ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
220 353
221/* 354/*
222 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 358 * errors are against us.
226 * This value is good at least till the year 4000 359 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 360 * Better solutions welcome.
229 */ 361 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 363
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 367
236#if __GNUC__ >= 3 368#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
239#else 371#else
240# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
241# define noinline 373# define noinline
242# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 375# define inline
244# endif 376# endif
245#endif 377#endif
246 378
247#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
262 394
263typedef ev_watcher *W; 395typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
266 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
268 411
269#ifdef _WIN32 412#ifdef _WIN32
270# include "ev_win32.c" 413# include "ev_win32.c"
271#endif 414#endif
272 415
279{ 422{
280 syserr_cb = cb; 423 syserr_cb = cb;
281} 424}
282 425
283static void noinline 426static void noinline
284syserr (const char *msg) 427ev_syserr (const char *msg)
285{ 428{
286 if (!msg) 429 if (!msg)
287 msg = "(libev) system error"; 430 msg = "(libev) system error";
288 431
289 if (syserr_cb) 432 if (syserr_cb)
293 perror (msg); 436 perror (msg);
294 abort (); 437 abort ();
295 } 438 }
296} 439}
297 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
298static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 457
300void 458void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 460{
303 alloc = cb; 461 alloc = cb;
304} 462}
305 463
306inline_speed void * 464inline_speed void *
307ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
308{ 466{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
310 468
311 if (!ptr && size) 469 if (!ptr && size)
312 { 470 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 472 abort ();
325typedef struct 483typedef struct
326{ 484{
327 WL head; 485 WL head;
328 unsigned char events; 486 unsigned char events;
329 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
330#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 494 SOCKET handle;
332#endif 495#endif
333} ANFD; 496} ANFD;
334 497
337 W w; 500 W w;
338 int events; 501 int events;
339} ANPENDING; 502} ANPENDING;
340 503
341#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
342typedef struct 506typedef struct
343{ 507{
344 WL head; 508 WL head;
345} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
346#endif 528#endif
347 529
348#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
349 531
350 struct ev_loop 532 struct ev_loop
375 557
376ev_tstamp 558ev_tstamp
377ev_time (void) 559ev_time (void)
378{ 560{
379#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
380 struct timespec ts; 564 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 567 }
568#endif
569
384 struct timeval tv; 570 struct timeval tv;
385 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 573}
389 574
390ev_tstamp inline_size 575inline_size ev_tstamp
391get_clock (void) 576get_clock (void)
392{ 577{
393#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
395 { 580 {
408{ 593{
409 return ev_rt_now; 594 return ev_rt_now;
410} 595}
411#endif 596#endif
412 597
413int inline_size 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
414array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
415{ 632{
416 int ncur = cur + 1; 633 int ncur = cur + 1;
417 634
418 do 635 do
419 ncur <<= 1; 636 ncur <<= 1;
420 while (cnt > ncur); 637 while (cnt > ncur);
421 638
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 641 {
425 ncur *= elem; 642 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 645 ncur /= elem;
429 } 646 }
430 647
431 return ncur; 648 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
436{ 653{
437 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
439} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 660
441#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
443 { \ 663 { \
444 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 677 }
458#endif 678#endif
459 679
460#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 682
463/*****************************************************************************/ 683/*****************************************************************************/
464 684
465void noinline 685void noinline
466ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
477 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
479 } 699 }
480} 700}
481 701
482void inline_size 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 719{
485 int i; 720 int i;
486 721
487 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
489} 724}
490 725
491/*****************************************************************************/ 726/*****************************************************************************/
492 727
493void inline_size 728inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
508{ 730{
509 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
510 ev_io *w; 732 ev_io *w;
511 733
523{ 745{
524 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
526} 748}
527 749
528void inline_size 750inline_size void
529fd_reify (EV_P) 751fd_reify (EV_P)
530{ 752{
531 int i; 753 int i;
532 754
533 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
534 { 756 {
535 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
537 ev_io *w; 759 ev_io *w;
538 760
539 int events = 0; 761 unsigned char events = 0;
540 762
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 764 events |= (unsigned char)w->events;
543 765
544#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
545 if (events) 767 if (events)
546 { 768 {
547 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
548 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 776 }
551#endif 777#endif
552 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
553 anfd->reify = 0; 783 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
557 } 789 }
558 790
559 fdchangecnt = 0; 791 fdchangecnt = 0;
560} 792}
561 793
562void inline_size 794inline_size void
563fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
564{ 796{
565 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
569 799
800 if (expect_true (!reify))
801 {
570 ++fdchangecnt; 802 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
573} 806}
574 807
575void inline_speed 808inline_speed void
576fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
577{ 810{
578 ev_io *w; 811 ev_io *w;
579 812
580 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 817 }
585} 818}
586 819
587int inline_size 820inline_size int
588fd_valid (int fd) 821fd_valid (int fd)
589{ 822{
590#ifdef _WIN32 823#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
592#else 825#else
600{ 833{
601 int fd; 834 int fd;
602 835
603 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 837 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
607} 840}
608 841
609/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 843static void noinline
628 861
629 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 863 if (anfds [fd].events)
631 { 864 {
632 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
634 } 868 }
635} 869}
636 870
637/*****************************************************************************/ 871/*****************************************************************************/
638 872
639void inline_speed 873/*
640upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
643 878
644 while (k && heap [k >> 1]->at > w->at) 879/*
645 { 880 * at the moment we allow libev the luxury of two heaps,
646 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
647 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
648 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
649 } 884 */
885#if EV_USE_4HEAP
650 886
651 heap [k] = w; 887#define DHEAP 4
652 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
653 891
654} 892/* away from the root */
655 893inline_speed void
656void inline_speed
657downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
658{ 895{
659 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
660 898
661 while (k < (N >> 1)) 899 for (;;)
662 { 900 {
663 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
664 904
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
666 ++j; 907 {
667 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
668 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
669 break; 921 break;
670 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
671 heap [k] = heap [j]; 961 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
673 k = j; 964 k = c;
674 } 965 }
675 966
676 heap [k] = w; 967 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
678} 969}
970#endif
679 971
680void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
681adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
682{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 998 upheap (heap, k);
999 else
684 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
685} 1013}
686 1014
687/*****************************************************************************/ 1015/*****************************************************************************/
688 1016
689typedef struct 1017typedef struct
690{ 1018{
691 WL head; 1019 WL head;
692 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
693} ANSIG; 1021} ANSIG;
694 1022
695static ANSIG *signals; 1023static ANSIG *signals;
696static int signalmax; 1024static int signalmax;
697 1025
698static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 1027
702void inline_size 1028/*****************************************************************************/
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709 1029
710 ++base; 1030inline_speed void
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1031fd_intern (int fd)
767{ 1032{
768#ifdef _WIN32 1033#ifdef _WIN32
769 int arg = 1; 1034 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 1036#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1039#endif
775} 1040}
776 1041
777static void noinline 1042static void noinline
778siginit (EV_P) 1043evpipe_init (EV_P)
779{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
780 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
782 1064
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
786} 1133}
787 1134
788/*****************************************************************************/ 1135/*****************************************************************************/
789 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
790static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
791 1175
792#ifndef _WIN32 1176#ifndef _WIN32
793 1177
794static ev_signal childev; 1178static ev_signal childev;
795 1179
796void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
798{ 1186{
799 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1189
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
802 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
803 { 1194 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1196 w->rpid = pid;
806 w->rstatus = status; 1197 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1199 }
1200 }
809} 1201}
810 1202
811#ifndef WCONTINUED 1203#ifndef WCONTINUED
812# define WCONTINUED 0 1204# define WCONTINUED 0
813#endif 1205#endif
822 if (!WCONTINUED 1214 if (!WCONTINUED
823 || errno != EINVAL 1215 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1217 return;
826 1218
827 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1222
831 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1226}
835 1227
836#endif 1228#endif
837 1229
838/*****************************************************************************/ 1230/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
903#endif 1295#endif
904#ifdef __APPLE__ 1296#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
907#endif 1300#endif
908 1301
909 return flags; 1302 return flags;
910} 1303}
911 1304
912unsigned int 1305unsigned int
913ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
914{ 1307{
915 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1309
917 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
918} 1315}
919 1316
920unsigned int 1317unsigned int
921ev_backend (EV_P) 1318ev_backend (EV_P)
922{ 1319{
927ev_loop_count (EV_P) 1324ev_loop_count (EV_P)
928{ 1325{
929 return loop_count; 1326 return loop_count;
930} 1327}
931 1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
932static void noinline 1341static void noinline
933loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
934{ 1343{
935 if (!backend) 1344 if (!backend)
936 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
937#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
938 { 1358 {
939 struct timespec ts; 1359 struct timespec ts;
1360
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1362 have_monotonic = 1;
942 } 1363 }
943#endif 1364#endif
944 1365
945 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1367 mn_now = get_clock ();
947 now_floor = mn_now; 1368 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
949 1379
950 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
951#ifndef _WIN32 1381#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1383 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1387 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1390
961 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1393
970#if EV_USE_PORT 1394#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1396#endif
973#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
981#endif 1405#endif
982#if EV_USE_SELECT 1406#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1408#endif
985 1409
986 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1412 }
989} 1413}
990 1414
991static void noinline 1415static void noinline
992loop_destroy (EV_P) 1416loop_destroy (EV_P)
993{ 1417{
994 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
995 1436
996#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
998 close (fs_fd); 1439 close (fs_fd);
999#endif 1440#endif
1023#if EV_IDLE_ENABLE 1464#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1465 array_free (idle, [i]);
1025#endif 1466#endif
1026 } 1467 }
1027 1468
1469 ev_free (anfds); anfdmax = 0;
1470
1028 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1033#endif 1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1034 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1036 1486
1037 backend = 0; 1487 backend = 0;
1038} 1488}
1039 1489
1490#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1041 1493
1042void inline_size 1494inline_size void
1043loop_fork (EV_P) 1495loop_fork (EV_P)
1044{ 1496{
1045#if EV_USE_PORT 1497#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1499#endif
1053#endif 1505#endif
1054#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1507 infy_fork (EV_A);
1056#endif 1508#endif
1057 1509
1058 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1059 { 1511 {
1060 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1061 1518
1062 ev_ref (EV_A); 1519 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1064 close (sigpipe [0]); 1529 close (evpipe [0]);
1065 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1066 1532
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1536 }
1072 1537
1073 postfork = 0; 1538 postfork = 0;
1074} 1539}
1075 1540
1076#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1077struct ev_loop * 1543struct ev_loop *
1078ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1079{ 1545{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1547
1097} 1563}
1098 1564
1099void 1565void
1100ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1101{ 1567{
1102 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1103} 1569}
1104 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1106 1671
1107#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1108struct ev_loop * 1673struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1110#else 1675#else
1111int 1676int
1112ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1113#endif 1678#endif
1114{ 1679{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1120 { 1681 {
1121#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1684#else
1126 1687
1127 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1128 1689
1129 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1130 { 1691 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1692#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1149{ 1708{
1150#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif 1711#endif
1153 1712
1713 ev_default_loop_ptr = 0;
1714
1154#ifndef _WIN32 1715#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1157#endif 1718#endif
1158 1719
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1166} 1721}
1167 1722
1168void 1723void
1169ev_default_fork (void) 1724ev_default_fork (void)
1170{ 1725{
1171#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1728#endif
1174 1729
1175 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1731}
1178 1732
1179/*****************************************************************************/ 1733/*****************************************************************************/
1180 1734
1181void 1735void
1182ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1183{ 1737{
1184 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1185} 1739}
1186 1740
1187void inline_speed 1741inline_speed void
1188call_pending (EV_P) 1742call_pending (EV_P)
1189{ 1743{
1190 int pri; 1744 int pri;
1191 1745
1192 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1194 { 1748 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 1750
1197 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1198 { 1752 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1200 1754
1201 p->w->pending = 0; 1755 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1203 } 1758 }
1204 } 1759 }
1205} 1760}
1206 1761
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1287void inline_size 1763inline_size void
1288idle_reify (EV_P) 1764idle_reify (EV_P)
1289{ 1765{
1290 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1291 { 1767 {
1292 int pri; 1768 int pri;
1304 } 1780 }
1305 } 1781 }
1306} 1782}
1307#endif 1783#endif
1308 1784
1309int inline_size 1785inline_size void
1310time_update_monotonic (EV_P) 1786timers_reify (EV_P)
1311{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1915time_update (EV_P_ ev_tstamp max_block)
1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1312 mn_now = get_clock (); 1924 mn_now = get_clock ();
1313 1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1929 {
1316 ev_rt_now = rtmn_diff + mn_now; 1930 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1931 return;
1318 } 1932 }
1319 else 1933
1320 {
1321 now_floor = mn_now; 1934 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1936
1327void inline_size 1937 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1329{ 1939 * in case we get preempted during the calls to
1330 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1331 1941 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1334 { 1944 */
1335 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1336 { 1946 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1350 1948
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1950 return; /* all is well */
1353 1951
1354 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1953 mn_now = get_clock ();
1356 now_floor = mn_now; 1954 now_floor = mn_now;
1357 } 1955 }
1358 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1361# endif 1961# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1962 }
1366 else 1963 else
1367#endif 1964#endif
1368 { 1965 {
1369 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1370 1967
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1375#endif 1974#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1975 }
1381 1976
1382 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1383 } 1978 }
1384} 1979}
1385 1980
1386void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done; 1981static int loop_done;
1399 1982
1400void 1983void
1401ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1402{ 1985{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1987
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1989
1409 do 1990 do
1410 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1411#ifndef _WIN32 1996#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1414 { 1999 {
1415 curpid = getpid (); 2000 curpid = getpid ();
1432 { 2017 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2019 call_pending (EV_A);
1435 } 2020 }
1436 2021
1437 if (expect_false (!activecnt))
1438 break;
1439
1440 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1442 loop_fork (EV_A); 2024 loop_fork (EV_A);
1443 2025
1444 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2027 fd_reify (EV_A);
1446 2028
1447 /* calculate blocking time */ 2029 /* calculate blocking time */
1448 { 2030 {
1449 ev_tstamp block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1450 2033
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2035 {
1455 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2037 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465
1466 block = MAX_BLOCKTIME;
1467 2038
1468 if (timercnt) 2039 if (timercnt)
1469 { 2040 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2042 if (waittime > to) waittime = to;
1472 } 2043 }
1473 2044
1474#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2046 if (periodiccnt)
1476 { 2047 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2049 if (waittime > to) waittime = to;
1479 } 2050 }
1480#endif 2051#endif
1481 2052
1482 if (expect_false (block < 0.)) block = 0.; 2053 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime;
2055
2056 sleeptime = waittime - backend_fudge;
2057
2058 if (expect_true (sleeptime > io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 {
2063 ev_sleep (sleeptime);
2064 waittime -= sleeptime;
2065 }
1483 } 2066 }
1484 2067
1485 ++loop_count; 2068 ++loop_count;
1486 backend_poll (EV_A_ block); 2069 backend_poll (EV_A_ waittime);
2070
2071 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime);
1487 } 2073 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2074
1492 /* queue pending timers and reschedule them */ 2075 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2076 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2077#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2078 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2086 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2087 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2089
1507 call_pending (EV_A); 2090 call_pending (EV_A);
1508
1509 } 2091 }
1510 while (expect_true (activecnt && !loop_done)); 2092 while (expect_true (
2093 activecnt
2094 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2096 ));
1511 2097
1512 if (loop_done == EVUNLOOP_ONE) 2098 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2099 loop_done = EVUNLOOP_CANCEL;
1514} 2100}
1515 2101
1517ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1518{ 2104{
1519 loop_done = how; 2105 loop_done = how;
1520} 2106}
1521 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE
2140 periodics_reschedule (EV_A);
2141#endif
2142}
2143
1522/*****************************************************************************/ 2144/*****************************************************************************/
1523 2145
1524void inline_size 2146inline_size void
1525wlist_add (WL *head, WL elem) 2147wlist_add (WL *head, WL elem)
1526{ 2148{
1527 elem->next = *head; 2149 elem->next = *head;
1528 *head = elem; 2150 *head = elem;
1529} 2151}
1530 2152
1531void inline_size 2153inline_size void
1532wlist_del (WL *head, WL elem) 2154wlist_del (WL *head, WL elem)
1533{ 2155{
1534 while (*head) 2156 while (*head)
1535 { 2157 {
1536 if (*head == elem) 2158 if (*head == elem)
1541 2163
1542 head = &(*head)->next; 2164 head = &(*head)->next;
1543 } 2165 }
1544} 2166}
1545 2167
1546void inline_speed 2168inline_speed void
1547clear_pending (EV_P_ W w) 2169clear_pending (EV_P_ W w)
1548{ 2170{
1549 if (w->pending) 2171 if (w->pending)
1550 { 2172 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2173 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1568 } 2190 }
1569 else 2191 else
1570 return 0; 2192 return 0;
1571} 2193}
1572 2194
1573void inline_size 2195inline_size void
1574pri_adjust (EV_P_ W w) 2196pri_adjust (EV_P_ W w)
1575{ 2197{
1576 int pri = w->priority; 2198 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2201 w->priority = pri;
1580} 2202}
1581 2203
1582void inline_speed 2204inline_speed void
1583ev_start (EV_P_ W w, int active) 2205ev_start (EV_P_ W w, int active)
1584{ 2206{
1585 pri_adjust (EV_A_ w); 2207 pri_adjust (EV_A_ w);
1586 w->active = active; 2208 w->active = active;
1587 ev_ref (EV_A); 2209 ev_ref (EV_A);
1588} 2210}
1589 2211
1590void inline_size 2212inline_size void
1591ev_stop (EV_P_ W w) 2213ev_stop (EV_P_ W w)
1592{ 2214{
1593 ev_unref (EV_A); 2215 ev_unref (EV_A);
1594 w->active = 0; 2216 w->active = 0;
1595} 2217}
1602 int fd = w->fd; 2224 int fd = w->fd;
1603 2225
1604 if (expect_false (ev_is_active (w))) 2226 if (expect_false (ev_is_active (w)))
1605 return; 2227 return;
1606 2228
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2229 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2231
2232 EV_FREQUENT_CHECK;
1608 2233
1609 ev_start (EV_A_ (W)w, 1); 2234 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2236 wlist_add (&anfds[fd].head, (WL)w);
1612 2237
1613 fd_change (EV_A_ fd); 2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2239 w->events &= ~EV__IOFDSET;
2240
2241 EV_FREQUENT_CHECK;
1614} 2242}
1615 2243
1616void noinline 2244void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2245ev_io_stop (EV_P_ ev_io *w)
1618{ 2246{
1619 clear_pending (EV_A_ (W)w); 2247 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2248 if (expect_false (!ev_is_active (w)))
1621 return; 2249 return;
1622 2250
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2251 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2252
2253 EV_FREQUENT_CHECK;
2254
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2255 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2256 ev_stop (EV_A_ (W)w);
1627 2257
1628 fd_change (EV_A_ w->fd); 2258 fd_change (EV_A_ w->fd, 1);
2259
2260 EV_FREQUENT_CHECK;
1629} 2261}
1630 2262
1631void noinline 2263void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2264ev_timer_start (EV_P_ ev_timer *w)
1633{ 2265{
1634 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1635 return; 2267 return;
1636 2268
1637 ((WT)w)->at += mn_now; 2269 ev_at (w) += mn_now;
1638 2270
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2271 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2276 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2277 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2278 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2279 ANHE_at_cache (timers [ev_active (w)]);
2280 upheap (timers, ev_active (w));
1645 2281
2282 EV_FREQUENT_CHECK;
2283
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2284 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2285}
1648 2286
1649void noinline 2287void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2288ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2289{
1652 clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1654 return; 2292 return;
1655 2293
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2294 EV_FREQUENT_CHECK;
1657 2295
1658 { 2296 {
1659 int active = ((W)w)->active; 2297 int active = ev_active (w);
1660 2298
2299 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2300
2301 --timercnt;
2302
1661 if (expect_true (--active < --timercnt)) 2303 if (expect_true (active < timercnt + HEAP0))
1662 { 2304 {
1663 timers [active] = timers [timercnt]; 2305 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2306 adjustheap (timers, timercnt, active);
1665 } 2307 }
1666 } 2308 }
1667 2309
1668 ((WT)w)->at -= mn_now; 2310 EV_FREQUENT_CHECK;
2311
2312 ev_at (w) -= mn_now;
1669 2313
1670 ev_stop (EV_A_ (W)w); 2314 ev_stop (EV_A_ (W)w);
1671} 2315}
1672 2316
1673void noinline 2317void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2318ev_timer_again (EV_P_ ev_timer *w)
1675{ 2319{
2320 EV_FREQUENT_CHECK;
2321
1676 if (ev_is_active (w)) 2322 if (ev_is_active (w))
1677 { 2323 {
1678 if (w->repeat) 2324 if (w->repeat)
1679 { 2325 {
1680 ((WT)w)->at = mn_now + w->repeat; 2326 ev_at (w) = mn_now + w->repeat;
2327 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2328 adjustheap (timers, timercnt, ev_active (w));
1682 } 2329 }
1683 else 2330 else
1684 ev_timer_stop (EV_A_ w); 2331 ev_timer_stop (EV_A_ w);
1685 } 2332 }
1686 else if (w->repeat) 2333 else if (w->repeat)
1687 { 2334 {
1688 w->at = w->repeat; 2335 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2336 ev_timer_start (EV_A_ w);
1690 } 2337 }
2338
2339 EV_FREQUENT_CHECK;
1691} 2340}
1692 2341
1693#if EV_PERIODIC_ENABLE 2342#if EV_PERIODIC_ENABLE
1694void noinline 2343void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2344ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2345{
1697 if (expect_false (ev_is_active (w))) 2346 if (expect_false (ev_is_active (w)))
1698 return; 2347 return;
1699 2348
1700 if (w->reschedule_cb) 2349 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2350 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2351 else if (w->interval)
1703 { 2352 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2353 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2354 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2355 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2356 }
1708 else 2357 else
1709 ((WT)w)->at = w->offset; 2358 ev_at (w) = w->offset;
1710 2359
2360 EV_FREQUENT_CHECK;
2361
2362 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2366 ANHE_at_cache (periodics [ev_active (w)]);
2367 upheap (periodics, ev_active (w));
1715 2368
2369 EV_FREQUENT_CHECK;
2370
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2372}
1718 2373
1719void noinline 2374void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2375ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2376{
1722 clear_pending (EV_A_ (W)w); 2377 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2378 if (expect_false (!ev_is_active (w)))
1724 return; 2379 return;
1725 2380
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2381 EV_FREQUENT_CHECK;
1727 2382
1728 { 2383 {
1729 int active = ((W)w)->active; 2384 int active = ev_active (w);
1730 2385
2386 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2387
2388 --periodiccnt;
2389
1731 if (expect_true (--active < --periodiccnt)) 2390 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2391 {
1733 periodics [active] = periodics [periodiccnt]; 2392 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2393 adjustheap (periodics, periodiccnt, active);
1735 } 2394 }
1736 } 2395 }
2396
2397 EV_FREQUENT_CHECK;
1737 2398
1738 ev_stop (EV_A_ (W)w); 2399 ev_stop (EV_A_ (W)w);
1739} 2400}
1740 2401
1741void noinline 2402void noinline
1753 2414
1754void noinline 2415void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2416ev_signal_start (EV_P_ ev_signal *w)
1756{ 2417{
1757#if EV_MULTIPLICITY 2418#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2419 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif 2420#endif
1760 if (expect_false (ev_is_active (w))) 2421 if (expect_false (ev_is_active (w)))
1761 return; 2422 return;
1762 2423
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2424 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2425
2426 evpipe_init (EV_A);
2427
2428 EV_FREQUENT_CHECK;
2429
2430 {
2431#ifndef _WIN32
2432 sigset_t full, prev;
2433 sigfillset (&full);
2434 sigprocmask (SIG_SETMASK, &full, &prev);
2435#endif
2436
2437 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2438
2439#ifndef _WIN32
2440 sigprocmask (SIG_SETMASK, &prev, 0);
2441#endif
2442 }
1764 2443
1765 ev_start (EV_A_ (W)w, 1); 2444 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2445 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2446
1769 if (!((WL)w)->next) 2447 if (!((WL)w)->next)
1770 { 2448 {
1771#if _WIN32 2449#if _WIN32
1772 signal (w->signum, sighandler); 2450 signal (w->signum, ev_sighandler);
1773#else 2451#else
1774 struct sigaction sa; 2452 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2453 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2454 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2455 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2456 sigaction (w->signum, &sa, 0);
1779#endif 2457#endif
1780 } 2458 }
2459
2460 EV_FREQUENT_CHECK;
1781} 2461}
1782 2462
1783void noinline 2463void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2464ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2465{
1786 clear_pending (EV_A_ (W)w); 2466 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2467 if (expect_false (!ev_is_active (w)))
1788 return; 2468 return;
1789 2469
2470 EV_FREQUENT_CHECK;
2471
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2472 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2473 ev_stop (EV_A_ (W)w);
1792 2474
1793 if (!signals [w->signum - 1].head) 2475 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2476 signal (w->signum, SIG_DFL);
2477
2478 EV_FREQUENT_CHECK;
1795} 2479}
1796 2480
1797void 2481void
1798ev_child_start (EV_P_ ev_child *w) 2482ev_child_start (EV_P_ ev_child *w)
1799{ 2483{
1800#if EV_MULTIPLICITY 2484#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2485 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2486#endif
1803 if (expect_false (ev_is_active (w))) 2487 if (expect_false (ev_is_active (w)))
1804 return; 2488 return;
1805 2489
2490 EV_FREQUENT_CHECK;
2491
1806 ev_start (EV_A_ (W)w, 1); 2492 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2493 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2494
2495 EV_FREQUENT_CHECK;
1808} 2496}
1809 2497
1810void 2498void
1811ev_child_stop (EV_P_ ev_child *w) 2499ev_child_stop (EV_P_ ev_child *w)
1812{ 2500{
1813 clear_pending (EV_A_ (W)w); 2501 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2502 if (expect_false (!ev_is_active (w)))
1815 return; 2503 return;
1816 2504
2505 EV_FREQUENT_CHECK;
2506
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2507 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2508 ev_stop (EV_A_ (W)w);
2509
2510 EV_FREQUENT_CHECK;
1819} 2511}
1820 2512
1821#if EV_STAT_ENABLE 2513#if EV_STAT_ENABLE
1822 2514
1823# ifdef _WIN32 2515# ifdef _WIN32
1824# undef lstat 2516# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2517# define lstat(a,b) _stati64 (a,b)
1826# endif 2518# endif
1827 2519
1828#define DEF_STAT_INTERVAL 5.0074891 2520#define DEF_STAT_INTERVAL 5.0074891
2521#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2522#define MIN_STAT_INTERVAL 0.1074891
1830 2523
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2524static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2525
1833#if EV_USE_INOTIFY 2526#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2527# define EV_INOTIFY_BUFSIZE 8192
1838{ 2531{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2532 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2533
1841 if (w->wd < 0) 2534 if (w->wd < 0)
1842 { 2535 {
2536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2537 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2538
1845 /* monitor some parent directory for speedup hints */ 2539 /* monitor some parent directory for speedup hints */
2540 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2541 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2542 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2543 {
1848 char path [4096]; 2544 char path [4096];
1849 strcpy (path, w->path); 2545 strcpy (path, w->path);
1850 2546
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2549 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2550 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2551
1856 char *pend = strrchr (path, '/'); 2552 char *pend = strrchr (path, '/');
1857 2553
1858 if (!pend) 2554 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2555 break;
1860 2556
1861 *pend = 0; 2557 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2558 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2559 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2560 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2561 }
1866 } 2562 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2563
1870 if (w->wd >= 0) 2564 if (w->wd >= 0)
2565 {
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2566 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2567
2568 /* now local changes will be tracked by inotify, but remote changes won't */
2569 /* unless the filesystem it known to be local, we therefore still poll */
2570 /* also do poll on <2.6.25, but with normal frequency */
2571 struct statfs sfs;
2572
2573 if (fs_2625 && !statfs (w->path, &sfs))
2574 if (sfs.f_type == 0x1373 /* devfs */
2575 || sfs.f_type == 0xEF53 /* ext2/3 */
2576 || sfs.f_type == 0x3153464a /* jfs */
2577 || sfs.f_type == 0x52654973 /* reiser3 */
2578 || sfs.f_type == 0x01021994 /* tempfs */
2579 || sfs.f_type == 0x58465342 /* xfs */)
2580 return;
2581
2582 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2583 ev_timer_again (EV_A_ &w->timer);
2584 }
1872} 2585}
1873 2586
1874static void noinline 2587static void noinline
1875infy_del (EV_P_ ev_stat *w) 2588infy_del (EV_P_ ev_stat *w)
1876{ 2589{
1890 2603
1891static void noinline 2604static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2605infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2606{
1894 if (slot < 0) 2607 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2608 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2609 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2610 infy_wd (EV_A_ slot, wd, ev);
1898 else 2611 else
1899 { 2612 {
1900 WL w_; 2613 WL w_;
1906 2619
1907 if (w->wd == wd || wd == -1) 2620 if (w->wd == wd || wd == -1)
1908 { 2621 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2622 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 2623 {
2624 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1911 w->wd = -1; 2625 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2626 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 2627 }
1914 2628
1915 stat_timer_cb (EV_A_ &w->timer, 0); 2629 stat_timer_cb (EV_A_ &w->timer, 0);
1928 2642
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2644 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931} 2645}
1932 2646
1933void inline_size 2647inline_size void
2648check_2625 (EV_P)
2649{
2650 /* kernels < 2.6.25 are borked
2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2652 */
2653 struct utsname buf;
2654 int major, minor, micro;
2655
2656 if (uname (&buf))
2657 return;
2658
2659 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2660 return;
2661
2662 if (major < 2
2663 || (major == 2 && minor < 6)
2664 || (major == 2 && minor == 6 && micro < 25))
2665 return;
2666
2667 fs_2625 = 1;
2668}
2669
2670inline_size void
1934infy_init (EV_P) 2671infy_init (EV_P)
1935{ 2672{
1936 if (fs_fd != -2) 2673 if (fs_fd != -2)
1937 return; 2674 return;
2675
2676 fs_fd = -1;
2677
2678 check_2625 (EV_A);
1938 2679
1939 fs_fd = inotify_init (); 2680 fs_fd = inotify_init ();
1940 2681
1941 if (fs_fd >= 0) 2682 if (fs_fd >= 0)
1942 { 2683 {
1944 ev_set_priority (&fs_w, EV_MAXPRI); 2685 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 2686 ev_io_start (EV_A_ &fs_w);
1946 } 2687 }
1947} 2688}
1948 2689
1949void inline_size 2690inline_size void
1950infy_fork (EV_P) 2691infy_fork (EV_P)
1951{ 2692{
1952 int slot; 2693 int slot;
1953 2694
1954 if (fs_fd < 0) 2695 if (fs_fd < 0)
1970 w->wd = -1; 2711 w->wd = -1;
1971 2712
1972 if (fs_fd >= 0) 2713 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 2714 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 2715 else
1975 ev_timer_start (EV_A_ &w->timer); 2716 ev_timer_again (EV_A_ &w->timer);
1976 } 2717 }
1977
1978 } 2718 }
1979} 2719}
1980 2720
2721#endif
2722
2723#ifdef _WIN32
2724# define EV_LSTAT(p,b) _stati64 (p, b)
2725#else
2726# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2727#endif
1982 2728
1983void 2729void
1984ev_stat_stat (EV_P_ ev_stat *w) 2730ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2731{
2012 || w->prev.st_atime != w->attr.st_atime 2758 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 2759 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 2760 || w->prev.st_ctime != w->attr.st_ctime
2015 ) { 2761 ) {
2016 #if EV_USE_INOTIFY 2762 #if EV_USE_INOTIFY
2763 if (fs_fd >= 0)
2764 {
2017 infy_del (EV_A_ w); 2765 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 2766 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 2767 ev_stat_stat (EV_A_ w); /* avoid race... */
2768 }
2020 #endif 2769 #endif
2021 2770
2022 ev_feed_event (EV_A_ w, EV_STAT); 2771 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 2772 }
2024} 2773}
2027ev_stat_start (EV_P_ ev_stat *w) 2776ev_stat_start (EV_P_ ev_stat *w)
2028{ 2777{
2029 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
2030 return; 2779 return;
2031 2780
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 2781 ev_stat_stat (EV_A_ w);
2037 2782
2783 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 2784 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 2785
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2786 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 2787 ev_set_priority (&w->timer, ev_priority (w));
2043 2788
2044#if EV_USE_INOTIFY 2789#if EV_USE_INOTIFY
2045 infy_init (EV_A); 2790 infy_init (EV_A);
2046 2791
2047 if (fs_fd >= 0) 2792 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 2793 infy_add (EV_A_ w);
2049 else 2794 else
2050#endif 2795#endif
2051 ev_timer_start (EV_A_ &w->timer); 2796 ev_timer_again (EV_A_ &w->timer);
2052 2797
2053 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2799
2800 EV_FREQUENT_CHECK;
2054} 2801}
2055 2802
2056void 2803void
2057ev_stat_stop (EV_P_ ev_stat *w) 2804ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2805{
2059 clear_pending (EV_A_ (W)w); 2806 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2807 if (expect_false (!ev_is_active (w)))
2061 return; 2808 return;
2062 2809
2810 EV_FREQUENT_CHECK;
2811
2063#if EV_USE_INOTIFY 2812#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2813 infy_del (EV_A_ w);
2065#endif 2814#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2815 ev_timer_stop (EV_A_ &w->timer);
2067 2816
2068 ev_stop (EV_A_ (W)w); 2817 ev_stop (EV_A_ (W)w);
2818
2819 EV_FREQUENT_CHECK;
2069} 2820}
2070#endif 2821#endif
2071 2822
2072#if EV_IDLE_ENABLE 2823#if EV_IDLE_ENABLE
2073void 2824void
2075{ 2826{
2076 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
2077 return; 2828 return;
2078 2829
2079 pri_adjust (EV_A_ (W)w); 2830 pri_adjust (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2080 2833
2081 { 2834 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2835 int active = ++idlecnt [ABSPRI (w)];
2083 2836
2084 ++idleall; 2837 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2838 ev_start (EV_A_ (W)w, active);
2086 2839
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2840 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2841 idles [ABSPRI (w)][active - 1] = w;
2089 } 2842 }
2843
2844 EV_FREQUENT_CHECK;
2090} 2845}
2091 2846
2092void 2847void
2093ev_idle_stop (EV_P_ ev_idle *w) 2848ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2849{
2095 clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
2097 return; 2852 return;
2098 2853
2854 EV_FREQUENT_CHECK;
2855
2099 { 2856 {
2100 int active = ((W)w)->active; 2857 int active = ev_active (w);
2101 2858
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2859 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2860 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2861
2105 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2106 --idleall; 2863 --idleall;
2107 } 2864 }
2865
2866 EV_FREQUENT_CHECK;
2108} 2867}
2109#endif 2868#endif
2110 2869
2111void 2870void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2871ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2872{
2114 if (expect_false (ev_is_active (w))) 2873 if (expect_false (ev_is_active (w)))
2115 return; 2874 return;
2875
2876 EV_FREQUENT_CHECK;
2116 2877
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2878 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2879 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2880 prepares [preparecnt - 1] = w;
2881
2882 EV_FREQUENT_CHECK;
2120} 2883}
2121 2884
2122void 2885void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2886ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2887{
2125 clear_pending (EV_A_ (W)w); 2888 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2889 if (expect_false (!ev_is_active (w)))
2127 return; 2890 return;
2128 2891
2892 EV_FREQUENT_CHECK;
2893
2129 { 2894 {
2130 int active = ((W)w)->active; 2895 int active = ev_active (w);
2896
2131 prepares [active - 1] = prepares [--preparecnt]; 2897 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2898 ev_active (prepares [active - 1]) = active;
2133 } 2899 }
2134 2900
2135 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2136} 2904}
2137 2905
2138void 2906void
2139ev_check_start (EV_P_ ev_check *w) 2907ev_check_start (EV_P_ ev_check *w)
2140{ 2908{
2141 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2142 return; 2910 return;
2911
2912 EV_FREQUENT_CHECK;
2143 2913
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2914 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2915 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2916 checks [checkcnt - 1] = w;
2917
2918 EV_FREQUENT_CHECK;
2147} 2919}
2148 2920
2149void 2921void
2150ev_check_stop (EV_P_ ev_check *w) 2922ev_check_stop (EV_P_ ev_check *w)
2151{ 2923{
2152 clear_pending (EV_A_ (W)w); 2924 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2925 if (expect_false (!ev_is_active (w)))
2154 return; 2926 return;
2155 2927
2928 EV_FREQUENT_CHECK;
2929
2156 { 2930 {
2157 int active = ((W)w)->active; 2931 int active = ev_active (w);
2932
2158 checks [active - 1] = checks [--checkcnt]; 2933 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2934 ev_active (checks [active - 1]) = active;
2160 } 2935 }
2161 2936
2162 ev_stop (EV_A_ (W)w); 2937 ev_stop (EV_A_ (W)w);
2938
2939 EV_FREQUENT_CHECK;
2163} 2940}
2164 2941
2165#if EV_EMBED_ENABLE 2942#if EV_EMBED_ENABLE
2166void noinline 2943void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2944ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2945{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2946 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2947}
2171 2948
2172static void 2949static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2950embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2951{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2952 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2953
2177 if (ev_cb (w)) 2954 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2955 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2956 else
2180 ev_embed_sweep (loop, w); 2957 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2958}
2959
2960static void
2961embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2962{
2963 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2964
2965 {
2966 struct ev_loop *loop = w->other;
2967
2968 while (fdchangecnt)
2969 {
2970 fd_reify (EV_A);
2971 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2972 }
2973 }
2974}
2975
2976static void
2977embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2978{
2979 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2980
2981 ev_embed_stop (EV_A_ w);
2982
2983 {
2984 struct ev_loop *loop = w->other;
2985
2986 ev_loop_fork (EV_A);
2987 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2988 }
2989
2990 ev_embed_start (EV_A_ w);
2991}
2992
2993#if 0
2994static void
2995embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2996{
2997 ev_idle_stop (EV_A_ idle);
2998}
2999#endif
2182 3000
2183void 3001void
2184ev_embed_start (EV_P_ ev_embed *w) 3002ev_embed_start (EV_P_ ev_embed *w)
2185{ 3003{
2186 if (expect_false (ev_is_active (w))) 3004 if (expect_false (ev_is_active (w)))
2187 return; 3005 return;
2188 3006
2189 { 3007 {
2190 struct ev_loop *loop = w->loop; 3008 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3009 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3010 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3011 }
3012
3013 EV_FREQUENT_CHECK;
2194 3014
2195 ev_set_priority (&w->io, ev_priority (w)); 3015 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3016 ev_io_start (EV_A_ &w->io);
2197 3017
3018 ev_prepare_init (&w->prepare, embed_prepare_cb);
3019 ev_set_priority (&w->prepare, EV_MINPRI);
3020 ev_prepare_start (EV_A_ &w->prepare);
3021
3022 ev_fork_init (&w->fork, embed_fork_cb);
3023 ev_fork_start (EV_A_ &w->fork);
3024
3025 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3026
2198 ev_start (EV_A_ (W)w, 1); 3027 ev_start (EV_A_ (W)w, 1);
3028
3029 EV_FREQUENT_CHECK;
2199} 3030}
2200 3031
2201void 3032void
2202ev_embed_stop (EV_P_ ev_embed *w) 3033ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3034{
2204 clear_pending (EV_A_ (W)w); 3035 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3036 if (expect_false (!ev_is_active (w)))
2206 return; 3037 return;
2207 3038
3039 EV_FREQUENT_CHECK;
3040
2208 ev_io_stop (EV_A_ &w->io); 3041 ev_io_stop (EV_A_ &w->io);
3042 ev_prepare_stop (EV_A_ &w->prepare);
3043 ev_fork_stop (EV_A_ &w->fork);
2209 3044
2210 ev_stop (EV_A_ (W)w); 3045 EV_FREQUENT_CHECK;
2211} 3046}
2212#endif 3047#endif
2213 3048
2214#if EV_FORK_ENABLE 3049#if EV_FORK_ENABLE
2215void 3050void
2216ev_fork_start (EV_P_ ev_fork *w) 3051ev_fork_start (EV_P_ ev_fork *w)
2217{ 3052{
2218 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2219 return; 3054 return;
3055
3056 EV_FREQUENT_CHECK;
2220 3057
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3058 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3059 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3060 forks [forkcnt - 1] = w;
3061
3062 EV_FREQUENT_CHECK;
2224} 3063}
2225 3064
2226void 3065void
2227ev_fork_stop (EV_P_ ev_fork *w) 3066ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3067{
2229 clear_pending (EV_A_ (W)w); 3068 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3069 if (expect_false (!ev_is_active (w)))
2231 return; 3070 return;
2232 3071
3072 EV_FREQUENT_CHECK;
3073
2233 { 3074 {
2234 int active = ((W)w)->active; 3075 int active = ev_active (w);
3076
2235 forks [active - 1] = forks [--forkcnt]; 3077 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3078 ev_active (forks [active - 1]) = active;
2237 } 3079 }
2238 3080
2239 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
3084}
3085#endif
3086
3087#if EV_ASYNC_ENABLE
3088void
3089ev_async_start (EV_P_ ev_async *w)
3090{
3091 if (expect_false (ev_is_active (w)))
3092 return;
3093
3094 evpipe_init (EV_A);
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_start (EV_A_ (W)w, ++asynccnt);
3099 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3100 asyncs [asynccnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_async_stop (EV_P_ ev_async *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114 {
3115 int active = ev_active (w);
3116
3117 asyncs [active - 1] = asyncs [--asynccnt];
3118 ev_active (asyncs [active - 1]) = active;
3119 }
3120
3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125
3126void
3127ev_async_send (EV_P_ ev_async *w)
3128{
3129 w->sent = 1;
3130 evpipe_write (EV_A_ &gotasync);
2240} 3131}
2241#endif 3132#endif
2242 3133
2243/*****************************************************************************/ 3134/*****************************************************************************/
2244 3135
2254once_cb (EV_P_ struct ev_once *once, int revents) 3145once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3146{
2256 void (*cb)(int revents, void *arg) = once->cb; 3147 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3148 void *arg = once->arg;
2258 3149
2259 ev_io_stop (EV_A_ &once->io); 3150 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3151 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3152 ev_free (once);
2262 3153
2263 cb (revents, arg); 3154 cb (revents, arg);
2264} 3155}
2265 3156
2266static void 3157static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3158once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3159{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3160 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3161
3162 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3163}
2271 3164
2272static void 3165static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3166once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3167{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3168 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3169
3170 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3171}
2277 3172
2278void 3173void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3174ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3175{
2302 ev_timer_set (&once->to, timeout, 0.); 3197 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3198 ev_timer_start (EV_A_ &once->to);
2304 } 3199 }
2305} 3200}
2306 3201
3202/*****************************************************************************/
3203
3204#if 0
3205void
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3207{
3208 int i, j;
3209 ev_watcher_list *wl, *wn;
3210
3211 if (types & (EV_IO | EV_EMBED))
3212 for (i = 0; i < anfdmax; ++i)
3213 for (wl = anfds [i].head; wl; )
3214 {
3215 wn = wl->next;
3216
3217#if EV_EMBED_ENABLE
3218 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3219 {
3220 if (types & EV_EMBED)
3221 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3222 }
3223 else
3224#endif
3225#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ;
3228 else
3229#endif
3230 if ((ev_io *)wl != &pipeev)
3231 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl);
3233
3234 wl = wn;
3235 }
3236
3237 if (types & (EV_TIMER | EV_STAT))
3238 for (i = timercnt + HEAP0; i-- > HEAP0; )
3239#if EV_STAT_ENABLE
3240 /*TODO: timer is not always active*/
3241 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3242 {
3243 if (types & EV_STAT)
3244 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3245 }
3246 else
3247#endif
3248 if (types & EV_TIMER)
3249 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3250
3251#if EV_PERIODIC_ENABLE
3252 if (types & EV_PERIODIC)
3253 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif
3256
3257#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; )
3260 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif
3263
3264#if EV_FORK_ENABLE
3265 if (types & EV_FORK)
3266 for (i = forkcnt; i--; )
3267 if (ev_cb (forks [i]) != embed_fork_cb)
3268 cb (EV_A_ EV_FORK, forks [i]);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif
3276
3277 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]);
3283
3284 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]);
3287
3288 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i)
3290 for (wl = signals [i].head; wl; )
3291 {
3292 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn;
3295 }
3296
3297 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; )
3299 for (wl = childs [i]; wl; )
3300 {
3301 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn;
3304 }
3305/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307}
3308#endif
3309
3310#if EV_MULTIPLICITY
3311 #include "ev_wrap.h"
3312#endif
3313
2307#ifdef __cplusplus 3314#ifdef __cplusplus
2308} 3315}
2309#endif 3316#endif
2310 3317

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines