ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
313typedef struct 483typedef struct
314{ 484{
315 WL head; 485 WL head;
316 unsigned char events; 486 unsigned char events;
317 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
318#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 494 SOCKET handle;
320#endif 495#endif
321} ANFD; 496} ANFD;
322 497
325 W w; 500 W w;
326 int events; 501 int events;
327} ANPENDING; 502} ANPENDING;
328 503
329#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
330typedef struct 506typedef struct
331{ 507{
332 WL head; 508 WL head;
333} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
334#endif 528#endif
335 529
336#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
337 531
338 struct ev_loop 532 struct ev_loop
363 557
364ev_tstamp 558ev_tstamp
365ev_time (void) 559ev_time (void)
366{ 560{
367#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
368 struct timespec ts; 564 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 567 }
568#endif
569
372 struct timeval tv; 570 struct timeval tv;
373 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 573}
377 574
378ev_tstamp inline_size 575inline_size ev_tstamp
379get_clock (void) 576get_clock (void)
380{ 577{
381#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
383 { 580 {
396{ 593{
397 return ev_rt_now; 594 return ev_rt_now;
398} 595}
399#endif 596#endif
400 597
401#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 660
403#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
405 { \ 663 { \
406 int newcnt = cur; \ 664 int ocur_ = (cur); \
407 do \ 665 (base) = (type *)array_realloc \
408 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 668 }
417 669
670#if 0
418#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 673 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 677 }
678#endif
425 679
426#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 682
429/*****************************************************************************/ 683/*****************************************************************************/
430 684
431void noinline 685void noinline
432ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
433{ 687{
434 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
435 690
436 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
437 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 699 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 700}
447 701
448void inline_size 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 719{
451 int i; 720 int i;
452 721
453 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
455} 724}
456 725
457/*****************************************************************************/ 726/*****************************************************************************/
458 727
459void inline_size 728inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
474{ 730{
475 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
476 ev_io *w; 732 ev_io *w;
477 733
485} 741}
486 742
487void 743void
488ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 745{
746 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
491} 748}
492 749
493void inline_size 750inline_size void
494fd_reify (EV_P) 751fd_reify (EV_P)
495{ 752{
496 int i; 753 int i;
497 754
498 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
499 { 756 {
500 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
502 ev_io *w; 759 ev_io *w;
503 760
504 int events = 0; 761 unsigned char events = 0;
505 762
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 764 events |= (unsigned char)w->events;
508 765
509#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
510 if (events) 767 if (events)
511 { 768 {
512 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
513 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 776 }
516#endif 777#endif
517 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
518 anfd->reify = 0; 783 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
522 } 789 }
523 790
524 fdchangecnt = 0; 791 fdchangecnt = 0;
525} 792}
526 793
527void inline_size 794inline_size void
528fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
529{ 796{
530 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
534 799
800 if (expect_true (!reify))
801 {
535 ++fdchangecnt; 802 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
538} 806}
539 807
540void inline_speed 808inline_speed void
541fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
542{ 810{
543 ev_io *w; 811 ev_io *w;
544 812
545 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 817 }
550} 818}
551 819
552int inline_size 820inline_size int
553fd_valid (int fd) 821fd_valid (int fd)
554{ 822{
555#ifdef _WIN32 823#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
557#else 825#else
565{ 833{
566 int fd; 834 int fd;
567 835
568 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 837 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
572} 840}
573 841
574/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 843static void noinline
593 861
594 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 863 if (anfds [fd].events)
596 { 864 {
597 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
599 } 868 }
600} 869}
601 870
602/*****************************************************************************/ 871/*****************************************************************************/
603 872
604void inline_speed 873/*
605upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
608 878
609 while (k && heap [k >> 1]->at > w->at) 879/*
610 { 880 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
613 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
614 } 884 */
885#if EV_USE_4HEAP
615 886
616 heap [k] = w; 887#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
618 891
619} 892/* away from the root */
620 893inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
623{ 895{
624 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
625 898
626 while (k < (N >> 1)) 899 for (;;)
627 { 900 {
628 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 904
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 907 {
632 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
634 break; 921 break;
635 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
636 heap [k] = heap [j]; 961 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
638 k = j; 964 k = c;
639 } 965 }
640 966
641 heap [k] = w; 967 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
643} 969}
970#endif
644 971
645void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
646adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
647{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 998 upheap (heap, k);
999 else
649 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
650} 1013}
651 1014
652/*****************************************************************************/ 1015/*****************************************************************************/
653 1016
654typedef struct 1017typedef struct
655{ 1018{
656 WL head; 1019 WL head;
657 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
658} ANSIG; 1021} ANSIG;
659 1022
660static ANSIG *signals; 1023static ANSIG *signals;
661static int signalmax; 1024static int signalmax;
662 1025
663static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1027
667void inline_size 1028/*****************************************************************************/
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 1029
675 ++base; 1030inline_speed void
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1031fd_intern (int fd)
732{ 1032{
733#ifdef _WIN32 1033#ifdef _WIN32
734 int arg = 1; 1034 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1036#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1039#endif
740} 1040}
741 1041
742static void noinline 1042static void noinline
743siginit (EV_P) 1043evpipe_init (EV_P)
744{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
745 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
747 1064
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
751} 1133}
752 1134
753/*****************************************************************************/ 1135/*****************************************************************************/
754 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
755static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
756 1175
757#ifndef _WIN32 1176#ifndef _WIN32
758 1177
759static ev_signal childev; 1178static ev_signal childev;
760 1179
761void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
763{ 1186{
764 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1189
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
767 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
768 { 1194 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1196 w->rpid = pid;
771 w->rstatus = status; 1197 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1199 }
1200 }
774} 1201}
775 1202
776#ifndef WCONTINUED 1203#ifndef WCONTINUED
777# define WCONTINUED 0 1204# define WCONTINUED 0
778#endif 1205#endif
787 if (!WCONTINUED 1214 if (!WCONTINUED
788 || errno != EINVAL 1215 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1217 return;
791 1218
792 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1222
796 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1226}
800 1227
801#endif 1228#endif
802 1229
803/*****************************************************************************/ 1230/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
868#endif 1295#endif
869#ifdef __APPLE__ 1296#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1300#endif
873 1301
874 return flags; 1302 return flags;
875} 1303}
876 1304
877unsigned int 1305unsigned int
878ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
879{ 1307{
880 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1309
882 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
883} 1315}
884 1316
885unsigned int 1317unsigned int
886ev_backend (EV_P) 1318ev_backend (EV_P)
887{ 1319{
888 return backend; 1320 return backend;
889} 1321}
890 1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
891static void noinline 1341static void noinline
892loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
893{ 1343{
894 if (!backend) 1344 if (!backend)
895 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
896#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
897 { 1358 {
898 struct timespec ts; 1359 struct timespec ts;
1360
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1362 have_monotonic = 1;
901 } 1363 }
902#endif 1364#endif
903 1365
904 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1367 mn_now = get_clock ();
906 now_floor = mn_now; 1368 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
908 1379
909 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
910#ifndef _WIN32 1381#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1383 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1387 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1390
920 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1393
929#if EV_USE_PORT 1394#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1396#endif
932#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
940#endif 1405#endif
941#if EV_USE_SELECT 1406#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1408#endif
944 1409
945 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1412 }
948} 1413}
949 1414
950static void noinline 1415static void noinline
951loop_destroy (EV_P) 1416loop_destroy (EV_P)
952{ 1417{
953 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
954 1436
955#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
957 close (fs_fd); 1439 close (fs_fd);
958#endif 1440#endif
975#if EV_USE_SELECT 1457#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1459#endif
978 1460
979 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
980 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
981 1470
982 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1473 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1474 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1476 array_free (periodic, EMPTY);
987#endif 1477#endif
1478#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1479 array_free (fork, EMPTY);
1480#endif
989 array_free (prepare, EMPTY0); 1481 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
991 1486
992 backend = 0; 1487 backend = 0;
993} 1488}
994 1489
1490#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
996 1493
997void inline_size 1494inline_size void
998loop_fork (EV_P) 1495loop_fork (EV_P)
999{ 1496{
1000#if EV_USE_PORT 1497#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1499#endif
1008#endif 1505#endif
1009#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1507 infy_fork (EV_A);
1011#endif 1508#endif
1012 1509
1013 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1014 { 1511 {
1015 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1016 1518
1017 ev_ref (EV_A); 1519 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1019 close (sigpipe [0]); 1529 close (evpipe [0]);
1020 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1021 1532
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1536 }
1027 1537
1028 postfork = 0; 1538 postfork = 0;
1029} 1539}
1030 1540
1031#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1032struct ev_loop * 1543struct ev_loop *
1033ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1034{ 1545{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1547
1052} 1563}
1053 1564
1054void 1565void
1055ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1056{ 1567{
1057 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1058} 1569}
1059 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1061 1671
1062#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1063struct ev_loop * 1673struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1065#else 1675#else
1066int 1676int
1067ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1068#endif 1678#endif
1069{ 1679{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1075 { 1681 {
1076#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1684#else
1081 1687
1082 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1083 1689
1084 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1085 { 1691 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1692#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104{ 1708{
1105#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif 1711#endif
1108 1712
1713 ev_default_loop_ptr = 0;
1714
1109#ifndef _WIN32 1715#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1112#endif 1718#endif
1113 1719
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1121} 1721}
1122 1722
1123void 1723void
1124ev_default_fork (void) 1724ev_default_fork (void)
1125{ 1725{
1126#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1728#endif
1129 1729
1130 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1731}
1133 1732
1134/*****************************************************************************/ 1733/*****************************************************************************/
1135 1734
1136int inline_size 1735void
1137any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
1138{ 1737{
1139 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1739}
1147 1740
1148void inline_speed 1741inline_speed void
1149call_pending (EV_P) 1742call_pending (EV_P)
1150{ 1743{
1151 int pri; 1744 int pri;
1152 1745
1153 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1155 { 1748 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 1750
1158 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1159 { 1752 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1161 1754
1162 p->w->pending = 0; 1755 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1164 } 1758 }
1165 } 1759 }
1166} 1760}
1167 1761
1168void inline_size 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
1169timers_reify (EV_P) 1786timers_reify (EV_P)
1170{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1791 {
1173 ev_timer *w = timers [0]; 1792 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1806
1182 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1187 } 1815 }
1188 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1817
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 1819 }
1193} 1820}
1194 1821
1195#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1196void inline_size 1823inline_size void
1197periodics_reify (EV_P) 1824periodics_reify (EV_P)
1198{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1829 {
1201 ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1202 1831
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1211 } 1872 }
1212 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1874
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 1876 }
1223} 1877}
1224 1878
1225static void noinline 1879static void noinline
1226periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1227{ 1881{
1228 int i; 1882 int i;
1229 1883
1230 /* adjust periodics after time jump */ 1884 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1886 {
1233 ev_periodic *w = periodics [i]; 1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1888
1235 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1891 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1239 } 1907 {
1240 1908 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 1909 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 1910 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 1911 }
1244} 1912}
1245#endif
1246 1913
1247int inline_size 1914inline_speed void
1248time_update_monotonic (EV_P) 1915time_update (EV_P_ ev_tstamp max_block)
1249{ 1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1250 mn_now = get_clock (); 1924 mn_now = get_clock ();
1251 1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1929 {
1254 ev_rt_now = rtmn_diff + mn_now; 1930 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1931 return;
1256 } 1932 }
1257 else 1933
1258 {
1259 now_floor = mn_now; 1934 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1936
1265void inline_size 1937 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1267{ 1939 * in case we get preempted during the calls to
1268 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1269 1941 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1272 { 1944 */
1273 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1274 { 1946 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1288 1948
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1950 return; /* all is well */
1291 1951
1292 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1953 mn_now = get_clock ();
1294 now_floor = mn_now; 1954 now_floor = mn_now;
1295 } 1955 }
1296 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1299# endif 1961# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1962 }
1304 else 1963 else
1305#endif 1964#endif
1306 { 1965 {
1307 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1308 1967
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1313#endif 1974#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1975 }
1319 1976
1320 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1321 } 1978 }
1322} 1979}
1323 1980
1324void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done; 1981static int loop_done;
1337 1982
1338void 1983void
1339ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1340{ 1985{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1987
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1989
1347 for (;;) 1990 do
1348 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1349#ifndef _WIN32 1996#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1352 { 1999 {
1353 curpid = getpid (); 2000 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2011 call_pending (EV_A);
1365 } 2012 }
1366#endif 2013#endif
1367 2014
1368 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
1370 { 2017 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2019 call_pending (EV_A);
1373 } 2020 }
1374 2021
1375 if (expect_false (!activecnt))
1376 break;
1377
1378 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1380 loop_fork (EV_A); 2024 loop_fork (EV_A);
1381 2025
1382 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 2027 fd_reify (EV_A);
1384 2028
1385 /* calculate blocking time */ 2029 /* calculate blocking time */
1386 { 2030 {
1387 ev_tstamp block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1388 2033
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 2035 {
1393 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 2037 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403
1404 block = MAX_BLOCKTIME;
1405 2038
1406 if (timercnt) 2039 if (timercnt)
1407 { 2040 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 2042 if (waittime > to) waittime = to;
1410 } 2043 }
1411 2044
1412#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 2046 if (periodiccnt)
1414 { 2047 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 2049 if (waittime > to) waittime = to;
1417 } 2050 }
1418#endif 2051#endif
1419 2052
1420 if (expect_false (block < 0.)) block = 0.; 2053 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime;
2055
2056 sleeptime = waittime - backend_fudge;
2057
2058 if (expect_true (sleeptime > io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 {
2063 ev_sleep (sleeptime);
2064 waittime -= sleeptime;
2065 }
1421 } 2066 }
1422 2067
2068 ++loop_count;
1423 backend_poll (EV_A_ block); 2069 backend_poll (EV_A_ waittime);
2070
2071 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime);
1424 } 2073 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2074
1429 /* queue pending timers and reschedule them */ 2075 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2076 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2077#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2078 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2079#endif
1434 2080
2081#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2082 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2083 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2084#endif
1438 2085
1439 /* queue check watchers, to be executed first */ 2086 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2087 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 2089
1443 call_pending (EV_A); 2090 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2091 }
2092 while (expect_true (
2093 activecnt
2094 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2096 ));
1448 2097
1449 if (loop_done == EVUNLOOP_ONE) 2098 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2099 loop_done = EVUNLOOP_CANCEL;
1451} 2100}
1452 2101
1454ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1455{ 2104{
1456 loop_done = how; 2105 loop_done = how;
1457} 2106}
1458 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE
2140 periodics_reschedule (EV_A);
2141#endif
2142}
2143
1459/*****************************************************************************/ 2144/*****************************************************************************/
1460 2145
1461void inline_size 2146inline_size void
1462wlist_add (WL *head, WL elem) 2147wlist_add (WL *head, WL elem)
1463{ 2148{
1464 elem->next = *head; 2149 elem->next = *head;
1465 *head = elem; 2150 *head = elem;
1466} 2151}
1467 2152
1468void inline_size 2153inline_size void
1469wlist_del (WL *head, WL elem) 2154wlist_del (WL *head, WL elem)
1470{ 2155{
1471 while (*head) 2156 while (*head)
1472 { 2157 {
1473 if (*head == elem) 2158 if (*head == elem)
1478 2163
1479 head = &(*head)->next; 2164 head = &(*head)->next;
1480 } 2165 }
1481} 2166}
1482 2167
1483void inline_speed 2168inline_speed void
1484ev_clear_pending (EV_P_ W w) 2169clear_pending (EV_P_ W w)
1485{ 2170{
1486 if (w->pending) 2171 if (w->pending)
1487 { 2172 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2173 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 2174 w->pending = 0;
1490 } 2175 }
1491} 2176}
1492 2177
1493void inline_speed 2178int
2179ev_clear_pending (EV_P_ void *w)
2180{
2181 W w_ = (W)w;
2182 int pending = w_->pending;
2183
2184 if (expect_true (pending))
2185 {
2186 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2187 w_->pending = 0;
2188 p->w = 0;
2189 return p->events;
2190 }
2191 else
2192 return 0;
2193}
2194
2195inline_size void
2196pri_adjust (EV_P_ W w)
2197{
2198 int pri = w->priority;
2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2201 w->priority = pri;
2202}
2203
2204inline_speed void
1494ev_start (EV_P_ W w, int active) 2205ev_start (EV_P_ W w, int active)
1495{ 2206{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2207 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2208 w->active = active;
1500 ev_ref (EV_A); 2209 ev_ref (EV_A);
1501} 2210}
1502 2211
1503void inline_size 2212inline_size void
1504ev_stop (EV_P_ W w) 2213ev_stop (EV_P_ W w)
1505{ 2214{
1506 ev_unref (EV_A); 2215 ev_unref (EV_A);
1507 w->active = 0; 2216 w->active = 0;
1508} 2217}
1509 2218
1510/*****************************************************************************/ 2219/*****************************************************************************/
1511 2220
1512void 2221void noinline
1513ev_io_start (EV_P_ ev_io *w) 2222ev_io_start (EV_P_ ev_io *w)
1514{ 2223{
1515 int fd = w->fd; 2224 int fd = w->fd;
1516 2225
1517 if (expect_false (ev_is_active (w))) 2226 if (expect_false (ev_is_active (w)))
1518 return; 2227 return;
1519 2228
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2229 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2231
2232 EV_FREQUENT_CHECK;
1521 2233
1522 ev_start (EV_A_ (W)w, 1); 2234 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2236 wlist_add (&anfds[fd].head, (WL)w);
1525 2237
1526 fd_change (EV_A_ fd); 2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1527} 2239 w->events &= ~EV__IOFDSET;
1528 2240
1529void 2241 EV_FREQUENT_CHECK;
2242}
2243
2244void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2245ev_io_stop (EV_P_ ev_io *w)
1531{ 2246{
1532 ev_clear_pending (EV_A_ (W)w); 2247 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2248 if (expect_false (!ev_is_active (w)))
1534 return; 2249 return;
1535 2250
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2251 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2252
2253 EV_FREQUENT_CHECK;
2254
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2255 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2256 ev_stop (EV_A_ (W)w);
1540 2257
1541 fd_change (EV_A_ w->fd); 2258 fd_change (EV_A_ w->fd, 1);
1542}
1543 2259
1544void 2260 EV_FREQUENT_CHECK;
2261}
2262
2263void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2264ev_timer_start (EV_P_ ev_timer *w)
1546{ 2265{
1547 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1548 return; 2267 return;
1549 2268
1550 ((WT)w)->at += mn_now; 2269 ev_at (w) += mn_now;
1551 2270
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2271 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2276 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2277 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2278 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2279 ANHE_at_cache (timers [ev_active (w)]);
2280 upheap (timers, ev_active (w));
1558 2281
2282 EV_FREQUENT_CHECK;
2283
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2284 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2285}
1561 2286
1562void 2287void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2288ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2289{
1565 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1567 return; 2292 return;
1568 2293
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2294 EV_FREQUENT_CHECK;
1570 2295
1571 { 2296 {
1572 int active = ((W)w)->active; 2297 int active = ev_active (w);
1573 2298
2299 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2300
2301 --timercnt;
2302
1574 if (expect_true (--active < --timercnt)) 2303 if (expect_true (active < timercnt + HEAP0))
1575 { 2304 {
1576 timers [active] = timers [timercnt]; 2305 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2306 adjustheap (timers, timercnt, active);
1578 } 2307 }
1579 } 2308 }
1580 2309
1581 ((WT)w)->at -= mn_now; 2310 EV_FREQUENT_CHECK;
2311
2312 ev_at (w) -= mn_now;
1582 2313
1583 ev_stop (EV_A_ (W)w); 2314 ev_stop (EV_A_ (W)w);
1584} 2315}
1585 2316
1586void 2317void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2318ev_timer_again (EV_P_ ev_timer *w)
1588{ 2319{
2320 EV_FREQUENT_CHECK;
2321
1589 if (ev_is_active (w)) 2322 if (ev_is_active (w))
1590 { 2323 {
1591 if (w->repeat) 2324 if (w->repeat)
1592 { 2325 {
1593 ((WT)w)->at = mn_now + w->repeat; 2326 ev_at (w) = mn_now + w->repeat;
2327 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2328 adjustheap (timers, timercnt, ev_active (w));
1595 } 2329 }
1596 else 2330 else
1597 ev_timer_stop (EV_A_ w); 2331 ev_timer_stop (EV_A_ w);
1598 } 2332 }
1599 else if (w->repeat) 2333 else if (w->repeat)
1600 { 2334 {
1601 w->at = w->repeat; 2335 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2336 ev_timer_start (EV_A_ w);
1603 } 2337 }
2338
2339 EV_FREQUENT_CHECK;
1604} 2340}
1605 2341
1606#if EV_PERIODIC_ENABLE 2342#if EV_PERIODIC_ENABLE
1607void 2343void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2344ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2345{
1610 if (expect_false (ev_is_active (w))) 2346 if (expect_false (ev_is_active (w)))
1611 return; 2347 return;
1612 2348
1613 if (w->reschedule_cb) 2349 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2350 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2351 else if (w->interval)
1616 { 2352 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2353 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2354 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2355 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2356 }
2357 else
2358 ev_at (w) = w->offset;
1621 2359
2360 EV_FREQUENT_CHECK;
2361
2362 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2366 ANHE_at_cache (periodics [ev_active (w)]);
2367 upheap (periodics, ev_active (w));
1626 2368
2369 EV_FREQUENT_CHECK;
2370
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2372}
1629 2373
1630void 2374void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2375ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2376{
1633 ev_clear_pending (EV_A_ (W)w); 2377 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2378 if (expect_false (!ev_is_active (w)))
1635 return; 2379 return;
1636 2380
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2381 EV_FREQUENT_CHECK;
1638 2382
1639 { 2383 {
1640 int active = ((W)w)->active; 2384 int active = ev_active (w);
1641 2385
2386 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2387
2388 --periodiccnt;
2389
1642 if (expect_true (--active < --periodiccnt)) 2390 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2391 {
1644 periodics [active] = periodics [periodiccnt]; 2392 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2393 adjustheap (periodics, periodiccnt, active);
1646 } 2394 }
1647 } 2395 }
1648 2396
2397 EV_FREQUENT_CHECK;
2398
1649 ev_stop (EV_A_ (W)w); 2399 ev_stop (EV_A_ (W)w);
1650} 2400}
1651 2401
1652void 2402void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2403ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2404{
1655 /* TODO: use adjustheap and recalculation */ 2405 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2406 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2407 ev_periodic_start (EV_A_ w);
1660 2410
1661#ifndef SA_RESTART 2411#ifndef SA_RESTART
1662# define SA_RESTART 0 2412# define SA_RESTART 0
1663#endif 2413#endif
1664 2414
1665void 2415void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2416ev_signal_start (EV_P_ ev_signal *w)
1667{ 2417{
1668#if EV_MULTIPLICITY 2418#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2419 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 2420#endif
1671 if (expect_false (ev_is_active (w))) 2421 if (expect_false (ev_is_active (w)))
1672 return; 2422 return;
1673 2423
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2424 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2425
2426 evpipe_init (EV_A);
2427
2428 EV_FREQUENT_CHECK;
2429
2430 {
2431#ifndef _WIN32
2432 sigset_t full, prev;
2433 sigfillset (&full);
2434 sigprocmask (SIG_SETMASK, &full, &prev);
2435#endif
2436
2437 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2438
2439#ifndef _WIN32
2440 sigprocmask (SIG_SETMASK, &prev, 0);
2441#endif
2442 }
1675 2443
1676 ev_start (EV_A_ (W)w, 1); 2444 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2445 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2446
1680 if (!((WL)w)->next) 2447 if (!((WL)w)->next)
1681 { 2448 {
1682#if _WIN32 2449#if _WIN32
1683 signal (w->signum, sighandler); 2450 signal (w->signum, ev_sighandler);
1684#else 2451#else
1685 struct sigaction sa; 2452 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2453 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2454 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2455 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2456 sigaction (w->signum, &sa, 0);
1690#endif 2457#endif
1691 } 2458 }
1692}
1693 2459
1694void 2460 EV_FREQUENT_CHECK;
2461}
2462
2463void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2464ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2465{
1697 ev_clear_pending (EV_A_ (W)w); 2466 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2467 if (expect_false (!ev_is_active (w)))
1699 return; 2468 return;
1700 2469
2470 EV_FREQUENT_CHECK;
2471
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2472 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2473 ev_stop (EV_A_ (W)w);
1703 2474
1704 if (!signals [w->signum - 1].head) 2475 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2476 signal (w->signum, SIG_DFL);
2477
2478 EV_FREQUENT_CHECK;
1706} 2479}
1707 2480
1708void 2481void
1709ev_child_start (EV_P_ ev_child *w) 2482ev_child_start (EV_P_ ev_child *w)
1710{ 2483{
1711#if EV_MULTIPLICITY 2484#if EV_MULTIPLICITY
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2485 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2486#endif
1714 if (expect_false (ev_is_active (w))) 2487 if (expect_false (ev_is_active (w)))
1715 return; 2488 return;
1716 2489
2490 EV_FREQUENT_CHECK;
2491
1717 ev_start (EV_A_ (W)w, 1); 2492 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2493 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2494
2495 EV_FREQUENT_CHECK;
1719} 2496}
1720 2497
1721void 2498void
1722ev_child_stop (EV_P_ ev_child *w) 2499ev_child_stop (EV_P_ ev_child *w)
1723{ 2500{
1724 ev_clear_pending (EV_A_ (W)w); 2501 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2502 if (expect_false (!ev_is_active (w)))
1726 return; 2503 return;
1727 2504
2505 EV_FREQUENT_CHECK;
2506
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2507 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2508 ev_stop (EV_A_ (W)w);
2509
2510 EV_FREQUENT_CHECK;
1730} 2511}
1731 2512
1732#if EV_STAT_ENABLE 2513#if EV_STAT_ENABLE
1733 2514
1734# ifdef _WIN32 2515# ifdef _WIN32
1735# undef lstat 2516# undef lstat
1736# define lstat(a,b) _stati64 (a,b) 2517# define lstat(a,b) _stati64 (a,b)
1737# endif 2518# endif
1738 2519
1739#define DEF_STAT_INTERVAL 5.0074891 2520#define DEF_STAT_INTERVAL 5.0074891
2521#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1740#define MIN_STAT_INTERVAL 0.1074891 2522#define MIN_STAT_INTERVAL 0.1074891
1741 2523
1742static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2524static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1743 2525
1744#if EV_USE_INOTIFY 2526#if EV_USE_INOTIFY
1745# define EV_INOTIFY_BUFSIZE 8192 2527# define EV_INOTIFY_BUFSIZE 8192
1749{ 2531{
1750 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2532 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1751 2533
1752 if (w->wd < 0) 2534 if (w->wd < 0)
1753 { 2535 {
2536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2537 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1755 2538
1756 /* monitor some parent directory for speedup hints */ 2539 /* monitor some parent directory for speedup hints */
2540 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2541 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2542 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2543 {
1759 char path [4096]; 2544 char path [4096];
1760 strcpy (path, w->path); 2545 strcpy (path, w->path);
1761 2546
1764 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2549 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1765 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2550 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1766 2551
1767 char *pend = strrchr (path, '/'); 2552 char *pend = strrchr (path, '/');
1768 2553
1769 if (!pend) 2554 if (!pend || pend == path)
1770 break; /* whoops, no '/', complain to your admin */ 2555 break;
1771 2556
1772 *pend = 0; 2557 *pend = 0;
1773 w->wd = inotify_add_watch (fs_fd, path, mask); 2558 w->wd = inotify_add_watch (fs_fd, path, mask);
1774 } 2559 }
1775 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2560 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1776 } 2561 }
1777 } 2562 }
1778 else
1779 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1780 2563
1781 if (w->wd >= 0) 2564 if (w->wd >= 0)
2565 {
1782 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2566 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2567
2568 /* now local changes will be tracked by inotify, but remote changes won't */
2569 /* unless the filesystem it known to be local, we therefore still poll */
2570 /* also do poll on <2.6.25, but with normal frequency */
2571 struct statfs sfs;
2572
2573 if (fs_2625 && !statfs (w->path, &sfs))
2574 if (sfs.f_type == 0x1373 /* devfs */
2575 || sfs.f_type == 0xEF53 /* ext2/3 */
2576 || sfs.f_type == 0x3153464a /* jfs */
2577 || sfs.f_type == 0x52654973 /* reiser3 */
2578 || sfs.f_type == 0x01021994 /* tempfs */
2579 || sfs.f_type == 0x58465342 /* xfs */)
2580 return;
2581
2582 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2583 ev_timer_again (EV_A_ &w->timer);
2584 }
1783} 2585}
1784 2586
1785static void noinline 2587static void noinline
1786infy_del (EV_P_ ev_stat *w) 2588infy_del (EV_P_ ev_stat *w)
1787{ 2589{
1801 2603
1802static void noinline 2604static void noinline
1803infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2605infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1804{ 2606{
1805 if (slot < 0) 2607 if (slot < 0)
1806 /* overflow, need to check for all hahs slots */ 2608 /* overflow, need to check for all hash slots */
1807 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2609 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1808 infy_wd (EV_A_ slot, wd, ev); 2610 infy_wd (EV_A_ slot, wd, ev);
1809 else 2611 else
1810 { 2612 {
1811 WL w_; 2613 WL w_;
1817 2619
1818 if (w->wd == wd || wd == -1) 2620 if (w->wd == wd || wd == -1)
1819 { 2621 {
1820 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2622 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1821 { 2623 {
2624 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1822 w->wd = -1; 2625 w->wd = -1;
1823 infy_add (EV_A_ w); /* re-add, no matter what */ 2626 infy_add (EV_A_ w); /* re-add, no matter what */
1824 } 2627 }
1825 2628
1826 stat_timer_cb (EV_A_ &w->timer, 0); 2629 stat_timer_cb (EV_A_ &w->timer, 0);
1839 2642
1840 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1841 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2644 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1842} 2645}
1843 2646
1844void inline_size 2647inline_size void
2648check_2625 (EV_P)
2649{
2650 /* kernels < 2.6.25 are borked
2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2652 */
2653 struct utsname buf;
2654 int major, minor, micro;
2655
2656 if (uname (&buf))
2657 return;
2658
2659 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2660 return;
2661
2662 if (major < 2
2663 || (major == 2 && minor < 6)
2664 || (major == 2 && minor == 6 && micro < 25))
2665 return;
2666
2667 fs_2625 = 1;
2668}
2669
2670inline_size void
1845infy_init (EV_P) 2671infy_init (EV_P)
1846{ 2672{
1847 if (fs_fd != -2) 2673 if (fs_fd != -2)
1848 return; 2674 return;
2675
2676 fs_fd = -1;
2677
2678 check_2625 (EV_A);
1849 2679
1850 fs_fd = inotify_init (); 2680 fs_fd = inotify_init ();
1851 2681
1852 if (fs_fd >= 0) 2682 if (fs_fd >= 0)
1853 { 2683 {
1855 ev_set_priority (&fs_w, EV_MAXPRI); 2685 ev_set_priority (&fs_w, EV_MAXPRI);
1856 ev_io_start (EV_A_ &fs_w); 2686 ev_io_start (EV_A_ &fs_w);
1857 } 2687 }
1858} 2688}
1859 2689
1860void inline_size 2690inline_size void
1861infy_fork (EV_P) 2691infy_fork (EV_P)
1862{ 2692{
1863 int slot; 2693 int slot;
1864 2694
1865 if (fs_fd < 0) 2695 if (fs_fd < 0)
1881 w->wd = -1; 2711 w->wd = -1;
1882 2712
1883 if (fs_fd >= 0) 2713 if (fs_fd >= 0)
1884 infy_add (EV_A_ w); /* re-add, no matter what */ 2714 infy_add (EV_A_ w); /* re-add, no matter what */
1885 else 2715 else
1886 ev_timer_start (EV_A_ &w->timer); 2716 ev_timer_again (EV_A_ &w->timer);
1887 } 2717 }
1888
1889 } 2718 }
1890} 2719}
1891 2720
2721#endif
2722
2723#ifdef _WIN32
2724# define EV_LSTAT(p,b) _stati64 (p, b)
2725#else
2726# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 2727#endif
1893 2728
1894void 2729void
1895ev_stat_stat (EV_P_ ev_stat *w) 2730ev_stat_stat (EV_P_ ev_stat *w)
1896{ 2731{
1923 || w->prev.st_atime != w->attr.st_atime 2758 || w->prev.st_atime != w->attr.st_atime
1924 || w->prev.st_mtime != w->attr.st_mtime 2759 || w->prev.st_mtime != w->attr.st_mtime
1925 || w->prev.st_ctime != w->attr.st_ctime 2760 || w->prev.st_ctime != w->attr.st_ctime
1926 ) { 2761 ) {
1927 #if EV_USE_INOTIFY 2762 #if EV_USE_INOTIFY
2763 if (fs_fd >= 0)
2764 {
1928 infy_del (EV_A_ w); 2765 infy_del (EV_A_ w);
1929 infy_add (EV_A_ w); 2766 infy_add (EV_A_ w);
1930 ev_stat_stat (EV_A_ w); /* avoid race... */ 2767 ev_stat_stat (EV_A_ w); /* avoid race... */
2768 }
1931 #endif 2769 #endif
1932 2770
1933 ev_feed_event (EV_A_ w, EV_STAT); 2771 ev_feed_event (EV_A_ w, EV_STAT);
1934 } 2772 }
1935} 2773}
1938ev_stat_start (EV_P_ ev_stat *w) 2776ev_stat_start (EV_P_ ev_stat *w)
1939{ 2777{
1940 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
1941 return; 2779 return;
1942 2780
1943 /* since we use memcmp, we need to clear any padding data etc. */
1944 memset (&w->prev, 0, sizeof (ev_statdata));
1945 memset (&w->attr, 0, sizeof (ev_statdata));
1946
1947 ev_stat_stat (EV_A_ w); 2781 ev_stat_stat (EV_A_ w);
1948 2782
2783 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1949 if (w->interval < MIN_STAT_INTERVAL) 2784 w->interval = MIN_STAT_INTERVAL;
1950 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1951 2785
1952 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2786 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1953 ev_set_priority (&w->timer, ev_priority (w)); 2787 ev_set_priority (&w->timer, ev_priority (w));
1954 2788
1955#if EV_USE_INOTIFY 2789#if EV_USE_INOTIFY
1956 infy_init (EV_A); 2790 infy_init (EV_A);
1957 2791
1958 if (fs_fd >= 0) 2792 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); 2793 infy_add (EV_A_ w);
1960 else 2794 else
1961#endif 2795#endif
1962 ev_timer_start (EV_A_ &w->timer); 2796 ev_timer_again (EV_A_ &w->timer);
1963 2797
1964 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2799
2800 EV_FREQUENT_CHECK;
1965} 2801}
1966 2802
1967void 2803void
1968ev_stat_stop (EV_P_ ev_stat *w) 2804ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2805{
1970 ev_clear_pending (EV_A_ (W)w); 2806 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2807 if (expect_false (!ev_is_active (w)))
1972 return; 2808 return;
1973 2809
2810 EV_FREQUENT_CHECK;
2811
1974#if EV_USE_INOTIFY 2812#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2813 infy_del (EV_A_ w);
1976#endif 2814#endif
1977 ev_timer_stop (EV_A_ &w->timer); 2815 ev_timer_stop (EV_A_ &w->timer);
1978 2816
1979 ev_stop (EV_A_ (W)w); 2817 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 2818
2819 EV_FREQUENT_CHECK;
2820}
2821#endif
2822
2823#if EV_IDLE_ENABLE
1983void 2824void
1984ev_idle_start (EV_P_ ev_idle *w) 2825ev_idle_start (EV_P_ ev_idle *w)
1985{ 2826{
1986 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
1987 return; 2828 return;
1988 2829
2830 pri_adjust (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ++idlecnt [ABSPRI (w)];
2836
2837 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2838 ev_start (EV_A_ (W)w, active);
2839
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2840 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2841 idles [ABSPRI (w)][active - 1] = w;
2842 }
2843
2844 EV_FREQUENT_CHECK;
1992} 2845}
1993 2846
1994void 2847void
1995ev_idle_stop (EV_P_ ev_idle *w) 2848ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2849{
1997 ev_clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
1999 return; 2852 return;
2000 2853
2854 EV_FREQUENT_CHECK;
2855
2001 { 2856 {
2002 int active = ((W)w)->active; 2857 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 2858
2004 ((W)idles [active - 1])->active = active; 2859 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2860 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2861
2862 ev_stop (EV_A_ (W)w);
2863 --idleall;
2005 } 2864 }
2006 2865
2007 ev_stop (EV_A_ (W)w); 2866 EV_FREQUENT_CHECK;
2008} 2867}
2868#endif
2009 2869
2010void 2870void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2871ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2872{
2013 if (expect_false (ev_is_active (w))) 2873 if (expect_false (ev_is_active (w)))
2014 return; 2874 return;
2875
2876 EV_FREQUENT_CHECK;
2015 2877
2016 ev_start (EV_A_ (W)w, ++preparecnt); 2878 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2879 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 2880 prepares [preparecnt - 1] = w;
2881
2882 EV_FREQUENT_CHECK;
2019} 2883}
2020 2884
2021void 2885void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2886ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2887{
2024 ev_clear_pending (EV_A_ (W)w); 2888 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2889 if (expect_false (!ev_is_active (w)))
2026 return; 2890 return;
2027 2891
2892 EV_FREQUENT_CHECK;
2893
2028 { 2894 {
2029 int active = ((W)w)->active; 2895 int active = ev_active (w);
2896
2030 prepares [active - 1] = prepares [--preparecnt]; 2897 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 2898 ev_active (prepares [active - 1]) = active;
2032 } 2899 }
2033 2900
2034 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2035} 2904}
2036 2905
2037void 2906void
2038ev_check_start (EV_P_ ev_check *w) 2907ev_check_start (EV_P_ ev_check *w)
2039{ 2908{
2040 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2041 return; 2910 return;
2911
2912 EV_FREQUENT_CHECK;
2042 2913
2043 ev_start (EV_A_ (W)w, ++checkcnt); 2914 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2915 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 2916 checks [checkcnt - 1] = w;
2917
2918 EV_FREQUENT_CHECK;
2046} 2919}
2047 2920
2048void 2921void
2049ev_check_stop (EV_P_ ev_check *w) 2922ev_check_stop (EV_P_ ev_check *w)
2050{ 2923{
2051 ev_clear_pending (EV_A_ (W)w); 2924 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2925 if (expect_false (!ev_is_active (w)))
2053 return; 2926 return;
2054 2927
2928 EV_FREQUENT_CHECK;
2929
2055 { 2930 {
2056 int active = ((W)w)->active; 2931 int active = ev_active (w);
2932
2057 checks [active - 1] = checks [--checkcnt]; 2933 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 2934 ev_active (checks [active - 1]) = active;
2059 } 2935 }
2060 2936
2061 ev_stop (EV_A_ (W)w); 2937 ev_stop (EV_A_ (W)w);
2938
2939 EV_FREQUENT_CHECK;
2062} 2940}
2063 2941
2064#if EV_EMBED_ENABLE 2942#if EV_EMBED_ENABLE
2065void noinline 2943void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2944ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2945{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2946 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2947}
2070 2948
2071static void 2949static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2950embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2951{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2952 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2953
2076 if (ev_cb (w)) 2954 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2955 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2956 else
2079 ev_embed_sweep (loop, w); 2957 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2958}
2959
2960static void
2961embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2962{
2963 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2964
2965 {
2966 struct ev_loop *loop = w->other;
2967
2968 while (fdchangecnt)
2969 {
2970 fd_reify (EV_A);
2971 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2972 }
2973 }
2974}
2975
2976static void
2977embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2978{
2979 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2980
2981 ev_embed_stop (EV_A_ w);
2982
2983 {
2984 struct ev_loop *loop = w->other;
2985
2986 ev_loop_fork (EV_A);
2987 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2988 }
2989
2990 ev_embed_start (EV_A_ w);
2991}
2992
2993#if 0
2994static void
2995embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2996{
2997 ev_idle_stop (EV_A_ idle);
2998}
2999#endif
2081 3000
2082void 3001void
2083ev_embed_start (EV_P_ ev_embed *w) 3002ev_embed_start (EV_P_ ev_embed *w)
2084{ 3003{
2085 if (expect_false (ev_is_active (w))) 3004 if (expect_false (ev_is_active (w)))
2086 return; 3005 return;
2087 3006
2088 { 3007 {
2089 struct ev_loop *loop = w->loop; 3008 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3009 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3010 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 3011 }
3012
3013 EV_FREQUENT_CHECK;
2093 3014
2094 ev_set_priority (&w->io, ev_priority (w)); 3015 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 3016 ev_io_start (EV_A_ &w->io);
2096 3017
3018 ev_prepare_init (&w->prepare, embed_prepare_cb);
3019 ev_set_priority (&w->prepare, EV_MINPRI);
3020 ev_prepare_start (EV_A_ &w->prepare);
3021
3022 ev_fork_init (&w->fork, embed_fork_cb);
3023 ev_fork_start (EV_A_ &w->fork);
3024
3025 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3026
2097 ev_start (EV_A_ (W)w, 1); 3027 ev_start (EV_A_ (W)w, 1);
3028
3029 EV_FREQUENT_CHECK;
2098} 3030}
2099 3031
2100void 3032void
2101ev_embed_stop (EV_P_ ev_embed *w) 3033ev_embed_stop (EV_P_ ev_embed *w)
2102{ 3034{
2103 ev_clear_pending (EV_A_ (W)w); 3035 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3036 if (expect_false (!ev_is_active (w)))
2105 return; 3037 return;
2106 3038
3039 EV_FREQUENT_CHECK;
3040
2107 ev_io_stop (EV_A_ &w->io); 3041 ev_io_stop (EV_A_ &w->io);
3042 ev_prepare_stop (EV_A_ &w->prepare);
3043 ev_fork_stop (EV_A_ &w->fork);
2108 3044
2109 ev_stop (EV_A_ (W)w); 3045 EV_FREQUENT_CHECK;
2110} 3046}
2111#endif 3047#endif
2112 3048
2113#if EV_FORK_ENABLE 3049#if EV_FORK_ENABLE
2114void 3050void
2115ev_fork_start (EV_P_ ev_fork *w) 3051ev_fork_start (EV_P_ ev_fork *w)
2116{ 3052{
2117 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2118 return; 3054 return;
3055
3056 EV_FREQUENT_CHECK;
2119 3057
2120 ev_start (EV_A_ (W)w, ++forkcnt); 3058 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3059 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 3060 forks [forkcnt - 1] = w;
3061
3062 EV_FREQUENT_CHECK;
2123} 3063}
2124 3064
2125void 3065void
2126ev_fork_stop (EV_P_ ev_fork *w) 3066ev_fork_stop (EV_P_ ev_fork *w)
2127{ 3067{
2128 ev_clear_pending (EV_A_ (W)w); 3068 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 3069 if (expect_false (!ev_is_active (w)))
2130 return; 3070 return;
2131 3071
3072 EV_FREQUENT_CHECK;
3073
2132 { 3074 {
2133 int active = ((W)w)->active; 3075 int active = ev_active (w);
3076
2134 forks [active - 1] = forks [--forkcnt]; 3077 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 3078 ev_active (forks [active - 1]) = active;
2136 } 3079 }
2137 3080
2138 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
3084}
3085#endif
3086
3087#if EV_ASYNC_ENABLE
3088void
3089ev_async_start (EV_P_ ev_async *w)
3090{
3091 if (expect_false (ev_is_active (w)))
3092 return;
3093
3094 evpipe_init (EV_A);
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_start (EV_A_ (W)w, ++asynccnt);
3099 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3100 asyncs [asynccnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_async_stop (EV_P_ ev_async *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114 {
3115 int active = ev_active (w);
3116
3117 asyncs [active - 1] = asyncs [--asynccnt];
3118 ev_active (asyncs [active - 1]) = active;
3119 }
3120
3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125
3126void
3127ev_async_send (EV_P_ ev_async *w)
3128{
3129 w->sent = 1;
3130 evpipe_write (EV_A_ &gotasync);
2139} 3131}
2140#endif 3132#endif
2141 3133
2142/*****************************************************************************/ 3134/*****************************************************************************/
2143 3135
2153once_cb (EV_P_ struct ev_once *once, int revents) 3145once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3146{
2155 void (*cb)(int revents, void *arg) = once->cb; 3147 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3148 void *arg = once->arg;
2157 3149
2158 ev_io_stop (EV_A_ &once->io); 3150 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3151 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3152 ev_free (once);
2161 3153
2162 cb (revents, arg); 3154 cb (revents, arg);
2163} 3155}
2164 3156
2165static void 3157static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3158once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3159{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3160 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3161
3162 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3163}
2170 3164
2171static void 3165static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3166once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3167{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3168 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3169
3170 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3171}
2176 3172
2177void 3173void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3174ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3175{
2201 ev_timer_set (&once->to, timeout, 0.); 3197 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3198 ev_timer_start (EV_A_ &once->to);
2203 } 3199 }
2204} 3200}
2205 3201
3202/*****************************************************************************/
3203
3204#if 0
3205void
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3207{
3208 int i, j;
3209 ev_watcher_list *wl, *wn;
3210
3211 if (types & (EV_IO | EV_EMBED))
3212 for (i = 0; i < anfdmax; ++i)
3213 for (wl = anfds [i].head; wl; )
3214 {
3215 wn = wl->next;
3216
3217#if EV_EMBED_ENABLE
3218 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3219 {
3220 if (types & EV_EMBED)
3221 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3222 }
3223 else
3224#endif
3225#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ;
3228 else
3229#endif
3230 if ((ev_io *)wl != &pipeev)
3231 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl);
3233
3234 wl = wn;
3235 }
3236
3237 if (types & (EV_TIMER | EV_STAT))
3238 for (i = timercnt + HEAP0; i-- > HEAP0; )
3239#if EV_STAT_ENABLE
3240 /*TODO: timer is not always active*/
3241 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3242 {
3243 if (types & EV_STAT)
3244 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3245 }
3246 else
3247#endif
3248 if (types & EV_TIMER)
3249 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3250
3251#if EV_PERIODIC_ENABLE
3252 if (types & EV_PERIODIC)
3253 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif
3256
3257#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; )
3260 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif
3263
3264#if EV_FORK_ENABLE
3265 if (types & EV_FORK)
3266 for (i = forkcnt; i--; )
3267 if (ev_cb (forks [i]) != embed_fork_cb)
3268 cb (EV_A_ EV_FORK, forks [i]);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif
3276
3277 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]);
3283
3284 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]);
3287
3288 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i)
3290 for (wl = signals [i].head; wl; )
3291 {
3292 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn;
3295 }
3296
3297 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; )
3299 for (wl = childs [i]; wl; )
3300 {
3301 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn;
3304 }
3305/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307}
3308#endif
3309
3310#if EV_MULTIPLICITY
3311 #include "ev_wrap.h"
3312#endif
3313
2206#ifdef __cplusplus 3314#ifdef __cplusplus
2207} 3315}
2208#endif 3316#endif
2209 3317

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines