ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.285 by root, Wed Apr 15 19:35:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
220 353
221/* 354/*
222 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
230 363
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 367
235#if __GNUC__ >= 3 368#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
238#else 371#else
239# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
240# define noinline 373# define noinline
241# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 375# define inline
243# endif 376# endif
244#endif 377#endif
245 378
246#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
261 394
262typedef ev_watcher *W; 395typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
265 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
267 411
268#ifdef _WIN32 412#ifdef _WIN32
269# include "ev_win32.c" 413# include "ev_win32.c"
270#endif 414#endif
271 415
278{ 422{
279 syserr_cb = cb; 423 syserr_cb = cb;
280} 424}
281 425
282static void noinline 426static void noinline
283syserr (const char *msg) 427ev_syserr (const char *msg)
284{ 428{
285 if (!msg) 429 if (!msg)
286 msg = "(libev) system error"; 430 msg = "(libev) system error";
287 431
288 if (syserr_cb) 432 if (syserr_cb)
292 perror (msg); 436 perror (msg);
293 abort (); 437 abort ();
294 } 438 }
295} 439}
296 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
297static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 457
299void 458void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 460{
302 alloc = cb; 461 alloc = cb;
303} 462}
304 463
305inline_speed void * 464inline_speed void *
306ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
307{ 466{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
309 468
310 if (!ptr && size) 469 if (!ptr && size)
311 { 470 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 472 abort ();
324typedef struct 483typedef struct
325{ 484{
326 WL head; 485 WL head;
327 unsigned char events; 486 unsigned char events;
328 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
329#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 494 SOCKET handle;
331#endif 495#endif
332} ANFD; 496} ANFD;
333 497
336 W w; 500 W w;
337 int events; 501 int events;
338} ANPENDING; 502} ANPENDING;
339 503
340#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
341typedef struct 506typedef struct
342{ 507{
343 WL head; 508 WL head;
344} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
345#endif 528#endif
346 529
347#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
348 531
349 struct ev_loop 532 struct ev_loop
374 557
375ev_tstamp 558ev_tstamp
376ev_time (void) 559ev_time (void)
377{ 560{
378#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
379 struct timespec ts; 564 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 567 }
568#endif
569
383 struct timeval tv; 570 struct timeval tv;
384 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 573}
388 574
389ev_tstamp inline_size 575inline_size ev_tstamp
390get_clock (void) 576get_clock (void)
391{ 577{
392#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
394 { 580 {
407{ 593{
408 return ev_rt_now; 594 return ev_rt_now;
409} 595}
410#endif 596#endif
411 597
412int inline_size 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
413array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
414{ 632{
415 int ncur = cur + 1; 633 int ncur = cur + 1;
416 634
417 do 635 do
418 ncur <<= 1; 636 ncur <<= 1;
419 while (cnt > ncur); 637 while (cnt > ncur);
420 638
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 641 {
424 ncur *= elem; 642 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 645 ncur /= elem;
428 } 646 }
429 647
430 return ncur; 648 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
435{ 653{
436 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
438} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 660
440#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
442 { \ 663 { \
443 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 677 }
457#endif 678#endif
458 679
459#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 682
462/*****************************************************************************/ 683/*****************************************************************************/
463 684
464void noinline 685void noinline
465ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
476 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
478 } 699 }
479} 700}
480 701
481void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 719{
484 int i; 720 int i;
485 721
486 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
488} 724}
489 725
490/*****************************************************************************/ 726/*****************************************************************************/
491 727
492void inline_size 728inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
507{ 730{
508 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
509 ev_io *w; 732 ev_io *w;
510 733
522{ 745{
523 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
525} 748}
526 749
527void inline_size 750inline_size void
528fd_reify (EV_P) 751fd_reify (EV_P)
529{ 752{
530 int i; 753 int i;
531 754
532 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
533 { 756 {
534 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
536 ev_io *w; 759 ev_io *w;
537 760
538 int events = 0; 761 unsigned char events = 0;
539 762
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 764 events |= (unsigned char)w->events;
542 765
543#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
544 if (events) 767 if (events)
545 { 768 {
546 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
547 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 776 }
550#endif 777#endif
551 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
552 anfd->reify = 0; 783 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
556 } 789 }
557 790
558 fdchangecnt = 0; 791 fdchangecnt = 0;
559} 792}
560 793
561void inline_size 794inline_size void
562fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
563{ 796{
564 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
568 799
800 if (expect_true (!reify))
801 {
569 ++fdchangecnt; 802 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
572} 806}
573 807
574void inline_speed 808inline_speed void
575fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
576{ 810{
577 ev_io *w; 811 ev_io *w;
578 812
579 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 817 }
584} 818}
585 819
586int inline_size 820inline_size int
587fd_valid (int fd) 821fd_valid (int fd)
588{ 822{
589#ifdef _WIN32 823#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
591#else 825#else
599{ 833{
600 int fd; 834 int fd;
601 835
602 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 837 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
606} 840}
607 841
608/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 843static void noinline
627 861
628 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 863 if (anfds [fd].events)
630 { 864 {
631 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
632 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
633 } 868 }
634} 869}
635 870
636/*****************************************************************************/ 871/*****************************************************************************/
637 872
638void inline_speed 873/*
639upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
642 878
643 while (k) 879/*
644 { 880 * at the moment we allow libev the luxury of two heaps,
645 int p = (k - 1) >> 1; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885#if EV_USE_4HEAP
646 886
647 if (heap [p]->at <= w->at) 887#define DHEAP 4
888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
891
892/* away from the root */
893inline_speed void
894downheap (ANHE *heap, int N, int k)
895{
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
648 break; 921 break;
649 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
650 heap [k] = heap [p]; 985 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 987 k = p;
653 } 988 }
654 989
655 heap [k] = w; 990 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 991 ev_active (ANHE_w (he)) = k;
657
658} 992}
659 993
660void inline_speed 994inline_size void
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
690{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 998 upheap (heap, k);
999 else
692 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
693} 1013}
694 1014
695/*****************************************************************************/ 1015/*****************************************************************************/
696 1016
697typedef struct 1017typedef struct
698{ 1018{
699 WL head; 1019 WL head;
700 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
701} ANSIG; 1021} ANSIG;
702 1022
703static ANSIG *signals; 1023static ANSIG *signals;
704static int signalmax; 1024static int signalmax;
705 1025
706static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1027
710void inline_size 1028/*****************************************************************************/
711signals_init (ANSIG *base, int count)
712{
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717 1029
718 ++base; 1030inline_speed void
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1031fd_intern (int fd)
775{ 1032{
776#ifdef _WIN32 1033#ifdef _WIN32
777 int arg = 1; 1034 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1036#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1039#endif
783} 1040}
784 1041
785static void noinline 1042static void noinline
786siginit (EV_P) 1043evpipe_init (EV_P)
787{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
788 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
790 1064
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
794} 1133}
795 1134
796/*****************************************************************************/ 1135/*****************************************************************************/
797 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
798static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
799 1175
800#ifndef _WIN32 1176#ifndef _WIN32
801 1177
802static ev_signal childev; 1178static ev_signal childev;
803 1179
804void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
806{ 1186{
807 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1189
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
810 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
811 { 1194 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1196 w->rpid = pid;
814 w->rstatus = status; 1197 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1199 }
1200 }
817} 1201}
818 1202
819#ifndef WCONTINUED 1203#ifndef WCONTINUED
820# define WCONTINUED 0 1204# define WCONTINUED 0
821#endif 1205#endif
830 if (!WCONTINUED 1214 if (!WCONTINUED
831 || errno != EINVAL 1215 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1217 return;
834 1218
835 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1222
839 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1226}
843 1227
844#endif 1228#endif
845 1229
846/*****************************************************************************/ 1230/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
911#endif 1295#endif
912#ifdef __APPLE__ 1296#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1300#endif
916 1301
917 return flags; 1302 return flags;
918} 1303}
919 1304
920unsigned int 1305unsigned int
921ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
922{ 1307{
923 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1309
925 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
926} 1315}
927 1316
928unsigned int 1317unsigned int
929ev_backend (EV_P) 1318ev_backend (EV_P)
930{ 1319{
935ev_loop_count (EV_P) 1324ev_loop_count (EV_P)
936{ 1325{
937 return loop_count; 1326 return loop_count;
938} 1327}
939 1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
940static void noinline 1341static void noinline
941loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
942{ 1343{
943 if (!backend) 1344 if (!backend)
944 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
945#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
946 { 1358 {
947 struct timespec ts; 1359 struct timespec ts;
1360
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1362 have_monotonic = 1;
950 } 1363 }
951#endif 1364#endif
952 1365
953 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1367 mn_now = get_clock ();
955 now_floor = mn_now; 1368 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
957 1379
958 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
959#ifndef _WIN32 1381#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1383 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1387 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1390
969 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1393
978#if EV_USE_PORT 1394#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1396#endif
981#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
989#endif 1405#endif
990#if EV_USE_SELECT 1406#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1408#endif
993 1409
994 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1412 }
997} 1413}
998 1414
999static void noinline 1415static void noinline
1000loop_destroy (EV_P) 1416loop_destroy (EV_P)
1001{ 1417{
1002 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1003 1436
1004#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
1006 close (fs_fd); 1439 close (fs_fd);
1007#endif 1440#endif
1031#if EV_IDLE_ENABLE 1464#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1465 array_free (idle, [i]);
1033#endif 1466#endif
1034 } 1467 }
1035 1468
1469 ev_free (anfds); anfdmax = 0;
1470
1036 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1041#endif 1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1042 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1044 1486
1045 backend = 0; 1487 backend = 0;
1046} 1488}
1047 1489
1490#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1049 1493
1050void inline_size 1494inline_size void
1051loop_fork (EV_P) 1495loop_fork (EV_P)
1052{ 1496{
1053#if EV_USE_PORT 1497#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1499#endif
1061#endif 1505#endif
1062#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1507 infy_fork (EV_A);
1064#endif 1508#endif
1065 1509
1066 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1067 { 1511 {
1068 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1069 1518
1070 ev_ref (EV_A); 1519 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1072 close (sigpipe [0]); 1529 close (evpipe [0]);
1073 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1074 1532
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1536 }
1080 1537
1081 postfork = 0; 1538 postfork = 0;
1082} 1539}
1083 1540
1084#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1085struct ev_loop * 1543struct ev_loop *
1086ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1087{ 1545{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1547
1105} 1563}
1106 1564
1107void 1565void
1108ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1109{ 1567{
1110 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1111} 1569}
1112 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1113#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1114 1671
1115#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1116struct ev_loop * 1673struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1118#else 1675#else
1119int 1676int
1120ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1121#endif 1678#endif
1122{ 1679{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1128 { 1681 {
1129#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1684#else
1134 1687
1135 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1136 1689
1137 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1138 { 1691 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1692#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1157{ 1708{
1158#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1711#endif
1161 1712
1713 ev_default_loop_ptr = 0;
1714
1162#ifndef _WIN32 1715#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1165#endif 1718#endif
1166 1719
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1174} 1721}
1175 1722
1176void 1723void
1177ev_default_fork (void) 1724ev_default_fork (void)
1178{ 1725{
1179#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1728#endif
1182 1729
1183 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1731}
1186 1732
1187/*****************************************************************************/ 1733/*****************************************************************************/
1188 1734
1189void 1735void
1190ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1191{ 1737{
1192 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1193} 1739}
1194 1740
1195void inline_speed 1741inline_speed void
1196call_pending (EV_P) 1742call_pending (EV_P)
1197{ 1743{
1198 int pri; 1744 int pri;
1199 1745
1200 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1202 { 1748 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1750
1205 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1206 { 1752 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1208 1754
1209 p->w->pending = 0; 1755 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1211 } 1758 }
1212 } 1759 }
1213} 1760}
1214 1761
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1296void inline_size 1763inline_size void
1297idle_reify (EV_P) 1764idle_reify (EV_P)
1298{ 1765{
1299 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1300 { 1767 {
1301 int pri; 1768 int pri;
1313 } 1780 }
1314 } 1781 }
1315} 1782}
1316#endif 1783#endif
1317 1784
1318void inline_speed 1785inline_size void
1786timers_reify (EV_P)
1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1320{ 1916{
1321 int i; 1917 int i;
1322 1918
1323#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1348 */ 1944 */
1349 for (i = 4; --i; ) 1945 for (i = 4; --i; )
1350 { 1946 {
1351 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1352 1948
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1950 return; /* all is well */
1355 1951
1356 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1953 mn_now = get_clock ();
1358 now_floor = mn_now; 1954 now_floor = mn_now;
1359 } 1955 }
1360 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1363# endif 1961# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 1962 }
1367 else 1963 else
1368#endif 1964#endif
1369 { 1965 {
1370 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1371 1967
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1376#endif 1974#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1975 }
1381 1976
1382 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1383 } 1978 }
1384} 1979}
1385 1980
1386void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done; 1981static int loop_done;
1399 1982
1400void 1983void
1401ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1402{ 1985{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1987
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1989
1409 do 1990 do
1410 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1411#ifndef _WIN32 1996#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1414 { 1999 {
1415 curpid = getpid (); 2000 curpid = getpid ();
1432 { 2017 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2019 call_pending (EV_A);
1435 } 2020 }
1436 2021
1437 if (expect_false (!activecnt))
1438 break;
1439
1440 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1442 loop_fork (EV_A); 2024 loop_fork (EV_A);
1443 2025
1444 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2027 fd_reify (EV_A);
1446 2028
1447 /* calculate blocking time */ 2029 /* calculate blocking time */
1448 { 2030 {
1449 ev_tstamp block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1450 2033
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2035 {
1455 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2037 time_update (EV_A_ 1e100);
1457 2038
1458 block = MAX_BLOCKTIME;
1459
1460 if (timercnt) 2039 if (timercnt)
1461 { 2040 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2042 if (waittime > to) waittime = to;
1464 } 2043 }
1465 2044
1466#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2046 if (periodiccnt)
1468 { 2047 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2049 if (waittime > to) waittime = to;
1471 } 2050 }
1472#endif 2051#endif
1473 2052
1474 if (expect_false (block < 0.)) block = 0.; 2053 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime;
2055
2056 sleeptime = waittime - backend_fudge;
2057
2058 if (expect_true (sleeptime > io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 {
2063 ev_sleep (sleeptime);
2064 waittime -= sleeptime;
2065 }
1475 } 2066 }
1476 2067
1477 ++loop_count; 2068 ++loop_count;
1478 backend_poll (EV_A_ block); 2069 backend_poll (EV_A_ waittime);
1479 2070
1480 /* update ev_rt_now, do magic */ 2071 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2072 time_update (EV_A_ waittime + sleeptime);
1482 } 2073 }
1483 2074
1484 /* queue pending timers and reschedule them */ 2075 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2076 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2077#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 2086 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2087 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2089
1499 call_pending (EV_A); 2090 call_pending (EV_A);
1500
1501 } 2091 }
1502 while (expect_true (activecnt && !loop_done)); 2092 while (expect_true (
2093 activecnt
2094 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2096 ));
1503 2097
1504 if (loop_done == EVUNLOOP_ONE) 2098 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2099 loop_done = EVUNLOOP_CANCEL;
1506} 2100}
1507 2101
1509ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1510{ 2104{
1511 loop_done = how; 2105 loop_done = how;
1512} 2106}
1513 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 printf ("update %f\n", mn_now - mn_prev);//D
2139 timers_reschedule (EV_A_ mn_now - mn_prev);
2140 periodics_reschedule (EV_A);
2141}
2142
1514/*****************************************************************************/ 2143/*****************************************************************************/
1515 2144
1516void inline_size 2145inline_size void
1517wlist_add (WL *head, WL elem) 2146wlist_add (WL *head, WL elem)
1518{ 2147{
1519 elem->next = *head; 2148 elem->next = *head;
1520 *head = elem; 2149 *head = elem;
1521} 2150}
1522 2151
1523void inline_size 2152inline_size void
1524wlist_del (WL *head, WL elem) 2153wlist_del (WL *head, WL elem)
1525{ 2154{
1526 while (*head) 2155 while (*head)
1527 { 2156 {
1528 if (*head == elem) 2157 if (*head == elem)
1533 2162
1534 head = &(*head)->next; 2163 head = &(*head)->next;
1535 } 2164 }
1536} 2165}
1537 2166
1538void inline_speed 2167inline_speed void
1539clear_pending (EV_P_ W w) 2168clear_pending (EV_P_ W w)
1540{ 2169{
1541 if (w->pending) 2170 if (w->pending)
1542 { 2171 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2172 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1560 } 2189 }
1561 else 2190 else
1562 return 0; 2191 return 0;
1563} 2192}
1564 2193
1565void inline_size 2194inline_size void
1566pri_adjust (EV_P_ W w) 2195pri_adjust (EV_P_ W w)
1567{ 2196{
1568 int pri = w->priority; 2197 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2200 w->priority = pri;
1572} 2201}
1573 2202
1574void inline_speed 2203inline_speed void
1575ev_start (EV_P_ W w, int active) 2204ev_start (EV_P_ W w, int active)
1576{ 2205{
1577 pri_adjust (EV_A_ w); 2206 pri_adjust (EV_A_ w);
1578 w->active = active; 2207 w->active = active;
1579 ev_ref (EV_A); 2208 ev_ref (EV_A);
1580} 2209}
1581 2210
1582void inline_size 2211inline_size void
1583ev_stop (EV_P_ W w) 2212ev_stop (EV_P_ W w)
1584{ 2213{
1585 ev_unref (EV_A); 2214 ev_unref (EV_A);
1586 w->active = 0; 2215 w->active = 0;
1587} 2216}
1594 int fd = w->fd; 2223 int fd = w->fd;
1595 2224
1596 if (expect_false (ev_is_active (w))) 2225 if (expect_false (ev_is_active (w)))
1597 return; 2226 return;
1598 2227
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2229 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2230
2231 EV_FREQUENT_CHECK;
1600 2232
1601 ev_start (EV_A_ (W)w, 1); 2233 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2235 wlist_add (&anfds[fd].head, (WL)w);
1604 2236
1605 fd_change (EV_A_ fd); 2237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2238 w->events &= ~EV__IOFDSET;
2239
2240 EV_FREQUENT_CHECK;
1606} 2241}
1607 2242
1608void noinline 2243void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2244ev_io_stop (EV_P_ ev_io *w)
1610{ 2245{
1611 clear_pending (EV_A_ (W)w); 2246 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2247 if (expect_false (!ev_is_active (w)))
1613 return; 2248 return;
1614 2249
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2251
2252 EV_FREQUENT_CHECK;
2253
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2254 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2255 ev_stop (EV_A_ (W)w);
1619 2256
1620 fd_change (EV_A_ w->fd); 2257 fd_change (EV_A_ w->fd, 1);
2258
2259 EV_FREQUENT_CHECK;
1621} 2260}
1622 2261
1623void noinline 2262void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2263ev_timer_start (EV_P_ ev_timer *w)
1625{ 2264{
1626 if (expect_false (ev_is_active (w))) 2265 if (expect_false (ev_is_active (w)))
1627 return; 2266 return;
1628 2267
1629 ((WT)w)->at += mn_now; 2268 ev_at (w) += mn_now;
1630 2269
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2277 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2278 ANHE_at_cache (timers [ev_active (w)]);
2279 upheap (timers, ev_active (w));
1637 2280
2281 EV_FREQUENT_CHECK;
2282
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2284}
1640 2285
1641void noinline 2286void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2287ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2288{
1644 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1646 return; 2291 return;
1647 2292
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2293 EV_FREQUENT_CHECK;
1649 2294
1650 { 2295 {
1651 int active = ((W)w)->active; 2296 int active = ev_active (w);
1652 2297
2298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2299
2300 --timercnt;
2301
1653 if (expect_true (--active < --timercnt)) 2302 if (expect_true (active < timercnt + HEAP0))
1654 { 2303 {
1655 timers [active] = timers [timercnt]; 2304 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2305 adjustheap (timers, timercnt, active);
1657 } 2306 }
1658 } 2307 }
1659 2308
1660 ((WT)w)->at -= mn_now; 2309 EV_FREQUENT_CHECK;
2310
2311 ev_at (w) -= mn_now;
1661 2312
1662 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1663} 2314}
1664 2315
1665void noinline 2316void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2317ev_timer_again (EV_P_ ev_timer *w)
1667{ 2318{
2319 EV_FREQUENT_CHECK;
2320
1668 if (ev_is_active (w)) 2321 if (ev_is_active (w))
1669 { 2322 {
1670 if (w->repeat) 2323 if (w->repeat)
1671 { 2324 {
1672 ((WT)w)->at = mn_now + w->repeat; 2325 ev_at (w) = mn_now + w->repeat;
2326 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2327 adjustheap (timers, timercnt, ev_active (w));
1674 } 2328 }
1675 else 2329 else
1676 ev_timer_stop (EV_A_ w); 2330 ev_timer_stop (EV_A_ w);
1677 } 2331 }
1678 else if (w->repeat) 2332 else if (w->repeat)
1679 { 2333 {
1680 w->at = w->repeat; 2334 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2335 ev_timer_start (EV_A_ w);
1682 } 2336 }
2337
2338 EV_FREQUENT_CHECK;
1683} 2339}
1684 2340
1685#if EV_PERIODIC_ENABLE 2341#if EV_PERIODIC_ENABLE
1686void noinline 2342void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2343ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2344{
1689 if (expect_false (ev_is_active (w))) 2345 if (expect_false (ev_is_active (w)))
1690 return; 2346 return;
1691 2347
1692 if (w->reschedule_cb) 2348 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2349 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2350 else if (w->interval)
1695 { 2351 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2352 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2353 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2354 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2355 }
1700 else 2356 else
1701 ((WT)w)->at = w->offset; 2357 ev_at (w) = w->offset;
1702 2358
2359 EV_FREQUENT_CHECK;
2360
2361 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2362 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2363 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2364 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2365 ANHE_at_cache (periodics [ev_active (w)]);
2366 upheap (periodics, ev_active (w));
1707 2367
2368 EV_FREQUENT_CHECK;
2369
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2370 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2371}
1710 2372
1711void noinline 2373void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2374ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2375{
1714 clear_pending (EV_A_ (W)w); 2376 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2377 if (expect_false (!ev_is_active (w)))
1716 return; 2378 return;
1717 2379
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2380 EV_FREQUENT_CHECK;
1719 2381
1720 { 2382 {
1721 int active = ((W)w)->active; 2383 int active = ev_active (w);
1722 2384
2385 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2386
2387 --periodiccnt;
2388
1723 if (expect_true (--active < --periodiccnt)) 2389 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2390 {
1725 periodics [active] = periodics [periodiccnt]; 2391 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2392 adjustheap (periodics, periodiccnt, active);
1727 } 2393 }
1728 } 2394 }
2395
2396 EV_FREQUENT_CHECK;
1729 2397
1730 ev_stop (EV_A_ (W)w); 2398 ev_stop (EV_A_ (W)w);
1731} 2399}
1732 2400
1733void noinline 2401void noinline
1745 2413
1746void noinline 2414void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 2415ev_signal_start (EV_P_ ev_signal *w)
1748{ 2416{
1749#if EV_MULTIPLICITY 2417#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2418 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif 2419#endif
1752 if (expect_false (ev_is_active (w))) 2420 if (expect_false (ev_is_active (w)))
1753 return; 2421 return;
1754 2422
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2423 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2424
2425 evpipe_init (EV_A);
2426
2427 EV_FREQUENT_CHECK;
2428
2429 {
2430#ifndef _WIN32
2431 sigset_t full, prev;
2432 sigfillset (&full);
2433 sigprocmask (SIG_SETMASK, &full, &prev);
2434#endif
2435
2436 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2437
2438#ifndef _WIN32
2439 sigprocmask (SIG_SETMASK, &prev, 0);
2440#endif
2441 }
1756 2442
1757 ev_start (EV_A_ (W)w, 1); 2443 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2444 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2445
1761 if (!((WL)w)->next) 2446 if (!((WL)w)->next)
1762 { 2447 {
1763#if _WIN32 2448#if _WIN32
1764 signal (w->signum, sighandler); 2449 signal (w->signum, ev_sighandler);
1765#else 2450#else
1766 struct sigaction sa; 2451 struct sigaction sa;
1767 sa.sa_handler = sighandler; 2452 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2453 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2455 sigaction (w->signum, &sa, 0);
1771#endif 2456#endif
1772 } 2457 }
2458
2459 EV_FREQUENT_CHECK;
1773} 2460}
1774 2461
1775void noinline 2462void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 2463ev_signal_stop (EV_P_ ev_signal *w)
1777{ 2464{
1778 clear_pending (EV_A_ (W)w); 2465 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2466 if (expect_false (!ev_is_active (w)))
1780 return; 2467 return;
1781 2468
2469 EV_FREQUENT_CHECK;
2470
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2471 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2472 ev_stop (EV_A_ (W)w);
1784 2473
1785 if (!signals [w->signum - 1].head) 2474 if (!signals [w->signum - 1].head)
1786 signal (w->signum, SIG_DFL); 2475 signal (w->signum, SIG_DFL);
2476
2477 EV_FREQUENT_CHECK;
1787} 2478}
1788 2479
1789void 2480void
1790ev_child_start (EV_P_ ev_child *w) 2481ev_child_start (EV_P_ ev_child *w)
1791{ 2482{
1792#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 2485#endif
1795 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1796 return; 2487 return;
1797 2488
2489 EV_FREQUENT_CHECK;
2490
1798 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2492 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2493
2494 EV_FREQUENT_CHECK;
1800} 2495}
1801 2496
1802void 2497void
1803ev_child_stop (EV_P_ ev_child *w) 2498ev_child_stop (EV_P_ ev_child *w)
1804{ 2499{
1805 clear_pending (EV_A_ (W)w); 2500 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2501 if (expect_false (!ev_is_active (w)))
1807 return; 2502 return;
1808 2503
2504 EV_FREQUENT_CHECK;
2505
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2506 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2507 ev_stop (EV_A_ (W)w);
2508
2509 EV_FREQUENT_CHECK;
1811} 2510}
1812 2511
1813#if EV_STAT_ENABLE 2512#if EV_STAT_ENABLE
1814 2513
1815# ifdef _WIN32 2514# ifdef _WIN32
1816# undef lstat 2515# undef lstat
1817# define lstat(a,b) _stati64 (a,b) 2516# define lstat(a,b) _stati64 (a,b)
1818# endif 2517# endif
1819 2518
1820#define DEF_STAT_INTERVAL 5.0074891 2519#define DEF_STAT_INTERVAL 5.0074891
2520#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1821#define MIN_STAT_INTERVAL 0.1074891 2521#define MIN_STAT_INTERVAL 0.1074891
1822 2522
1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2523static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1824 2524
1825#if EV_USE_INOTIFY 2525#if EV_USE_INOTIFY
1826# define EV_INOTIFY_BUFSIZE 8192 2526# define EV_INOTIFY_BUFSIZE 8192
1830{ 2530{
1831 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2531 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1832 2532
1833 if (w->wd < 0) 2533 if (w->wd < 0)
1834 { 2534 {
2535 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2536 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2537
1837 /* monitor some parent directory for speedup hints */ 2538 /* monitor some parent directory for speedup hints */
2539 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2540 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2541 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2542 {
1840 char path [4096]; 2543 char path [4096];
1841 strcpy (path, w->path); 2544 strcpy (path, w->path);
1842 2545
1845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2548 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2549 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1847 2550
1848 char *pend = strrchr (path, '/'); 2551 char *pend = strrchr (path, '/');
1849 2552
1850 if (!pend) 2553 if (!pend || pend == path)
1851 break; /* whoops, no '/', complain to your admin */ 2554 break;
1852 2555
1853 *pend = 0; 2556 *pend = 0;
1854 w->wd = inotify_add_watch (fs_fd, path, mask); 2557 w->wd = inotify_add_watch (fs_fd, path, mask);
1855 } 2558 }
1856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2559 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1857 } 2560 }
1858 } 2561 }
1859 else
1860 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1861 2562
1862 if (w->wd >= 0) 2563 if (w->wd >= 0)
2564 {
1863 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2565 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2566
2567 /* now local changes will be tracked by inotify, but remote changes won't */
2568 /* unless the filesystem it known to be local, we therefore still poll */
2569 /* also do poll on <2.6.25, but with normal frequency */
2570 struct statfs sfs;
2571
2572 if (fs_2625 && !statfs (w->path, &sfs))
2573 if (sfs.f_type == 0x1373 /* devfs */
2574 || sfs.f_type == 0xEF53 /* ext2/3 */
2575 || sfs.f_type == 0x3153464a /* jfs */
2576 || sfs.f_type == 0x52654973 /* reiser3 */
2577 || sfs.f_type == 0x01021994 /* tempfs */
2578 || sfs.f_type == 0x58465342 /* xfs */)
2579 return;
2580
2581 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2582 ev_timer_again (EV_A_ &w->timer);
2583 }
1864} 2584}
1865 2585
1866static void noinline 2586static void noinline
1867infy_del (EV_P_ ev_stat *w) 2587infy_del (EV_P_ ev_stat *w)
1868{ 2588{
1882 2602
1883static void noinline 2603static void noinline
1884infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2604infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1885{ 2605{
1886 if (slot < 0) 2606 if (slot < 0)
1887 /* overflow, need to check for all hahs slots */ 2607 /* overflow, need to check for all hash slots */
1888 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2608 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1889 infy_wd (EV_A_ slot, wd, ev); 2609 infy_wd (EV_A_ slot, wd, ev);
1890 else 2610 else
1891 { 2611 {
1892 WL w_; 2612 WL w_;
1898 2618
1899 if (w->wd == wd || wd == -1) 2619 if (w->wd == wd || wd == -1)
1900 { 2620 {
1901 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2621 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1902 { 2622 {
2623 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1903 w->wd = -1; 2624 w->wd = -1;
1904 infy_add (EV_A_ w); /* re-add, no matter what */ 2625 infy_add (EV_A_ w); /* re-add, no matter what */
1905 } 2626 }
1906 2627
1907 stat_timer_cb (EV_A_ &w->timer, 0); 2628 stat_timer_cb (EV_A_ &w->timer, 0);
1920 2641
1921 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2642 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1922 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2643 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1923} 2644}
1924 2645
1925void inline_size 2646inline_size void
2647check_2625 (EV_P)
2648{
2649 /* kernels < 2.6.25 are borked
2650 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2651 */
2652 struct utsname buf;
2653 int major, minor, micro;
2654
2655 if (uname (&buf))
2656 return;
2657
2658 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2659 return;
2660
2661 if (major < 2
2662 || (major == 2 && minor < 6)
2663 || (major == 2 && minor == 6 && micro < 25))
2664 return;
2665
2666 fs_2625 = 1;
2667}
2668
2669inline_size void
1926infy_init (EV_P) 2670infy_init (EV_P)
1927{ 2671{
1928 if (fs_fd != -2) 2672 if (fs_fd != -2)
1929 return; 2673 return;
2674
2675 fs_fd = -1;
2676
2677 check_2625 (EV_A);
1930 2678
1931 fs_fd = inotify_init (); 2679 fs_fd = inotify_init ();
1932 2680
1933 if (fs_fd >= 0) 2681 if (fs_fd >= 0)
1934 { 2682 {
1936 ev_set_priority (&fs_w, EV_MAXPRI); 2684 ev_set_priority (&fs_w, EV_MAXPRI);
1937 ev_io_start (EV_A_ &fs_w); 2685 ev_io_start (EV_A_ &fs_w);
1938 } 2686 }
1939} 2687}
1940 2688
1941void inline_size 2689inline_size void
1942infy_fork (EV_P) 2690infy_fork (EV_P)
1943{ 2691{
1944 int slot; 2692 int slot;
1945 2693
1946 if (fs_fd < 0) 2694 if (fs_fd < 0)
1962 w->wd = -1; 2710 w->wd = -1;
1963 2711
1964 if (fs_fd >= 0) 2712 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); /* re-add, no matter what */ 2713 infy_add (EV_A_ w); /* re-add, no matter what */
1966 else 2714 else
1967 ev_timer_start (EV_A_ &w->timer); 2715 ev_timer_again (EV_A_ &w->timer);
1968 } 2716 }
1969
1970 } 2717 }
1971} 2718}
1972 2719
2720#endif
2721
2722#ifdef _WIN32
2723# define EV_LSTAT(p,b) _stati64 (p, b)
2724#else
2725# define EV_LSTAT(p,b) lstat (p, b)
1973#endif 2726#endif
1974 2727
1975void 2728void
1976ev_stat_stat (EV_P_ ev_stat *w) 2729ev_stat_stat (EV_P_ ev_stat *w)
1977{ 2730{
2004 || w->prev.st_atime != w->attr.st_atime 2757 || w->prev.st_atime != w->attr.st_atime
2005 || w->prev.st_mtime != w->attr.st_mtime 2758 || w->prev.st_mtime != w->attr.st_mtime
2006 || w->prev.st_ctime != w->attr.st_ctime 2759 || w->prev.st_ctime != w->attr.st_ctime
2007 ) { 2760 ) {
2008 #if EV_USE_INOTIFY 2761 #if EV_USE_INOTIFY
2762 if (fs_fd >= 0)
2763 {
2009 infy_del (EV_A_ w); 2764 infy_del (EV_A_ w);
2010 infy_add (EV_A_ w); 2765 infy_add (EV_A_ w);
2011 ev_stat_stat (EV_A_ w); /* avoid race... */ 2766 ev_stat_stat (EV_A_ w); /* avoid race... */
2767 }
2012 #endif 2768 #endif
2013 2769
2014 ev_feed_event (EV_A_ w, EV_STAT); 2770 ev_feed_event (EV_A_ w, EV_STAT);
2015 } 2771 }
2016} 2772}
2019ev_stat_start (EV_P_ ev_stat *w) 2775ev_stat_start (EV_P_ ev_stat *w)
2020{ 2776{
2021 if (expect_false (ev_is_active (w))) 2777 if (expect_false (ev_is_active (w)))
2022 return; 2778 return;
2023 2779
2024 /* since we use memcmp, we need to clear any padding data etc. */
2025 memset (&w->prev, 0, sizeof (ev_statdata));
2026 memset (&w->attr, 0, sizeof (ev_statdata));
2027
2028 ev_stat_stat (EV_A_ w); 2780 ev_stat_stat (EV_A_ w);
2029 2781
2782 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2030 if (w->interval < MIN_STAT_INTERVAL) 2783 w->interval = MIN_STAT_INTERVAL;
2031 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2032 2784
2033 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2785 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2034 ev_set_priority (&w->timer, ev_priority (w)); 2786 ev_set_priority (&w->timer, ev_priority (w));
2035 2787
2036#if EV_USE_INOTIFY 2788#if EV_USE_INOTIFY
2037 infy_init (EV_A); 2789 infy_init (EV_A);
2038 2790
2039 if (fs_fd >= 0) 2791 if (fs_fd >= 0)
2040 infy_add (EV_A_ w); 2792 infy_add (EV_A_ w);
2041 else 2793 else
2042#endif 2794#endif
2043 ev_timer_start (EV_A_ &w->timer); 2795 ev_timer_again (EV_A_ &w->timer);
2044 2796
2045 ev_start (EV_A_ (W)w, 1); 2797 ev_start (EV_A_ (W)w, 1);
2798
2799 EV_FREQUENT_CHECK;
2046} 2800}
2047 2801
2048void 2802void
2049ev_stat_stop (EV_P_ ev_stat *w) 2803ev_stat_stop (EV_P_ ev_stat *w)
2050{ 2804{
2051 clear_pending (EV_A_ (W)w); 2805 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2806 if (expect_false (!ev_is_active (w)))
2053 return; 2807 return;
2054 2808
2809 EV_FREQUENT_CHECK;
2810
2055#if EV_USE_INOTIFY 2811#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 2812 infy_del (EV_A_ w);
2057#endif 2813#endif
2058 ev_timer_stop (EV_A_ &w->timer); 2814 ev_timer_stop (EV_A_ &w->timer);
2059 2815
2060 ev_stop (EV_A_ (W)w); 2816 ev_stop (EV_A_ (W)w);
2817
2818 EV_FREQUENT_CHECK;
2061} 2819}
2062#endif 2820#endif
2063 2821
2064#if EV_IDLE_ENABLE 2822#if EV_IDLE_ENABLE
2065void 2823void
2067{ 2825{
2068 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
2069 return; 2827 return;
2070 2828
2071 pri_adjust (EV_A_ (W)w); 2829 pri_adjust (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
2072 2832
2073 { 2833 {
2074 int active = ++idlecnt [ABSPRI (w)]; 2834 int active = ++idlecnt [ABSPRI (w)];
2075 2835
2076 ++idleall; 2836 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 2837 ev_start (EV_A_ (W)w, active);
2078 2838
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2839 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 2840 idles [ABSPRI (w)][active - 1] = w;
2081 } 2841 }
2842
2843 EV_FREQUENT_CHECK;
2082} 2844}
2083 2845
2084void 2846void
2085ev_idle_stop (EV_P_ ev_idle *w) 2847ev_idle_stop (EV_P_ ev_idle *w)
2086{ 2848{
2087 clear_pending (EV_A_ (W)w); 2849 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2850 if (expect_false (!ev_is_active (w)))
2089 return; 2851 return;
2090 2852
2853 EV_FREQUENT_CHECK;
2854
2091 { 2855 {
2092 int active = ((W)w)->active; 2856 int active = ev_active (w);
2093 2857
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2858 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2859 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 2860
2097 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2098 --idleall; 2862 --idleall;
2099 } 2863 }
2864
2865 EV_FREQUENT_CHECK;
2100} 2866}
2101#endif 2867#endif
2102 2868
2103void 2869void
2104ev_prepare_start (EV_P_ ev_prepare *w) 2870ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 2871{
2106 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2107 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2108 2876
2109 ev_start (EV_A_ (W)w, ++preparecnt); 2877 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2878 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 2879 prepares [preparecnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2112} 2882}
2113 2883
2114void 2884void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 2885ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 2886{
2117 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2119 return; 2889 return;
2120 2890
2891 EV_FREQUENT_CHECK;
2892
2121 { 2893 {
2122 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2123 prepares [active - 1] = prepares [--preparecnt]; 2896 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 2897 ev_active (prepares [active - 1]) = active;
2125 } 2898 }
2126 2899
2127 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2128} 2903}
2129 2904
2130void 2905void
2131ev_check_start (EV_P_ ev_check *w) 2906ev_check_start (EV_P_ ev_check *w)
2132{ 2907{
2133 if (expect_false (ev_is_active (w))) 2908 if (expect_false (ev_is_active (w)))
2134 return; 2909 return;
2910
2911 EV_FREQUENT_CHECK;
2135 2912
2136 ev_start (EV_A_ (W)w, ++checkcnt); 2913 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2914 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 2915 checks [checkcnt - 1] = w;
2916
2917 EV_FREQUENT_CHECK;
2139} 2918}
2140 2919
2141void 2920void
2142ev_check_stop (EV_P_ ev_check *w) 2921ev_check_stop (EV_P_ ev_check *w)
2143{ 2922{
2144 clear_pending (EV_A_ (W)w); 2923 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2924 if (expect_false (!ev_is_active (w)))
2146 return; 2925 return;
2147 2926
2927 EV_FREQUENT_CHECK;
2928
2148 { 2929 {
2149 int active = ((W)w)->active; 2930 int active = ev_active (w);
2931
2150 checks [active - 1] = checks [--checkcnt]; 2932 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 2933 ev_active (checks [active - 1]) = active;
2152 } 2934 }
2153 2935
2154 ev_stop (EV_A_ (W)w); 2936 ev_stop (EV_A_ (W)w);
2937
2938 EV_FREQUENT_CHECK;
2155} 2939}
2156 2940
2157#if EV_EMBED_ENABLE 2941#if EV_EMBED_ENABLE
2158void noinline 2942void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 2943ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 2944{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 2945 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 2946}
2163 2947
2164static void 2948static void
2165embed_cb (EV_P_ ev_io *io, int revents) 2949embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 2950{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2951 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 2952
2169 if (ev_cb (w)) 2953 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2954 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 2955 else
2172 ev_embed_sweep (loop, w); 2956 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 2957}
2958
2959static void
2960embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2961{
2962 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2963
2964 {
2965 struct ev_loop *loop = w->other;
2966
2967 while (fdchangecnt)
2968 {
2969 fd_reify (EV_A);
2970 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2971 }
2972 }
2973}
2974
2975static void
2976embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2977{
2978 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2979
2980 ev_embed_stop (EV_A_ w);
2981
2982 {
2983 struct ev_loop *loop = w->other;
2984
2985 ev_loop_fork (EV_A);
2986 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2987 }
2988
2989 ev_embed_start (EV_A_ w);
2990}
2991
2992#if 0
2993static void
2994embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2995{
2996 ev_idle_stop (EV_A_ idle);
2997}
2998#endif
2174 2999
2175void 3000void
2176ev_embed_start (EV_P_ ev_embed *w) 3001ev_embed_start (EV_P_ ev_embed *w)
2177{ 3002{
2178 if (expect_false (ev_is_active (w))) 3003 if (expect_false (ev_is_active (w)))
2179 return; 3004 return;
2180 3005
2181 { 3006 {
2182 struct ev_loop *loop = w->loop; 3007 struct ev_loop *loop = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3008 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3009 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 3010 }
3011
3012 EV_FREQUENT_CHECK;
2186 3013
2187 ev_set_priority (&w->io, ev_priority (w)); 3014 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 3015 ev_io_start (EV_A_ &w->io);
2189 3016
3017 ev_prepare_init (&w->prepare, embed_prepare_cb);
3018 ev_set_priority (&w->prepare, EV_MINPRI);
3019 ev_prepare_start (EV_A_ &w->prepare);
3020
3021 ev_fork_init (&w->fork, embed_fork_cb);
3022 ev_fork_start (EV_A_ &w->fork);
3023
3024 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3025
2190 ev_start (EV_A_ (W)w, 1); 3026 ev_start (EV_A_ (W)w, 1);
3027
3028 EV_FREQUENT_CHECK;
2191} 3029}
2192 3030
2193void 3031void
2194ev_embed_stop (EV_P_ ev_embed *w) 3032ev_embed_stop (EV_P_ ev_embed *w)
2195{ 3033{
2196 clear_pending (EV_A_ (W)w); 3034 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3035 if (expect_false (!ev_is_active (w)))
2198 return; 3036 return;
2199 3037
3038 EV_FREQUENT_CHECK;
3039
2200 ev_io_stop (EV_A_ &w->io); 3040 ev_io_stop (EV_A_ &w->io);
3041 ev_prepare_stop (EV_A_ &w->prepare);
3042 ev_fork_stop (EV_A_ &w->fork);
2201 3043
2202 ev_stop (EV_A_ (W)w); 3044 EV_FREQUENT_CHECK;
2203} 3045}
2204#endif 3046#endif
2205 3047
2206#if EV_FORK_ENABLE 3048#if EV_FORK_ENABLE
2207void 3049void
2208ev_fork_start (EV_P_ ev_fork *w) 3050ev_fork_start (EV_P_ ev_fork *w)
2209{ 3051{
2210 if (expect_false (ev_is_active (w))) 3052 if (expect_false (ev_is_active (w)))
2211 return; 3053 return;
3054
3055 EV_FREQUENT_CHECK;
2212 3056
2213 ev_start (EV_A_ (W)w, ++forkcnt); 3057 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3058 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 3059 forks [forkcnt - 1] = w;
3060
3061 EV_FREQUENT_CHECK;
2216} 3062}
2217 3063
2218void 3064void
2219ev_fork_stop (EV_P_ ev_fork *w) 3065ev_fork_stop (EV_P_ ev_fork *w)
2220{ 3066{
2221 clear_pending (EV_A_ (W)w); 3067 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 3068 if (expect_false (!ev_is_active (w)))
2223 return; 3069 return;
2224 3070
3071 EV_FREQUENT_CHECK;
3072
2225 { 3073 {
2226 int active = ((W)w)->active; 3074 int active = ev_active (w);
3075
2227 forks [active - 1] = forks [--forkcnt]; 3076 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 3077 ev_active (forks [active - 1]) = active;
2229 } 3078 }
2230 3079
2231 ev_stop (EV_A_ (W)w); 3080 ev_stop (EV_A_ (W)w);
3081
3082 EV_FREQUENT_CHECK;
3083}
3084#endif
3085
3086#if EV_ASYNC_ENABLE
3087void
3088ev_async_start (EV_P_ ev_async *w)
3089{
3090 if (expect_false (ev_is_active (w)))
3091 return;
3092
3093 evpipe_init (EV_A);
3094
3095 EV_FREQUENT_CHECK;
3096
3097 ev_start (EV_A_ (W)w, ++asynccnt);
3098 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3099 asyncs [asynccnt - 1] = w;
3100
3101 EV_FREQUENT_CHECK;
3102}
3103
3104void
3105ev_async_stop (EV_P_ ev_async *w)
3106{
3107 clear_pending (EV_A_ (W)w);
3108 if (expect_false (!ev_is_active (w)))
3109 return;
3110
3111 EV_FREQUENT_CHECK;
3112
3113 {
3114 int active = ev_active (w);
3115
3116 asyncs [active - 1] = asyncs [--asynccnt];
3117 ev_active (asyncs [active - 1]) = active;
3118 }
3119
3120 ev_stop (EV_A_ (W)w);
3121
3122 EV_FREQUENT_CHECK;
3123}
3124
3125void
3126ev_async_send (EV_P_ ev_async *w)
3127{
3128 w->sent = 1;
3129 evpipe_write (EV_A_ &gotasync);
2232} 3130}
2233#endif 3131#endif
2234 3132
2235/*****************************************************************************/ 3133/*****************************************************************************/
2236 3134
2246once_cb (EV_P_ struct ev_once *once, int revents) 3144once_cb (EV_P_ struct ev_once *once, int revents)
2247{ 3145{
2248 void (*cb)(int revents, void *arg) = once->cb; 3146 void (*cb)(int revents, void *arg) = once->cb;
2249 void *arg = once->arg; 3147 void *arg = once->arg;
2250 3148
2251 ev_io_stop (EV_A_ &once->io); 3149 ev_io_stop (EV_A_ &once->io);
2252 ev_timer_stop (EV_A_ &once->to); 3150 ev_timer_stop (EV_A_ &once->to);
2253 ev_free (once); 3151 ev_free (once);
2254 3152
2255 cb (revents, arg); 3153 cb (revents, arg);
2256} 3154}
2257 3155
2258static void 3156static void
2259once_cb_io (EV_P_ ev_io *w, int revents) 3157once_cb_io (EV_P_ ev_io *w, int revents)
2260{ 3158{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3159 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3160
3161 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2262} 3162}
2263 3163
2264static void 3164static void
2265once_cb_to (EV_P_ ev_timer *w, int revents) 3165once_cb_to (EV_P_ ev_timer *w, int revents)
2266{ 3166{
2267 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3167 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3168
3169 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2268} 3170}
2269 3171
2270void 3172void
2271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3173ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2272{ 3174{
2294 ev_timer_set (&once->to, timeout, 0.); 3196 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 3197 ev_timer_start (EV_A_ &once->to);
2296 } 3198 }
2297} 3199}
2298 3200
3201/*****************************************************************************/
3202
3203#if 0
3204void
3205ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3206{
3207 int i, j;
3208 ev_watcher_list *wl, *wn;
3209
3210 if (types & (EV_IO | EV_EMBED))
3211 for (i = 0; i < anfdmax; ++i)
3212 for (wl = anfds [i].head; wl; )
3213 {
3214 wn = wl->next;
3215
3216#if EV_EMBED_ENABLE
3217 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3218 {
3219 if (types & EV_EMBED)
3220 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3221 }
3222 else
3223#endif
3224#if EV_USE_INOTIFY
3225 if (ev_cb ((ev_io *)wl) == infy_cb)
3226 ;
3227 else
3228#endif
3229 if ((ev_io *)wl != &pipeev)
3230 if (types & EV_IO)
3231 cb (EV_A_ EV_IO, wl);
3232
3233 wl = wn;
3234 }
3235
3236 if (types & (EV_TIMER | EV_STAT))
3237 for (i = timercnt + HEAP0; i-- > HEAP0; )
3238#if EV_STAT_ENABLE
3239 /*TODO: timer is not always active*/
3240 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3241 {
3242 if (types & EV_STAT)
3243 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3244 }
3245 else
3246#endif
3247 if (types & EV_TIMER)
3248 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3249
3250#if EV_PERIODIC_ENABLE
3251 if (types & EV_PERIODIC)
3252 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3253 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3254#endif
3255
3256#if EV_IDLE_ENABLE
3257 if (types & EV_IDLE)
3258 for (j = NUMPRI; i--; )
3259 for (i = idlecnt [j]; i--; )
3260 cb (EV_A_ EV_IDLE, idles [j][i]);
3261#endif
3262
3263#if EV_FORK_ENABLE
3264 if (types & EV_FORK)
3265 for (i = forkcnt; i--; )
3266 if (ev_cb (forks [i]) != embed_fork_cb)
3267 cb (EV_A_ EV_FORK, forks [i]);
3268#endif
3269
3270#if EV_ASYNC_ENABLE
3271 if (types & EV_ASYNC)
3272 for (i = asynccnt; i--; )
3273 cb (EV_A_ EV_ASYNC, asyncs [i]);
3274#endif
3275
3276 if (types & EV_PREPARE)
3277 for (i = preparecnt; i--; )
3278#if EV_EMBED_ENABLE
3279 if (ev_cb (prepares [i]) != embed_prepare_cb)
3280#endif
3281 cb (EV_A_ EV_PREPARE, prepares [i]);
3282
3283 if (types & EV_CHECK)
3284 for (i = checkcnt; i--; )
3285 cb (EV_A_ EV_CHECK, checks [i]);
3286
3287 if (types & EV_SIGNAL)
3288 for (i = 0; i < signalmax; ++i)
3289 for (wl = signals [i].head; wl; )
3290 {
3291 wn = wl->next;
3292 cb (EV_A_ EV_SIGNAL, wl);
3293 wl = wn;
3294 }
3295
3296 if (types & EV_CHILD)
3297 for (i = EV_PID_HASHSIZE; i--; )
3298 for (wl = childs [i]; wl; )
3299 {
3300 wn = wl->next;
3301 cb (EV_A_ EV_CHILD, wl);
3302 wl = wn;
3303 }
3304/* EV_STAT 0x00001000 /* stat data changed */
3305/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3306}
3307#endif
3308
3309#if EV_MULTIPLICITY
3310 #include "ev_wrap.h"
3311#endif
3312
2299#ifdef __cplusplus 3313#ifdef __cplusplus
2300} 3314}
2301#endif 3315#endif
2302 3316

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines