3101 EV_FREQUENT_CHECK;
3102}
3103
3104void
3105ev_async_stop (EV_P_ ev_async *w)
3106{
3107 clear_pending (EV_A_ (W)w);
3108 if (expect_false (!ev_is_active (w)))
3109 return;
3110
3111 EV_FREQUENT_CHECK;
3112
3113 {
3114 int active = ev_active (w);
3115
3116 asyncs [active - 1] = asyncs [--asynccnt];
3117 ev_active (asyncs [active - 1]) = active;
3118 }
3119
3120 ev_stop (EV_A_ (W)w);
3121
3122 EV_FREQUENT_CHECK;
3123}
3124
3125void
3126ev_async_send (EV_P_ ev_async *w)
3127{
3128 w->sent = 1;
3129 evpipe_write (EV_A_ &gotasync);
2167} 3130}
2168#endif 3131#endif
2169 3132
2170/*****************************************************************************/ 3133/*****************************************************************************/
2171 3134
2181once_cb (EV_P_ struct ev_once *once, int revents) 3144once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3145{
2183 void (*cb)(int revents, void *arg) = once->cb; 3146 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3147 void *arg = once->arg;
2185 3148
2186 ev_io_stop (EV_A_ &once->io); 3149 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3150 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3151 ev_free (once);
2189 3152
2190 cb (revents, arg); 3153 cb (revents, arg);
2191} 3154}
2192 3155
2193static void 3156static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3157once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3158{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3159 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3160
3161 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3162}
2198 3163
2199static void 3164static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3165once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3166{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3167 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3168
3169 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3170}
2204 3171
2205void 3172void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3173ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3174{
2229 ev_timer_set (&once->to, timeout, 0.); 3196 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3197 ev_timer_start (EV_A_ &once->to);
2231 } 3198 }
2232} 3199}
2233 3200
3201/*****************************************************************************/
3202
3203#if 0
3204void
3205ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3206{
3207 int i, j;
3208 ev_watcher_list *wl, *wn;
3209
3210 if (types & (EV_IO | EV_EMBED))
3211 for (i = 0; i < anfdmax; ++i)
3212 for (wl = anfds [i].head; wl; )
3213 {
3214 wn = wl->next;
3215
3216#if EV_EMBED_ENABLE
3217 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3218 {
3219 if (types & EV_EMBED)
3220 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3221 }
3222 else
3223#endif
3224#if EV_USE_INOTIFY
3225 if (ev_cb ((ev_io *)wl) == infy_cb)
3226 ;
3227 else
3228#endif
3229 if ((ev_io *)wl != &pipeev)
3230 if (types & EV_IO)
3231 cb (EV_A_ EV_IO, wl);
3232
3233 wl = wn;
3234 }
3235
3236 if (types & (EV_TIMER | EV_STAT))
3237 for (i = timercnt + HEAP0; i-- > HEAP0; )
3238#if EV_STAT_ENABLE
3239 /*TODO: timer is not always active*/
3240 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3241 {
3242 if (types & EV_STAT)
3243 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3244 }
3245 else
3246#endif
3247 if (types & EV_TIMER)
3248 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3249
3250#if EV_PERIODIC_ENABLE
3251 if (types & EV_PERIODIC)
3252 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3253 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3254#endif
3255
3256#if EV_IDLE_ENABLE
3257 if (types & EV_IDLE)
3258 for (j = NUMPRI; i--; )
3259 for (i = idlecnt [j]; i--; )
3260 cb (EV_A_ EV_IDLE, idles [j][i]);
3261#endif
3262
3263#if EV_FORK_ENABLE
3264 if (types & EV_FORK)
3265 for (i = forkcnt; i--; )
3266 if (ev_cb (forks [i]) != embed_fork_cb)
3267 cb (EV_A_ EV_FORK, forks [i]);
3268#endif
3269
3270#if EV_ASYNC_ENABLE
3271 if (types & EV_ASYNC)
3272 for (i = asynccnt; i--; )
3273 cb (EV_A_ EV_ASYNC, asyncs [i]);
3274#endif
3275
3276 if (types & EV_PREPARE)
3277 for (i = preparecnt; i--; )
3278#if EV_EMBED_ENABLE
3279 if (ev_cb (prepares [i]) != embed_prepare_cb)
3280#endif
3281 cb (EV_A_ EV_PREPARE, prepares [i]);
3282
3283 if (types & EV_CHECK)
3284 for (i = checkcnt; i--; )
3285 cb (EV_A_ EV_CHECK, checks [i]);
3286
3287 if (types & EV_SIGNAL)
3288 for (i = 0; i < signalmax; ++i)
3289 for (wl = signals [i].head; wl; )
3290 {
3291 wn = wl->next;
3292 cb (EV_A_ EV_SIGNAL, wl);
3293 wl = wn;
3294 }
3295
3296 if (types & EV_CHILD)
3297 for (i = EV_PID_HASHSIZE; i--; )
3298 for (wl = childs [i]; wl; )
3299 {
3300 wn = wl->next;
3301 cb (EV_A_ EV_CHILD, wl);
3302 wl = wn;
3303 }
3304/* EV_STAT 0x00001000 /* stat data changed */
3305/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3306}
3307#endif
3308
3309#if EV_MULTIPLICITY
3310 #include "ev_wrap.h"
3311#endif
3312
2234#ifdef __cplusplus 3313#ifdef __cplusplus
2235} 3314}
2236#endif 3315#endif
2237 3316

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines