ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC vs.
Revision 1.285 by root, Wed Apr 15 19:35:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
64# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif 67# endif
68# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif 70# endif
71# else 71# else
72# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
74# endif 74# endif
193# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif 194# endif
195#endif 195#endif
196 196
197#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 199#endif
200 200
201#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 203# define EV_USE_NANOSLEEP 1
397typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
398 398
399#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
401 401
402#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 410#endif
407 411
408#ifdef _WIN32 412#ifdef _WIN32
409# include "ev_win32.c" 413# include "ev_win32.c"
553 557
554ev_tstamp 558ev_tstamp
555ev_time (void) 559ev_time (void)
556{ 560{
557#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
558 struct timespec ts; 564 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 567 }
568#endif
569
562 struct timeval tv; 570 struct timeval tv;
563 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 573}
567 574
568ev_tstamp inline_size 575inline_size ev_tstamp
569get_clock (void) 576get_clock (void)
570{ 577{
571#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
573 { 580 {
618 625
619/*****************************************************************************/ 626/*****************************************************************************/
620 627
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 629
623int inline_size 630inline_size int
624array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
625{ 632{
626 int ncur = cur + 1; 633 int ncur = cur + 1;
627 634
628 do 635 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 677 }
671#endif 678#endif
672 679
673#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 682
676/*****************************************************************************/ 683/*****************************************************************************/
677 684
678void noinline 685void noinline
679ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
690 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
692 } 699 }
693} 700}
694 701
695void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 719{
698 int i; 720 int i;
699 721
700 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
702} 724}
703 725
704/*****************************************************************************/ 726/*****************************************************************************/
705 727
706void inline_speed 728inline_speed void
707fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
708{ 730{
709 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
710 ev_io *w; 732 ev_io *w;
711 733
723{ 745{
724 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
726} 748}
727 749
728void inline_size 750inline_size void
729fd_reify (EV_P) 751fd_reify (EV_P)
730{ 752{
731 int i; 753 int i;
732 754
733 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
748 #ifdef EV_FD_TO_WIN32_HANDLE 770 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else 772 #else
751 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
752 #endif 774 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 776 }
755#endif 777#endif
756 778
757 { 779 {
758 unsigned char o_events = anfd->events; 780 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
760 782
761 anfd->reify = 0; 783 anfd->reify = 0;
762 anfd->events = events; 784 anfd->events = events;
763 785
764 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
766 } 788 }
767 } 789 }
768 790
769 fdchangecnt = 0; 791 fdchangecnt = 0;
770} 792}
771 793
772void inline_size 794inline_size void
773fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
774{ 796{
775 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
777 799
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
783 } 805 }
784} 806}
785 807
786void inline_speed 808inline_speed void
787fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
788{ 810{
789 ev_io *w; 811 ev_io *w;
790 812
791 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 817 }
796} 818}
797 819
798int inline_size 820inline_size int
799fd_valid (int fd) 821fd_valid (int fd)
800{ 822{
801#ifdef _WIN32 823#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
803#else 825#else
840 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 863 if (anfds [fd].events)
842 { 864 {
843 anfds [fd].events = 0; 865 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 866 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 868 }
847} 869}
848 870
849/*****************************************************************************/ 871/*****************************************************************************/
850 872
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 890#define UPHEAP_DONE(p,k) ((p) == (k))
869 891
870/* away from the root */ 892/* away from the root */
871void inline_speed 893inline_speed void
872downheap (ANHE *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
873{ 895{
874 ANHE he = heap [k]; 896 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 897 ANHE *E = heap + N + HEAP0;
876 898
916#define HEAP0 1 938#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 939#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 940#define UPHEAP_DONE(p,k) (!(p))
919 941
920/* away from the root */ 942/* away from the root */
921void inline_speed 943inline_speed void
922downheap (ANHE *heap, int N, int k) 944downheap (ANHE *heap, int N, int k)
923{ 945{
924 ANHE he = heap [k]; 946 ANHE he = heap [k];
925 947
926 for (;;) 948 for (;;)
946 ev_active (ANHE_w (he)) = k; 968 ev_active (ANHE_w (he)) = k;
947} 969}
948#endif 970#endif
949 971
950/* towards the root */ 972/* towards the root */
951void inline_speed 973inline_speed void
952upheap (ANHE *heap, int k) 974upheap (ANHE *heap, int k)
953{ 975{
954 ANHE he = heap [k]; 976 ANHE he = heap [k];
955 977
956 for (;;) 978 for (;;)
967 989
968 heap [k] = he; 990 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 991 ev_active (ANHE_w (he)) = k;
970} 992}
971 993
972void inline_size 994inline_size void
973adjustheap (ANHE *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
974{ 996{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 998 upheap (heap, k);
977 else 999 else
978 downheap (heap, N, k); 1000 downheap (heap, N, k);
979} 1001}
980 1002
981/* rebuild the heap: this function is used only once and executed rarely */ 1003/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1004inline_size void
983reheap (ANHE *heap, int N) 1005reheap (ANHE *heap, int N)
984{ 1006{
985 int i; 1007 int i;
986 1008
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1003 1025
1004static EV_ATOMIC_T gotsig; 1026static EV_ATOMIC_T gotsig;
1005 1027
1006/*****************************************************************************/ 1028/*****************************************************************************/
1007 1029
1008void inline_speed 1030inline_speed void
1009fd_intern (int fd) 1031fd_intern (int fd)
1010{ 1032{
1011#ifdef _WIN32 1033#ifdef _WIN32
1012 unsigned long arg = 1; 1034 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1043 ev_io_start (EV_A_ &pipeev); 1065 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1067 }
1046} 1068}
1047 1069
1048void inline_size 1070inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1072{
1051 if (!*flag) 1073 if (!*flag)
1052 { 1074 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1075 int old_errno = errno; /* save errno because write might clobber it */
1131ev_feed_signal_event (EV_P_ int signum) 1153ev_feed_signal_event (EV_P_ int signum)
1132{ 1154{
1133 WL w; 1155 WL w;
1134 1156
1135#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif 1159#endif
1138 1160
1139 --signum; 1161 --signum;
1140 1162
1141 if (signum < 0 || signum >= signalmax) 1163 if (signum < 0 || signum >= signalmax)
1157 1179
1158#ifndef WIFCONTINUED 1180#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1181# define WIFCONTINUED(status) 0
1160#endif 1182#endif
1161 1183
1162void inline_speed 1184inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
1164{ 1186{
1165 ev_child *w; 1187 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1189
1270 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1295#endif
1274#ifdef __APPLE__ 1296#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1300#endif
1278 1301
1279 return flags; 1302 return flags;
1280} 1303}
1281 1304
1318static void noinline 1341static void noinline
1319loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1320{ 1343{
1321 if (!backend) 1344 if (!backend)
1322 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1323#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1324 { 1358 {
1325 struct timespec ts; 1359 struct timespec ts;
1360
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1362 have_monotonic = 1;
1328 } 1363 }
1329#endif 1364#endif
1330 1365
1331 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1367 mn_now = get_clock ();
1333 now_floor = mn_now; 1368 now_floor = mn_now;
1432 } 1467 }
1433 1468
1434 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1435 1470
1436 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1441#endif 1477#endif
1450 1486
1451 backend = 0; 1487 backend = 0;
1452} 1488}
1453 1489
1454#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1456#endif 1492#endif
1457 1493
1458void inline_size 1494inline_size void
1459loop_fork (EV_P) 1495loop_fork (EV_P)
1460{ 1496{
1461#if EV_USE_PORT 1497#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1499#endif
1534 1570
1535#if EV_VERIFY 1571#if EV_VERIFY
1536static void noinline 1572static void noinline
1537verify_watcher (EV_P_ W w) 1573verify_watcher (EV_P_ W w)
1538{ 1574{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1576
1541 if (w->pending) 1577 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1579}
1544 1580
1545static void noinline 1581static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1582verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1583{
1548 int i; 1584 int i;
1549 1585
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1586 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1587 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1591
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1593 }
1558} 1594}
1559 1595
1560static void noinline 1596static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1597array_verify (EV_P_ W *ws, int cnt)
1562{ 1598{
1563 while (cnt--) 1599 while (cnt--)
1564 { 1600 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1602 verify_watcher (EV_A_ ws [cnt]);
1567 } 1603 }
1568} 1604}
1569#endif 1605#endif
1570 1606
1577 1613
1578 assert (activecnt >= -1); 1614 assert (activecnt >= -1);
1579 1615
1580 assert (fdchangemax >= fdchangecnt); 1616 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1617 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1619
1584 assert (anfdmax >= 0); 1620 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1621 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1622 for (w = anfds [i].head; w; w = w->next)
1587 { 1623 {
1588 verify_watcher (EV_A_ (W)w); 1624 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1627 }
1592 1628
1593 assert (timermax >= timercnt); 1629 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1630 verify_heap (EV_A_ timers, timercnt);
1595 1631
1700ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1701{ 1737{
1702 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1703} 1739}
1704 1740
1705void inline_speed 1741inline_speed void
1706call_pending (EV_P) 1742call_pending (EV_P)
1707{ 1743{
1708 int pri; 1744 int pri;
1709 1745
1710 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1712 { 1748 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1750
1715 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1716 { 1752 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1718 1754
1719 p->w->pending = 0; 1755 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1757 EV_FREQUENT_CHECK;
1722 } 1758 }
1723 } 1759 }
1724} 1760}
1725 1761
1726#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1727void inline_size 1763inline_size void
1728idle_reify (EV_P) 1764idle_reify (EV_P)
1729{ 1765{
1730 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1731 { 1767 {
1732 int pri; 1768 int pri;
1744 } 1780 }
1745 } 1781 }
1746} 1782}
1747#endif 1783#endif
1748 1784
1749void inline_size 1785inline_size void
1750timers_reify (EV_P) 1786timers_reify (EV_P)
1751{ 1787{
1752 EV_FREQUENT_CHECK; 1788 EV_FREQUENT_CHECK;
1753 1789
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 1791 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1792 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1763 ev_at (w) += w->repeat; 1801 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 1802 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 1803 ev_at (w) = mn_now;
1766 1804
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 1806
1769 ANHE_at_cache (timers [HEAP0]); 1807 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1771 } 1815 }
1772 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 1817
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 1819 }
1778} 1820}
1779 1821
1780#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1781void inline_size 1823inline_size void
1782periodics_reify (EV_P) 1824periodics_reify (EV_P)
1783{ 1825{
1784 EV_FREQUENT_CHECK; 1826 EV_FREQUENT_CHECK;
1785 1827
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 1829 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1830 int feed_count = 0;
1789 1831
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 1842
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 1844
1799 ANHE_at_cache (periodics [HEAP0]); 1845 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1801 } 1872 }
1802 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 1874
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 1876 }
1827} 1877}
1828 1878
1829static void noinline 1879static void noinline
1830periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1846 1896
1847 reheap (periodics, periodiccnt); 1897 reheap (periodics, periodiccnt);
1848} 1898}
1849#endif 1899#endif
1850 1900
1851void inline_speed 1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1853{ 1916{
1854 int i; 1917 int i;
1855 1918
1856#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1889 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 1953 mn_now = get_clock ();
1891 now_floor = mn_now; 1954 now_floor = mn_now;
1892 } 1955 }
1893 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1896# endif 1961# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 1962 }
1900 else 1963 else
1901#endif 1964#endif
1902 { 1965 {
1903 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1904 1967
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1909#endif 1974#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 1975 }
1918 1976
1919 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1920 } 1978 }
1921}
1922
1923void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939} 1979}
1940 1980
1941static int loop_done; 1981static int loop_done;
1942 1982
1943void 1983void
1977 { 2017 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2019 call_pending (EV_A);
1980 } 2020 }
1981 2021
1982 if (expect_false (!activecnt))
1983 break;
1984
1985 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1987 loop_fork (EV_A); 2024 loop_fork (EV_A);
1988 2025
1989 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1996 2033
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2035 {
1999 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2037 time_update (EV_A_ 1e100);
2001
2002 waittime = MAX_BLOCKTIME;
2003 2038
2004 if (timercnt) 2039 if (timercnt)
2005 { 2040 {
2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2007 if (waittime > to) waittime = to; 2042 if (waittime > to) waittime = to;
2068ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
2069{ 2104{
2070 loop_done = how; 2105 loop_done = how;
2071} 2106}
2072 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 printf ("update %f\n", mn_now - mn_prev);//D
2139 timers_reschedule (EV_A_ mn_now - mn_prev);
2140 periodics_reschedule (EV_A);
2141}
2142
2073/*****************************************************************************/ 2143/*****************************************************************************/
2074 2144
2075void inline_size 2145inline_size void
2076wlist_add (WL *head, WL elem) 2146wlist_add (WL *head, WL elem)
2077{ 2147{
2078 elem->next = *head; 2148 elem->next = *head;
2079 *head = elem; 2149 *head = elem;
2080} 2150}
2081 2151
2082void inline_size 2152inline_size void
2083wlist_del (WL *head, WL elem) 2153wlist_del (WL *head, WL elem)
2084{ 2154{
2085 while (*head) 2155 while (*head)
2086 { 2156 {
2087 if (*head == elem) 2157 if (*head == elem)
2092 2162
2093 head = &(*head)->next; 2163 head = &(*head)->next;
2094 } 2164 }
2095} 2165}
2096 2166
2097void inline_speed 2167inline_speed void
2098clear_pending (EV_P_ W w) 2168clear_pending (EV_P_ W w)
2099{ 2169{
2100 if (w->pending) 2170 if (w->pending)
2101 { 2171 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2172 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2119 } 2189 }
2120 else 2190 else
2121 return 0; 2191 return 0;
2122} 2192}
2123 2193
2124void inline_size 2194inline_size void
2125pri_adjust (EV_P_ W w) 2195pri_adjust (EV_P_ W w)
2126{ 2196{
2127 int pri = w->priority; 2197 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2200 w->priority = pri;
2131} 2201}
2132 2202
2133void inline_speed 2203inline_speed void
2134ev_start (EV_P_ W w, int active) 2204ev_start (EV_P_ W w, int active)
2135{ 2205{
2136 pri_adjust (EV_A_ w); 2206 pri_adjust (EV_A_ w);
2137 w->active = active; 2207 w->active = active;
2138 ev_ref (EV_A); 2208 ev_ref (EV_A);
2139} 2209}
2140 2210
2141void inline_size 2211inline_size void
2142ev_stop (EV_P_ W w) 2212ev_stop (EV_P_ W w)
2143{ 2213{
2144 ev_unref (EV_A); 2214 ev_unref (EV_A);
2145 w->active = 0; 2215 w->active = 0;
2146} 2216}
2153 int fd = w->fd; 2223 int fd = w->fd;
2154 2224
2155 if (expect_false (ev_is_active (w))) 2225 if (expect_false (ev_is_active (w)))
2156 return; 2226 return;
2157 2227
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2229 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2230
2161 EV_FREQUENT_CHECK; 2231 EV_FREQUENT_CHECK;
2162 2232
2163 ev_start (EV_A_ (W)w, 1); 2233 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2235 wlist_add (&anfds[fd].head, (WL)w);
2166 2236
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2168 w->events &= ~EV_IOFDSET; 2238 w->events &= ~EV__IOFDSET;
2169 2239
2170 EV_FREQUENT_CHECK; 2240 EV_FREQUENT_CHECK;
2171} 2241}
2172 2242
2173void noinline 2243void noinline
2175{ 2245{
2176 clear_pending (EV_A_ (W)w); 2246 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2247 if (expect_false (!ev_is_active (w)))
2178 return; 2248 return;
2179 2249
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2251
2182 EV_FREQUENT_CHECK; 2252 EV_FREQUENT_CHECK;
2183 2253
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2254 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2255 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2265 if (expect_false (ev_is_active (w)))
2196 return; 2266 return;
2197 2267
2198 ev_at (w) += mn_now; 2268 ev_at (w) += mn_now;
2199 2269
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2271
2202 EV_FREQUENT_CHECK; 2272 EV_FREQUENT_CHECK;
2203 2273
2204 ++timercnt; 2274 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2278 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2279 upheap (timers, ev_active (w));
2210 2280
2211 EV_FREQUENT_CHECK; 2281 EV_FREQUENT_CHECK;
2212 2282
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2284}
2215 2285
2216void noinline 2286void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2287ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2288{
2223 EV_FREQUENT_CHECK; 2293 EV_FREQUENT_CHECK;
2224 2294
2225 { 2295 {
2226 int active = ev_active (w); 2296 int active = ev_active (w);
2227 2297
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2299
2230 --timercnt; 2300 --timercnt;
2231 2301
2232 if (expect_true (active < timercnt + HEAP0)) 2302 if (expect_true (active < timercnt + HEAP0))
2233 { 2303 {
2277 2347
2278 if (w->reschedule_cb) 2348 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2349 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2350 else if (w->interval)
2281 { 2351 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2352 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2353 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2354 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2355 }
2286 else 2356 else
2287 ev_at (w) = w->offset; 2357 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2365 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2366 upheap (periodics, ev_active (w));
2297 2367
2298 EV_FREQUENT_CHECK; 2368 EV_FREQUENT_CHECK;
2299 2369
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2370 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2371}
2302 2372
2303void noinline 2373void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2374ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2375{
2310 EV_FREQUENT_CHECK; 2380 EV_FREQUENT_CHECK;
2311 2381
2312 { 2382 {
2313 int active = ev_active (w); 2383 int active = ev_active (w);
2314 2384
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2385 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2386
2317 --periodiccnt; 2387 --periodiccnt;
2318 2388
2319 if (expect_true (active < periodiccnt + HEAP0)) 2389 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2390 {
2343 2413
2344void noinline 2414void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2415ev_signal_start (EV_P_ ev_signal *w)
2346{ 2416{
2347#if EV_MULTIPLICITY 2417#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2418 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif 2419#endif
2350 if (expect_false (ev_is_active (w))) 2420 if (expect_false (ev_is_active (w)))
2351 return; 2421 return;
2352 2422
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2423 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2354 2424
2355 evpipe_init (EV_A); 2425 evpipe_init (EV_A);
2356 2426
2357 EV_FREQUENT_CHECK; 2427 EV_FREQUENT_CHECK;
2358 2428
2409 2479
2410void 2480void
2411ev_child_start (EV_P_ ev_child *w) 2481ev_child_start (EV_P_ ev_child *w)
2412{ 2482{
2413#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2485#endif
2416 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2417 return; 2487 return;
2418 2488
2419 EV_FREQUENT_CHECK; 2489 EV_FREQUENT_CHECK;
2571 2641
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2642 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2643 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2644}
2575 2645
2576void inline_size 2646inline_size void
2577check_2625 (EV_P) 2647check_2625 (EV_P)
2578{ 2648{
2579 /* kernels < 2.6.25 are borked 2649 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2650 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2651 */
2594 return; 2664 return;
2595 2665
2596 fs_2625 = 1; 2666 fs_2625 = 1;
2597} 2667}
2598 2668
2599void inline_size 2669inline_size void
2600infy_init (EV_P) 2670infy_init (EV_P)
2601{ 2671{
2602 if (fs_fd != -2) 2672 if (fs_fd != -2)
2603 return; 2673 return;
2604 2674
2614 ev_set_priority (&fs_w, EV_MAXPRI); 2684 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 2685 ev_io_start (EV_A_ &fs_w);
2616 } 2686 }
2617} 2687}
2618 2688
2619void inline_size 2689inline_size void
2620infy_fork (EV_P) 2690infy_fork (EV_P)
2621{ 2691{
2622 int slot; 2692 int slot;
2623 2693
2624 if (fs_fd < 0) 2694 if (fs_fd < 0)
2905static void 2975static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 2976embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{ 2977{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 2978 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 2979
2980 ev_embed_stop (EV_A_ w);
2981
2910 { 2982 {
2911 struct ev_loop *loop = w->other; 2983 struct ev_loop *loop = w->other;
2912 2984
2913 ev_loop_fork (EV_A); 2985 ev_loop_fork (EV_A);
2986 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2914 } 2987 }
2988
2989 ev_embed_start (EV_A_ w);
2915} 2990}
2916 2991
2917#if 0 2992#if 0
2918static void 2993static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2994embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2928 if (expect_false (ev_is_active (w))) 3003 if (expect_false (ev_is_active (w)))
2929 return; 3004 return;
2930 3005
2931 { 3006 {
2932 struct ev_loop *loop = w->other; 3007 struct ev_loop *loop = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3008 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3009 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 } 3010 }
2936 3011
2937 EV_FREQUENT_CHECK; 3012 EV_FREQUENT_CHECK;
2938 3013
3121 ev_timer_set (&once->to, timeout, 0.); 3196 ev_timer_set (&once->to, timeout, 0.);
3122 ev_timer_start (EV_A_ &once->to); 3197 ev_timer_start (EV_A_ &once->to);
3123 } 3198 }
3124} 3199}
3125 3200
3201/*****************************************************************************/
3202
3203#if 0
3204void
3205ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3206{
3207 int i, j;
3208 ev_watcher_list *wl, *wn;
3209
3210 if (types & (EV_IO | EV_EMBED))
3211 for (i = 0; i < anfdmax; ++i)
3212 for (wl = anfds [i].head; wl; )
3213 {
3214 wn = wl->next;
3215
3216#if EV_EMBED_ENABLE
3217 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3218 {
3219 if (types & EV_EMBED)
3220 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3221 }
3222 else
3223#endif
3224#if EV_USE_INOTIFY
3225 if (ev_cb ((ev_io *)wl) == infy_cb)
3226 ;
3227 else
3228#endif
3229 if ((ev_io *)wl != &pipeev)
3230 if (types & EV_IO)
3231 cb (EV_A_ EV_IO, wl);
3232
3233 wl = wn;
3234 }
3235
3236 if (types & (EV_TIMER | EV_STAT))
3237 for (i = timercnt + HEAP0; i-- > HEAP0; )
3238#if EV_STAT_ENABLE
3239 /*TODO: timer is not always active*/
3240 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3241 {
3242 if (types & EV_STAT)
3243 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3244 }
3245 else
3246#endif
3247 if (types & EV_TIMER)
3248 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3249
3250#if EV_PERIODIC_ENABLE
3251 if (types & EV_PERIODIC)
3252 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3253 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3254#endif
3255
3256#if EV_IDLE_ENABLE
3257 if (types & EV_IDLE)
3258 for (j = NUMPRI; i--; )
3259 for (i = idlecnt [j]; i--; )
3260 cb (EV_A_ EV_IDLE, idles [j][i]);
3261#endif
3262
3263#if EV_FORK_ENABLE
3264 if (types & EV_FORK)
3265 for (i = forkcnt; i--; )
3266 if (ev_cb (forks [i]) != embed_fork_cb)
3267 cb (EV_A_ EV_FORK, forks [i]);
3268#endif
3269
3270#if EV_ASYNC_ENABLE
3271 if (types & EV_ASYNC)
3272 for (i = asynccnt; i--; )
3273 cb (EV_A_ EV_ASYNC, asyncs [i]);
3274#endif
3275
3276 if (types & EV_PREPARE)
3277 for (i = preparecnt; i--; )
3278#if EV_EMBED_ENABLE
3279 if (ev_cb (prepares [i]) != embed_prepare_cb)
3280#endif
3281 cb (EV_A_ EV_PREPARE, prepares [i]);
3282
3283 if (types & EV_CHECK)
3284 for (i = checkcnt; i--; )
3285 cb (EV_A_ EV_CHECK, checks [i]);
3286
3287 if (types & EV_SIGNAL)
3288 for (i = 0; i < signalmax; ++i)
3289 for (wl = signals [i].head; wl; )
3290 {
3291 wn = wl->next;
3292 cb (EV_A_ EV_SIGNAL, wl);
3293 wl = wn;
3294 }
3295
3296 if (types & EV_CHILD)
3297 for (i = EV_PID_HASHSIZE; i--; )
3298 for (wl = childs [i]; wl; )
3299 {
3300 wn = wl->next;
3301 cb (EV_A_ EV_CHILD, wl);
3302 wl = wn;
3303 }
3304/* EV_STAT 0x00001000 /* stat data changed */
3305/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3306}
3307#endif
3308
3126#if EV_MULTIPLICITY 3309#if EV_MULTIPLICITY
3127 #include "ev_wrap.h" 3310 #include "ev_wrap.h"
3128#endif 3311#endif
3129 3312
3130#ifdef __cplusplus 3313#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines